Package ‘sits’

October 14, 2022

Type Package
Version 1.1.0
Title Satellite Image Time Series Analysis for Earth Observation Data Cubes
Maintainer Gilberto Camara <gilberto.camara.inpe@gmail.com>
Description An end-to-end toolkit for land use and land cover classification using big Earth observation data, based on machine learning methods applied to satellite image data cubes, as described in Simoes et al (2021) <doi:10.3390/rs13132428>.
Supports visualization methods for images and time series and smoothing filters for dealing with noisy time series.
Minimum recommended requirements: 16 GB RAM and 4 CPU dual-core.

Encoding UTF-8
Language en-US
Depends R (>= 4.0.0)

BugReports https://github.com/e-sensing/sits/issues
License GPL-2

ByteCompile true

LazyData true

Imports magrittr, yaml, data.table (>= 1.13), dplyr (>= 1.0.0),
gdalUtilities, grDevices, ggplot2, graphics, lubridate,
parallel (>= 4.0.5), purrr (>= 0.3.0), Rcpp, rstac (>=
0.9.1-5), sf (>= 1.0), slider (>= 0.2.0), stats, terra (>=
1.5-17), tibble (>= 3.1), tidyr (>= 1.2.0), torch (>= 0.7.0),
utils

Suggests caret, dendextend, dtwclust, dtwSat (>= 0.2.7), DiagrammeR,
digest, e1071, FNN, gdalcubes (>= 0.6.0), geojsonsf, htrr,
jsonlite, kohonen(>= 3.0.11), leafem (>= 0.2.0), leaflet (>=
2.1.1), luz (>= 0.2.0), methods, mgcv, openxlsx, randomForest,
randomForestExplainer, RcppArmadillo (>= 0.11), scales, stars
(>= 0.5), testthat (>= 3.1.3), torchopt(>= 0.1.2), xgboost, zoo

Config/testthat/edition 3

Config/testthat/parallel false

Config/testthat/start-first cube, raster, ml

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.2.0

Collate 'RcppExports.R' 'data.R' 'pipe.R' 'sits-package.R'
'sits_apply.R' 'sits_accuracy.R' 'sits_active_learning.R'
'sits_bands.R' 'sits_bbox.R' 'sits_classification.R'
'sits_classify_ts.R' 'sits_classify_cube.R' 'sits_compare.R'
'sits_config.R' 'sits_csv.R' 'sits_cube.R'
'sits_cube_aux_functions.R' 'sits_check.R' 'sits_cluster.R'
'sits_debug.R' 'sits_distances.R' 'sits_dt_reference.R'
'sits_factory.R' 'sits_file_info.R' 'sits_filters.R'
'sits_gdalcubes.R' 'sits_geo_dist.R' 'sits_get_data.R'
'sits_imputation.R' 'sits_labels.R'
'sits_label_classification.R' 'sits_lighttae.R'
'sits_machine_learning.R' 'sits_merge.R' 'sits_mixture_model.R'
'sits_mlp.R' 'sits_parallel.R' 'sits_patterns.R' 'sits_plot.R'
'sits_raster_api.R' 'sits_raster_api_terra.R'
'sits_raster_blocks.R' 'sits_raster_data.R'
'sits_raster_sub_image.R' 'sits_regularize.R' 'sits_resnet.R'
'sits_roi.R' 'sits_sample_functions.R' 'sits_select.R'
'sits_sf.R' 'sits_shp.R' 'sits_smooth.R'
'sits_smooth_aux_functions.R' 'sits_som.R' 'sits_source_api.R'
'sits_source_api_aws.R' 'sits_source_api_bdc.R'
'sits_source_api_deafka.R' 'sits_source_api_local.R'
'sits_source_api_mpc.R' 'sits_source_api_sdc.R'
'sits_source_api_stac.R' 'sits_source_api_usgs.R'
'sits_space_time_operations.R' 'sits_stac.R' 'sits_tae.R'
'sits_tempcnn.R' 'sits_torch_conv1d.R' 'sits_torch_linear.R'
R topics documented:

'sits_torch.spatial_encoder.R'
'sits_torch_temporal_attention_encoder.R' 'sits_tibble.R'
'sits_timeline.R' 'sits_train.R' 'sits_tuning.R' 'sits_twdtw.R'
'sits_utils.R' 'sits_uncertainty.R' 'sits_validate.R'
'sits_view.R' 'sits_values.R' 'sits_xlsx.R' 'zzz.R'

NeedsCompilation yes

Author Rolf Simoes [aut],
 Gilberto Camara [aut, cre],
 Felipe Souza [aut],
 Lorena Santos [aut],
 Pedro Andrade [aut],
 Karine Ferreira [aut],
 Alber Sanchez [aut],
 Gilberto Queiroz [aut]

Repository CRAN

Date/Publication 2022-07-07 20:00:02 UTC

R topics documented:

sits-package .. 5
.sits_get_top_values ... 6
:= ... 6
cerrado_2classes .. 7
plot ... 7
plot.classified_image ... 8
plot.geo_distances ... 10
plot.patterns .. 11
plot.predicted ... 12
plot.probs_cube .. 13
plot.raster_cube .. 14
plot.rfor_model ... 16
plot.som_evaluate_cluster 17
plot.som_map ... 18
plot.torch_model .. 19
plot.uncertainty_cube .. 20
plot.xgb_model ... 21
point_mt_6bands .. 22
samples_18_rondonia_2bands 22
samples_modis_4bands .. 23
sits.accuracy .. 23
sits_apply .. 25
sits_as_sf ... 27
sits_bands .. 28
sits_bbox .. 29
sits_classify ... 30
sits_clustering .. 32
R topics documented:

- `sits_cluster_clean` .. 34
- `sits_cluster_frequency` .. 34
- `sits_confidence_sampling` ... 35
- `sits_configuration` ... 37
- `sits_cube` ... 39
- `sits_filters` ... 44
- `sits_formula_linear` ... 46
- `sits_formula_logref` ... 47
- `sits_geo_dist` ... 48
- `sits_get_data` ... 49
- `sits_impute_linear` ... 53
- `sits_kfold_validate` ... 54
- `sits_labels` ... 56
- `sits_labels_summary` ... 57
- `sits_label_classification` .. 57
- `sits_lighttae` .. 59
- `sits_merge` ... 61
- `sits_mixture_model` ... 62
- `sits_mlp` ... 64
- `sits_patterns` ... 66
- `sits_reduce_imbalance` .. 68
- `sits_regularize` .. 69
- `sits_resnet` ... 71
- `sits_rfor` ... 74
- `sits_run_examples` ... 75
- `sits_run_tests` ... 75
- `sits_sample` ... 76
- `sits_select` ... 77
- `sits_smooth` ... 78
- `sits_som` ... 80
- `sits_svm` ... 83
- `sits_tae` ... 84
- `sits_tempcnn` ... 87
- `sits_timeline` ... 89
- `sits_time_series` ... 90
- `sits_to_csv` ... 91
- `sits_to_xlsx` ... 91
- `sits_train` ... 92
- `sits_tuning` ... 93
- `sits_tuning_hparams` .. 95
- `sits_twdtw_classify` ... 96
- `sits_uncertainty` .. 98
- `sits_uncertainty_sampling` .. 101
- `sits_validate` .. 103
- `sits_values` ... 104
- `sits_view` ... 105
- `sits_xgboost` .. 107
- `%>%` .. 109
sits-package

Description
Satellite Image Time Series Analysis for Earth Observation Data Cubes

Purpose
The SITS package provides a set of tools for analysis, visualization and classification of satellite image time series. It includes methods for filtering, clustering, classification, and post-processing.

