Package ‘simPATHy’

September 21, 2016

Type Package
Title A Method for Simulating Data from Perturbed Biological Pathways
Version 0.2
Date 2016-09-19
Description Simulate data from a Gaussian graphical model or a Gaussian Bayesian network in two conditions. Given a covariance matrix of a reference condition simulate plausible dysregulations.
Depends R (>= 3.0)
Imports mvtnorm, gRbase, graph, igraph, ggm, qpgraph, R.utils, htmlwidgets, shiny, shinydashboard, grDevices, graphics, stats
License AGPL-3
LazyData TRUE
RoxygenNote 5.0.1
Suggests knitr, rmarkdown, clipper, topologyGSA
VignetteBuilder knitr
NeedsCompilation no
Author Elisa Salviato [aut, cre], Vera Djordjilovic [aut], Chiara Romualdi [aut], Monica Chiogna [aut]
Maintainer Elisa Salviato <elisa.salviato.88@gmail.com>
Repository CRAN
Date/Publication 2016-09-21 07:27:43

R topics documented:

chimera ... 2
easyLookDys .. 3
easyLookShiny ... 3
fitSgraph ... 4
Chimera data

Description
A matrix containing the expression values of 3405 genes deriving from Affimetrix single channel technology, consisting of 41 observations from one experimental condition (absence of BCR/ABL gene arrangement, class 1), and 37 observations from another experimental condition (presence of BCR/ABL gene arrangement, class 2).

Usage
chimera

Format
A matrix with 8405 genes (rows) and 78 samples (columns).

Source

Examples
data(chimera)
easyLookDys

Dysregulation summary

Description

Summary of the result for a quick look of simPATHy function.

Usage

```r
easyLookDys(resObj, digits = 4)
```

Arguments

- `resObj` The output of simPATHy function (simPATHy class object).
- `digits` Integer indicating the number of decimal places to be used.

Value

Nice formatted output of simPATHy dysregulation

Nicely formatted output of simPATHy dysregulation.

easyLookShiny

Visual dysregulation summary

Description

A Shiny application for visual summary of dysregulation.

Usage

```r
easyLookShiny(resObj, graph, heightGraph = NULL, heightMatrix = NULL)
```

Arguments

- `resObj` The output of simPATHy function
- `graph` The graphNEL object given to the simPATHy function to obtain resObj.
- `heightGraph`, `heightMatrix` The height of the graph and correlation matrix plots in pixels. Must be a number, which will be coerced to a string and have ’px’ append.

Value

Interactive plots for exploring the output of simPATHy.

See Also

`simPATHy, plotGraphNELD3, plotCorGraph, easyLookDys`
fitSgraph: Estimate covariance matrix of a graphical model

Description

Fit a Gaussian Graphical Model or a Gaussian Bayesian Network by maximum likelihood.

Usage

fitSgraph(graph, S)

Arguments

graph A directed or undirected graph represented as a graphNEL object.
S A sample covariance matrix

Details

If graph is undirected it uses the Iterative Proprotional Fitting algorithm (qpgraph package). If graph is directed it uses Iterative Conditional Fitting (ggm package).

Value

A covariance matrix with the independence constraints entailed by the graph.

References

See Also

icfmag, qpIPF
generatePath

Find one path in a graph

Description
Find one shortest path in the graph between two given nodes.

Usage

```
generatePath(graph, from = NULL, to = NULL)
```

Arguments
- **graph**: A directed or undirected graph represented as a graphNEL object.
- **from, to**: The nodes (character node id) giving the first and the last nodes of the path to be calculated. If NULL then the from and to nodes are randomly chosen.

Value
A list of edges in edgesList format (see **gRbase**).

See Also
- `get.all.shortest.paths`

getPathShiny

Choose a path in a graph from an interactive shiny app

Description
Choose a path in a graph from an interactive shiny app with the right format for simPATHy function.

Usage

```
getPathShiny(graph)
```

Arguments
- **graph**: A graphNEL object.

Value
Selected path with the right format for simPATHy function.

