Package ‘simPH’

March 24, 2020

Title Tools for Simulating and Plotting Quantities of Interest Estimated from Cox Proportional Hazards Models

Description Simulates and plots quantities of interest (relative hazards, first differences, and hazard ratios) for linear coefficients, multiplicative interactions, polynomials, penalised splines, and non-proportional hazards, as well as stratified survival curves from Cox Proportional Hazard models. It also simulates and plots marginal effects for multiplicative interactions.

Version 1.3.11

Date 2020-03-24

URL https://CRAN.R-project.org/package=simPH

BugReports https://github.com/christophergandrud/simPH/issues

Depends R (>= 3.0.2)

License GPL-3

Imports data.table (>= 1.9.6), dplyr (>= 0.4), ggplot2, gridExtra, lazyeval, MASS, mgcv, stringr, survival, quadprog

Suggests knitr, stats

VignetteBuilder knitr

BuildVignettes true

LazyData true

RoxygenNote 7.1.0

NeedsCompilation no

Author Christopher Gandrud [aut, cre]

Maintainer Christopher Gandrud <christopher.gandrud@gmail.com>

Repository CRAN

Date/Publication 2020-03-24 07:40:02 UTC
as.data.frame.coxsim

Convert a coxsim class object into a data frame

Description

Convert a coxsim class object into a data frame

Usage

```r
## S3 method for class 'coxsim'
as.data.frame(x, ...)
```

Arguments

- `x` a coxsim class object.
- `...` arguments to pass to `data.frame`.
CarpenterFdaData

A data set from Carpenter (2002).

Description

A data set from Carpenter (2002).

Format

A data set with 408 observations and 32 variables.

Source

coxsimInteract

Simulate quantities of interest for linear multiplicative interactions from Cox Proportional Hazards models

Description

coxsimInteract simulates quantities of interest for linear multiplicative interactions using multivariate normal distributions. These can be plotted with simGG.

Usage

coxsimInteract(
 obj,
 b1,
 b2,
 qi = "Marginal Effect",
 X1 = NULL,
 X2 = NULL,
 means = FALSE,
 expMarg = TRUE,
 nsim = 1000,
 ci = 0.95,
 spin = FALSE,
 extremesDrop = TRUE
)

Arguments

obj a coxph class fitted model object with a linear multiplicative interaction.
b1 character string of the first constitutive variable’s name. Note b1 and b2 must be entered in the order in which they are entered into the coxph model.
b2 character string of the second constitutive variable’s name.
qi quantity of interest to simulate. Values can be "Marginal Effect", "First Difference", "Hazard Ratio", and "Hazard Rate". The default is qi = "Hazard Ratio". If qi = "Hazard Rate" and the coxph model has strata, then hazard rates for each strata will also be calculated.
X1 numeric vector of fitted values of b1 to simulate for. If qi = "Marginal Effect" then only X2 can be set. If you want to plot the results, X1 should have more than one value.
X2 numeric vector of fitted values of b2 to simulate for.
means logical, whether or not to use the mean values to fit the hazard rate for covariates other than b1 b2 and b1*b2. Note: it does not currently support models that include polynomials created by I. Note: EXPERIMENTAL. lines are not currently supported in simGG if means = TRUE.
expMarg logical. Whether or not to exponentiate the marginal effect.
nsim the number of simulations to run per value of X. Default is nsim = 1000.
ci the proportion of middle simulations to keep. The default is ci = 0.95, i.e. keep the middle 95 percent. If spin = TRUE then ci is the confidence level of the shortest probability interval. Any value from 0 through 1 may be used.
spin logical, whether or not to keep only the shortest probability interval rather than the middle simulations. Currently not supported for hazard rates.
extremesDrop logical whether or not to drop simulated quantity of interest values that are Inf, NA, NaN and > 1000000 for spin = FALSE or > 800 for spin = TRUE. These values are difficult to plot simGG and may prevent spin from finding the central interval.

Details

Simulates marginal effects, first differences, hazard ratios, and hazard rates for linear multiplicative interactions. Marginal effects are calculated as in Brambor et al. (2006) with the addition that we take the exponent, so that it resembles a hazard ratio. You can choose not to take the exponent by setting the argument expMarg = FALSE. For an interaction between variables X and Z the marginal effect for X is:

\[ME_X = e^{(\beta_X + \beta_X Z)} \]

Note that for First Differences the comparison is not between two values of the same variable but two values of the constitute variable and 0 for the two variables.

Value

a siminteract class object
References

See Also

simGG, survival, strata, and coxph.

Examples

Load Carpenter (2002) data
data("CarpenterFdaData")

Load survival package
library(survival)

Run basic model
M1 <- coxph(Surv(acttime, censor) ~ lethal*prevgenx,
data = CarpenterFdaData)

Simulate Marginal Effect of lethal for multiple
values of prevgenx
Sim1 <- coxsimInteract(M1, b1 = "lethal", b2 = "prevgenx",
X2 = seq(2, 115, by = 5), spin = TRUE)

Not run:
Change the order of the covariates to make a more easily
interpretable relative hazard graph.
M2 <- coxph(Surv(acttime, censor) ~ prevgenx*lethal +
orphdum, data = CarpenterFdaData)

Simulate Hazard Ratio of lethal for multiple
values of prevgenx
Sim2 <- coxsimInteract(M2, b1 = "prevgenx", b2 = "lethal",
X1 = seq(2, 115, by = 2),
X2 = c(0, 1),
qi = "Hazard Ratio", ci = 0.9)

Simulate First Difference
Sim3 <- coxsimInteract(M2, b1 = "prevgenx", b2 = "lethal",
X1 = seq(2, 115, by = 2),
X2 = c(0, 1),
qi = "First Difference", spin = TRUE)
coxsimLinear

Simulate quantities of interest for covariates from Cox Proportional Hazards models that are not interacted with time or nonlinearly transformed

Description

Simulates relative hazards, first differences, hazard ratios, and hazard rates for linear, non-time interacted covariates from Cox Proportional Hazard models. These can be plotted with `simGG`.

Usage

```r
coxsimLinear(
  obj,
  b,
  qi = "Relative Hazard",
  Xj = NULL,
  Xl = NULL,
  means = FALSE,
  nsim = 1000,
  ci = 0.95,
  spin = FALSE,
  extremesDrop = TRUE
)
```
Arguments

- **obj**: a `coxph` class fitted model object.
- **b**: character string name of the coefficient you would like to simulate.
- **qi**: quantity of interest to simulate. Values can be "Relative Hazard", "First Difference", "Hazard Ratio", and "Hazard Rate". The default is `qi = "Relative Hazard"`. If `qi = "Hazard Rate"` and the `coxph` model has strata, then hazard rates for each strata will also be calculated.
- **Xj**: numeric vector of fitted values for `b` to simulate for.
- **Xl**: numeric vector of values to compare `Xj` to. Note if `code = "Relative Hazard"` only `Xj` is relevant.
- **means**: logical, whether or not to use the mean values to fit the hazard rate for covariates other than `b`. Note: EXPERIMENTAL. `lines` are not currently supported in `simGG` if `means = TRUE`.
- **nsim**: the number of simulations to run per value of `X`. Default is `nsim = 1000`. Note: it does not currently support models that include polynomials created by `I`.
- **ci**: the proportion of simulations to keep. The default is `ci = 0.95`, i.e. keep the middle 95 percent. If `spin = TRUE` then `ci` is the confidence level of the shortest probability interval. Any value from 0 through 1 may be used.
- **spin**: logical, whether or not to keep only the shortest probability interval rather than the middle simulations. Currently not supported for Hazard Rates.
- **extremesDrop**: logical whether or not to drop simulated quantity of interest values that are `Inf`, `NA`, `NaN` and `> 1000000` for `spin = FALSE` or `> 800` for `spin = TRUE`. These values are difficult to plot in `simGG` and may prevent `spin` from finding the central interval.