Author(s)
Maintainer: Gilberto Camara <gilberto.camara.inpe@gmail.com>
Authors:

- Rolf Simoes <rolf.simoes@inpe.br>
- Felipe Souza <felipe.carvalho@inpe.br>
- Lorena Santos <lorena.santos@inpe.br>
- Pedro Andrade <pedro.andrade@inpe.br>
- Karine Ferreira <karine.ferreira@inpe.br>
- Alber Sanchez <alber.ipia@inpe.br>
- Gilberto Queiroz <gilberto.queiroz@inpe.br>

See Also
Useful links:

- https://github.com/e-sensing/sits/
- https://e-sensing.github.io/sitsbook/
- Report bugs at https://github.com/e-sensing/sits/issues
.sits_get_top_values Get top values of a raster.

Description
Get the top values of a raster as a point ‘sf’ object. The values locations are guaranteed to be separated by a certain number of pixels.

Usage
.sits_get_top_values(r_obj, band, n, sampling_window)

Arguments
- r_obj: A raster object.
- band: A numeric band index used to read bricks.
- n: Number of values to extract.
- sampling_window: Window size to collect a point (in pixels).

Value
A point ‘tibble’ object.

Author(s)
Alber Sanchez, <alber.ipia@inpe.br>

:= Set by reference in data.table

Description
Data.table assignment by reference.

Arguments
- lhs, rhs: A visualization and a function to apply to it.

Value
DT is modified by reference and returned invisibly.
cerrado_2classes

Samples of classes Cerrado and Pasture

Description

A dataset containing a tibble with time series samples for the Cerrado and Pasture areas of the Mato Grosso state. The time series come from MOD13Q1 collection 5 images.

Usage

data(cerrado_2classes)

Format

A tibble with 736 rows and 7 variables: longitude: East-west coordinate of the time series sample (WGS 84), latitude (North-south coordinate of the time series sample in WGS 84), start_date (initial date of the time series), end_date (final date of the time series), label (the class label associated to the sample), cube (the name of the cube associated with the data), time_series (list containing a tibble with the values of the time series).

plot

Plot time series

Description

This is a generic function. Parameters depend on the specific type of input. See each function description for the required parameters:

- sits tibble: see plot.sits
- patterns: see plot.patterns
- SOM map: see plot.som_map
- SOM evaluate cluster: see plot.som_evaluate_cluster
- classified time series: see plot.predicted
- raster cube: see plot.raster_cube
- random forest model: see plot.rfor_model
- xgboost model: see plot.xgb_model
- torch ML model: see plot.torch_model
- classification probabilities: see plot.probs_cube
- model uncertainty: see plot.uncertainty_cube
- classified image: see plot.classified_image

In the case of time series, the plot function produces different plots based on the input data:
• "all years": Plot all samples from the same location together
• "together": Plot all samples of the same band and label together

The plot.sits function makes an educated guess of what plot is required, based on the input data. If the input data has less than 30 samples, it will default to "all years". If there are more than 30 samples, it will default to "together".

Usage

```r
## S3 method for class 'sits'
plot(x, y, ...)
```

Arguments

- `x`: Object of class "sits"
- `y`: Ignored.
- `...`: Further specifications for `plot`.

Value

A series of plot objects produced by ggplot2 showing all time series associated to each combination of band and label, and including the median, and first and third quartile ranges.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

```r
if (sits_run_examples()) # plot sets of time series plot(cerrado_2classes)
```

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

plot.classified_image
Plot classified images

Description

plots a classified raster using ggplot.
Usage

```r
## S3 method for class 'classified_image'
plot(
  x,
  y,
  ...,
  tiles = NULL,
  title = "Classified Image",
  legend = NULL,
  palette = "Spectral",
  rev = TRUE
)
```

Arguments

- `x`: Object of class "classified_image".
- `y`: Ignored.
- `...`: Further specifications for `plot`.
- `tiles`: Tiles to be plotted.
- `title`: Title of the plot.
- `legend`: Named vector that associates labels to colors.
- `palette`: Alternative palette that uses `grDevices::hcl.pals()`.
- `rev`: Invert the order of hcl palette?

Value

A plot object produced by the `ggplot2` package with a color maps, where each pixel has the color associated to a label, as defined by the legend parameter.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

```r
if (sits_run_examples()) {
  # select a set of samples
  samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
  # create a random forest model
  rfor_model <- sits_train(samples_ndvi, sits_rfor())
  # create a data cube from local files
  data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
  cube <- sits_cube(
    source = "BDC",
    collection = "MOD13Q1-6",
    data_dir = data_dir,
    delim = ",",
    parse_info = c("X1", "X2", "tile", "band", "date")
  )
}```
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
# label cube with the most likely class
label_cube <- sits_label_classification(probs_cube)
# plot the resulting classified image
plot(label_cube)

---

plot.geo_distances  
Make a kernel density plot of samples distances.

Description

Make a kernel density plot of samples distances.

Usage

```r
S3 method for class 'geo_distances'
plot(x, y, ...)
```

Arguments

- `x`: Object of class "geo_distances".
- `y`: Ignored.
- `...`: Further specifications for `plot`.

Value

A plot showing the sample-to-sample distances and sample-to-prediction distances.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)

Felipe Souza, <lipecaso@gmail.com>
Rolf Simoes, <rolf.simoes@inpe.br>
Alber Sanchez, <alber.ipia@inpe.br>

References

Examples

```r
if (sits_run_examples()) {
 # read a shapefile for the state of Mato Grosso, Brazil
 mt_shp <- system.file("extdata/shapefiles/mato_grosso/mt.shp", package = "sits"
)
 # convert to an sf object
 mt_sf <- sf::read_sf(mt_shp)
 # calculate sample-to-sample and sample-to-prediction distances
 distances <- sits_geo_dist(samples_modis_4bands, mt_sf)
 # plot sample-to-sample and sample-to-prediction distances
 plot(distances)
}
```

---

**plot.patterns**

*Plot patterns that describe classes*

**Description**

Plots the patterns to be used for classification

Given a `sits` tibble with a set of patterns, plot them.

**Usage**

```r
S3 method for class 'patterns'
plot(x, y, ...)
```

**Arguments**

- `x` Object of class "patterns".
- `y` Ignored.
- `...` Further specifications for `plot`.

**Value**

A plot object produced by `ggplot2` with one average pattern per label.

**Note**

Please refer to the `sits` documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples. This code is reused from the `dtwSat` package by Victor Maus.

**Author(s)**

Gilberto Camara, <gilberto.camara@inpe.br>

Victor Maus, <vwmaus1@gmail.com>
Examples

```r
if (sits_run_examples()) {
 # plot patterns
 plot(sits_patterns(cerrado_2classes))
}
```

---

**plot.predicted**  
*Plot time series predictions*

**Description**

Given a `sits` tibble with a set of predictions, plot them

**Usage**

```r
S3 method for class 'predicted'
plot(x, y, ..., bands = "NDVI", palette = "Harmonic")
```

**Arguments**

- `x`  
  Object of class "predicted".

- `y`  
  Ignored.

- `...`  
  Further specifications for `plot`.

- `bands`  
  Bands for visualization.

- `palette`  
  HCL palette used for visualization in case classes are not in the default `sits` palette.

**Value**

A plot object produced by `ggplot2` showing the time series and its label.

**Note**

Please refer to the `sits` documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

**Author(s)**

Victor Maus, <vwmaus1@gmail.com>

Gilberto Camara, <gilberto.camara@inpe.br>
Examples

```r
if (sits_run_examples()) {
 # Retrieve the samples for Mato Grosso
 # train a tempCNN model
 ml_model <- sits_train(samples_modis_4bands, ml_method = sits_tempcnn)
 # classify the point
 bands_model <- sits_bands(ml_model)
 point_4bands <- sits_select(point_mt_6bands, bands = bands_model)
 point_class <- sits_classify(point_4bands, ml_model)
 plot(point_class)
}
```

### plot.probs_cube

#### Plot probability cubes

**Description**

plots a probability cube using stars

**Usage**

