Package ‘simodels’

October 14, 2022

Title Flexible Framework for Developing Spatial Interaction Models

Version 0.0.5

Description Develop spatial interaction models (SIMs). SIMs predict the amount of interaction, for example number of trips per day, between geographic entities representing trip origins and destinations. Contains functions for creating origin-destination datasets from geographic input datasets and calculating movement between origin-destination pairs with constrained, production-constrained, and attraction-constrained models (Wilson 1979) <doi:10.1068/a030001>.

License AGPL (>= 3)

URL https://github.com/robinlovelace/simodels,
 https://robinlovelace.github.io/simodels/

BugReports https://github.com/robinlovelace/simodels/issues

Depends R (>= 2.10)

Imports dplyr, geodist, od (>= 0.4.0), rlang, sf

Suggests ggplot2, knitr, minpack.lm, rmarkdown, tmap

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

NeedsCompilation no

Author Robin Lovelace [aut, cre] (<https://orcid.org/0000-0001-5679-6536>),
 Jakub Nowosad [aut] (<https://orcid.org/0000-0002-1057-3721>)

Maintainer Robin Lovelace <rob00x@gmail.com>

Repository CRAN

Date/Publication 2022-08-31 21:10:02 UTC
R topics documented:

- od_aus .. 2
- si_calculate .. 2
- si_od_census ... 4
- si_predict .. 4
- si_pubs ... 5
- si_to_od ... 6
- si_zones ... 7
- zones_aus .. 7

Index 8

od_aus Example OD dataset: flows between regions in Australia

Description

Example dataset from Australia

Note

Regenerate the data with scripts in the data-raw directory.

Examples

```r
head(od_aus)
```

si_calculate Calculate flow using a pre-existing function

Description

Executes a spatial interaction model based on an OD data frame and user-specified function

Usage

```r
si_calculate(
  od,
  fun,
  constraint_production,
  constraint_attraction,
  constraint_total,
  output_col = "interaction",
  ...
)
```
si_calculate

Arguments

od A data frame representing origin-destination data, e.g. as created by `si_to_od()`
fun A function that calculates the interaction (e.g. the number of trips) between each OD pair
constraint_production Character representing column in `od`. This argument, when set, ensures that the outputs are 'production constrained': the total 'interaction' (e.g. n. trips) for all OD pairs is set such that the total for each zone of origin cannot go above this value.
constraint_attraction Character representing column in `od`. This argument, when set, ensures that the outputs are 'attraction constrained': the total 'interaction' (e.g. n. trips) for all OD pairs is set such that the sum of trips to destination is equal to the mean value per destination.
constraint_total Single number representing the total interaction. This argument, when set, ensures that the sum of the interaction calculated will equal the value given.
output_col Character string containing the name of the new output column. "interaction" by default.
... Arguments passed to `fun`

Value

An sf data frame

Examples

od = si_to_od(si_zones, si_zones, max_dist = 4000)
fun_dd = function(d = "distance_euclidean", beta = 0.3) exp(-beta * d / 1000)
fun_dd(d = (1:5)*1000)
od_dd = si_calculate(od, fun = fun_dd, d = distance_euclidean)
plot(od$distance_euclidean, od_dd$interaction)

fun = function(O, n, d, beta) O * n * exp(-beta * d / 1000)
od_output = si_calculate(od, fun = fun, beta = 0.3, O = origin_all, n = destination_all, d = distance_euclidean)
head(od_output)
plot(od$distance_euclidean, od_output$interaction)

od_pconst = si_calculate(od, fun = fun, beta = 0.3, O = origin_all, n = destination_all, d = distance_euclidean, constraint_production = origin_all)
plot(od_pconst$distance_euclidean, od_pconst$interaction)
plot(od_pconst$"interaction"), logz = TRUE)

od_dd = si_calculate(od, fun = fun_dd, d = distance_euclidean, output_col = "res")
head(od_dd$res)

od_dd = si_calculate(od, fun = fun_dd, d = distance_euclidean, constraint_total = 10)
sum(od_dd$interaction)
si_od_census

Example OD dataset

- **Description**

 Example OD dataset from the 2011 UK Census

- **Note**

 Regenerate the data with scripts in the data-raw directory.