Details

coxsimLinear simulates relative hazards, first differences, and hazard ratios for linear covariates that are not interacted with time or nonlinearly transformed from models estimated with `coxph` using the multivariate normal distribution. These can be plotted with `simGG`.

Value

A `simlinear`, `coxsim` object

References

See Also

simGG.simlinear, survival, strata, and coxph

Examples

Load Carpenter (2002) data
data("CarpenterFdaData")

Load survival package
library(survival)

Run basic model
M1 <- coxph(Surv(acttime, censor) ~ prevgenx + lethal +
 deathrt1 + acutediz + hosp01 + hhosleng +
 mandiz01 + femdiz01 + peddiz01 + orphdum +
 vandavg3 + wpnoavg3 + condavg3 + orderent +
 stafcder, data = CarpenterFdaData)

Simulate Hazard Ratios
Sim1 <- coxsimLinear(M1, b = "stafcder",
 Xj = c(1237, 1600),
 Xl = c(1000, 1000),
 qi = "Hazard Ratio",
 spin = TRUE, ci = 0.99)

Not run:
Simulate Hazard Rates
Sim2 <- coxsimLinear(M1, b = "stafcder",
 Xj = 1237,
 ci = 0.99)

End(Not run)

coxsimPoly

Simulate quantities of interest for a range of values for a polynomial nonlinear effect from Cox Proportional Hazards models

Description

coxsimPoly simulates quantities of interest for polynomial covariate effects estimated from Cox Proportional Hazards models. These can be plotted with simGG.

Usage

coxsimPoly(
 obj,
 b = NULL,
 q1 = "Relative Hazard",
 ...)


```
coxsimPoly

pow = 2,
Xj = NULL,
Xl = NULL,
nsim = 1000,
ci = 0.95,
spin = FALSE,
extremesDrop = TRUE
)
```

Arguments

- **obj**: a `coxph` class fitted model object with a polynomial coefficient. These can be plotted with `simGG`.
- **b**: character string name of the coefficient you would like to simulate. To find the quantity of interest using only the polynomial and not the polynomial + the linear terms enter the polynomial created using `I`, e.g. `I(natreg^2)` as a string.
- **qi**: quantity of interest to simulate. Values can be "Relative Hazard", "First Difference", "Hazard Ratio", and "Hazard Rate". The default is `qi = "Relative Hazard"`. If `qi = "Hazard Rate"` and the `coxph` model has strata, then hazard rates for each strata will also be calculated.
- **pow**: numeric polynomial used in `coxph`.
- **Xj**: numeric vector of fitted values for `b` to simulate for.
- **Xl**: numeric vector of values to compare `Xj` to. If `NULL`, then it is automatically set to 0.
- **nsim**: the number of simulations to run per value of `Xj`. Default is `nsim = 1000`.
- **ci**: the proportion of simulations to keep. The default is `ci = 0.95`, i.e. keep the middle 95 percent. If `spin = TRUE` then `ci` is the confidence level of the shortest probability interval. Any value from 0 through 1 may be used.
- **spin**: logical, whether or not to keep only the shortest probability interval rather than the middle simulations. Currently not supported for hazard rates.
- **extremesDrop**: logical whether or not to drop simulated quantity of interest values that are `Inf`, `NA`, `NaN` and `> 1000000` for `spin = FALSE` or `> 800` for `spin = TRUE`. These values are difficult to plot `simGG` and may prevent `spin` from finding the central interval.

Details

Simulates quantities of interest for polynomial covariate effects. For example if a nonlinear effect is modeled with a second order polynomial—i.e. $\beta_1 x_i + \beta_2 x_i^2$—we can draw n simulations from the multivariate normal distribution for both β_1 and β_2. Then we simply calculate quantities of interest for a range of values and plot the results as before. For example, we find the first difference for a second order polynomial with:

$$\% \Delta h_i(t) = (e^{\beta_1 x_{j-1} + \beta_2 x_{j-1}^2} - 1) \times 100$$

where $x_{j-1} = x_j - x_l$.

Note, you must use `I` to create the polynomials.
Value

a `simpoly, coxsim` object

References

See Also

`simGG.simpoly`, `survival`, `strata`, and `coxph`

Examples

```r
# Load Carpenter (2002) data
data("CarpenterFdaData")

# Load survival package
library(survival)

# Run basic model
M1 <- coxph(Surv(acttime, censor) ~ prevgenx + lethal + deathrt1 +
             acutediz + hosp01 + hhosleng + mandiz01 + femdiz01 +
             peddiz01 + orphdum + natreg + I(natreg^2) +
             I(natreg^3) + vandavg3 + wpnoavg3 +
             condavg3 + orderent + stafcder, data = CarpenterFdaData)

# Simulate simpoly First Difference
Sim1 <- coxsimPoly(M1, b = "natreg", qi = "First Difference",
                    pow = 3, Xj = seq(1, 150, by = 5), nsim = 100)

## Not run:
# Simulate simpoly Hazard Ratio with spin probability interval
Sim2 <- coxsimPoly(M1, b = "natreg", qi = "Hazard Ratio",
                    pow = 3, Xj = seq(1, 150, by = 5), spin = TRUE)

## End(Not run)
```
Description

`coxsimSpline` simulates quantities of interest from penalized splines using multivariate normal distributions.

Usage

```r
coxsimSpline(
  obj,
  bspline,
  bdata,
  qi = "Relative Hazard",
  Xj = 1,
  Xl = 0,
  nsim = 1000,
  ci = 0.95,
  spin = FALSE,
  extremesDrop = TRUE
)
```

Arguments

- **obj**: a `coxph` class fitted model object with a penalized spline. These can be plotted with `simGG`.
- **bspline**: a character string of the full `pspline` call used in `obj`. It should be exactly the same as how you entered it in `coxph`.
- **bdata**: a numeric vector of the splined variable’s values.
- **qi**: quantity of interest to simulate. Values can be "Relative Hazard", "First Difference", "Hazard Ratio", and "Hazard Rate". The default is `qi = "Relative Hazard"`. Think carefully before using `qi = "Hazard Rate"`. You may be creating very many simulated values which can be very computationally intensive to do. Adjust the number of simulations per fitted value with `nsim`.
- **Xj**: numeric vector of fitted values for `b` to simulate for.
- **Xl**: numeric vector of values to compare `Xj` to. Note if `qi = "Relative Hazard"` or "Hazard Rate" only `Xj` is relevant.
- **nsim**: the number of simulations to run per value of `Xj`. Default is `nsim = 1000`.
- **ci**: the proportion of simulations to keep. The default is `ci = 0.95`, i.e. keep the middle 95 percent. If `spin = TRUE` then `ci` is the confidence level of the shortest probability interval. Any value from 0 through 1 may be used.
- **spin**: logical, whether or not to keep only the shortest probability interval rather than the middle simulations. Currently not supported for hazard rates.
extremesDrop logical whether or not to drop simulated quantity of interest values that are Inf, NA, NaN and > 1000000 for spin = FALSE or > 800 for spin = TRUE. These values are difficult to plot simGG and may prevent spin from finding the central interval.

Details

Simulates relative hazards, first differences, hazard ratios, and hazard rates for penalized splines from Cox Proportional Hazards models. These can be plotted with simGG. A Cox PH model with one penalized spline is given by:

\[h(t|X_i) = h_0(t)e^{g(x)} \]

where \(g(x) \) is the penalized spline function. For our post-estimation purposes \(g(x) \) is basically a series of linearly combined coefficients such that:

\[g(x) = \beta_{k_1}(x)_1 + \beta_{k_2}(x)_2 + \beta_{k_3}(x)_3 + \ldots + \beta_{k_n}(x)_n \]

where \(k \) are the equally spaced spline knots with values inside of the range of observed \(x \) and \(n \) is the number of knots.