```r
S3 method for class 'probs_cube'
plot(
 x,
 ..., tiles = NULL, labels = NULL, breaks = "pretty",
 n_colors = 20, palette = "Terrain"
)
```

**Arguments**

- **x**: Object of class "probs_image".
- **...**: Further specifications for `plot`.
- **tiles**: Tiles to be plotted.
- **labels**: Labels to plot (optional).
- **breaks**: Type of class intervals.
- **n_colors**: Number of colors to plot.
- **palette**: HCL palette used for visualization.

**Value**

A plot object produced by the stars package containing maps of probabilities associated to each class for each pixel.
Note

Possible class intervals

"sd": intervals based on the average and standard deviation.

- "equal": divides the range of the variable into n parts.
- "pretty": number of breaks likely to be legible.
- "quantile": quantile breaks
- "log": logarithm plot

The function accepts color palettes are defined in grDevices::hcl.pals()

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

```r
if (sits_run_examples()) {
 # select a set of samples
 samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
 # create a random forest model
 rfor_model <- sits_train(samples_ndvi, sits_rfor())
 # create a data cube from local files
 data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
 cube <- sits_cube(
 source = "BDC",
 collection = "MOD13Q1-6",
 data_dir = data_dir,
 delim = ",",
 parse_info = c("X1", "X2", "tile", "band", "date")
)
 # classify a data cube
 probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
 # plot the resulting probability cube
 plot(probs_cube)
}
```

plot.raster_cube

Plot RGB data cubes

Description

Plot RGB raster cube
Usage

## S3 method for class 'raster_cube'
plot(
  x,
  ..., 
  band = NULL,
  red = NULL,
  green = NULL,
  blue = NULL,
  tile = x$tile[[1]],
  date = NULL
)

Arguments

x          Object of class "raster_cube".
...        Further specifications for plot.
band       Band for plotting grey images.
red        Band for red color.
green      Band for green color.
blue       Band for blue color.
tile       Tile to be plotted.
date       Date to be plotted.

Value

A plot object produced by the terra package with an RGB or B/W image.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
  # create a data cube from local files
  data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
  cube <- sits_cube(
    source = "BDC",
    collection = "MOD13Q1-6",
    data_dir = data_dir,
    delim = ",",
    parse_info = c("X1", "X2", "tile", "band", "date")
  )
  # plot NDVI band of the second date date of the data cube
  plot(cube, band = "NDVI", date = sits_timeline(cube)[2])
}
Description

Plots the important variables in a random forest model.

Usage

```r
S3 method for class 'rfor_model'
plot(x, y, ...)
```

Arguments

- `x`: Object of class "rf_model".
- `y`: Ignored.
- `...`: Further specifications for `plot`.

Value

A random forest object.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

```r
if (sits_run_examples()) {
 # Retrieve the samples for Mato Grosso
 # train a random forest model
 rf_model <- sits_train(samples_modis_4bands, ml_method = sits_rfor())
 # plot the model
 plot(rf_model)
}
```
plot.som_evaluate_cluster

Plot confusion between clusters

Description
Plot a bar graph with informations about each cluster. The percentage of mixture between the clusters.

Usage
## S3 method for class 'som_evaluate_cluster'
plot(x, y, ..., name_cluster = NULL, title = "Confusion by cluster")

Arguments
x Object of class "plot.som_evaluate_cluster".
y Ignored.
... Further specifications for plot.
namen_cluster Choose the cluster to plot.
title Title of plot.

Value
A plot object produced by the ggplot2 package containing color bars showing the confusion between classes.

Note
Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)
Lorena Santos <lorena.santos@inpe.br>

Examples
if (sits_run_examples()) {
  # create a SOM map
  som_map <- sits_som_map(samples_modis_4bands)
  # evaluate the SOM cluster
  som_clusters <- sits_som_evaluate_cluster(som_map)
  # plot the SOM cluster evaluation
  plot(som_clusters)
}
plot.som_map

Plot a SOM map

Description
plots a SOM map generated by "sits_som_map" The plot function produces different plots based on
the input data:

- "codes": Plot the vector weight for in each neuron.
- "mapping": Shows where samples are mapped.

Usage

## S3 method for class 'som_map'
plot(x, y, ..., type = "codes", band = 1)

Arguments

x Object of class "som_map".
y Ignored.
... Further specifications for plot.
type Type of plot: "codes" for neuron weight (time series) and "mapping" for the
number of samples allocated in a neuron.
band What band will be plotted.

Value
No return value, called for side effects.

Note
Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for de-
tailed examples.

Author(s)
Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
  # create a SOM map
  som_map <- sits_som_map(samples_modis_4bands)
  # plot the SOM map
  plot(som_map)
}
plot.torch_model  

Description

Plots a deep learning model developed using torch.

Usage

```r
S3 method for class 'torch_model'
plot(x, y, ...)
```

Arguments

- `x`: Object of class "torch_model".
- `y`: Ignored.
- `...`: Further specifications for `plot`.

Value

A plot object produced by the ggplot2 package showing the evolution of the loss and accuracy of the model.

Note

This code has been lifted from the "keras" package.

Please refer to the sits documentation available in [https://e-sensing.github.io/sitsbook/](https://e-sensing.github.io/sitsbook/) for detailed examples.

Author(s)

Felipe Souza, <lipecaso@gmail.com>
Rolf Simoes, <rolf.simoes@inpe.br>
Alber Sanchez, <alber.ipia@inpe.br>

Examples

```r
if (sits_run_examples()) {
 # Retrieve the samples for Mato Grosso
 # train a tempCNN model
 ml_model <- sits_train(samples_modis_4bands, ml_method = sits_tempcnn)
 # plot the model
 plot(ml_model)
}
```
plot.uncertainty_cube  

Plot uncertainty cubes

Description

plots a probability cube using stars

Usage

```r
S3 method for class 'uncertainty_cube'
plot(
 x,
 ...,
 tiles = NULL,
 n_colors = 14,
 intervals = "log",
 palette = "YlOrRd"
)
```

Arguments

- `x` Object of class "probs_image".
- `...` Further specifications for `plot`.
- `tiles` Tiles to be plotted.
- `n_colors` Number of colors to plot.
- `intervals` Type of class intervals.
- `palette` HCL palette used for visualization.

Value

A plot object produced by the stars package with a map showing the uncertainty associated to each classified pixel.

Note

Possible class intervals

- "sd": intervals based on the average and standard deviation.
- "equal": divides the range of the variable into n parts.
- "quantile": quantile breaks
- "pretty": number of breaks likely to be legible.
- "log": logarithm plot.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
Examples

```r
if (sits_run_examples()) {
 # select a set of samples
 samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
 # create a random forest model
 rfor_model <- sits_train(samples_ndvi, sits_rfor())
 # create a data cube from local files
 data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
 cube <- sits_cube(
 source = "BDC",
 collection = "MOD13Q1-6",
 data_dir = data_dir,
 delim = ",",
 parse_info = c("X1", "X2", "tile", "band", "date")
)
 # classify a data cube
 probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
 # calculate uncertainty
 uncert_cube <- sits_uncertainty(probs_cube)
 # plot the resulting uncertainty cube
 plot(uncert_cube)
}
```

---

### plot.xgb_model

#### Description

Plots the important variables in an extreme gradient boosting.

#### Usage

```r
S3 method for class 'xgb_model'
plot(x, ..., n_trees = 3)
```

#### Arguments

- `x`: Object of class "xgb_model".
- `...`: Further specifications for `plot`.
- `n_trees`: Number of trees to be plotted

#### Value

A plot object.

#### Note

Please refer to the sits documentation available in [https://e-sensing.github.io/sitsbook/](https://e-sensing.github.io/sitsbook/) for detailed examples.
Author(s)
Gilberto Camara, <gilberto.camara@inpe.br>

Examples

