Package ‘signalHsmm’

November 15, 2018

Type Package
Title Predict Presence of Signal Peptides
Version 1.5
LazyData true
Date 2018-11-11
Description Predicts the presence of signal peptides in eukaryotic protein using hidden semi-Markov models. The implemented algorithm can be accessed from both the command line and GUI.
License GPL-3
URL https://github.com/michbur/signalhsmm
Depends R (>= 3.0.0)
Imports graphics, seqinr, shiny, stats, utils
LinkingTo Rcpp
Suggests DT, rmarkdown, shinythemes
NeedsCompilation yes
Repository CRAN
Encoding UTF-8
RoxygenNote 6.1.0
Author Michal Burdukiewicz [cre, aut]
 (<https://orcid.org/0000-0001-8926-582X>),
 Piotr Sobczyk [aut].
 Jaroslaw Chilimoniuk [ctb] (<https://orcid.org/0000-0001-5467-018X>)
Maintainer Michal Burdukiewicz <michalburdukiewicz@gmail.com>
Date/Publication 2018-11-15 09:10:03 UTC

R topics documented:

 aaaggregation .. 2
 add_k_mer_state .. 3
aaaggregation

Reduced amino acid alphabet

Description

Amino acids are grouped together in larger sets based on their physicochemical properties important in the recognition of signal peptide.

Usage

aaaggregation

Format

a list of length four. Each element contains a character vector of amino acid names (one-letter abbreviations).
add_k_mer_state

Adds k-mer hidden state to signalHsmm model

Description

Changes parameters for Hidden Semi-Markov Model to add k-mer

Usage

\[\text{add_k_mer_state}(k\text{Mer}, \text{pipar}, \text{tpmpar}, \text{od}, \text{params}, \text{pState}, \text{nState}, \text{pTrans}, d) \]

Arguments

- **kMer**: character vector representing k-mer aminoacid sequence.
- **pipar**: Probabilities of initial state in Markov Model.
- **tpmpar**: Matrix with transition probabilities between states.
- **od**: Matrix of response probabilities. Eg. od[1,2] is a probability of signal 2 in state 1.
- **params**: Matrix of probability distribution for duration. Eg. params[10,2] is probability of duration of time 10 in state 2.
- **pState**: number denoting hidden state right before k-mer.
- **nState**: number denoting hidden state right after k-mer.
- **pTrans**: Probability of change from pState to k-mer hidden state.
- **d**: Duration of the state.

Value

A list of length four:

- pipar a vector of new probabilities of initial state in Markov Model,
- tpmpar a matrix with new transition probabilities between states,
- od matrix of new response probabilities,
- params matrix of new probability distributions for duration.

Note

Currently add only k-mers without distance.
benchmark_dat
Benchmark data set for signalHsmm

Description
Lists eukaryotic proteins added to UniProt database release 2015_06 between 1.01.2010 and 1.06.2015 (140 proteins with signal peptide and 280 randomly sampled proteins without signal peptide).

Usage
benchmark_dat

Format
a list of SeqFastaAA objects. Slot sig contains the range of signal peptide (if any).

Source
UniProt

Examples
summary(benchmark_dat)

duration_viterbi
Compute most probable path with extended Viterbi algorithm.

Description
Viterbi algorithm for Hidden Markov Model with duration

Usage
duration_viterbi(aa_sample, pipar, tpmpar, od, params)

Arguments
- **aa_sample**: character vector representing single aminoacid sequence.
- **pipar**: probabilities of initial state in Markov Model.
- **tpmpar**: matrix of transition probabilities between states.
- **od**: matrix of response probabilities. Eg. od[1,2] is a probability of signal 2 in state 1.
- **params**: matrix of probability distribution for duration. Eg. params[10,2] is probability of duration of time 10 in state 2.
Value

A list of length four:

- path a vector of most probable path
- viterbi values of probability in all intermediate points,
- psi matrix that gives for every signal and state the previous state in viterbi path,
- duration matrix that gives for every signal and state gives the duration in that state on viterbi path.

Note

All computations are on logarithms of probabilities.

find_nhc

Localize n-, h- and c-region in signal peptide

Description

Finds borders between distinct regions constituting signal peptides using a heuristic algorithm.

Usage

find_nhc(protein, signal = NULL)

Arguments

- protein a vector of amino acids or object of class SeqFastaAA.
- signal range of signal peptide. If NULL, the attribute sig of protein will be used.

Value

a vector of length 4 containing positions of:

1. start of n-region,
2. start of h-region,
3. start of c-region,
4. cleavage site.