See Also
- `simPATHy`
Examples

```r
if(require(gRbase)){
  graph <- gRbase::dag(c:a, -c:b, -d:c, -e:d)

  # Launch the interactive plot
  # path <- getPathShiny(graph)
}
```

description output and render functions for using plotGraphNELD3 within Shiny applications and interactive Rmd documents.

Usage

```r
graphNELD3_output(outputId, width = "100\%", height = "400px")
```

Arguments

- `outputId`: Output variable to read from
- `width, height`: Must be a valid CSS unit (like '100%', '400px', 'auto') or a number, which will be coerced to a string and have 'px' appended.
- `expr`: An expression that generates a graphNELD3
- `env`: The environment in which to evaluate `expr`.
- `quoted`: Is `expr` a quoted expression (with quote())? This is useful if you want to save an expression in a variable.

Description

Positive definite matrix

Adjust the diagonal of a symmetric square matrix, by the smallest eigenvalue method, in order to make it positive definite.

Usage

```r
makePositiveDefinite(M1, M2 = NULL, threshold = 0.1)
```
Arguments

- **M1, M2** A squared numeric matrix, typically a correlation or a covariance matrix. It must be symmetric.
- **threshold** A correction factor.

Details

Finds the smallest eigenvalue lambda of M1 (or M1 and M2 if supplied) and adds (threshold-lambda) to the diagonal to make it positive definite.

Value

A list with the corrected input matrices and the correction threshold-lambda.

Description

Plot a correlation or partial correlation matrix with the possibility to emphasize the graphical structure.

Usage

```r
plotCorGraph(S1, type = "cor", S2 = NULL, graph = NULL, path = NULL, main = "", colLim = c(-1, 1), legendColor = TRUE)
```

Arguments

- **S1, S2** Sample covariance matrix. If S2 supplied, the difference between the two corresponding correlation or partial correlation matrices is plotted.
- **type** Character string specifying which matrix is to be plotted. Either cor for correlation matrix, or pcor for partial correlation matrix.
- **graph** A graphNEL object.
- **path** A list of edges in edgesList format (see gRbase).
- **main** The main title.
- **colLim** Numeric vector of length two specifying the lower and upper bound of the color range (see Details).
- **legendColor** Logical value indicating whether the color legend should be added to the plot.

Details

If the graph is supplied, the zero elements of the adjacency matrix are represented as shaded squares, whereas non-zero elements are represented as squares with grey borderline.

Admissible values for colLim are contained in the interval [-1, 1] when S2=NULL, otherwise the admissible interval is [-2, 2]. When an element is outside of the colLim interval, it is colored gray.
Value

Correlation or partial correlation matrix plot.

Examples

```r
if( require(gRbase) & require(graph)){
  graph <- gRbase::ug(~a:b, ~a:c, ~c:d, ~b:d, ~b:c)

  S <- matrix(c(2, 0.8, 0.5, -0.3,
               0.8, 1.5, 0.6, -0.7,
               0.5, 0.6, 1, 0.7,
               -0.3, -0.7, 0.7, 3), ncol=4, nrow=4)
  colnames(S) <- rownames(S) <- graph::nodes(graph)

  # Plot the correlation matrix of S
  plotCorGraph(S)

  S <- fitSgraph(graph = graph, S = S)
  # Change the color range
  plotCorGraph(S, colim=c(-0.5, 0.5))

  # Visualize the adjacency matrix
  plotCorGraph(S, type="cor", graph = graph)

  # Show the partial correlation matrix
  plotCorGraph(S, type="pcor", graph = graph)

  # Plot the difference between two matrices
  S2 <- S
  # Change the element c-a
  S2["c","a"] <- S2["a","c"] <- -0.1
  plotCorGraph(S1=S, S2=S2)
  plotCorGraph(S1=S, S2=S2, type="pcor")

  S2 <- fitSgraph(graph = graph, S = S2)
  # Highlight the graphical structure
  plotCorGraph(S1=S, S2=S2, type="pcor", graph = graph)
  # Highlight the element c-a
  plotCorGraph(S1=S, S2=S2, type="pcor", graph = graph, path = list(c("a","c")))
}
```

Description

Dynamic plot of a graphNEL object with the possibility to emphasize the strength of relations between nodes, represented by either a pairwise correlation or a partial correlation coefficient.
plotGraphNELD3

The interactive graph is an implementation of the javascript D3.js package (force-layout) for undirected and directed graphNEL objects (see references).