```r
if (sits_run_examples()) {
 # Retrieve the samples for Mato Grosso
 # train an extreme gradient boosting
 xgb_model <- sits_train(samples_modis_4bands,
 ml_method = sits_xgboost())
 # plot the model
 plot(xgb_model)
}
```

point_mt_6bands  
A time series sample with data from 2000 to 2016

Description

A dataset containing a tibble with one time series samples in the Mato Grosso state of Brazil. The time series comes from MOD13Q1 collection 6 images.

Usage

data(point_mt_6bands)

Format

A tibble with 1 rows and 7 variables: longitude: East-west coordinate of the time series sample (WGS 84), latitude (North-south coordinate of the time series sample in WGS 84), start_date (initial date of the time series), end_date (final date of the time series), label (the class label associated to the sample), cube (the name of the cube associated with the data), time_series (list containing a tibble with the values of the time series).

samples_l8_rondonia_2bands

Samples of Amazon tropical forest biome for deforestation analysis

Description

A sits tibble with time series samples from Brazilian Amazonia rain forest. The labels are: "Deforestation", "Forest", "NatNonForest" and "Pasture". The time series were extracted from the Landsat-8 BDC data cube (collection = "LC8_30_16D_STK-1", tiles = "038047"). These time series comprehends a period of 12 months (25 observations) from "2018-07-12" to "2019-07-28". The extracted bands are NDVI and EVI. Cloudy values were removed and interpolated.
samples_modis_4bands

Usage

data("samples_l8_rondonia_2bands")

Format

A sits tibble with 160 samples.

Description

A dataset containing a tibble with time series samples for the Mato Grosso state in Brasil. The time series come from MOD13Q1 collection 6 images. The data set has the following classes: Cerrado (379 samples), Forest (131 samples), Pasture (344 samples), and Soy_Corn (364 samples).

Usage

data(samples_modis_4bands)

Format

A tibble with 1308 rows and 7 variables: longitude: East-west coordinate of the time series sample (WGS 84), latitude (North-south coordinate of the time series sample in WGS 84), start_date (initial date of the time series), end_date (final date of the time series), label (the class label associated to the sample), cube (the name of the cube associated with the data), time_series (list containing a tibble with the values of the time series).

sits_accuracy

Assess classification accuracy (area-weighted method)

Description

This function calculates the accuracy of the classification result. For a set of time series, it creates a confusion matrix and then calculates the resulting statistics using the R package "caret". The time series needs to be classified using sits_classify.

Classified images are generated using sits_classify followed by sits_label_classification. For a classified image, the function uses an area-weighted technique proposed by Olofsson et al. according to [1-3] to produce more reliable accuracy estimates at 95 %.

In both cases, it provides an accuracy assessment of the classified, including Overall Accuracy, Kappa, User's Accuracy, Producer's Accuracy and error matrix (confusion matrix).
Usage
sits_accuracy(data, ...)

## S3 method for class 'sits'
sits_accuracy(data, ...)

## S3 method for class 'classified_image'
sits_accuracy(data, ..., validation_csv)

Arguments

data Either a data cube with classified images or a set of time series
...
Specific parameters
validation_csv A CSV file path with validation data

Value
A list of lists: The error_matrix, the class_areas, the unbiased estimated areas, the standard error areas, confidence interval 95 and the accuracy (user, producer, and overall), or NULL if the data is empty. A confusion matrix assessment produced by the caret package.

Note
Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)
Rolf Simoes, <rolf.simoes@inpe.br>
Alber Sanchez, <alber.ipia@inpe.br>

References

Examples
if (sits_run_examples()) {
  # show accuracy for a set of samples
  train_data <- sits_sample(samples_modis_4bands, n = 200)
  test_data <- sits_sample(samples_modis_4bands, n = 200)
rfor_model <- sits_train(train_data, sits_rfor())
points_class <- sits_classify(test_data, rfor_model)
acc <- sits_accuracy(points_class)

# show accuracy for a data cube classification
# select a set of samples
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
# create a random forest model
rfor_model <- sits_train(samples_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
  source = "BDC",
  collection = "MOD13Q1-6",
  data_dir = data_dir,
  delim = "-",
  parse_info = c("X1", "X2", "tile", "band", "date")
)
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
# label the probability cube
label_cube <- sits_label_classification(probs_cube)
# obtain the ground truth for accuracy assessment
ground_truth <- system.file("extdata/samples/samples_sinop_crop.csv", package = "sits")

# make accuracy assessment
as <- sits_accuracy(label_cube, validation_csv = ground_truth)

sits_apply

Apply a function on a set of time series

Description

Apply a named expression to a sits cube or a sits tibble to be evaluated and generate new bands (indices). In the case of sits cubes, it materializes a new band in output_dir using gdalcubes.

Usage

sits_apply(data, ...)

## S3 method for class 'sits'
sits_apply(data, ...)

## S3 method for class 'raster_cube'
sits_apply(
data,
...,
window_size = 3,
memsize = 1,
multicores = 2,
output_dir = getwd(),
progress = TRUE
)

Arguments

data Valid sits tibble or cube
...
Named expressions to be evaluated (see details).

window_size An even number representing the size of the sliding window of sits kernel functions used in expressions (for a list of supported kernel functions, please see details).

memsize Memory available for classification (in GB).
multicores Number of cores to be used for classification.
output_dir Directory where files will be saved.
progress Show progress bar?

Details

sits_apply() allow any valid R expression to compute new bands. Use R syntax to pass an expression to this function. Besides arithmetic operators, you can use virtually any R function that can be applied to elements of a matrix (functions that are unaware of matrix sizes, e.g. sqrt(), sin(), log()).

Also, sits_apply() accepts a predefined set of kernel functions (see below) that can be applied to pixels considering its neighborhood. sits_apply() considers a neighborhood of a pixel as a set of pixels equidistant to it (including itself) according the Chebyshev distance. This neighborhood form a square window (also known as kernel) around the central pixel (Moore neighborhood). Users can set the window_size parameter to adjust the size of the kernel window. The image is conceptually mirrored at the edges so that neighborhood including a pixel outside the image is equivalent to take the 'mirrored' pixel inside the edge.

sits_apply() applies a function to the kernel and its result is assigned to a corresponding central pixel on a new matrix. The kernel slides throughout the input image and this process generates an entire new matrix, which is returned as a new band to the cube. The kernel functions ignores any NA values inside the kernel window. Central pixel is NA just only all pixels in the window are NA.

Kernel functions

Value

A sits tibble or a sits cube with new bands, produced according to the requested expression.

Summarizing kernel functions

- w_median(): returns the median of the neighborhood’s values.
- w_sum(): returns the sum of the neighborhood’s values.
sits_as_sf

- `w_mean()`: returns the mean of the neighborhood's values.
- `w_sd()`: returns the standard deviation of the neighborhood's values.
- `w_var()`: returns the variance of the neighborhood's values.
- `w_min()`: returns the minimum of the neighborhood's values.
- `w_max()`: returns the maximum of the neighborhood's values.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>
Felipe Carvalho, <felipe.carvalho@inpe.br>
Gilberto Camara, <gilberto.camara@inpe.br>

Examples

# Get a time series
# Apply a normalization function

point2 <-
sits_select(point_mt_6bands, "NDVI") %>%
sits_apply(NDVI_norm = (NDVI - min(NDVI)) / (max(NDVI) - min(NDVI)))

sits_as_sf

Return a sits_tibble or sits_cube as an sf object.

Description

Return a sits_tibble or sits_cube as an sf object.

Usage

sits_as_sf(data, ..., crs)

## S3 method for class 'sits'
sits_as_sf(data, ..., crs = 4326)

## S3 method for class 'raster_cube'
sits_as_sf(data, ...)

Arguments

data A sits tibble or sits cube.
...

Additional parameters.
crs A coordinate reference system of samples.

Value

An sf object of point or polygon geometry.
Author(s)
Felipe Carvalho, <felipe.carvalho@inpe.br>
Alber Sanchez, <alber.ipia@inpe.br>

Examples
if (sits_run_examples()) {
  # convert sits tibble to an sf object (point)
  sf_object <- sits_as_sf(cerrado_2classes)

  # convert sits cube to an sf object (polygon)
  data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
  cube <- sits_cube(
    source = "BDC",
    collection = "MOD13Q1-6",
    data_dir = data_dir,
    delim = ",",
    parse_info = c("X1", "X2", "tile", "band", "date")
  )
  sf_objet <- sits_as_sf(cube)
}

sits_bands

Get the names of the bands

Description
Finds the names of the bands of a set of time series or of a data cube

Usage
sits_bands(x)

## S3 method for class 'sits'
sits_bands(x)

## S3 method for class 'sits_cube'
sits_bands(x)

## S3 method for class 'patterns'
sits_bands(x)

## S3 method for class 'sits_model'
sits_bands(x)

Arguments
x
Valid sits tibble (time series or a cube)
Value

A vector with the names of the bands.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
Rolf Simoes, <rolf.simoes@inpe.br>

Examples