We can again draw values of each \(\beta_{k_1}, \ldots, \beta_{k_n} \) from the multivariate normal distribution described above. We then use these simulated coefficients to estimates quantities of interest for a range co-variate values. For example, the first difference between two values \(x_j \) and \(x_l \) is:

\[\frac{\% \triangle h_i(t)}{FD(h[i](t))} = (\exp(g(x_j) - g(x_l)) - 1) * 100 \]

Relative hazards and hazard ratios can be calculated by extension.

Currently coxsimSpline does not support simulating hazard rates form multiple stratified models.

Value

a simspline object

References

See Also

simGG, survival, strata, and coxph
Examples

```r
# Load Carpenter (2002) data
data("CarpenterFdaData")

# Load survival package
library(survival)

# Run basic model
# From Keele (2010) replication data
M1 <- coxph(Surv(acttime, censor) ~ prevgenx + lethal + deathrt1 +
             acutediz + hosp01 + pspline(hospdisc, df = 4) +
             pspline(hhosleng, df = 4) + mandiz01 + femdiz01 + peddiz01 +
             orphdum + natreg + vandavg3 + wpnoavg3 +
             pspline(condavg3, df = 4) + pspline(orderent, df = 4) +
             pspline(stafcdcr, df = 4), data = CarpenterFdaData)

## Not run:
# Simulate Relative Hazards for orderent
Sim1 <- coxsimSpline(M1, bspline = "pspline(stafcdcr, df = 4)",
                        bdata = CarpenterFdaData$stafcdcr,
                        qi = "Hazard Ratio",
                        Xj = seq(1100, 1700, by = 10),
                        Xl = seq(1099, 1699, by = 10), spin = TRUE)

## End(Not run)
# Simulate Hazard Rates for orderent
Sim2 <- coxsimSpline(M1, bspline = "pspline(orderent, df = 4)",
                        bdata = CarpenterFdaData$orderent,
                        qi = "Hazard Rate",
                        Xj = seq(2, 53, by = 3), nsim = 100)
```

Description

`coxsimtvc` simulates time-interactive relative hazards, first differences, and hazard ratios from models estimated with `coxph` using the multivariate normal distribution. These can be plotted with `simGG`.

Usage

```r
coxsimtvc(
  obj,
  b,
  btvc,
```

Description

`coxsimtvc` simulates time-interactive quantities of interest from Cox Proportional Hazards models.
qi = "Relative Hazard",
Xj = NULL,
Xl = NULL,
tfun = "linear",
pow = NULL,
nsim = 1000,
from,
to,
by = 1,
ci = 0.95,
spin = FALSE,
extremesDrop = TRUE
)

Arguments

obj a coxph fitted model object with a time interaction.
b the non-time interacted variable’s name.
btvc the time interacted variable’s name.
qi character string indicating what quantity of interest you would like to calculate. Can be ‘Relative Hazard’, 'First Difference', 'Hazard Ratio', 'Hazard Rate'. Default is qi = 'Relative Hazard'. If qi = 'First Difference' or qi = 'Hazard Ratio' then you can set Xj and Xl.
Xj numeric vector of fitted values for b. Must be the same length as Xl or Xl must be NULL.
Xl numeric vector of fitted values for Xl. Must be the same length as Xj. Only applies if qi = 'First Difference' or qi = 'Hazard Ratio'.
tfun function of time that btvc was multiplied by. Default is "linear". It can also be "log" (natural log) and "power". If tfun = "power" then the pow argument needs to be specified also.
pow if tfun = "power", then use pow to specify what power the time interaction was raised to.
nsim the number of simulations to run per point in time. Default is nsim = 1000.
from point in time from when to begin simulating coefficient values
to point in time to stop simulating coefficient values.
by time intervals by which to simulate coefficient values.
ci the proportion of simulations to keep. The default is ci = 0.95, i.e. keep the middle 95 percent. If spin = TRUE then ci is the confidence level of the shortest probability interval. Any value from 0 through 1 may be used.
spin logical, whether or not to keep only the shortest probability interval rather than the middle simulations. Currently not supported for hazard rates.
extremesDrop logical whether or not to drop simulated quantity of interest values that are Inf, NA, NaN and > 1000000 for spin = FALSE or > 800 for spin = TRUE. These values are difficult to plot simGG and may prevent spin from finding the central interval.
Details

Simulates time-varying relative hazards, first differences, and hazard ratios using parameter estimates from coxph models. Can also simulate hazard rates for multiple strata.

Relative hazards are found using:

\[RH = e^{\beta_1 + \beta_2 f(t)} \]

where \(f(t) \) is the function of time.

First differences are found using:

\[FD = (e^{(X_j - X_l)(\beta_1 + \beta_2 f(t))} - 1) \times 100 \]

where \(X_j \) and \(X_l \) are some values of \(X \) to contrast.

Hazard ratios are calculated using:

\[FD = e^{(X_j - X_l)(\beta_1 + \beta_2 f(t))} \]

When simulating non-stratifed time-varying hazards coxsimtvc uses the point estimates for a given coefficient \(\hat{\beta}_x \) and its time interaction \(\hat{\beta}_{xt} \) along with the variance matrix (\(\hat{V}(\hat{\beta}) \)) estimated from a coxph model. These are used to draw values of \(\beta_1 \) and \(\beta_2 \) from the multivariate normal distribution \(N(\hat{\beta}, \hat{V}(\hat{\beta})) \).

When simulating stratified time-varying hazard rates \(H \) for a given strata \(k \), coxsimtvc uses:

\[H_{kxt} = \hat{\beta}_0 e^{\hat{\beta}_1 + \hat{\beta}_2 f(t)} \]

The resulting simulation values can be plotted using simGG.

Value

a simtvc object

References

See Also

simGG, survival, strata, and coxph
Examples

```r
## Not run:
# Load Golub & Steunenberg (2007) Data
data("GolubEUPData")

# Load survival package
library(survival)

# Expand data (not run to speed processing time, but should be run)
GolubEUPData <- SurvExpand(GolubEUPData, GroupVar = 'caseno',
                           Time = 'begin', Time2 = 'end', event = 'event')

# Create time interactions
BaseVars <- c('qmV', 'backlog', 'coop', 'codec', 'qmVpostsea', 'thatcher')
GolubEUPData <- tvd(GolubEUPData, b = BaseVars, tvar = 'end', tfun = 'log')

# Run Cox PH Model
M1 <- coxph(Surv(begin, end, event) ~ qmV + qmVpostsea + qmVpostteu +
             coop + codec + eu9 + eu10 + eu12 + eu15 + thatcher +
             agenda + backlog + qmV_log + qmVpostsea_log + coop_log +
             codec_log + thatcher_log + backlog_log,
             data = GolubEUPData, ties = "efron")

# Create simtvc object for Relative Hazard
Sim1 <- coxsimtvc(obj = M1, b = "qmV", btvc = "qmV_log",
                   tfun = "log", from = 80, to = 2000,
                   Xj = 1, by = 15, ci = 0.99, nsim = 100)

# Create simtvc object for First Difference
Sim2 <- coxsimtvc(obj = M1, b = "qmV", btvc = "qmV_log",
                   qi = "First Difference", Xj = 1,
                   tfun = "log", from = 80, to = 2000,
                   by = 15, ci = 0.95)

# Create simtvc object for Hazard Ratio
Sim3 <- coxsimtvc(obj = M1, b = "backlog", btvc = "backlog_log",
                   qi = "Hazard Ratio", Xj = c(191, 229),
                   Xl = c(0, 0),
                   tfun = "log", from = 80, to = 2000,
                   by = 15, ci = 0.5)

## End(Not run)
```

ggfitStrata
Graph fitted stratified survival curves from Cox Proportional Hazards models
Description

This function largely improves `plot.survfit`. It plots the curves using ggplot2 rather than base R graphics. One major advantage is the ability to split the survival curves into multiple plots and arrange them in a grid. This makes it easier to examine many strata at once. Otherwise they can be very bunched up.

Note: the strata legend labels need to be changed manually (see `revalue`) in the `survfit` object with the `strata` component.