References

gui_signalHsmm

GUI for signalHsmm

Description

A graphical user interface for predicting presence of signal peptides.

Usage

gui_signalHsmm()

Value

null.

Note

Any ad-blocking software may be cause of malfunctions.

See Also

run_signalHsmm

hsmm_pred

hsmm_pred class

Description

A single prediction of signalHsmm.

A stochastic model of signal peptide produced by signalHsmm.

Details

Always a named list of five elements

1. sp_probability is a probability of signal peptide presence.
2. sp_start is a start of potential signal peptide (naively 1 aminoacid).
3. sp_end is a position of last amino acid of signal peptide.
4. struc is numeric vector representing predicted structure of input protein.
5. prot is character vector containing input sequence of amino acids.
6. str_approx has value bigger than 0 if the predicted signal peptide structure was approximated (usually in case of sequences that have no signal peptides).

Always a named list of five elements
1. aa_group encoding of amino acids. See `aaaggregation` for an example.
2. pipar probabilities of initial state in Markov Model.
3. tpmpar matrix of transition probabilities between states.
4. od matrix of response probabilities. Eg. od[1,2] is a probability of signal 2 in state 1.
5. overall_probs_log probabilities of amino acids in mature protein.
6. params matrix of probability distribution for duration. Eg. params[10,2] is probability of duration of time 10 in state 2.

See Also

- `summary.hsmm_pred`
- `plot.hsmm_pred`
- `train_hsmm`
- `predict.sighsmm_model`

hsmm_pred_list

A list of prediction(s) generated by `run_signalHsmm` function.

Description

A named list. Each element belongs to the `hsmm_pred` class.

See Also

- `summary.hsmm_pred_list`
- `pred2df`

is_protein

Protein test

Description

Checks if an object is a protein (contains letters from one-letter amino acid code).

Usage

`is_protein(object)`

Arguments

- `object` character vector where each elements represent one amino acid.

Value

TRUE or FALSE.
plot.hsmm_pred
Plot single signalHsmm prediction

Description

Plots objects of class `hsmm_pred`.

Usage

```r
## S3 method for class 'hsmm_pred'
plot(x, add_legend = TRUE, only_sure = TRUE, ...)
```

Arguments

- `x` object of class `hsmm_pred`.
- `add_legend` logical, if TRUE, legend is added to the plot.
- `only_sure` logical, if FALSE does not draw signal peptide structure when probability is smaller than 0.5.
- `...` ignored.

Value

Nothing.

pred2df
Convert list of signalHsmm predictions

Description

Converts objects of class `hsmm_pred_list` to data frame.

Usage

```r
pred2df(object)
```

Arguments

- `object` of class `hsmm_pred_list`.

Value

Data frame which columns contain respectively the probability of signal peptide presence as well as the start and the end of predicted signal peptide.
predict.sighsmm_model

Predict sighsmm_model object

Description

Predicts the presence of signal peptides using signalHsmm models.

Usage

```r
## S3 method for class 'sighsmm_model'
predict(object, newdata, ...)```

**Arguments**

- `object` - sighsmm_model object.
- `newdata` - unknown sequence of class character or character. Alternatively, a list of sequences in mentioned formats.
- `...` - further arguments passed to or from other methods.

**Examples**

```r
remember to remove it
Not run:
pos_train_ultrahard <- read_uniprot("pos_ultrahard_data.txt", euk = TRUE)
model1 <- train_hsmm(pos_train_ultrahard, aa_group = aaaggregation)
predict(model1, benchmark_dat[1:5])

End(Not run)
```

**read_txt**

*Read sequences from .txt file*

**Description**

Read sequence data saved in text file.

**Usage**

```r
read_txt(connection)```

Arguments

- `connection` - a connection to the text (.txt) file.
Details

The input file should contain one or more amino acid sequences separated by empty line(s).

Value

a list of sequences. Each element has class SeqFastaAA. If connection contains no characters, function prompts warning and returns NULL.

read_uniprot

Read data from UniProt database

Description

Read data saved in UniProt original flat text format.

Usage

read_uniprot(connection, ft_names, kwds = NULL)

Arguments

connection a connection to UniProt data in text format.

ft_names a character vector of UniProt features to be extracted, for example "signal", "transit", "propep". The case is not matched.

kwds a NULL or character vector of keywords (not UniProt keywords, but words of interest, that may occur in the protein description).

Value

a list of sequences. Each element has a class SeqFastaAA. Attributes OS and OC represents respectively OS and OC fields in the protein description. A value of each feature is preserved as an attribute named after the feature.

run_signalHsmm

Predict presence of signal peptide in protein

Description

Using the hidden semi-Markov model predict presence of signal peptide in eukaryotic proteins.