```r
bands <- sits_bands(samples_modis_4bands)
```

---

*sits_bbox*  
*Get the bounding box of the data*

Description

Obtain a vector of limits (either on lat/long for time series or in projection coordinates in the case of cubes)

Usage

```r
sits_bbox(data, wgs84 = FALSE, ...)
```

  ## S3 method for class 'sits'
  sits_bbox(data, ...)

  ## S3 method for class 'sits_cube'
  sits_bbox(data, wgs84 = FALSE, ...)

Arguments

- **data**
  - Valid sits tibble (time series or a cube).
- **wgs84**
  - Reproject bbox to WGS84 (EPSG:4326)?
- **...**
  - Additional parameters (not implemented).

Value

Bounding box in WGS84 for time series or on the cube projection for a data cube unless wgs84 parameter is TRUE.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
Rolf Simoes, <rolf.simoes@inpe.br>
Examples

bbox <- sits_bbox(samples_modis_4bands)

sits_classify(data, ml_model, ...

## S3 method for class 'sits'
sits_classify(data, ml_model, ..., filter_fn = NULL, multicores = 2)

## S3 method for class 'raster_cube'
sits_classify(
  data,
  ml_model,
  ..., 
  roi = NULL,
  filter_fn = NULL,
  impute_fn = sits_impute_linear(),
  start_date = NULL,
  end_date = NULL,
  memsize = 8,
  multicores = 2,
  output_dir = ".",
  version = "v1",
  verbose = FALSE,
  progress = FALSE
)
Arguments

- **data**: Data cube.
- **ml_model**: R model trained by `sits_train`.
- ... Other parameters for specific functions.
- **filter_fn**: Smoothing filter to be applied (if desired).
- **multicores**: Number of cores to be used for classification.
- **roi**: Region of interest (see below)
- **impute_fn**: Impute function to replace NA.
- **start_date**: Start date for the classification.
- **end_date**: End date for the classification.
- **memsize**: Memory available for classification (in GB).
- **output_dir**: Directory for output file.
- **version**: Version of the output (for multiple classifications).
- **verbose**: Print information about processing time?
- **progress**: Show progress bar?

Value

Predicted data (classified time series) or a data cube with probabilities for each class.

Note

The "roi" parameter defines a region of interest. It can be an sf_object, a shapefile, or a bounding box vector with named XY values ("xmin", "xmax", "ymin", "ymax") or named lat/long values ("lon_min", "lat_min", "lon_max", "lat_max").

The "filter_fn" parameter specifies a smoothing filter to be applied to time series for reducing noise. Currently, options include Savitzky-Golay (see `sits_sgolay`) and Whittaker (see `sits_whittaker`).

The "impute_fn" function is used to remove invalid or cloudy pixels from time series. The default is a linear interpolator, available in `sits_impute_linear`. Users can add their custom functions.

The "memsize" and "multicores" parameters are used for multiprocessing. The "multicores" parameter defines the number of cores used for processing. The "memsize" parameter controls the amount of memory available for classification. We recommend using a 4:1 relation between "memsize" and "multicores".

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>
Gilberto Camara, <gilberto.camara@inpe.br>
Examples

```r
if (sits_run_examples()) {
 # Example of classification of a time series
 # Retrieve the samples for Mato Grosso
 # select the NDVI band
 samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
 # train a random forest model
 rf_model <- sits_train(samples_ndvi, ml_method = sits_rfor)

 # classify the point
 point_ndvi <- sits_select(point_mt_6bands, bands = c("NDVI"))
 point_class <- sits_classify(point_ndvi, rf_model)
 plot(point_class)

 # Example of classification of a data cube
 # create a data cube from local files
 data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
 cube <- sits_cube(
 source = "BDC",
 collection = "MOD13Q1-6",
 data_dir = data_dir,
 delim = ",",
 parse_info = c("X1", "X2", "tile", "band", "date")
)
 # classify a data cube
 probs_cube <- sits_classify(data = cube, ml_model = rf_model)
 # label the probability cube
 label_cube <- sits_label_classification(probs_cube)
 # plot the classified image
 plot(label_cube)
}
```

`sits_clustering`  
Find clusters in time series samples

Description

These functions support hierarchical agglomerative clustering in sits. They provide support from creating a dendrogram and using it for cleaning samples.

`sits_cluster_dendro()` takes a tibble containing time series and produces a sits tibble with an added "cluster" column. The function first calculates a dendrogram and obtains a validity index for best clustering using the adjusted Rand Index. After cutting the dendrogram using the chosen validity index, it assigns a cluster to each sample.

`sits_cluster_frequency()` computes the contingency table between labels and clusters and produces a matrix. It needs as input a tibble produced by `sits_cluster_dendro()`.

`sits_cluster_clean()` takes a tibble with time series that has an additional 'cluster' produced by `sits_cluster_dendro()` and removes labels that are minority in each cluster.
Usage

sits_cluster_dendro(
  samples = NULL,
  bands = NULL,
  dist_method = "dtw_basic",
  linkage = "ward.D2",
  k = NULL,
  palette = "RdYlGn",
  .plot = TRUE,
  ...
)

Arguments

  samples       Tibble with input set of time series.
  bands         Bands to be used in the clustering.
  dist_method   Distance method.
  linkage       Agglomeration method. Can be any 'hclust' method (see 'hclust'). Default is 'ward.D2'.
  k             Desired number of clusters (overrides default value)
  palette       Color palette as per 'grDevices::hcl.pals()' function.
  .plot         Plot the dendrogram?
  ...           Additional parameters to be passed to dtwclust::tsclust() function.

Value

  Tibble with added "cluster" column.

Note

  Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)

  Rolf Simoes, <rolf.simoes@inpe.br>

References

  "dtwclust" package (https://CRAN.R-project.org/package=dtwclust)

Examples

  if (sits_run_examples()) {
    clusters <- sits_cluster_dendro(cerrado_2classes)
  }
sits_cluster_clean  

Removes labels that are minority in each cluster.

Description

Takes a tibble with time series that has an additional 'cluster' produced by sits_cluster_dendro() and removes labels that are minority in each cluster.

Usage

sits_cluster_clean(samples)

Arguments

samples  
Tibble with input set of time series with additional cluster information produced by sits::sits_cluster_dendro().

Value

Tibble with time series where clusters have been cleaned of labels that were in a minority at each cluster.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

if (sits_run_examples()) {
  clusters <- sits_cluster_dendro(cerrado_2classes)
  freq1 <- sits_cluster_frequency(clusters)
  freq1
  clean_clusters <- sits_cluster_clean(clusters)
  freq2 <- sits_cluster_frequency(clean_clusters)
  freq2
}

sits_cluster_frequency

Show label frequency in each cluster produced by dendrogram analysis

Description

Show label frequency in each cluster produced by dendrogram analysis
**sits_confidence_sampling**

**Usage**