Usage

```r
ggfitStrata(
  obj, 
  byStrata = FALSE, 
  xlab = "", 
  ylab = "", 
  title = "", 
  lcolour = "#2C7FB8", 
  rcolour = "#2C7FB8" 
)
```

Arguments

- `obj` a `survfit` object.
- `byStrata` logical, whether or not you want to include all of the stratified survival curves on one plot or separate them into a grid arranged plot.
- `xlab` a label for the plot’s x-axis
- `ylab` a label of the plot’s y-axis
- `title` plot title.
- `lcolour` line color. Currently only works if `byStrata = TRUE`. The default it `lcolour = "#2C7FB8"` (a bluish hexadecimal colour)
- `rcolour` confidence bounds ribbon color. Either a single color or a vector of colours. The default it `lcolour = "#2C7FB8"` (a bluish hexadecimal colour)

Details

`ggfitStrata` graphs fitted survival curves created with `survfit` using `ggplot2`.

See Also

`survfit`, `ggplot2` and `strata`

Examples

```r
# Load packages
library(survival)
library(simPH)
```
Subset data
bladder1 <- bladder[bladder$enum < 5,]

Estimate coxph model (note that this model is for code illustration only)
M1 <- coxph(Surv(stop, event) ~ (rx + size + number) + strata(enum) +
 cluster(id), bladder1)

Find predicted values
M1Fit <- survfit(M1)

Plot strata in a grid
ggfitStrata(M1Fit, byStrata = TRUE)

Plot all in one
ggfitStrata(M1Fit, byStrata = FALSE)

GolubEUPData

* A data set from Golub & Steunenberg (2007)*

Description

A data set from Golub & Steunenberg (2007)

Format

A data set with 3001 observations and 17 variables.

Source

hmohiv

Simulated HIV patient data from UCLA IDRE

Description

Simulated HIV patient data from UCLA IDRE

Usage

hmohiv
MinMaxLines

Format

An object of class `data.frame` with 100 rows and 7 columns.

Source

UCLA IDRE https://stats.idre.ucla.edu/r/examples/asa/r-applied-survival-analysis-ch-1/

| MinMaxLines | Transform the simulation object to include only the min and max of the constricted intervals, as well as the lower and upper bounds of the middle 50 percent of the constricted intervals. |

Description

`MinMaxLines` is an internal function to transform the simulation object to include only the min and max of the intervals set by `ci` in the `coxsim` command, as well as the lower and upper bounds of the middle 50 percent of these intervals. It also returns the medians.

Usage

`MinMaxLines(df, byVars = "Xj", hr = FALSE, strata = FALSE, clean = FALSE)`

Arguments

- `df`: a data frame or a simulation class object.
- `byVars`: character vector of the variables to subset the data frame by. The default is `'Xj'`.
- `hr`: logical indicating whether or not `df` contains a hazard rate.
- `strata`: logical indicating whether or not `df` contains a stratified hazard rate.
- `clean`: logical, whether or not to clean up the output data frame to only include `byVars`, `Min_CI`, `Lower50_CI`, `median`, `Upper50_CI`, `Max_CI`.

Examples

```r
# Load Carpenter (2002) data
data("CarpenterFdaData")

# Load survival package
library(survival)

# Run basic model
M1 <- coxph(Surv(acttime, censor) ~ prevgenx + lethal + deathrt1 + acutediz + hosp01 + hhosleng + mandiz01 + femdiz01 + peddiz01 + orphdum + vandavg3 + wpnoavg3 + condavg3 + orderent + stafcder, data = CarpenterFdaData)

# Simulate Hazard Ratios
```
Sim1 <- coxsimLinear(M1, b = "stafcder",
 Xj = c(1237, 1600),
 Xl = c(1000, 1000),
 qi = "Hazard Ratio",
 spin = TRUE, ci = 0.99)

Find summary statistics of the constricted interval
Sum <- MinMaxLines(Sim1, clean = TRUE)

setXl
Create a sequence of Xl values

Description

`setXl` creates a sequence of Xl values given a sequence of Xj values and a fixed difference.

Usage

```r
setXl(Xj, diff = 1)
```

Arguments

- **Xj**: numeric vector of fitted values for the covariate of interest to simulate for.
- **diff**: numeric vector of length 1. It specifies the difference between Xj and Xl. Xl is always smaller than Xj.

Value

a vector

Examples

```r
# Set Xj
setXj = seq(1100, 1700, by = 10)

# Find Xl that are 1 less than Xj
setXl(Xj = setXj, diff = 1)
```
simGG

A method for plotting simulation objects created by simPH

Description

simGG a method for plotting simulation objects created by simPH.

Usage

```r
simGG(obj, ...)
```

Arguments

- `obj` an object created by one of simPH’s simulation commands.
- `...` arguments to be passed to methods.

References

See Also

`simGG.siminteract, simGG.simtvc, simGG.simlinear, simGG.simpoly, simGG.simspline`

Examples

```r
## Not run:
# Load Carpenter (2002) data
data("CarpenterFdaData")

# Load survival package
library(survival)

# Run basic model
M1 <- coxph(Surv(acttime, censor) ~ lethal*prevgenx, 
  data = CarpenterFdaData)

# Simulate Marginal Effect of lethal for multiple 
# values of prevgenx
Sim1 <- coxsimInteract(M1, b1 = "lethal", b2 = "prevgenx", 
  X2 = seq(2, 115, by = 5), spin = TRUE)

# Plot simulations
simGG(Sim1)

## End(Not run)
```
simGG.siminteract

Plot simulated linear multiplicative interactions from Cox Proportional Hazards Models

Description

simGG.siminteract uses ggplot2 to plot the quantities of interest from siminteract objects, including marginal effects, first differences, hazard ratios, and hazard rates.

Usage

S3 method for class 'siminteract'
simGG(
 obj,
 from = NULL,
 rug = TRUE,
 rug_position = "identity",
 to = NULL,
 xlab = NULL,
 ylab = NULL,
 title = NULL,
 method = "auto",
 spalette = "Set1",
 legend = "legend",
 leg.name = "",
 lcolour = "#2B8CBE",
 lsize = 1,
 pcolour = "#A6CEE3",
 psize = 1,
 alpha = 0.2,
 type = "ribbons",
 ...
)

Arguments

obj a siminteract class object
from numeric time to start the plot from. Only relevant if qi = "Hazard Rate".
rug logical indicating whether or not to include a rug plot showing the distribution of values in the sample used to estimate the coxph model. Only relevant when the quantity of interest is not "Hazard Rate".
rug_position character string. The position adjustment to use for overlapping points in the rug plot. Use "jitter" to jitter the points.
to numeric time to plot to. Only relevant if qi = "Hazard Rate".
xlab a label for the plot’s x-axis.
simGG.siminteract

- **ylab**: a label of the plot's y-axis. The default uses the value of qi.
- **title**: the plot's main title.
- **method**: what type of smoothing method to use to summarize the center of the simulation distribution.
- **spalette**: colour palette for when there are multiple sets of comparisons to plot. Not relevant for qi = "Marginal Effect". Default palette is "Set1". See `scale_colour_brewer`.
- **legend**: specifies what type of legend to include (if applicable). The default is legend = "legend". To hide the legend use legend = FALSE. See the `discrete_scale` for more details.
- **leg.name**: name of the legend (if applicable).
- **lcolour**: character string colour of the smoothing line. The default is hexadecimal colour lcolour = '#2B8CBE'. Only relevant if qi = "Marginal Effect".
- **lsize**: size of the smoothing line. Default is 1. See ggplot2.
- **pcolour**: character string colour of the simulated points or ribbons (when there are not multiple sets of simulations). Default is hexadecimal colour pcolour = '#A6CEE3'.
- **psize**: size of the plotted simulation points. Default is psize = 1. See ggplot2.
- **alpha**: numeric. Alpha (e.g. transparency) for the points, lines, or ribbons. Default is alpha = 0.2. See ggplot2. Note: if type = "lines" or type = "points" then alpha sets the maximum value per line or point at the center of the distribution. Lines or points further from the center are more transparent the further they get from the middle.
- **type**: character string. Specifies how to plot the simulations. Can be points, lines, or ribbons. If points then each simulation value will be plotted. If lines is chosen then each simulation is plotted using a different line. Note: any simulation with a value along its length that is outside of the specified central interval will be dropped. This is to create a smooth plot. If type = "ribbons" a plot will be created with shaded areas ('ribbons') for the minimum and maximum simulation values (i.e. the middle interval set with qi in `coxsimSpline`) as well as the central 50 percent of this area. It also plots a line for the median value of the full area, so values in method are ignored. One of the key advantages of using ribbons rather than points is that it creates plots with smaller file sizes.