Usage

run_signalHsmm(test_data)
Arguments

test_data single protein sequence (character vector) or list of sequences. It may be an
object of class SeqFastaAA.

Details

Function signalHsmm returns respectively probability of presence of signal peptide, start of signal
peptide and the probable cleavage site localization. If input consists of more than one sequence,
result is a data.frame where each column contains above values for different proteins.

Value

An object of class hsmm_pred_list.

Note

Currently start of signal peptide is naively set as 1 amino acid. The prediction of a cleavage site is
still an experimental feature, use on your own risk.

See Also

hsmm_pred_list hsmm_pred

Examples

run signalHsmm on one sequence
x1 <- run_signalHsmm(benchmark_dat[[1]])

run signalHsmm on one sequence, but input is a character vector

run signalHsmm on list of sequences
x3 <- run_signalHsmm(benchmark_dat[1:3])
see summary of results
summary(x3)
print results as data frame
pred2df(x3)
summary one result
summary(x3[[1]])
plot(x3[[1]])
Description

Using hidden semi-Markov models as a probabilistic framework, signalHsmm is new, highly accurate signal peptide predictor for eukaryotic proteins.

Details

Secretory signal peptides are short (20-30 residues) N-terminal amino acid sequences tagging among others hormones, immune system proteins, structural proteins, and metabolic enzymes. They direct a protein to the endomembrane system and next to the extracellular localization. All signal peptides possess three distinct domains with variable length and characteristic amino acid composition. Despite their variability, signal peptides are universal enough to direct properly proteins in different secretory systems. For example, artificially introduced bacterial signal peptides can guide proteins in mammals and plants.

The development of signalHsmm was funded by National Science Center (2015/17/N/NZ2/01845).

Examples

```r
few_predictions <- run_signalHsmm(benchmark_dat[1:3])
# see all predictions
pred2df(few_predictions)
# summary one prediction
summary(few_predictions[[1]])
# plot one prediction
plot(few_predictions[[1]])

# have fun with GUI
## Not run:
gui_signalHsmm()

## End(Not run)
```

Description

Summarizes objects of class `hsmm_pred`.

Usage

```r
## S3 method for class 'hsmm_pred'
summary(object, only_sure = TRUE,
        double_linebreak = FALSE, ...)
```
summary.hsmm_pred_list

Summarizes objects of class `hsmm_pred_list`.

Description

Summarizes objects of class `hsmm_pred_list`.

Usage

```r
## S3 method for class 'hsmm_pred_list'
summary(object, ...)  
```

Arguments

- `object` of class `hsmm_pred_list`.
- `...` ignored

Value

Nothing.
train_hsnnm
Train sighsHmm_model object

Description

Train sighsHmm_model object

Usage

```r
train_hsnnm(train_data, aa_group, max_length = 32,
region_fun = find_nhc)
```

Arguments

- `train_data`
 training data.
- `aa_group`
 method of aggregating amino acids.
- `max_length`
 maximum length of signal peptide.
- `region_fun`
 function defining borders of regions (see `find_nhc`).

Value

object of class sighsHmm_model.
Index

*Topic **classif**
 run_signalHsmm, 10

*Topic **datasets**
 aaaggregation, 2
 benchmark_dat, 4

*Topic **hplot**
 plot.hsmm_pred, 8

*Topic **manip**
 pred2df, 8
 read_txt, 9
 read_uniprot, 10
 summary.hsmm_pred_list, 13

*Topic **methods**
 plot.hsmm_pred, 8
 summary.hsmm_pred, 12
 summary.hsmm_pred_list, 13

*Topic **print**
 summary.hsmm_pred, 12
 summary.hsmm_pred_list, 13

aaaggregation, 2, 7
add_k_mer_state, 3

benchmark_dat, 4

connection, 9, 10
duration_viterbi, 4

find_nhc, 5, 14
gui_signalHsmm, 6

hsmm_pred, 6, 7, 8, 11–13
hsmm_pred_list, 7, 8, 11, 13

is_protein, 7

plot.hsmm_pred, 7, 8
pred2df, 7, 8
predict.sighsmm_model, 7, 9

read_txt, 9
read_uniprot, 10
run_signalHsmm, 6, 7, 10

SeqFastaAA, 4, 5, 10, 11
signalHsmm, 12
signalHsmm-package (signalHsmm), 12
summary.hsmm_pred, 7, 12
summary.hsmm_pred_list, 7, 13

train_hsmm, 7, 14