```r
sits_cluster_frequency(samples)
```

**Arguments**

- `samples` Tibble with input set of time series with additional cluster information produced by `sits::sits_cluster_dendro`.

**Value**

A matrix containing frequencies of labels in clusters.

**Author(s)**

Rolf Simoes, <rolf.simoes@inpe.br>

**Examples**

```r
if (sits_run_examples()) {
 clusters <- sits_cluster_dendro(cerrado_2classes)
 freq <- sits_cluster_frequency(clusters)
 freq
}
```

---

**sits_confidence_sampling**

*Suggest high confidence samples to increase the training set.*

**Description**

Suggest points for increasing the training set. These points are labelled with high confidence so they can be added to the training set. They need to have a satisfactory margin of confidence to be selected. The input is a probability cube. For each label, the algorithm finds out location where the machine learning model has high confidence in choosing this label compared to all others. The algorithm also considers a minimum distance between new labels, to minimize spatial autocorrelation effects.

This function is best used in the following context:

1. Select an initial set of samples.
2. Train a machine learning model.
3. Build a data cube and classify it using the model.
4. Run a Bayesian smoothing in the resulting probability cube.
5. Create an uncertainty cube.
6. Perform confidence sampling.

The Bayesian smoothing procedure will reduce the classification outliers and thus increase the likelihood that the resulting pixels with provide good quality samples for each class.
Usage

```r
sits_confidence_sampling(
 probs_cube,
 n = 20,
 min_margin = 0.9,
 sampling_window = 10
)
```

Arguments

- `probs_cube`: A probability cube. See `sits_classify`.
- `n`: Number of suggested points per class.
- `min_margin`: Minimum margin of confidence to select a sample.
- `sampling_window`: Window size for collecting points (in pixels). The minimum window size is 10.

Value

A tibble with longitude and latitude in WGS84 with locations which have high uncertainty and meet the minimum distance criteria.

Author(s)

- Alber Sanchez, <alber.ipia@inpe.br>
- Rolf Simoes, <rolf.simoes@inpe.br>
- Felipe Carvalho, <felipe.carvalho@inpe.br>
- Gilberto Camara, <gilberto.camara@inpe.br>

Examples

```r
if (sits_run_examples()) {
 # create a data cube
 data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
 cube <- sits_cube(
 source = "BDC",
 collection = "MOD13Q1-6",
 data_dir = data_dir,
 delim = ",",
 parse_info = c("X1", "X2", "tile", "band", "date")
)
 # build a random forest model
 samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
 rfor_model <- sits_train(samples_ndvi, ml_method = sits_rfor())
 # classify the cube
 probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
 # obtain a new set of samples for active learning
 # the samples are located in uncertain places
 new_samples <- sits_confidence_sampling(probs_cube)
}
```
**sits_configuration**  
*Configure parameters for sits package*

**Description**

These functions load and show sits configurations.

The ‘sits’ package uses a configuration file that contains information on parameters required by different functions. This includes information about the image collections handled by ‘sits’.

`sits_config()` loads the default configuration file and the user provided configuration file. The final configuration is obtained by overriding the options by the values provided in `processing_bloat`, `rstac_pagination_limit`, `raster_api_package`, and `gdal_creation_options` parameters.

`sits_config_show()` prints the current sits configuration options. To show specific configuration options for a source, a collection, or a palette, users can inform the corresponding keys to `source`, `collection`, and `palette` parameters.

`sits_list_collections()` prints the collections available in each cloud service supported by sits. Users can select to get information only for a single service by using the `source` parameter.

**Usage**

```r
sits_config(
 run_tests = NULL,
 run_examples = NULL,
 processing_bloat = NULL,
 rstac_pagination_limit = NULL,
 raster_api_package = NULL,
 gdal_creation_options = NULL,
 gdalcubes_chunk_size = NULL,
 leaflet_max_megabytes = NULL,
 leaflet_comp_factor = NULL,
 reset = FALSE
)
```