... Additional arguments. (Currently ignored.)

Details

Uses ggplot2 to plot the quantities of interest from siminteract objects, including marginal effects, first differences, hazard ratios, and hazard rates. If there are multiple strata, the quantities of interest will be plotted in a grid by strata.

Note: A dotted line is created at y = 1 (0 for first difference), i.e. no effect, for time-varying hazard ratio graphs. No line is created for hazard rates.

Note: if qi = "Hazard Ratio" or qi = "First Difference" then you need to have chosen more than one fitted value for X1 in `coxsimInteract`.

Value

a gg ggplot class object
References

See Also

coxsimInteract, simGG.simlinear, and ggplot2

Examples

Load Carpenter (2002) data
data("CarpenterFdaData")

Load survival package
library(survival)

Run basic model
M1 <- coxph(Surv(acttime, censor) ~ lethal*prevgenx,
 data = CarpenterFdaData)

Simulate Marginal Effect of lethal for multiple values of prevgenx
Sim1 <- coxsimInteract(M1, b1 = "lethal", b2 = "prevgenx",
 X2 = seq(2, 115, by = 2), nsim = 100)

Plot quantities of interest
simGG(Sim1)
simGG(Sim1, rug.position = 'jitter')

Not run:
Change the order of the covariates to make a more easily
interpretable hazard ratio graph.
M2 <- coxph(Surv(acttime, censor) ~ prevgenx*lethal,
 data = CarpenterFdaData)

Simulate Hazard Ratio of lethal for multiple values of prevgenx
Sim2 <- coxsimInteract(M2, b1 = "prevgenx", b2 = "lethal",
 X1 = seq(2, 115, by = 2),
 X2 = c(0, 1),
 qi = "Hazard Ratio", ci = 0.9)

Simulate First Difference
Sim3 <- coxsimInteract(M2, b1 = "prevgenx", b2 = "lethal",
 X1 = seq(2, 115, by = 2),
X2 = c(0, 1),
qi = "First Difference", spin = TRUE)

Simulate Hazard Rate
Sim4 <- coxsimInteract(M2, b1 = "prevgenx", b2 = "lethal",
X1 = 100, X2 = 1, qi = "Hazard Rate")

Plot quantities of interest
simGG(Sim1, xlab = "prevgenx",
ylab = "Marginal Effect of lethal")
simGG(Sim2, type = 'ribbons', rug_position = 'jitter')
simGG(Sim3)
simGG(Sim4, to = 150, type = 'lines', legend = FALSE)

End(Not run)

Description

`simGG.simlinear` uses ggplot2 to plot the quantities of interest from `simlinear` objects, including relative hazards, first differences, hazard ratios, and hazard rates.

Usage

```r
## S3 method for class 'simlinear'
simGG(
  obj,
  from = NULL,
  to = NULL,
  rug = TRUE,
  rug_position = "identity",
  xlab = NULL,
  ylab = NULL,
  title = NULL,
  method = "auto",
  spalette = "Set1",
  legend = "legend",
  leg.name = "",
  lcolour = "#2B8CBE",
  lsize = 1,
  pcolour = "#A6CEE3",
  psize = 1,
  alpha = 0.2,
  type = "ribbons",
)```


Arguments

**obj**: a simlinear class object.

**from**: numeric time to start the plot from. Only relevant if qi = "Hazard Rate".

**to**: numeric time to plot to. Only relevant if qi = "Hazard Rate".

**rug**: logical indicating whether or not to include a rug plot showing the distribution of values in the sample used to estimate the coxph model. Only relevant when the quantity of interest is not "Hazard Rate".

**rug_position**: character string. The position adjustment to use for overlapping points in the rug plot. Use "jitter" to jitter the points.

**xlab**: a label for the plot’s x-axis.

**ylab**: a label of the plot’s y-axis. The default uses the value of qi.

**title**: the plot’s main title.

**method**: what type of smoothing method to use to summarize the center of the simulation distribution.

**spalette**: colour palette for when there are multiple sets of comparisons to plot. Default palette is "Set1". See scale_colour_brewer.

**legend**: specifies what type of legend to include (if applicable). The default is legend = "legend". To hide the legend use legend = FALSE. See the discrete_scale for more details.

**leg.name**: name of the legend (if applicable).

**lcolour**: character string colour of the smoothing line. The default is hexadecimal colour lcolour = '#2B8CBE'. Only relevant if qi = "First Difference".

**lsize**: size of the smoothing line. Default is 1. See ggplot2.

**pcolour**: character string colour of the simulated points or ribbons (when there are not multiple sets of simulations). Default is hexadecimal colour pcolour = '#A6CEE3'.

**psize**: size of the plotted simulation points. Default is psize = 1. See ggplot2.

**alpha**: numeric. Alpha (e.g. transparency) for the points, lines, or ribbons. Default is alpha = 0.2. See ggplot2. Note, if type = "lines" or type = "points" then alphah sets the maximum value per line or point at the center of the distribution. Lines or points further from the center are more transparent the further they get from the middle.

**type**: character string. Specifies how to plot the simulations. Can be points, lines, or ribbons. If points then each simulation value will be plotted. If lines is chosen then each simulation is plotted using a different line. Note: any simulation with a value along its length that is outside of the specified central interval will be dropped. This is to create a smooth plot. If type = "ribbons" a plot will be created with shaded areas ('ribbons') for the minimum and maximum simulation values (i.e. the middle interval set with qi in coxsimSpline) as well as the central 50 percent of this area. It also plots a line for the median value of the full area, so values in method are ignored. One of the key advantages of using ribbons rather than points is that it creates plots with smaller file sizes.

... Additional arguments. (Currently ignored.)
Details

Uses ggplot2 to plot the quantities of interest from simlinear objects, including relative hazards, first differences, hazard ratios, and hazard rates. If there are multiple strata, the quantities of interest will be plotted in a grid by strata. Note: A dotted line is created at y = 1 (0 for first difference), i.e. no effect, for time-varying hazard ratio graphs. No line is created for hazard rates.

Value

A gg ggplot class object

References


See Also

coxsimLinear, simGG.simtvc, and ggplot2

Examples

```r
Load survival package
library(survival)
Load Carpenter (2002) data
data("CarpenterFdaData")

Estimate basic model
M1 <- coxph(Surv(acttime, censor) ~ prevgenx + lethal +
 deathrt1 + acutediz + hosp01 + hhosleng +
 mandiz01 + femdiz01 + peddiz01 + orphdum +
 vandavg3 + wpnoavg3 + condavg3 + orderent +
 stafcdcr, data = CarpenterFdaData)

Simulate and plot Hazard Ratios for stafcdcr variable
Sim1 <- coxsimLinear(M1, b = "stafcdcr",
 Xj = c(1237, 1600),
 Xl = c(1000, 1000),
 qi = "Hazard Ratio",
 spin = TRUE, ci = 0.99)
simGG(Sim1, method = 'lm', rug_position = 'jitter')
simGG(Sim1, rug_position = 'jitter')
```
## Not run:
# Simulate and plot Hazard Rate for stafcder variable
Sim2 <- coxsimLinear(M1, b = "stafcder", nsim = 100,
qi = "Hazard Rate",
Xj = c(1237, 1600))
simGG(Sim2, type = 'points')
simGG(Sim2, type = 'lines')

## End(Not run)

---

**simGG.simpoly**

Plot simulated polynomial quantities of interest from Cox Proportional Hazards Models

### Description

`simGG.simpoly` uses `ggplot2` to plot simulated relative quantities of interest from a `simpoly` class object.

### Usage