Usage

plotGraphNELD3(graph, type = "cor", S1 = NULL, S2 = NULL, colLim = c(-1, 1), legendColor = TRUE, colNode = "#0c0c0c")

Arguments

graph A graphNEL object.
type Character string specifying which matrix is to be used. Either cor for correlation matrix, or pcor for partial correlation matrix.
S1, S2 Sample covariance matrix. If S1 is supplied edges between nodes are colored in accordance with pairwise correlation or partial correlation coefficients. If S2 supplied, the difference between the two corresponding correlation or partial correlation matrices is plotted.
colLim Numeric vector of length two specifying the lower and upper bound of the color range (see Details).
legendColor Logical value indicating whether the color legend should be added to the plot.
colNode A character string specifying the colour of the nodes. The colour node is common for all nodes.

Details

Admissible values for colLim are contained in the interval [-1,1] when S2=NULL, otherwise the admissible interval is [-2,2]. When an element is outside of the colLim interval, it is colored gray and represented as a dashed link.

Value

Dynamic plot of a graphNEL object.

References

https://d3js.org (Micheal Bostock).
https://christophergandrud.github.io/networkD3/ (Christopher Gandrud, JJ Allaire, & Kent Russell)

Examples

if(require(gRbase) & require(graph)){
 graph <- gRbase::ug(~a:b, ~a:c, ~c:d, ~b:d, ~b:c)
 # Plot a graphNEL
 plotGraphNELD3(graph)
Plot a graphNEL coloring edges in correspondance with pairwise correlation coefficients
S <- matrix(c(2, 0.8, 0.5, -0.3,
0.8, 1.5, 0.6, -0.7,
0.5, 0.6, 1.0, 0.7,
-0.3, -0.7, 0.7, 3), ncol=4,nrow=4)
colnames(S) <- rownames(S) <- graph::nodes(graph)
plotGraphNELD3(graph, S=S)

Plot a graphNEL coloring edges in correspondance with partial correlation coefficients
plotGraphNELD3(graph, S=S, type="pcor")

Change the color range
plotGraphNELD3(graph, S=S, type="cor", colLim=c(-0.7,0.8))
Change nodes color
plotGraphNELD3(graph, S=S, type="cor", colNode = "pink")

Plot the difference between two graphical models
S2 <- S
S2[1,3] <- S2[3,1]<- -0.1
plotGraphNELD3(graph,S1=S, S2=S2)

simPATHy

Simulate data from a graphical model

Description

Simulate data in two different conditions with a common structure of dependences. The two different conditions are characterized by different strengths of the links between nodes (dysregulation).

Usage

simPATHy(graph, path = NULL, S = NULL, min = 2, max = 3, prob = 1,
n1 = 500, n2 = n1, digits = 5, mu1 = 0, mu2 = mu1,
muRandom = FALSE)

Arguments

graph A graphNEL object.
path A list of edges in edgesList format (see gRbase).
S The sample covariance matrix.
min, max Vectors of length 1 or of the same length as path containing the lower and upper limits of a uniform distribution. The strength of dysregulation is sampled uniformly from the interval [min, max]: a value smaller than 1 represents deactivation, a value greater than 1 represents activation. If path=NULL only the first element is used.
prob

A vector of size 1 or of the same length as path, giving the probability to change the sign of the correlation coefficient for each edge. prob=0 implying that the sign of the dysregulation should be changed, and prob=1 implying that the sign should be left unaltered (default). Values between these two extremes allow for random sign switch: the sign is changed with probability 1-prob.

n1, n2

Number of observations to generate from the two conditions.

digits

Integer indicating the number of decimal places to be used.

mu1, mu2

A vector of size 1 or of the length equal to the number of nodes in the graph. Means of the multivariate normal distributions from which observations are generated. If mu1 (and/or mu2) is a vector it has to be named in accordance with the names of the nodes of the graph.

muRandom

Logical. If muRandom=TRUE the means of the variables are randomly generated.

Details

If the matrix S does not reflect conditional independence constraints imposed by the graph, simPATHy uses the maximum likelihood estimation of covariance matrices for graphical models via internal function `fitGraph`.