```r
sits_config_show(source = NULL, collection = NULL, colors = FALSE)
```

```r
sits_list_collections(source = NULL)
```

**Arguments**

- `run_tests` Should tests be run?
- `run_examples` Should examples be run?
- `processing_bloat`  
  Estimated growth size of R memory relative to block size.
- `rstac_pagination_limit`  
  Limit of number of items returned by STAC.
raster_api_package
   Supported raster handling package.

gdal_creation_options
   GDAL creation options for GeoTiff.

gdalcubes_chunk_size
   Chunk size to be used by gdalcubes

leaflet_max_megabytes
   Max image size of an image for leaflet (in MB)

leaflet_comp_factor
   Compression factor for leaflet RGB display.

reset
   Should current configuration options be cleaned before loading config files? Default is FALSE.

source
   Data source to be shown in detail.

collection
   Collection key entry to be shown in detail.

colors
   Show colors?

Details

Users can provide additional configuration files, by specifying the location of their file in the environmental variable SITS_CONFIG_USER_FILE.

To see the key entries and contents of the current configuration values, use sits_config_show().

Value

sits_config() returns a list containing the final configuration options.

A list containing the respective configuration printed in the console.

Prints collections available in each cloud service supported by sits.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

current_config <- sits_config()
sits_config_show()
Create data cubes from image collections

Description

Creates a data cube based on spatial and temporal restrictions in collections available in cloud services or local repositories. The following cloud providers are supported, based on the STAC protocol:

- "AWS": Amazon Web Services (AWS), see https://registry.opendata.aws/
- "BDC": Brazil Data Cube (BDC), see http://brazildatacube.org/
- "DEAFRICA": Digital Earth Africa, see https://www.digitalearthafrica.org/
- "MPC": Microsoft Planetary Computer, see https://planetarypeople.microsoft.com/
- "USGS": USGS LANDSAT collection, see https://registry.opendata.aws/usgs-landsat/

Data cubes can also be created using local files (see details).

Usage

sits_cube(source, collection, ..., data_dir = NULL)

## S3 method for class 'stac_cube'
sits_cube(
  source,
  collection,
  ..., 
  data_dir = NULL,
  bands = NULL,
  tiles = NULL,
  roi = NULL,
  start_date = NULL,
  end_date = NULL,
  platform = NULL
)

## S3 method for class 'local_cube'
sits_cube(
  source,
  collection,
  data_dir,
  ..., 
  bands = NULL,
  start_date = NULL,
  end_date = NULL,
  labels = NULL,
  parse_info = NULL,
\begin{verbatim}
sits_cube

delim = ",",
multicores = 2,
progress = TRUE
)

Arguments

source Data source (one of "AWS", "BDC", "DEAFRICA", "MPC", "USGS").
collection Image collection in data source (To find out the supported collections, use \texttt{sits_list_collections()}).

... Other parameters to be passed for specific types.
data_dir Local directory where images are stored (for local cubes).
bands Spectral bands and indices to be included in the cube (optional).
tiles Tiles from the collection to be included in the cube (see details below).
roi Filter collection by region of interest (see details below).
start_date, end_date Initial and final dates to include images from the collection in the cube (optional).
platform Optional parameter specifying the platform in case of collections that include more than one satellite.
labels Labels associated to the classes (only for result cubes).
parse_info Parsing information for local files.
delim Delimiter for parsing local files.
multicores Number of workers for parallel processing
progress Show a progress bar?

Details

To create cubes from cloud providers, users need to inform:

- \textbf{source}: One of "AWS", "BDC", "DEAFRICA", "MPC", "USGS".
- \textbf{collection}: Use \texttt{sits_list_collections()} to see which collections are supported.
- \textbf{tiles}: A set of tiles defined according to the collection tiling grid.
- \textbf{roi}: Region of interest in WGS84 coordinates.

Either \texttt{tiles} or \texttt{roi} must be informed. The parameters \texttt{bands}, \texttt{start_date}, and \texttt{end_date} are optional for cubes created from cloud providers.

The \texttt{roi} parameter allows a selection of an area of interest, either using a named vector ("lon\_min", "lat\_min", "lon\_max", "lat\_max") in WGS84, a \texttt{sfc} or \texttt{sf} object from \texttt{sf} package in WGS84 projection. GeoJSON geometries (RFC 7946) and shapefiles should be converted to \texttt{sf} objects before being used to define a region of interest. This parameter does not crop a region; it only selects images that intersect the \texttt{roi}.

To create a cube from local files, users need to inform:

- \textbf{source}: Provider from where the data has been downloaded (e.g. "BDC", "AWS").
To create a cube from local files, all images should have the same spatial resolution and projection and each file should contain a single image band for a single date. Files can belong to different tiles of a spatial reference system and file names need to include tile, date, and band information. For example: "CBERS-4_022024_B13_2018-02-02.tif" and "cube_20LKP_B02_2018-07-18.jp2" are accepted names. The user has to provide parsing information to allow sits to extract values of tile, band, and date. In the examples above, the parsing info is c("X1", "tile", "band", "date") and the delimiter is ".".

It is also possible to create result cubes; these are local cubes that have been produced by classification or post-classification algorithms. In this case, there are more parameters that are required (see below) and the parameter parse_info is specified differently:

- **band**: The band name is associated to the type of result. Use "probs", for probability cubes produced by sits_classify(); "bayes", or "bilat" (bilateral) according to the function selected when using sits_smooth(); "entropy" when using sits_uncertainty(), or "class" for cubes produced by sits_label_classification().
- **labels**: Labels associated to the classification results.
- **parse_info**: File name parsing information has to allow sits to deduce the values of "tile", "start_date", "end_date" from the file name. Default is c("X1", "X2", "tile", "start_date", "end_date", "band"). Note that, unlike non-classified image files, cubes with results have both "start_date" and "end_date".

**Value**

A tibble describing the contents of a data cube.

**Note**

In MPC, sits can access are two open data collections: "SENTINEL-S2-L2A" for Sentinel-2/2A images, and "LANDSAT-C2-L2" for the Landsat-4/5/7/8/9 collection. (requester-pays) and "SENTINEL-S2-L2A-COGS" (open data).

Sentinel-2/2A level 2A files in MPC are organized by sensor resolution. The bands in 10m resolution are "B02", "B03", "B04", and "B08". The 20m bands are "B05", "B06", "B07", "B08A", "B11", and "B12". Bands "B01" and "B09" are available at 60m resolution. The "CLOUD" band is also available.

All Landsat-4/5/7/8/9 images in MPC have bands with 30 meter resolution. To account for differences between the different sensors, Landsat bands in this collection have been renamed "BLUE", "GREEN", "RED", "NIR08", "SWIR16" and "SWIR22". The "CLOUD" band is also available.

In AWS, there are two types of collections: open data and requester-pays. Currently, sits supports collection "SENTINEL-S2-L2A" (requester-pays) and "SENTINEL-S2-L2A-COGS" (open data). There is no need to provide AWS credentials to access open data collections. For requester-pays data, users need to provide their access codes as environment variables, as follows: Sys.setenv
Sentinel-2/2A level 2A files in AWS are organized by sensor resolution. The AWS bands in 10m resolution are "B02", "B03", "B04", and "B08". The 20m bands are "B05", "B06", "B07", "B8A", "B11", and "B12". Bands "B01" and "B09" are available at 60m resolution.

For DEAFRICA, sits currently works with collection "S2_L2A" (open data). This collection is the same as AWS collection "SENTINEL-S2-L2A-COGS", and is located in Africa (Capetown) for faster access to African users. No payment for access is required.

For USGS, sits currently works with collection "LANDSAT-C2L2-SR", which corresponds to Landsat Collection 2 Level-2 surface reflectance data, covering Landsat-8 dataset. This collection is requester-pays and requires payment for accessing.

All BDC collections are regularized. BDC users need to provide their credentials using environment variables. To create your credentials, please see <brazil-data-cube.github.io/applications/dc_explorer/token-module.html>. Accessing data in the BDC is free. After obtaining the BDC access key, please include it as an environment variable, as follows: Sys.setenv( BDC_ACCESS_KEY = <your_bdc_access_key>

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

References
rstac package (https://github.com/brazil-data-cube/rstac)

Examples
if (sits_run_examples()) {

  # --- Access to the Brazil Data Cube
  # Provide your BDC credentials as environment variables
  bdc_access_key <- Sys.getenv("BDC_ACCESS_KEY")
  if (nchar(bdc_access_key) == 0) {
    stop("No BDC_ACCESS_KEY defined in environment.")
  }

  # create a raster cube file based on the information in the BDC
cbers_tile <- sits_cube(
    source = "BDC",
    collection = "CB4_64_16D_STK-1",
    bands = c("NDVI", "EVI"),
    tiles = "022024",
    start_date = "2018-09-01",
    end_date = "2019-08-28"
  )

  # --- Access to Digital Earth Africa
  # create a raster cube file based on the information about the files
  # DEAFRICA does not support definition of tiles
  cube_dea <- sits_cube(
    source = "DEAFRICA",
    ...
collection = "s2_l2a",
bands = c("B04", "B08"),
roi = c(
   "lat_min" = 17.379,
   "lon_min" = 1.1573,
   "lat_max" = 17.410,
   "lon_max" = 1.1910
),
start_date = "2019-01-01",
end_date = "2019-10-28"
)

# --- Access to AWS open data Sentinel 2/2A level 2 collection
s2_cube <- sits_cube(
   source = "AWS",
   collection = "sentinel-s2-l2a-cogs",
tiles = c("20LKP", "20LLP"),
bands = c("B04", "B08", "B11"),
start_date = "2018-07-18",
end_date = "2019-07-23"
)

# --- Access to USGS Landsat cubes (requester pays)
# --- Need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
usgs_cube <- sits_cube(
   source = "USGS",
   collection = "landsat-c2l2-sr",
bands = c("B04", "CLOUD"),
roi = c(
   "xmin" = -50.379,
   "ymin" = -10.1573,
   "xmax" = -50.410,
   "ymax" = -10.1910
),
start_date = "2019-01-01",
end_date = "2019-10-28"
)

# -- Creating Sentinel cube from MPC"
s2_cube <- sits_cube(
   source = "MPC",
   collection = "sentinel-2-l2a",
tiles = "20LKP",
bands = c("B05", "CLOUD"),
start_date = "2018-07-18",
end_date = "2018-08-23"
)

# -- Creating Landsat cube from MPC"
mpc_cube <- sits_cube(
   source = "MPC",
   collection = "LANDSAT-C2-L2",

bands = c("BLUE", "RED", "CLOUD"),
roi = c(
  "xmin" = -50.379,
  "ymin" = -10.1573,
  "xmax" = -50.410,
  "ymax" = -10.1910
),
start_date = "2005-01-01",
end_date = "2006-10-28"
)

# --- Create a cube based on a local MODIS data
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")

modis_cube <- sits_cube(
  source = "BDC",
  collection = "MOD13Q1-6",
  data_dir = data_dir,
  delim = "_"
)

sits_filters

Filter time series and data cubes

Description

Filtering functions should be used with ‘sits_filter()’. The following filtering functions is supported by ‘sits’:

‘sits_whittaker()’: The algorithm searches for an optimal warping polynomial. The degree of smoothing depends on smoothing factor lambda (usually from 0.5 to 10.0). Use lambda = 0.5 for very slight smoothing and lambda = 5.0 for strong smoothing.

‘sits_filter()’: applies a filter to all bands.

‘sits_sgolay()’: An optimal polynomial for warping a time series. The degree of smoothing depends on the filter order (usually 3.0). The order of the polynomial uses the parameter ‘order’ (default = 3), the size of the temporal window uses the parameter ‘length’ (default = 5).

Usage

sits_whittaker(data = NULL, lambda = 0.5)
sits_filter(data, filter = sits_whittaker())
sits_sgolay(data = NULL, order = 3, length = 5)
Arguments

- **data**: Time series or matrix.
- **lambda**: Smoothing factor to be applied (default 0.5).
- **filter**: a filter function such as `sits_whittaker()` or `sits_sgolay()`.
- **order**: Filter order (integer).
- **length**: Filter length (must be odd).

Value

Filtered time series

Author(s)

- Rolf Simoes, <rolf.simoes@inpe.br>
- Gilberto Camara, <gilberto.camara@inpe.br>
- Felipe Carvalho, <felipe.carvalho@inpe.br>

References


See Also

- `sits_apply`

Examples