- **Examples**

  ```r
  head(si_od_census)
  ```

si_predict

Predict spatial interaction based on pre-trained model

- **Description**

 Predict spatial interaction based on pre-trained model

- **Usage**

  ```r
  si_predict(
    od, 
    model, 
    constraint_production, 
    constraint_attraction, 
    constraint_total, 
    output_col = "interaction", 
    ...
  )
  ```

- **Arguments**

 - **od**

 A data frame representing origin-destination data, e.g. as created by `si_to_od()`

 - **model**

 A model object, e.g. from `lm()` or `glm()`

 - **constraint_production**

 Character representing column in `od`. This argument, when set, ensures that the outputs are 'production constrained': the total 'interaction' (e.g. n. trips) for all OD pairs is set such that the total for each zone of origin cannot go above this value.
constraint_attraction
Character representing column in od. This argument, when set, ensures that the outputs are 'attraction constrained': the total 'interaction' (e.g. n. trips) for all OD pairs is set such that the sum of trips to destination is equal to the mean value per destination.

constraint_total
Single number representing the total interaction. This argument, when set, ensures that the sum of the interaction calculated will equal the value given.

output_col
Character string containing the name of the new output column. "interaction" by default.

... Arguments passed to fun

Value
An sf data frame

See Also
si_calculate

Examples

```r
od = si_to_od(si_zones, si_zones, max_dist = 4000)
m = lm(od$origin_all ~ od$origin_bicycle)
od_updated = si_predict(od, m)
```

si_pubs

Example destinations dataset: pubs in Leeds

Description
Example dataset from Leeds, UK

Note
Regenerate the data with scripts in the `data-raw` directory.

Examples

```r
head(si_pubs)
```
si_to_od Prepare OD data frame

Description

Prepares an OD data frame that next could be used to estimate movement between origins and destinations with a spatial interaction model.

Usage

si_to_od(origins, destinations, max_dist = Inf, intrazonal = TRUE)

Arguments

- **origins**: sf object representing origin locations/zones
- **destinations**: sf object representing destination locations/zones
- **max_dist**: Euclidean distance in meters (numeric). Only OD pairs that are this distance apart or less will be returned and therefore included in the SIM.
- **intrazonal**: Include intrazonal OD pairs? Intrazonal OD pairs represent movement from one place in a zone to another place in the same zone. TRUE by default.

Details

In most origin-destination datasets the spatial entities that constitute origins (typically administrative zones) also represent destinations. In this 'unipartite' case origins and destinations should be passed the same object, an sf data frame representing administrative zones.

'Bipartite' datasets, by contrast, represent "spatial interaction systems where origins cannot act as destinations and vice versa" (Hasova et al. 2022).

a different sf object can be passed to the destinations argument.

Value

An sf data frame

Examples

library(sf)
origins = si_centroids[c(1, 2, 99),]
destinations = origins
plot(origins$geometry)
odsf = si_to_od(origins, destinations, max_dist = 1200)
plot(odsf)
note: result contains intrazonal flows represented by linestrings
with a length of 0, e.g.:
sf::st_coordinates(odsf$geometry[1])
With different destinations compared with origins
library(sf)
si_zones

origins = si_centroids[c(2, 99), c(1, 6, 7)]
destinations = si_centroids[1, c(1, 6, 8)]
ods = si_to_od(origins, destinations)
nrow(odsf) # no intrazonal flows
plot(odsf)

si_zones | Example zones and centroids

Description

si_zones and si_centroids represent administrative zones between which flows are to be estimated.

Note

The schema data can be (re-)generated using code in data-raw

Examples

```r
si_zones
plot(si_zones$geometry)
plot(si_centroids$geometry, add = TRUE)
```

zones_aus | Example zones dataset: regions of Australia

Description

Example dataset from Australia

Note

Regenerate the data with scripts in the data-raw directory.

Examples

```r
head(zones_aus)
```
Index

* datasets
 od_aus, 2
 si_od_census, 4
 si_pubs, 5
 si_zones, 7
 zones_aus, 7

glm(), 4
lm(), 4

od_aus, 2

si_calculate, 2
si_centroids(si_zones), 7
si_od_census, 4
si_predict, 4
si_pubs, 5
si_to_od, 6
si_to_od(), 3, 4
si_zones, 7

zones_aus, 7