Package ‘simstandard’

January 7, 2019

Title Generate Standardized Data
Version 0.3.0
Description Creates simulated data from structural equation models with standardized loading.
Depends R (>= 3.5.0)
License CC0
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Imports lavaan, mvtnorm, tibble, stats, magrittr, rlang, purrr
Suggests knitr, rmarkdown, ggplot2, dplyr, forcats, kableExtra, stringr, testthat, covr, badger
VignetteBuilder knitr
URL https://github.com/wjschne/simstandard
BugReports https://github.com/wjschne/simstandard/issues
Maintainer W. Joel Schneider <w.joel.schneider@gmail.com>
NeedsCompilation no
Author W. Joel Schneider [aut, cre] (<https://orcid.org/0000-0002-8393-5316>)
Repository CRAN
Date/Publication 2019-01-07 19:50:03 UTC

R topics documented:

add_factor_scores 2
fixed2free 3
lav2ram 3
matrix2lavaan 4
model_complete 5
sim_standardized 6
sim_standardized_matrices 7

Index 9
add_factor_scores

Add factor scores to observed data

Description

Add factor scores to observed data

Usage

```r
add_factor_scores(d, m, CI = FALSE, p = 0.95, ...)
```

Arguments

- **d**: A data.frame with observed data in standardized form (i.e., z-scores)
- **m**: A character string with lavaan model
- **CI**: Add confidence intervals? Defaults to 'FALSE'. If 'TRUE', for each factor score, a lower and upper bound of the confidence interval is created. For example, the lower bound of factor score 'X' is 'X_LB', and the upper bound is 'X_UB'.
- **p**: Confidence interval proportion. Defaults to 0.95
- **...**: Parameters passed to simstandardized_matrices

Value

data.frame with observed data and estimated factor scores

Examples

```r
library(simstandard)
# lavaan model
m = "
X =~ 0.9 * X1 + 0.8 * X2 + 0.7 * X3
"

# Make data.frame for two cases
d <- data.frame(
    X1 = c(1.2, -1.2),
    X2 = c(1.5, -1.8),
    X3 = c(1.8, -1.1))

# Compute factor scores for two cases
add_factor_scores(d, m)
```
fixed2free

Remove fixed parameters from a lavaan model

Description
Remove fixed parameters from a lavaan model

Usage
fixed2free(m)

Arguments
m Structural model represented by lavaan syntax

Value
character string representing lavaan model

Examples
library(simstandard)
lavaan model with fixed parameters
m = "" Latent_1 =~ 0.9 * Ob_11 + 0.8 * Ob_12 + 0.7 * Ob_13 Latent_2 =~ 0.9 * Ob_21 + 0.6 * Ob_22 + 0.4 * Ob_23 ""
Same model, but with fixed parameters removed.
m_free <- fixed2free(m)
cat(m_free)

lav2ram
Extract standardized RAM matrices from lavaan object

Description
Extract standardized RAM matrices from lavaan object

Usage
lav2ram(fit)

Arguments
fit An object of class lavaan

Value
list of RAM matrices A (asymmetric paths), S (symmetric paths), and F (filter matrix)
matrix2lavaan
Create lavaan model syntax from matrix coefficients

Description
Create lavaan model syntax from matrix coefficients

Usage
matrix2lavaan(measurement_model = NULL, structural_model = NULL, covariances = NULL)

Arguments
measurement_model
A matrix or data.frame with measurement model loadings. Column names are latent variables. Row names or the first column of a data.frame are indicator variables.

structural_model
A matrix or data.frame with structural model coefficients (i.e., regressions). Column names are "causal" variables. Row names or the first column of a data.frame are "effect" variables.

covariances
A matrix or data.frame with model covariances. Column names must match the row names. If a data.frame, row variable names can be specified in the first column.

Value
a character string with lavaan syntax

Examples
library(simstandard)
Specifying the measurement model:
For a data.frame, the column names are latent variables,
and the indicators can be specified as rownames.
m <- data.frame(X = c(0.7,0.8,0,0),
 Y = c(0,0,0.8,0.9))
rownames(m) <- c("A", "B", "C", "D")
Indicator variables can also be specified
as the first column variable
with subsequent column names as latent variables
m <- data.frame(Indicators = c("A", "B", "C", "D"),
 X = c(0.7,0.8,0,0),
 Y = c(0,0,0.8,0.9))
Alternately, a matrix can be used:
m <- matrix(c(0.7,0.8,0,0,
 0,0,0.8,0.9),
Function that takes a lavaan model with standardized paths and loadings and returns a complete lavaan model syntax with standardized variances

Usage

model_complete(m)

Arguments

m Structural model represented by lavaan syntax

Value

character string representing lavaan model
Examples

library(simstandard)
lavaan model
m = ~
Latent_1 =~ 0.9 * Ob_11 + 0.8 * Ob_12 + 0.7 * Ob_13
Latent_2 =~ 0.9 * Ob_21 + 0.6 * Ob_22 + 0.4 * Ob_23
Latent_2 ~ 0.6 * Latent_1

Same lavaan syntax, but with standardized variances
m_complete <- model_complete(m)
cat(m_complete)

sim_standardized

Generates simulated data with standardized parameters.

Description

This function takes a lavaan model with standardized parameters and simulates latent scores, errors, disturbances, and observed scores.

Usage

```r
sim_standardized(m, n = 1000, observed = TRUE, latent = TRUE,
errors = TRUE, factor_scores = FALSE, composites = FALSE,
matrices = FALSE, ...)
```

Arguments

- `m`: Structural model represented by lavaan syntax
- `n`: Number of simulated cases
- `observed`: Include observed variables
- `latent`: Include latent variables
- `errors`: Include observed error and latent disturbances variables
- `factor_scores`: Include factor score variables
- `composites`: Include composite variables
- `matrices`: Include matrices as attribute of tibble
- `...`: Arguments passed to `simstandardized_matrices`

Details

This function supports the `~` operator for regressions, the `~~` for covariances (but not variances), and the `=~` latent variable loadings. It does not support intercepts (e.g., `y ~ 1`), thresholds, scaling factors, formative factors, or equality constraints.
Value

tibble with standardized data

Examples

```r
library(simstandard)
# Lavaan model
m = "Latent_1 =~ 0.8 * Ob_1 + 0.7 * Ob_2 + 0.4 * Ob_3"

# simulate 10 cases
sim_standardized(m, n = 10)
```

Description

Function that takes a lavaan model with standardized parameters and returns a list with model characteristics

Usage

```r
sim_standardized_matrices(m, max_iterations = 100, composite_threshold = NULL)
```

Arguments

- `m`: Structural model represented by lavaan syntax
- `max_iterations`: Maximum number of iterations before the algorithm fails
- `composite_threshold`: Loadings with absolute values less than this threshold will not be counted as composite indicators

Details

This function supports the ‘~’ operator for regressions, the ‘~~’ for covariances (but not variances), and the ‘=~’ latent variable loadings. It does not support intercepts (e.g., ‘y ~ 1’), thresholds, scaling factors, formative factors, or equality constraints.

Value

list of path and covariance coefficients
Examples

```r
library(simstandard)

# lavaan model
m = "Latent_1 =~ 0.8 * Ob_1 + 0.7 * Ob_2 + 0.4 * Ob_3"

sim_standardized_matrices(m)
```
Index

add_factor_scores, 2
fixed2free, 3
lav2ram, 3
matrix2lavaan, 4
model_complete, 5
sim_standardized, 6
sim_standardized_matrices, 7