```r
S3 method for class 'simpoly'
simGG(
 obj,
 from = NULL,
 to = NULL,
 rug = TRUE,
 rug_position = "identity",
 xlab = NULL,
 ylab = NULL,
 title = NULL,
 method = "auto",
 spalette = "Set1",
 legend = "legend",
 leg.name = "",
 lcolour = "#2B8CBE",
 lsize = 1,
 pcolour = "#A6CEE3",
 psize = 1,
 alpha = 0.2,
 type = "ribbons",
 ...
)
```
simGG.simpoly

Arguments

- **obj**: a `simpoly` class object.
- **from**: numeric time to start the plot from. Only relevant if `qi = "Hazard Rate"`.
- **to**: numeric time to plot to. Only relevant if `qi = "Hazard Rate"`.
- **rug**: logical indicating whether or not to include a rug plot showing the distribution of values in the sample used to estimate the `coxph` model. Only relevant when the quantity of interest is not "Hazard Rate".
- **rug_position**: character string. The position adjustment to use for overlapping points in the rug plot. Use "jitter" to jitter the points.
- **xlab**: a label for the plot's x-axis.
- **ylab**: a label of the plot's y-axis. The default uses the value of `qi`.
- **title**: the plot's main title.
- **method**: what type of smoothing method to use to summarize the center of the simulation distribution.
- **spalette**: colour palette for when there are multiple sets of comparisons to plot. Default palette is "Set1". See `scale_colour_brewer`.
- **legend**: specifies what type of legend to include (if applicable). The default is `legend = "legend"`. To hide the legend use `legend = FALSE`. See the `discrete_scale` for more details.
- **leg.name**: name of the legend (if applicable).
- **lcolour**: character string colour of the smoothing line. The default is hexadecimal colour `lcolour = '#2B8CBE'`. Only relevant if `qi = "First Difference"`.
- **lsize**: size of the smoothing line. Default is 1. See ggplot2.
- **pcolour**: character string colour of the simulated points or ribbons (when there are not multiple sets of simulations). Default is hexadecimal colour `pcolour = '#A6CEE3'`.
- **psize**: size of the plotted simulation points. Default is `psize = 1`. See ggplot2.
- **alpha**: numeric. Alpha (e.g. transparency) for the points, lines, or ribbons. Default is `alpha = 0.2`. See ggplot2. Note, if type = "lines" or type = "points" then `alpha` sets the maximum value per line or point at the center of the distribution. Lines or points further from the center are more transparent the further they get from the middle.
- **type**: character string. Specifies how to plot the simulations. Can be points, lines, or ribbons. If points then each simulation value will be plotted. If lines is chosen then each simulation is plotted using a different line. Note: any simulation with a value along its length that is outside of the specified central interval will be dropped. This is to create a smooth plot. If type = "ribbons" a plot will be created with shaded areas ("ribbons") for the minimum and maximum simulation values (i.e. the middle interval set with `qi` in `coxsimSpline`) as well as the central 50 percent of this area. It also plots a line for the median value of the full area, so values in `method` are ignored. One of the key advantages of using ribbons rather than points is that it creates plots with smaller file sizes.

... Additional arguments. (Currently ignored.)
Details

Uses ggplot2 to plot the quantities of interest from simpoly objects.

Value

a gg ggplot class object

References


See Also

coxsimPoly and ggplot2

Examples

# Load Carpenter (2002) data
data("CarpenterFdaData")

# Load survival package
library(survival)

# Run basic model
M1 <- coxph(Surv(acttime, censor) ~ prevgenx + lethal +
    deathrt1 + acutediz + hosp01 + hhosleng + mandiz01 +
    femdiz01 + peddiz01 + orphdum + natreg +
    I(natreg^2) + I(natreg^3) + vandavg3 + wpnoavg3 +
    condavg3 + orderent + stafcder, data = CarpenterFdaData)

# Simulate simpoly First Difference
Sim1 <- coxsimPoly(M1, b = "natreg", qi = "First Difference",
    pow = 3, Xj = seq(1, 150, by = 5), nsim = 100)

# Plot simulations
simGG(Sim1, rug_position = "jitter")

## Not run:
# Simulate simpoly Hazard Ratio with spin probability interval
Sim2 <- coxsimPoly(M1, b = "natreg", qi = "Hazard Ratio",
    pow = 3, Xj = seq(1, 150, by = 5), spin = TRUE,
    nsim = 100)

# Plot simulations
simGG(Sim2, type = "ribbons", rug_position = "jitter")

Sim3 <- coxsimPoly(M1, b = "natreg", qi = "Hazard Rate",
    pow = 3, Xj = c(1, 150), nsim = 100)

# Plot simulations
### simGG.simspline

#### Description

`simGG.simspline` uses ggplot2 to plot quantities of interest from `simspline` objects, including relative hazards, first differences, hazard ratios, and hazard rates.

#### Usage

```r
S3 method for class 'simspline'
simGG(
 obj,
 SmoothSpline = TRUE,
 FacetTime = NULL,
 from = NULL,
 to = NULL,
 rug = TRUE,
 rug_position = "identity",
 xlab = NULL,
 ylab = NULL,
 zlab = NULL,
 title = NULL,
 method = "auto",
 lcolour = "#2B8CBE",
 lsize = 1,
 pcolour = "#A6CEE3",
 psize = 1,
 alpha = 0.2,
 type = "ribbons",
 ...
)
```

#### Arguments

- **obj**: a `simspline` class object
- **SmoothSpline**: logical whether or not to fit the simulations with smoothing splines. Creates a smoother plot. See `smooth.spline` for more information. Note: currently the degrees of freedom are set at 10.
- **FacetTime**: a numeric vector of points in time where you would like to plot Hazard Rates in a facet grid. Only relevant if `qi == 'Hazard Rate'`. Note: the values of Facet Time must exactly match values of the time element of `obj`.

---

```r
simGG(Sim3, type = 'lines')
End(Not run)
```
from numeric time to start the plot from. Only relevant if qi = "Hazard Rate".

To numeric time to plot to. Only relevant if qi = "Hazard Rate".

rug logical indicating whether or not to include a rug plot showing the distribution of values in the sample used to estimate the coxph model. Only relevant when the quantity of interest is not "Hazard Rate".

rug_position character string. The position adjustment to use for overlapping points in the rug plot. Use "jitter" to jitter the points.

xlab a label for the plot’s x-axis.

ylab a label for the plot’s y-axis. The default uses the value of qi.

zlab a label for the plot’s z-axis. Only relevant if qi = "Hazard Rate" and FacetTime == NULL.

title the plot’s main title.

method what type of smoothing method to use to summarize the center of the simulation distribution.

lcolour character string colour of the smoothing line. The default is hexadecimal colour lcolour = '#2B8CBE'. Only relevant if qi = "Relative Hazard" or qi = "First Difference".

lsize size of the smoothing line. Default is 1. See ggplot2.

pcolour character string colour of the simulated points or ribbons (when there are not multiple sets of simulations). Default is hexadecimal colour pcolour = '#A6CEE3'. Only relevant if qi = "Relative Hazard" or qi = "First Difference" or qi = "Hazard Rate" with facets.

psize size of the plotted simulation points. Default is psize = 1. See ggplot2.

alpha numeric. Alpha (e.g. transparency) for the points, lines, or ribbons. Default is alpha = 0.2. See ggplot2. Note, if type = "lines" or type = "points" then alpha sets the maximum value per line or point at the center of the distribution. Lines or points further from the center are more transparent the further they get from the middle.

type character string. Specifies how to plot the simulations. Can be points, lines, or ribbons. If points then each simulation value will be plotted. If lines is chosen then each simulation is plotted using a different line. Note: any simulation with a value along its length that is outside of the specified central interval will be dropped. This is to create a smooth plot. If type = "ribbons" a plot will be created with shaded areas ('ribbons') for the minimum and maximum simulation values (i.e. the middle interval set with qi in coxsimSpline) as well as the central 50 percent of this area. It also plots a line for the median value of the full area, so values in method are ignored. One of the key advantages of using ribbons rather than points is that it creates plots with smaller file sizes.

... Additional arguments. (Currently ignored.)

Details

Uses ggplot2 to plot the quantities of interest from simspline objects, including relative hazards, first differences, hazard ratios, and hazard rates. If currently does not support hazard rates for multiple strata.
You can plot hazard rates for a range of values of $X_j$ in two dimensional plots at specific points in time. Each plot is arranged in a facet grid.

Note: A dotted line is created at $y = 1$ (0 for first difference), i.e. no effect, for time-varying hazard ratio graphs. No line is created for hazard rates.

Value

a gg ggplot class object.

References


See Also

coxsimLinear, simGG.simtvc, ggplot2

Examples

