Package ‘shock’

December 24, 2015

Type Package

Title Slope Heuristic for Block-Diagonal Covariance Selection in High Dimensional Gaussian Graphical Models

Version 1.0

Date 2015-12-24

Author Emilie Devijver, Melina Gallopin

Maintainer Melina Gallopin <melina.gallopin@gmail.com>

Description Block-diagonal covariance selection for high dimensional Gaussian graphical models. The selection procedure is based on the slope heuristics.

License GPL (>= 3)

Imports glasso, mvtnorm, capushe, GGMselect, igraph, stats

NeedsCompilation no

Repository CRAN

Date/Publication 2015-12-24 14:45:29

R topics documented:

 shock-package ... 2
 computeLoglikeFromPartition ... 3
 dataTest ... 4
 networkInferenceGlassoBIC ... 4
 shockSelect ... 5
 simulateBlockDiagNetwork .. 6
 thresholdAbsSPath .. 7

Index 8
shock-package

Slope Heuristic for Block-Diagonal Covariance Selection in High Dimensional Gaussian Graphical Models

Description

Block-diagonal covariance selection for high dimensional Gaussian graphical models. The selection procedure is based on the slope heuristics.

Details

Package: shock
Type: Package
Version: 1.0
Date: 2015-11-07
License: GPL (>= 3)

The function main function of the package (performShock) performs block-diagonal covariance selection for high-dimensional Gaussian graphical models.

Author(s)

Emilie Devijver, Melina Gallopin
Maintainer: Melina Gallopin <melina.gallopin@gmail.com>

References

Examples

```R
## load data to test
data(dataTest)

## dimension of the dataset expdata
n <- dim(dataTest)[1]
p <- dim(dataTest)[2]

## perform partition of variables selection
## based on the slope heuristic
resShock <- shockSelect(dataTest)

## verify that the two slope heuristic
```
```r
## calibrations give the same result
table(resShock$SHDJlabels == resShock$SHRRlabels)

## collect the labels of variables
SHlabels <- resShock$SHDJlabels

## SHadjMat: adjacency matrix of the inferred network
## Shock network inference
SHadjMat <- diag(p)
for(itt in 1:length(unique(SHlabels))){
  stepdata <- as.matrix(dataTest[,SHlabels==itt],nrow=dim(dataTest)[1])
  if(dim(stepdata)[2]>1){
    resNet <- networkInferenceGlassoBIC(stepdata)
    SHadjMat[SHlabels==itt,SHlabels==itt] <- resNet$A
  }
}
```

computeLoglikeFromPartition

Compute the log-likelihood of the model

Description

This function computes the log-likelihood of a multivariate Gaussian model with a block-diagonal covariance matrix.

Usage

```r
computeLoglikeFromPartition(labels, expdata)
```

Arguments

- `labels`: vector of block labels for each variable
- `expdata`: matrix of data

Details

This function computes the log-likelihood of a multivariate Gaussian model with a block-diagonal covariance matrix described in the labels vector.

Value

- `loglike`: loglikelihood of the model
- `df`: degree of freedom of the model
- `labels`: labels provided as input
Examples

```r
## load data to test
data(dataTest)

## threshold of absS matrix
myLABELS <- thresholdAbsSPATH(dataTest)$partitionList

## compute loglikelihood
logLikelihoodPath <- lapply(myLABELS, function(x) computeLogLikelihoodFromPartition(x, dataTest))
```

dataTest
Simulated data to test the R package

Description

This toy dataset as been simulated under a multivariate normal distribution with a block-diagonal covariance matrix and is used to test the method.

Usage

```r
dataTest
```

Format

The dataset `dataTest` is a matrix.

networkInferenceGlassoBIC
Network inference using the glasso algorithm

Description

This function performs network inference using the glasso algorithm for several regularization parameters and selects a network based on the BIC of the model.

Usage

```r
networkInferenceGlassoBIC(dataNet, nb.rho = 100)
```

Arguments

- `dataNet`
 matrix of data
- `nb.rho`
 number of regularization parameters to test in the glasso algorithm
shockSelect

Value

- **A** selected adjacency matrix based on BIC
- **Theta** selected precision matrix based on BIC
- **Sigma** selected covariance matrix based on BIC
- **penaltieslist** list of regularization parameters
- **pathA** list of adjacency matrices for each regularization parameter
- **pathTheta** list of precision matrices for each regularization parameter
- **pathSigma** list of covariance matrices for each regularization parameter
- **pathBIC** list of BIC values for each regularization parameter

References

https://cran.r-project.org/web/packages/glasso/glasso.pdf

Examples

```r
## load data to test
data(dataTest)

## perform network inference
resNet <- networkInferenceGlassoBIC(dataTest)
```

shockSelect

Shock selection

Description

This function performs block-diagonal covariance selection for high-dimensional Gaussian graphical models.

Usage

```r
shockSelect(expdata)
```

Arguments

- **expdata** matrix of data

Value

- **SHDJLabels** Vector of partition labels based on the slope heuristic dimension jump
- **SHRRLabels** Vector of partition labels based on the slope heuristic robust regression
- **capusheOutput** output of the kappa coefficient calibration capushe function
Examples

```r
## load data to test
data(dataTest)

## dimension of the dataset expdata
n <- dim(dataTest)[1]
p <- dim(dataTest)[2]

## perform partition of variables selection
## based on the slope heuristic
resShock <- shockSelect(dataTest)
```

Description

This function simulates a modular network with \(p \) variables based on the partition of variables into blocks `labels`.

Usage

```r
simulateBlockDiagNetwork(p, labels)
```

Arguments

- `p` : number of variables in the network
- `labels` : vector indicating the partition of variables into blocks

Details

To simulate covariance matrices, we use the methodology detailed in Giraud, S. Huet, and N. Verzelen. Graph selection with GGMselect. 2009

Value

- `A` : simulated adjacency matrix
- `C` : simulated correlation matrix
- `Pcor` : simulated partial correlation matrix
- `labels` : vector indicating the partition of variables into blocks provided as input of the function
Examples

````r
## number of variables
p <- 100
## number of blocks
K <- 15
## vector of partition into blocks
labels <- factor(rep(1:K, length.out=p))
## simulate network
g <- simulateBlockDiagNetwork(p, labels)
````

thresholdAbsPath

Detect partitions of variables into blocks.

Description

This function returns a list of partitions of variables based on the sample covariance matrix for several levels of threshold.

Usage

````r
thresholdAbsPath(expdata)
````

Arguments

- `expdata`: matrix of data

Value

- `partitionList`: list of partitions of variables (vectors) deduced by thresholding the sample covariance matrix
- `lambdaPath`: list of threshold parameters

Examples

````r
## load data to test
data(dataTest)

## detect partitions of variables into blocks based on the sample covariance matrix
partitions <- thresholdAbsPath(dataTest)$partitionList
````
Index

computeLoglikeFromPartition, 3
dataTest, 4

networkInferenceGlassoBIC, 4

shock (shock-package), 2
shock-package, 2
shockSelect, 5
simulateBlockDiagNetwork, 6

thresholdAbsSPath, 7