Package ‘simstandard’

October 14, 2022

Title Generate Standardized Data
Version 0.6.3
Date 2021-05-07
Description Creates simulated data from structural equation models with standardized loading. Data generation methods are described in Schneider (2013) \(<\text{doi:10.1177/0734282913478046}>\).
Depends R (>= 3.4.0)
License CC0
Encoding UTF-8
Language en-US
RoxygenNote 7.1.1
Imports lavaan, mvtnorm, tibble, stats, magrittr, rlang, purrr
Suggests knitr, markdown, ggplot2, dplyr, tidyr, forcats, stringr, testthat, covr, badger
VignetteBuilder knitr
URL https://github.com/wjschne/simstandard
BugReports https://github.com/wjschne/simstandard/issues
Maintainer W. Joel Schneider <w.joel.schneider@gmail.com>
NeedsCompilation no
Author W. Joel Schneider [aut, cre] (<https://orcid.org/0000-0002-8393-5316>)
Repository CRAN
Date/Publication 2021-05-07 18:40:02 UTC

\textbf{R topics documented:}

- add_composite_scores .. 2
- add_factor_scores ... 3
- fixed2free .. 4
- get_factor_score_coefficients 5
add_composite_scores

For each latent variable in a structural model, add a composite score to observed data.

Description
For each latent variable in a structural model, add a composite score to observed data.

Usage
add_composite_scores(
 d,
 m,
 mu = 0,
 sigma = 1,
 names_suffix = "_Composite",
 keep_observed_scores = TRUE,
 ...
)

Arguments
- d: A data.frame with observed data in standardized form (i.e., z-scores)
- m: A character string with lavaan model
- mu: Score means. Composite scores will also have this mean. Defaults to 0.
- sigma: Score standard deviations. Composite scores will also have this standard deviation. Defaults to 1.
- names_suffix: A character string added to each composite score name
- keep_observed_scores: The observed scores are returned along with the composite scores.
 ...
 parameters passed to simstandardized_matrices

Value
data.frame with observed data and estimated factor scores
Examples

```r
library(simstandard)
# lavaan model
m = "
X =~ 0.9 * X1 + 0.8 * X2 + 0.7 * X3
"

# Make data.frame for two cases
d <- data.frame(  
  X1 = c(1.2, -1.2),  
  X2 = c(1.5, -1.8),  
  X3 = c(1.8, -1.1))

# Compute composite scores for two cases
add_composite_scores(d, m)
```

add_factor_scores
For each latent variable in a structural model, add an estimated factor score to observed data.

Description

For each latent variable in a structural model, add an estimated factor score to observed data.

Usage

```r
add_factor_scores(
  d,
  m,
  mu = 0,
  sigma = 1,
  CI = FALSE,
  p = 0.95,
  names_suffix = "_FS",
  keep_observed_scores = TRUE,
  ...
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>A data.frame with observed data in standardized form (i.e, z-scores)</td>
</tr>
<tr>
<td>m</td>
<td>A character string with lavaan model</td>
</tr>
<tr>
<td>mu</td>
<td>Population mean of the observed scores. Factor scores will also have this mean. Defaults to 0.</td>
</tr>
<tr>
<td>sigma</td>
<td>Population standard deviation of the observed scores. Factor scores will also have this standard deviation. Defaults to 1.</td>
</tr>
</tbody>
</table>
fixed2free

Remove fixed parameters from a lavaan model

Description

Remove fixed parameters from a lavaan model

Usage

fixed2free(m)

Arguments

m Structural model represented by lavaan syntax

Value

character string representing lavaan model

CI

Add confidence intervals? Defaults to ‘FALSE’. If ‘TRUE’, for each factor score, a lower and upper bound of the confidence interval is created. For example, the lower bound of factor score ‘X’ is ‘X_LB’, and the upper bound is ‘X_UB’.

p

Confidence interval proportion. Defaults to 0.95
	names_suffix

A character string added to each factor score name

keep_observed_scores

The observed scores are returned along with the factor scores.
get_factor_score_coefficients

Examples

library(simstandard)
lavaan model with fixed parameters
m = "
Latent_1 =~ 0.9 * Ob_11 + 0.8 * Ob_12 + 0.7 * Ob_13
Latent_2 =~ 0.9 * Ob_21 + 0.6 * Ob_22 + 0.4 * Ob_23
"

Same model, but with fixed parameters removed.
m_free <- fixed2free(m)
cat(m_free)

get_factor_score_coefficients

 Return factor score coefficients

Description

Return factor score coefficients

Usage

get_factor_score_coefficients(m, latent = TRUE, errors = FALSE, ...)

Arguments

 m Structural model represented by lavaan syntax or output of sim_standardized_matrices
 function.
 latent Include latent variables.
 errors Include observed error and latent disturbances variables.
 ... parameters passed to the 'sim_standardized_matrices' function

Value

A matrix of factor score coefficients

Examples

m <- "
A =~ 0.5 * A1 + 0.8 * A2 + 0.8 * A3
B =~ 0.5 * B1 + 0.8 * B2 + 0.8 * B3
B ~ 0.5 * A
"

get_factor_score_coefficients(m)
get_factor_score_validity

Return factor score validity coefficients

Description

Return factor score validity coefficients

Usage