```r
Load Carpenter (2002) data
data("CarpenterFdaData")

Load survival package
library(survival)

Run basic model
From Keele (2010) replication data
M1 <- coxph(Surv(acttime, censor) ~ prevgenx + lethal + deathrt1 + acutediz + hosp01 + pspline(hospdisc, df = 4) + pspline(hhosleng, df = 4) + mandiz01 + femdiz01 + peddiz01 + orphanum + natreg + vandavg3 + wpmoavg3 + pspline(condavg3, df = 4) + pspline(orderent, df = 4) + pspline(stafcder, df = 4), data = CarpenterFdaData)

Simulate Relative Hazards for orderent
Sim1 <- coxsimSpline(M1, bspline = "pspline(stafcder, df = 4)", bdata = CarpenterFdaData$stafcder, qi = "Hazard Ratio", Xj = seq(1100, 1700, by = 10), Xl = seq(1099, 1699, by = 10), spin = TRUE, nsim = 100)

Plot relative hazard
simGG(Sim1, alpha = 0.5)

Not run:
Simulate Hazard Rate for orderent
Sim2 <- coxsimSpline(M1, bspline = "pspline(orderent, df = 4)", bdata = CarpenterFdaData$orderent, qi = "Hazard Rate", Xj = seq(1, 30, by = 2), ci = 0.9, nsim = 10)
```
simGG.simtvc

# Create a time grid plot
# Find all points in time where baseline hazard was found
unique(Sim2$sims$Time)

# Round time values so they can be exactly matched with FacetTime
Sim2$sims$Time <- round(Sim2$sims$Time, digits = 2)

# Create plot
simGG(Sim2, FacetTime = c(6.21, 25.68, 100.64, 202.36),
      type = 'ribbons', alpha = 0.5)

# Simulated Fitted Values of stafcder
Sim3 <- coxsimSpline(M1, bspline = "pspline(stafcder, df = 4)",
                      bdata = CarpenterFdaData$stafcder,
                      qi = "Hazard Ratio",
                      Xj = seq(1100, 1700, by = 10),
                      Xl = seq(1099, 1699, by = 10), ci = 0.90)

# Plot simulated Hazard Ratios
simGG(Sim3, xlab = "nFDA Drug Review Staff", type = 'lines', alpha = 0.2)
simGG(Sim3, xlab = "nFDA Drug Review Staff", alpha = 0.2,
      SmoothSpline = TRUE, type = 'points')

## End(Not run)

---

**simGG.simtvc**

Plot simulated time-interactive hazard ratios or stratified time-interactive hazard rates from Cox Proportional Hazards Models

**Description**

simGG.simtvc uses ggplot2 to plot the simulated hazards from a simtvc class object created by coxsimtvc using ggplot2.

**Usage**

## S3 method for class 'simtvc'
simGG(
    obj,
    from = NULL,
    to = NULL,
    xlab = NULL,
    ylab = NULL,
    title = NULL,
    method = "auto",
    spalette = "Set1",
    legend = "legend",
)
leg.name = "",
lsize = 1,
psize = 1,
alpha = 0.2,
type = "ribbons",
...)

Arguments

obj  
a simtvc class object
from  
numeric time to start the plot from.
to  
numeric time to plot to.
xlab  
a label for the plot's x-axis.
ylab  
a label of the plot’s y-axis. The default uses the value of qi.
title  
the plot’s main title.
method  
what type of smoothing method to use to summarize the center of the simulation distribution.
spalette  
colour palette for when there are multiple sets of comparisons to plot. Default palette is "Set1". See scale_colour_brewer.
legend  
specifies what type of legend to include (if applicable). The default is legend = "legend". To hide the legend use legend = FALSE. See the discrete_scale for more details.
leg.name  
name of the legend (if applicable).
lsize  
size of the smoothing line. Default is 1. See ggplot2.
psize  
size of the plotted simulation points. Default is psize = 1. See ggplot2.
alpha  
numeric. Alpha (e.g. transparency) for the points, lines, or ribbons. Default is alpha = 0.2. See ggplot2. Note, if type = "lines" or type = "points" then alpha sets the maximum value per line or point at the center of the distribution. Lines or points further from the center are more transparent the further they get from the middle.
type  
character string. Specifies how to plot the simulations. Can be points, lines, or ribbons. If points then each simulation value will be plotted. If lines is chosen then each simulation is plotted using a different line. Note: any simulation with a value along its length that is outside of the specified central interval will be dropped. This is to create a smooth plot. If type = "ribbons" a plot will be created with shaded areas ("ribbons") for the minimum and maximum simulation values (i.e. the middle interval set with qi in coxsimSpline) as well as the central 50 percent of this area. It also plots a line for the median value of the full area, so values in method are ignored. One of the key advantages of using ribbons rather than points is that it creates plots with smaller file sizes.
...  
Additional arguments. (Currently ignored.)
Details

Plots either a time-interactive hazard ratios, first differences, and relative hazards, or the hazard rates for multiple strata. Currently the strata legend labels need to be changed manually (see revalue in the plyr package) in the simtvc object with the strata component. Also, currently the x-axis tick marks and break labels must be adjusted manually for non-linear functions of time. Note: A dotted line is created at y = 1 (0 for first difference), i.e. no effect, for time-varying hazard ratio graphs. No line is created for hazard rates.

Value

a gg ggplot class object

References


Examples

```r
Not run:
Load Golub & Steunenberg (2007) Data
data("GolubEUPData")

Load survival package
library(survival)

Expand data
GolubEUPData <- SurvExpand(GolubEUPData, GroupVar = 'caseno',
 Time = 'begin', Time2 = 'end', event = 'event')

Create time interactions
BaseVars <- c('qmv', 'backlog', 'coop', 'codec', 'qmvpostsea', 'thatcher')
GolubEUPData <- tvc(GolubEUPData, b = BaseVars, tvar = 'end', tfun = 'log')

Run Cox PH Model
M1 <- coxph(Surv(begin, end, event) ~ qmv + qmvpostsea + qmvpostteu +
 coop + codec + eu9 + eu10 + eu12 + eu15 + thatcher +
 agenda + backlog + qmv_log + qmvpostsea_log + coop_log +
 codec_log + thatcher_log + backlog_log,
data = GolubEUPData, ties = "efron")

Create simtvc object for Relative Hazard
Sim1 <- coxsimtvc(obj = M1, b = "qmv", btvc = "qmv_log",
tfun = "log", from = 80, to = 2000,
Xj = 1, by = 15, ci = 0.99, nsim = 100)

