This document describes briefly how to use the class “mctest”, included in the R-package “simctest”. It implements the methods from “Implementing Monte Carlo Tests with P-value Buckets” of Gandy et al. (2019).

The class can be used to evaluate the statistical significance of a hypothesis \(H_0 \) with respect to multiple thresholds. It is assumed that the p-value \(p \) of \(H_0 \) is not known analytically and can only be approximated via Monte Carlo simulation. To this end, a function \texttt{gen()} provided by the user is used to draw one sample under \(H_0 \) at a time in order to approximate the p-value corresponding to \(H_0 \). By means of an appropriate (default) choice of the thresholds, the R-class can be used to either obtain an exact decision for \(H_0 \) with respect to all given thresholds (in expected infinite time), or to obtain a finite time decision in extended star notation, see Gandy et al. (2019).

1 Installation

The functions described in this document are included in the R-package “simctest”. Please see the documentation of “simctest” on how to install the package.

2 Usage

The package is loaded by typing

\begin{verbatim}
> library(simctest)
\end{verbatim}

This document can be accessed via

\begin{verbatim}
> vignette("simctest-mctest-intro")
\end{verbatim}

Documentation of the most useful commands can be obtained as follows:

\begin{verbatim}
> ? simctest
> ? mctest
\end{verbatim}
3 Testing with respect to multiple thresholds

Gandy et al. (2019) define a general scenario to test a hypothesis with respect to a given set of multiple thresholds. More generally, the authors describe an algorithm to find the p-value bucket containing the p-value \(p \) of interest (among a finite set of p-value buckets specified by the user).

The classical choice of p-value buckets, given by

\[
J^0 := \{[0, 10^{-3}], (10^{-3}, 0.01], (0.01, 0.05], (0.05, 1]\},
\]

is equivalent to deciding where \(p \) lies in relation to the three thresholds 0.001, 0.01 and 0.05 traditionally employed in hypothesis testing.

However, the concept of p-value buckets is more general: The overlapping intervals

\[
J^* = J^0 \cup \{(5 \cdot 10^{-4}, 2 \cdot 10^{-3}], (8 \cdot 10^{-3}, 0.012], (0.045, 0.055]\}
\]

make it possible to extend the classical way of reporting significances to finite time decisions, however at the expense that the exact location of \(p \) with respect to the buckets in \(J^* \) is only known for all but one bucket. For instance, in case the threshold 0.01 will remain as the last undecided one, \(p \) will be reported to be (up to a pre-specified error probability) significant at the 0.05 level, with possible significance at 0.01 as well.

These two threshold sets (sets of p-value buckets) are provided as default choices in \(R \) upon loading \texttt{simctest} as variables \(J \) and \texttt{Jstar}.

4 Using the R-class

The following gives a step-by-step introduction to the R-class \texttt{mctest} and provides examples.

4.1 Providing a sampler interface

To implement a given test, it suffices to specify a function \texttt{gen()} (without input parameters) which returns one sample under \(H_0 \), thus allowing to approximate the p-value \(p \) of \(H_0 \).

For simplicity, we assume \(p = 0.04 \) for now and we simulate samples under \(H_0 \) by drawing independent Bernoulli samples, thus

\[
> \texttt{gen <- function() \{ runif(1)<0.04 \}}
\]

4.2 Defining p-value buckets

A set of \(r \) p-value buckets one wishes to test \(p \) against is specified as an \(r \times 2 \) matrix. For instance, the traditional choice of thresholds 0.001, 0.01 and 0.05 already seen in the definition of \(J \) is given as

\[
> \texttt{J <- matrix(nrow=2,}
> \texttt{+ c(0, 1e-3,}
> \texttt{+ 1e-3,1e-2,}
> \texttt{+ 1e-2,0.05,}
> \texttt{+ 0.05,1))}
\]

\[
> \texttt{colnames(J) <- c("***","**","*","")}
\]
Additionally, the significance classifier symbols corresponding to each bucket are specified as column names.

4.3 Testing with respect to a given set of p-value buckets

Given a generating mechanism for samples under H_0 is provided (see Section 4.1), the main algorithm can be called using

```r
> res <- mctest(gen,J=Jstar,epsilon=0.001,batch=10,
+    batchincrement=1.1,maxbatch=100,method="simctest")
```

where the parameter `method` can take the arguments "simctest" and "RL". These two options refer to the method used to compute confidence intervals for p, see [Gandy et al. (2019)](https://doi.org/10.1214/19-AOS1793). The choice of confidence intervals does not affect the accuracy of the result. The choice "simctest", however, seems to be computationally more favourable since it leads to faster decisions on p.