```r
get_factor_score_validity(m, latent = TRUE, errors = FALSE, ...)
```

Arguments

- `m` Structural model represented by lavaan syntax or output of `sim_standardized_matrices` function.
- `latent` Include latent variables.
- `errors` Include observed error and latent disturbances variables.
- `...` parameters passed to the `sim_standardized_matrices` function

Value

A matrix of validity coefficients

Examples

```r
m <- "
A =~ 0.5 * A1 + 0.8 * A2 + 0.8 * A3
B =~ 0.5 * B1 + 0.8 * B2 + 0.8 * B3
B ~ 0.5 * A
"
get_factor_score_validity(m)
```

get_factor_score_validity_se

Return factor score validity coefficient standard errors

Description

Return factor score validity coefficient standard errors

Usage

```r
get_factor_score_validity_se(m, latent = TRUE, errors = FALSE, ...)
```
get_model_implied_correlations

Return model-implied correlation matrix

Description

Function that takes a lavaan model with standardized parameters and returns a model-implied correlation matrix

Usage

```r
get_model_implied_correlations(
  m,  
  observed = TRUE,  
  latent = FALSE,  
  errors = FALSE,  
  factor_scores = FALSE,  
  composites = FALSE,  
  ...  
)
```

Arguments

- `m` Structural model represented by lavaan syntax or output of `sim_standardized_matrices` function.
- `latent` Include latent variables.
- `errors` Include observed error and latent disturbances variables.
- `...` parameters passed to the `sim_standardized_matrices` function

Value

A matrix of factor score standard errors

Examples

```r
m <- "
A =~ 0.5 * A1 + 0.8 * A2 + 0.8 * A3
B =~ 0.5 * B1 + 0.8 * B2 + 0.8 * B3
B ~ 0.5 * A
"
get_factor_score_validity_se(m)
```
Arguments

`m` Structural model represented by lavaan syntax or output of `sim_standardized_matrices` function.

`observed` Include observed variables

`latent` Include latent variables

`errors` Include observed error and latent disturbances variables

`factor_scores` Include factor score variables

`composites` Include composite variables

`...` parameters passed to the `sim_standardized_matrices` function

Value

A correlation matrix

Examples

```r
library(simstandard)
# lavaan model
m = "Latent_1 =~ 0.8 * Ob_1 + 0.7 * Ob_2 + 0.4 * Ob_3"

gc_model_implied_correlations(m)
```

Description

Return model names

Usage

```r
gc_model_names(m, ...)
```

Arguments

`m` Structural model represented by lavaan syntax or output of `sim_standardized_matrices` function.

`...` parameters passed to the `sim_standardized_matrices` function

Value

A list of variable names
Examples

```r
m <- "
A =~ 0.5 * A1 + 0.8 * A2 + 0.8 * A3
B =~ 0.5 * B1 + 0.8 * B2 + 0.8 * B3
B ~ 0.5 * A
"
get_model_names(m)
```

lav2ram
Extract standardized RAM matrices from a lavaan object

Description

Extract standardized RAM matrices from a lavaan object

Usage

```r
lav2ram(fit)
```

Arguments

- `fit` An object of class lavaan

Value

list of RAM matrices A (asymmetric paths), S (symmetric paths), and F (filter matrix)

matrix2lavaan
Create lavaan model syntax from matrix coefficients

Description

Create lavaan model syntax from matrix coefficients

Usage

```r
matrix2lavaan(
    measurement_model = NULL,
    structural_model = NULL,
    covariances = NULL
)
```
Arguments

measurement_model
A matrix or data.frame with measurement model loadings. Column names are latent variables. Row names or the first column of a data.frame are indicator variables.

structural_model
A matrix or data.frame with structural model coefficients (i.e., regressions). Column names are "causal" variables. Row names or the first column of a data.frame are "effect" variables.

covariances
A matrix or data.frame with model covariances. Column names must match the row names. If a data.frame, row variable names can be specified in the first column.

Value

A character string with lavaan syntax

Examples

```r
library(simstandard)

