Package ‘simukde’

October 14, 2022

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>1.3.0</td>
</tr>
<tr>
<td>Date</td>
<td>2021-05-20</td>
</tr>
<tr>
<td>Title</td>
<td>Simulation with Kernel Density Estimation</td>
</tr>
<tr>
<td>Author</td>
<td>MAKHGAL Ganbold [aut, cre], BAYARBAATAR Amgalan [aut]</td>
</tr>
<tr>
<td>Maintainer</td>
<td>MAKHGAL Ganbold makhgal@seas.num.edu.mn</td>
</tr>
<tr>
<td>URL</td>
<td>https://github.com/galaamn/simukde</td>
</tr>
<tr>
<td>BugReports</td>
<td>https://github.com/galaamn/simukde/issues</td>
</tr>
<tr>
<td>Depends</td>
<td>R (>= 2.14.0)</td>
</tr>
<tr>
<td>Imports</td>
<td>ks, mvtnorm, parallel, stats, MASS, methods</td>
</tr>
<tr>
<td>Suggests</td>
<td>testthat, datasets</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>= 3)</td>
</tr>
<tr>
<td>Encoding</td>
<td>UTF-8</td>
</tr>
<tr>
<td>ByteCompile</td>
<td>true</td>
</tr>
<tr>
<td>NeedsCompilation</td>
<td>no</td>
</tr>
<tr>
<td>RoxygenNote</td>
<td>7.1.1</td>
</tr>
<tr>
<td>Repository</td>
<td>CRAN</td>
</tr>
<tr>
<td>Date/Publication</td>
<td>2021-05-20 11:00:02 UTC</td>
</tr>
</tbody>
</table>

R topics documented:

- find_best_fit .. 2
- simukde .. 3
- simulate_kde .. 4
find_best_fit

Description

It finds the best fitting distribution from supported univariate continuous distributions for given data.

Usage

```r
find_best_fit(
  x, 
  positive = FALSE, 
  plot = TRUE, 
  legend.pos = "topright", 
  dlc = NULL, 
  dlw = 1, 
  ...
)
```

Arguments

- `x` a numeric vector; data.
- `positive` a logical constant; distribution type.
- `plot` a logical constant. If `TRUE` (default), a histogram and density lines are drawn.
- `legend.pos` a character string. Indicates the legend position and must be one of "bottom-right", "bottom", "bottomleft", "left", "topleft", "top", "topright" (default), "right" and "center".
- `dlc` a vector; probability density line colors for supported (up to 7) distributions. If unspecified, the rainbow color palette will be used.
- `dlw` a numerical constant; probability density line width.
- `...` Further arguments and parameters for the function `hist`, particularly, main title and axis labels. However, the parameter `freq` is not able to override.

Details

This function is supported following univariate distributions:

- for positive random variables: Log normal, Exponential, Gamma and Weibull.
- for all random variables: Normal, Cauchy, Log normal, Exponential, Gamma, Weibull and Uniform.

Legends of the plot are ordered by p-values of the test.
Value

A list containing the following items:

- **distribution** the name of the best fitting distribution.
- **ks.statistic** the Kolmogorov-Smirnov test statistic for the distribution.
- **p.value** the p-value of the test.
- **summary** results similar to above for other distributions.

- **x** given data.
- **n** the sample size.

References

See Also

- `ks.test`, `fitdistr`, `hist`

Examples

```r
petal.length <- datasets::iris$Petal.Length[datasets::iris$Species == "setosa"]
simukde::find_best_fit(x = petal.length, positive = TRUE)
```

Description

The *simukde* package provides a function which generates random values from a univariate and multivariate continuous distribution by using kernel density estimation based on a sample. The function uses the Accept-Reject method.

Note

Funding: This package has been done within the framework of the project Statistics and Optimization Based Methods for Identification of Cancer-Activated Biological Processes (P2017-2519) supported by the Asia Research Center, Mongolia and Korea Foundation for Advanced Studies, Korea.

The funders had no role in study design, analysis, decision to publish, or preparation of the package.

Author(s)

MAKHGAL Ganbold and BAY ARBAATAR Amgalan, National University of Mongolia
simulate_kde

Simulation with Kernel Density Estimation

Description
Generates random values from a univariate and multivariate continuous distribution by using kernel density estimation based on a sample. The function uses the Accept-Reject method.

Usage
```
simulate_kde(
  x,
  n = 100,
  distr = "norm",
  const.only = FALSE,
  seed = NULL,
  parallel = FALSE,
  ...
)
```

Arguments
- `x`: a numeric vector, matrix or data frame; data.
- `n`: integer; the number of random values will be generated.
- `distr`: character; instrumental or candidate distribution name. See details.
- `const.only`: logical; if TRUE, the constant of the Accept-Reject method will be returned.
- `seed`: a single value, interpreted as an integer, or NULL (default).
- `parallel`: logical; if TRUE parallel generator will be worked. FALSE is default.
- `...`: other parameters for functions `kde`.

Details
Such function uses the function `kde` as kernel density estimator.

The Accept-Reject method is used to simulate random variables. Following code named distributions can be used as a value of the argument `distr` and an instrumental or candidate distribution of the simulation method. For univariate distributions:

- `norm`: normal distribution (default), \((-\infty, +\infty)\)
- `cauchy`: Cauchy distribution, \((-\infty, +\infty)\)
- `lnorm`: log-normal distribution, \((0, +\infty)\)
simulate_kde

```
exp  exponential distribution, (0, +∞)
gamma gamma distribution, (0, +∞)
weibull Weibull distribution, (0, +∞)
unif uniform distribution, (a, b)
```

And you can choose the best fitting instrumental distribution to simulate random variables more effectively by using `find_best_fit`. See examples.

For multivariate distributions, "norm" (multivariate normal distribution) is used.

Value

list of given data, simulated values, kernel density estimation and the constant of the Accept-Reject method when `const.only` is `FALSE` (default).

References

See Also

`find_best_fit, kde`

Examples

```r
## 1-dimensional data
data(faithful)
hist(faithful$eruptions)
res <- simukde::simulate_kde(x = faithful$eruptions, n = 100, parallel = FALSE)
hist(res$random.values)

## Simulation with the best fitting instrumental distribution
data(faithful)
par(mfrow = c(1, 3))
hist(faithful$eruptions)
fit <- simukde::find_best_fit(x = faithful$eruptions, positive = TRUE)
res <- simukde::simulate_kde(
  x = faithful$eruptions, n = 100,
  distr = fit$distribution, parallel = FALSE
)
hist(res$random.values)
par(mfrow = c(1, 1))

## 2-dimensional data
data(faithful)
res <- simukde::simulate_kde(x = faithful, n = 100)
plot(res$kde, display = "filled.contour")
points(x = res$random.values, cex = 0.25, pch = 16, col = "green")
```
points(x = faithful, cex = 0.25, pch = 16, col = "black")
Index

find_best_fit, 2, 5
fitdistr, 3

hist, 2, 3

kde, 4, 5
ks.test, 3

simukde, 3
simulate_kde, 4