The other parameters are as follows:

- `J` is the matrix of p-value buckets (default choice is J_{star}).
- `epsilon` is the allowed resampling error for the (simultaneous) decision on all buckets.
- `batch` is the batch size for new samples drawn in each iteration.
- `batchincrement` is the geometric increment used to increase the batch size of samples drawn (use value 1 for no increase).
- `maxbatch` is the upper limit of samples drawn in each iteration.
- `method` is the method used to compute confidence intervals for p, use "simctest" or "RL".

In fact, the function `mctest` is just a wrapper function for the actual routines carrying out the testing, precisely

```r
> mctest.RL(gen,J=Jstar,epsilon=0.001,batch=10,
+    batchincrement=1.1,maxbatch=100)
```

for the "RL" (Robbins-Lai) approach and

```r
> mctest.simctest(gen,J=Jstar,epsilon=0.001,batch=10,
+    batchincrement=1.1,maxbatch=100)
```

for the "simctest" approach. These two functions can also be called directly.

4.4 Testing result

Once `mctest` (or `mctest.RL` or `mctest.simctest`, respectively) have finished their computation, a result object of the class `mctestres` is returned. This class provides a print function for its objects.

First,

```r
> res
```
Interval for p-value: [0.01,0.05]
Decision: *
Estimate of p-value: 0.0407306114475484
Batched number of samples: 10238
Actual number of samples: 10253

prints a summary of the computation, consisting of the final interval (bucket) from \(J \) the p-value is determined to lie in, the decision (taken from the definition of \(J \), see Section 4.2) in (extended) star notation, an estimate of the \(p \), as well as the batched number of samples actually drawn in the run and the actual (non-batched) number of samples needed to reach a decision (due to batching, a few samples more are drawn in the last batch than would have been needed to reach a decision).

Similarly, the individual elements of the results object can be accessed by the user:

\[
\begin{align*}
&> \text{res$decision.interval} \\
&[1] \ 0.01 \ 0.05 \\
&> \text{res$decision} \\
&[1] \ "*" \\
&> \text{res$est.p} \\
&[1] \ 0.04073061 \\
&> \text{res$batchedSamples} \\
&[1] \ 10238 \\
&> \text{res$actualSamples} \\
&[1] \ 10253
\end{align*}
\]

They can be obtained as list entries decision.interval, decision, est.p, batchedSamples and actualSamples.

4.5 An extended example
The following example is a likelihood ratio test of contingency table data which can be found in Gandy et al. (2019). It consists of 39 multinomial counts for two categorical variables in a 5 \times 7 contingency table. We wish to test for independence of these two variables.

We first enter the data example found in Gandy (2009), Newton and Geyer (1994) or Davison and Hinkley (1997) as well as the likelihood ratio test statistic:

\[
\begin{align*}
&> \text{dat <- matrix(nrow=5,ncol=7,byrow=TRUE,} \\
&+ \ \ c(1,2,2,1,1,0,1,} \\
&+ \ \ 2,0,0,2,3,0,0,} \\
&+ \ \ 0,1,1,2,7,3,} \\
&+ \ \ 1,1,2,0,0,0,1,”
\end{align*}
\]
loglikrat <- function(data) {
 cs <- colSums(data)
 rs <- rowSums(data)
 mu <- outer(rs, cs)/sum(rs)
 2*sum(ifelse(data<=0.5, 0, data*log(data/mu)))
}

Davison and Hinkley (1997) propose to use a parametric bootstrap test. The following is a function to resample the dataset:

resample <- function(data) {
 cs <- colSums(data)
 rs <- rowSums(data)
 n <- sum(rs)
 mu <- outer(rs, cs)/n/n
 matrix(rmultinom(1, n, c(mu)), nrow=dim(data)[1], ncol=dim(data)[2])
}

After evaluating the test statistic on the (original) data,
t <- loglikrat(dat)
and storing the result in \(t \), we can define a p-value of a right-sided test as the proportion of exceedances of the test statistic evaluated on the resampled data over \(t \). The following function returns binary samples corresponding to these exceedances:

gen <- function() {loglikrat(resample(dat))>=t}

Using the function \(gen \), we can test for independence in the contingency table as

res <- mctest(gen, method="simctest")
mctest.simctest(gen)

Interval for p-value: [0.01,0.05]
Decision: *
Estimate of p-value: 0.0299168975069252
Batched number of samples: 1805
Actual number of samples: 1853

res <- mctest.RL(gen)
mctest.RL(gen)

Interval for p-value: [0.01,0.05]
Decision: *
Estimate of p-value: 0.0411760607538494
Batched number of samples: 14353
Actual number of samples: 14353

using the wrapper \(\text{mctest} \) as well as \(\text{mctest.simctest} \) or \(\text{mctest.RL} \). The decision interval for the p-value as well as its significance (for the first instance of \(\text{mctest} \) which saved the test result) can be queried using
> res$decision.interval
[1] 0.01 0.05

> res$decision
[1] "*"

References