Create plot
simGG(Sim1, legend = FALSE)
```
# Create simtvc object for First Difference
Sim2 <- coxsimtvc(obj = M1, b = "qmv", btvc = "qmv_log",
qi = "First Difference", Xj = 1,
tfun = "log", from = 80, to = 2000,
by = 15, ci = 0.95)

# Create simtvc object for Hazard Ratio
Sim3 <- coxsimtvc(obj = M1, b = "backlog", btvc = "backlog_log",
qi = "Hazard Ratio", Xj = c(191, 229),
Xl = c(0, 0),
tfun = "log", from = 100, to = 2000,
by = 15, ci = 0.99)

# Create plots
simGG(Sim2, type = 'points')
simGG(Sim3, leg.name = "Comparison", from = 1200, type = 'lines')

## End(Not run)

---

**simPH**  
An R package for simulating and plotting quantities of interest from Cox Proportional Hazard models.

### Description

An R package for simulating and plotting quantities of interest (relative hazards, first differences, and hazard ratios) for linear coefficients, multiplicative interactions, polynomials, penalised splines, and non-proportional hazards, as well as stratified survival curves from Cox Proportional Hazard models.

The package includes the following simulation functions:

- **coxsimLinear**: a function for simulating relative hazards, first differences, hazard ratios, and hazard rates for linear, non-time interacted covariates from Cox Proportional Hazard (coxph) models.

- **coxsimtvc**: a function for simulating time-interactive hazards (relative hazards, first differences, and hazard ratios) for covariates from Cox Proportional Hazard models. The function will calculate time-interactive hazard ratios for multiple strata estimated from a stratified Cox Proportional Hazard model.

- **coxsimSpline**: a function for simulating quantities of interest from penalised splines using multivariate normal distributions. Currently does not support simulating hazard rates from stratified models. Note: be extremely careful about the number of simulations you ask the function to find. It is very easy to ask for more than your computer can handle.

- **coxsimPoly**: a function for simulating quantities of interest for a range of values for a polynomial nonlinear effect from Cox Proportional Hazard models.

- **coxsimInteract**: a function for simulating quantities of interest for linear multiplicative interactions, including marginal effects and hazard rates.
Results from these functions can be plotted using the `simGG` method.

The package also includes two functions that make it easier to create time interactions:

- **SurvExpand**: a function to convert a data frame of non-equal interval continuous observations into equal interval continuous observations.
- **tvc**: a function to create time interaction variables that can be used in a `coxph` model (or any other model with time interactions).
- **setXl**: a function for setting valid $X_1$ values given a sequence of fitted $X_j$ values. This makes it more intuitive to find hazard ratios and first differences for comparisons between some $X_j$ fitted values and $X_1$ values other than 0.

**References**


---

**SurvExpand**

Convert a data frame of non-equal interval continuous observations into equal interval continuous observations

---

**Description**

SurvExpand convert a data frame of non-equal interval continuous observations into equal interval continuous observations. This is useful for creating time-interactions with `tvc`.

**Usage**

```r
SurvExpand(
 data,
 GroupVar,
 Time,
 Time2,
 event,
 PartialData = TRUE,
 messages = TRUE
)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data</code></td>
<td>a data frame.</td>
</tr>
<tr>
<td><code>GroupVar</code></td>
<td>a character string naming the unit grouping variable.</td>
</tr>
<tr>
<td><code>Time</code></td>
<td>a character string naming the variable with the interval start time.</td>
</tr>
<tr>
<td><code>Time2</code></td>
<td>a character string naming the variable with the interval end time.</td>
</tr>
<tr>
<td><code>event</code></td>
<td>a character string naming the event variable. Note: must be numeric with 0</td>
</tr>
<tr>
<td></td>
<td>indicating no event.</td>
</tr>
</tbody>
</table>
PartialData logical indicating whether or not to keep only the expanded data required to find the Cox partial likelihood.

messages logical indicating if you want messages returned while the function is working.

Details

The function primarily prepares data from the creation of accurate time-interactions with the \texttt{tvc} command. Note: the function will work best if your original time intervals are recorded in whole numbers. It also currently does not support repeated events data.

Value

Returns a data frame where observations have been expanded into equally spaced time intervals.

References


See Also

\texttt{tvc}

Examples

# Load Golub & Steunenberg (2007) Data
data("GolubEUPData")

# Subset PURELY TO SPEED UP THE EXAMPLE
GolubEUPData <- GolubEUPData[1:500, ]

# Expand data
GolubEUPDataExpand <- SurvExpand(GolubEUPData, GroupVar = 'caseno',
                  Time = 'begin', Time2 = 'end', event = 'event')

\texttt{tvc} \hspace{1cm} \textit{Create a time interaction variable}

Description

tvc creates a time interaction variable that can be used in a coxph model (or any other model with time interactions)

Usage

tvc(data, b, tvar, tfun = "linear", pow = NULL, vector = FALSE)
Arguments

data  a data frame
b  the non-time interacted variable’s name. Either a single value or a vector of
variable names can be entered.
tvar  the time variable’s name
tfun  function of time that btvc was multiplied by. Default is tfun = "linear". Can
also be tfun = 'log' (natural log) and tfun = 'power'. If tfun = 'power' then
the pow argument needs to be specified also.
pow  if tfun = 'power', then use pow to specify what power to raise the time inter-
action to.
vector  logical. Whether or not to return one vector a or a data frame. Can only be used
if only one b is included.

Details

Interacts a variable with a specified function of time. Possible functions of time include 'linear',
natural 'log', and exponentiated ('power').

Value

a data frame or vector. If a data frame is returned it will include all of the original variables as well
as the interactions denoted by a variable name 'bn_tfun', where bn is one variable name from b
and tfun as entered into the function.

See Also
SurvExpand, simGG.simtvc, coxsimtvc, survival, and coxph

Examples

# Load Golub & Steunenberg (2007) Data
data('GolubEUPData')

# Subset PURELY TO SPEED UP THE EXAMPLE
GolubEUPData <- GolubEUPData[1:500, ]

# Expand data into equally spaced time intervals
GolubEUPData <- SurvExpand(GolubEUPData, GroupVar = 'caseno',
                          Time = 'begin', Time2 = 'end', event = 'event')

# Create natural log time interaction with the qmv variable
GolubEUPData$qmv <- tvc(GolubEUPData, b = 'qmv', tvar = 'end', tfun = 'log',
                       vector = TRUE)

# Create interactions for a vector of variables
BaseVars <- c('qmv', 'backlog', 'coop', 'codec', 'qmvpostsea', 'thatcher')

Test <- tvc(GolubEUPData, b = BaseVars, tvar = 'end', tfun = 'log')
Index

*Topic **datasets**
  CarpenterFdaData, 3
  GolubEUPData, 18
  hmoHiv, 18

*Topic **internals**
  MinMaxLines, 19

*Topic **utilities**
  setXl, 20
  SurvExpand, 38
  tvc, 39

as.data.frame.coxsim, 2

CarpenterFdaData, 3
coxph, 4, 5, 7–15, 37, 38, 40
coxsimInteract, 3, 23, 24, 37
coxsimLinear, 6, 27, 33, 37
coxsimPoly, 8, 30, 37
coxsimSpline, 11, 23, 26, 29, 32, 35, 37
coxsimTvc, 13, 34, 37, 40
discrete_scale, 23, 26, 29, 35
ggfitstrata, 16
GolubEUPData, 18
hmohiv, 18
I, 4, 7, 9
MinMaxLines, 19
plot.survfit, 17
pspline, 11

scale_colour_brewer, 23, 26, 29, 35
setXl, 20
simGG, 3–9, 11–15, 21, 38
simGG.siminteract, 21, 22
simGG.simlinear, 8, 21, 24, 25
simGG simpoly, 10, 21, 28

simGG.simspline, 21, 31
simGG.simtvc, 21, 27, 33, 34, 40
simPH, 37
smooth.spline, 31
strata, 5, 8, 10, 12, 15, 17
SurvExpand, 38, 38, 40
survfit, 17
survival, 5, 8, 10, 12, 15, 40
tvc, 38, 39, 39