# Specifying the measurement model:
# For a data.frame, the column names are latent variables,
# and the indicators can be specified as rownames.
m <- data.frame(X = c(0.7,0.8,0,0),
                 Y = c(0,0,0.8,0.9))
rownames(m) <- c("A", "B", "C", "D")
# Indicator variables can also be specified
# as the first column variable
# with subsequent column names as latent variables
m <- data.frame(Indicators = c("A", "B", "C", "D"),
                 X = c(0.7,0.8,0,0),
                 Y = c(0,0,0.8,0.9))
# Alternately, a matrix can be used:
m <- matrix(c(0.7,0.8,0,0,
             0,0,0.8,0.9),
            ncol = 2,
            dimnames = list(c("A", "B", "C", "D"),
                            c("X", "Y")))

# Specifying the structural coefficients:
# The regression coefficients of the structural model can be
# specified as either a data.frame or a matrix. Column names
# are the predictors and row names are the criterion variables.
# With a data.frame, criterion variables can alternately be
# specified with as the first column.
s <- matrix(0.5, nrow = 1, ncol = 1, dimnames = list("Y", "X"))
# The covariance matrix must be symmetric. Can also be specified
# as a data.frame.
Sigma <- matrix(c(1, 0.3,
               0.3, 1),
               nrow = 2,
               ncol = 2,
```

model_complete

```r
dimnames = list(c("B","C"),
c("B","C"))
model <- matrix2lavaan(measurement_model = m,
structural_model = s,
covariances = Sigma)
cat(model)
```

model_complete
Function that takes a lavaan model with standardized paths and loadings and returns a complete lavaan model syntax with standardized variances

Description

Function that takes a lavaan model with standardized paths and loadings and returns a complete lavaan model syntax with standardized variances

Usage

```r
model_complete(m)
```

Arguments

- `m`: Structural model represented by lavaan syntax

Value

character string representing lavaan model

Examples

```r
library(simstandard)
# lavaan model
m = "
Latent_1 =~ 0.9 * Ob_11 + 0.8 * Ob_12 + 0.7 * Ob_13
Latent_2 =~ 0.9 * Ob_21 + 0.6 * Ob_22 + 0.4 * Ob_23
Latent_2 ~ 0.6 * Latent_1"

# Same lavaan syntax, but with standardized variances
m_complete <- model_complete(m)
cat(m_complete)
```
sim_standardized

Generates simulated data with standardized parameters.

Description

This function takes a lavaan model with standardized parameters and simulates latent scores, errors, disturbances, and observed scores.

Usage

```r
sim_standardized(
  m,
  n = 1000,
  observed = TRUE,
  latent = TRUE,
  errors = TRUE,
  factor_scores = FALSE,
  composites = FALSE,
  matrices = FALSE,
  ...
)
```

Arguments

- `m` Structural model represented by lavaan syntax
- `n` Number of simulated cases
- `observed` Include observed variables
- `latent` Include latent variables
- `errors` Include observed error and latent disturbances variables
- `factor_scores` Include factor score variables
- `composites` Include composite variables
- `matrices` Include matrices as attribute of tibble
- `...` Arguments passed to `simstandardized_matrices`

Details

This function supports the `~` operator for regressions, the `~~` for covariances (but not variances), and the `=~` latent variable loadings. It does not support intercepts (e.g., `y ~ 1`), thresholds, scaling factors, formative factors, or equality constraints.

Value

tibble with standardized data
Examples

```r
library(simstandard)
# Lavaan model
m = "Latent_1 =~ 0.8 * Ob_1 + 0.7 * Ob_2 + 0.4 * Ob_3"

# simulate 10 cases
sim_standardized(m, n = 10)
```

Description

Function that takes a lavaan model with standardized parameters and returns a list with model characteristics

Usage

```r
sim_standardized_matrices(m, max_iterations = 100, composite_threshold = NULL)
```

Arguments

- `m` Structural model represented by lavaan syntax
- `max_iterations` Maximum number of iterations before the algorithm fails
- `composite_threshold` Loadings with absolute values less than this threshold will not be counted as composite indicators

Details

This function supports the `~` operator for regressions, the `~~` for covariances (but not variances), and the `=~` latent variable loadings. It does not support intercepts (e.g., `y ~ 1`), thresholds, scaling factors, formative factors, or equality constraints.

Value

list of path and covariance coefficients

Examples

```r
library(simstandard)
# lavaan model
m = "Latent_1 =~ 0.8 * Ob_1 + 0.7 * Ob_2 + 0.4 * Ob_3"

sim_standardized_matrices(m)
```
Index

add_composite_scores, 2
add_factor_scores, 3

fixed2free, 4

get_factor_score_coefficients, 5
get_factor_score_validity, 6
get_factor_score_validity_se, 6
get_model_implied_correlations, 7
get_model_names, 8

lav2ram, 9

matrix2lavaan, 9
model_complete, 11

sim_standardized, 12
sim_standardized_matrices, 13