When the dysregulation of the initial (reference condition) covariance matrix leads to a matrix that is no longer positive definite, the resulting matrix is corrected via internal function `makePositiveDefinite`.

To avoid excessively strong dysregulations, the upper limit for the absolute value of the dysregulated correlation coefficient is set to:

\[
\min(0.9, 1.25 \times \max(abs(C[upper.tri(C)])))
\]

where C is the correlation matrix of the reference condition.

Value

It returns a list containing:

- data random samples generated from multivariate normal distributions with covariance matrices S1 (reference condition) and S2 (dysregulated condition);
- S1, S2 two covariance matrices;
- path the dysregulated path;
- strength the dysregulation strength for each edge in the path;
- mu1, mu2 two mean vectors;
- correction correction details.

See Also

easyLookDys, easyLookShiny, plotCorGraph, plotGraphNELD3
Examples

```r
if(require(gRbase) & require(graph)){

## Directed graph
## sub-graph Acute Myel... Leukemia
graph<-gRbase::dag(~867:25+867:613+5295:867+5294:867+
      + 207:5295+207:5294+4193:207+3551:207+
      + 4792:3551+7157:4193+3265:6654+
      + 3845:6654+6654:2885+2885:25+2885:613)
genes<-graph:::nodes(graph)

# covariance matrix of the reference condition
data<-t(chimera[genes,colnames(chimera)==1])
S<-cov(data)
S<-fitSgraph(graph,S)

# select path to dysregulate
path<-list(c("613","867"),c("867","5295"),c("5295","207"),
            c("207","4193"),c("4193","7157"))
## ..or select the path in an interactive plot
# path<-getPathShiny(graph)

# select parameters of the dysregulation
min<-c(2,8,2,0.1,0.5)
max<-c(2,10,2,4,0.5)
prob<-c(1,0,0,0.5,1)

dys<-cbind(min,max,prob)
rownames(dys)<-sapply(path,paste,collapse = "~")
dys

set.seed(123)
# main function
Result<-simPATHy(graph,path,S,min,max,prob)
class(Result)
names(Result)

# simulated data from two conditions
round(Result$dataset[c(1:3,501:503),1:5],3)

# Summary
easyLookDys(Result)
# ..or interactive summary
# easyLookShiny(resObj=Result,graph=graph)

# Visualization
plotCorGraph(S1=Result$S1,S2 = Result$S2,graph = graph,path = path,colLim = c(-0.3,0.3))
plotGraphNELD3(S1=Result$S1,S2 = Result$S2,graph = graph,colLim = c(-0.3,0.3))
rm(list=ls())
```
Undirected graph
```r
graph <- grbase::ug(-a:b, ~a:c, ~c:d, ~b:d, ~b:c)
```

when reference condition covariance matrix is not supplied `simPATHy` generate a random one
```r
Result_ug <- simPATHy(graph)
easyLook Dys(Result_ug)
plotGraphNEL3(S1 = Result_ug$S1, S2 = Result_ug$S2, graph = graph, colLim = c(-0.5, 0.5))
```

SMLEdecomposable

Local Maximum Likelihood Estimation

Description

Compute a maximum likelihood estimate of a covariance matrix in a decomposable Gaussian graphical model.

Usage

```r
SMLEdecomposable(S, graph)
```

Arguments

- **S**: a covariance matrix.
- **graph**: a decomposable graph represented as a graphNEL object.

Value

The MLE of a covariance matrix.

References

Index

*Topic datasets
 chimera, 2

chimera, 2

easyLookDys, 3, 3, 11
easyLookShiny, 3, 11

fitSgraph, 4, 11

generatePath, 5
get.all.shortest.paths, 5
getPathShiny, 5
graphNELD3-shiny, 6
graphNELD3Output (graphNELD3-shiny), 6

icfmag, 4

makePositiveDefinite, 6, 11

plotCorGraph, 3, 7, 11
plotGraphNELD3, 3, 8, 11

qpIPF, 4

renderGraphNELD3 (graphNELD3-shiny), 6

simPATHy, 3, 5, 10
SMLEdecomposable, 13