```r
Retrieve a time series with values of NDVI
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")

Filter the point using the Whittaker smoother
point_whit <- sits_filter(point_ndvi, sits_whittaker(lambda = 3.0))
Merge time series
point_ndvi <- sits_merge(point_ndvi, point_whit, suffix = c("", ".WHIT"))

Plot the two points to see the smoothing effect
plot(point_ndvi)

Retrieve a time series with values of NDVI
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")

Filter the point using the Savitzky-Golay smoother
point_sg <- sits_filter(point_ndvi,
 filter = sits_sgolay(order = 3, length = 5))
```
# Merge time series
point_ndvi <- sits_merge(point_ndvi, point_sg, suffix = c("", ".SG"))

# Plot the two points to see the smoothing effect
plot(point_ndvi)

## sits_formula_linear

**Define a linear formula for classification models**

**Description**

Provides a symbolic description of a fitting model. Tells the model to do a linear transformation of the input values. The `predictors_index` parameter informs the positions of fields corresponding to formula independent variables. If no value is given, that all fields will be used as predictors.

**Usage**

```r
sits_formula_linear(predictors_index = -2:0)
```

**Arguments**

- `predictors_index`
  
  Index of the valid columns whose names are used to compose formula (default: -2:0).

**Value**

A function that computes a valid formula using a linear function.

**Author(s)**

Gilberto Camara, <gilberto.camara@inpe.br>

Alexandre Ywata de Carvalho, <alexandre.ywata@ipea.gov.br>

Rolf Simoes, <rolf.simoes@inpe.br>

**Examples**

```r
if (sits_run_examples()) {
 # Example of training a model for time series classification
 # Retrieve the samples for Mato Grosso
 # train an SVM model
 ml_model <- sits_train(samples_modis_4bands,
 ml_method = sits_svm(formula = sits_formula_logref()))
 # select the bands to classify the point
 sample_bands <- sits_bands(samples_modis_4bands)
 point_4bands <- sits_select(point_mt_6bands, bands = sample_bands)
 # classify the point
 point_class <- sits_classify(point_4bands, ml_model)
}
Define a loglinear formula for classification models

Description

A function to be used as a symbolic description of some fitting models such as svm and random forest. This function tells the models to do a log transformation of the inputs. The ‘predictors_index’ parameter informs the positions of ‘tb’ fields corresponding to formula independent variables. If no value is given, the default is NULL, a value indicating that all fields will be used as predictors.

Usage

`sits_formula_logref(predictors_index = -2:0)`

Arguments

predictors_index
Index of the valid columns to compose formula (default: -2:0).

Value

A function that computes a valid formula using a log function.

Author(s)

Alexandre Ywata de Carvalho, <alexandre.ywata@ipea.gov.br>
Rolf Simoes, <rolf.simoes@inpe.br>

Examples

```r
if (sits_run_examples()) {
  # Example of training a model for time series classification
  # Retrieve the samples for Mato Grosso
  # train an SVM model
  ml_model <- sits_train(samples_modis_4bands,  
    ml_method = sits_svm(formula = sits_formula_logref()))
  # select the bands to classify the point
  sample_bands <- sits_bands(samples_modis_4bands)
  point_4bands <- sits_select(point_mt_6bands, bands = sample_bands)
  # classify the point
  point_class <- sits_classify(point_4bands, ml_model)
  plot(point_class)
}
```
sits_geo_dist

Description

Compute the minimum distances among samples and samples to prediction points, following the approach proposed by Meyer and Pebesma (2022).

Usage

`sits_geo_dist(samples, roi = NULL, n = 1000)`

Arguments

- `samples`: A 'sits' tibble with time series samples.
- `roi`: A 'sf' object (polygon) with a region of interest for prediction.
- `n`: Maximum number of samples to consider.

Value

A tibble with sample-to-sample and sample-to-prediction distances.

Author(s)

Alber Sanchez, <alber.ipia@inpe.br>
Rolf Simoes, <rolf.simoes@inpe.br>
Felipe Carvalho, <felipe.carvalho@inpe.br>
Gilberto Camara, <gilberto.camara@inpe.br>

References

Examples

```r
if (sits_run_examples()) {
  # read a shapefile for the state of Mato Grosso, Brazil
  mt_shp <- system.file("extdata/shapefiles/mato_grosso(mt.shp",
                      package = "sits"
  )
  # convert to an sf object
  mt_sf <- sf::read_sf(mt_shp)
  # calculate sample-to-sample and sample-to-prediction distances
  distances <- sits_geo_dist(samples_modis_4bands, mt_sf)
}
sits_get_data

# plot sample-to-sample and sample-to-prediction distances
plot(distances)
}

sits_get_data Get time series from data cubes and cloud services

Description

Retrieve a set of time series from a data cube or from a time series service. Data cubes and puts it in a "sits tibble". Sits tibbles are the main structures of sits package. They contain both the satellite image time series and their metadata.

Usage

sits_get_data(
  cube,
  samples,
  ..., 
  start_date = as.Date(sits_timeline(cube)[1]),
  end_date = as.Date(sits_timeline(cube)[length(sits_timeline(cube))]),
  label = "NoClass",
  bands = sits_bands(cube),
  crs = 4326,
  impute_fn = sits_impute_linear(),
  label_attr = NULL,
  n_sam_pol = 30,
  pol_avg = FALSE,
  pol_id = NULL,
  multicores = 2,
  output_dir = ".",
  progress = FALSE
)

## Default S3 method:
sits_get_data(cube, samples, ...)

## S3 method for class 'csv'
sits_get_data(
  cube,
  samples,
  ..., 
  bands = sits_bands(cube),
  crs = 4326,
  impute_fn = sits_impute_linear(),
  multicores = 2,
  output_dir = ".",
  ...
sits_get_data

  progress = FALSE

)
sits_get_data

```r
multicores = 2,
output_dir = ".",
progress = FALSE
)

S3 method for class 'data.frame'
sits_get_data(
cube,
samples,
..., start_date = as.Date(sits_timeline(cube)[1]),
end_date = as.Date(sits_timeline(cube)[length(sits_timeline(cube))]),
label = "NoClass",
bands = sits_bands(cube),
crs = 4326,
impute_fn = sits_impute_linear(),
multicores = 2,
output_dir = ".",
progress = FALSE
)
```

### Arguments

- **cube**: Data cube from where data is to be retrieved.
- **samples**: Samples location (sits, sf, or data.frame).
- **...**: Specific parameters for specific cases.
- **start_date**: Start of the interval for the time series in "YYYY-MM-DD" format (optional).
- **end_date**: End of the interval for the time series in "YYYY-MM-DD" format (optional).
- **label**: Label to be assigned to the time series (optional).
- **bands**: Bands to be retrieved (optional).
- **crs**: A coordinate reference system of samples. The provided crs could be a character (e.g., "EPSG:4326" or "WGS84" or a proj4string), or a numeric with the EPSG code (e.g., 4326). This parameter only works for 'csv' or data.frame' samples. Default is 4326.
- **impute_fn**: Imputation function for NA values.
- **label_attr**: Attribute in the shapefile or sf object to be used as a polygon label.
- **n_sam_pol**: Number of samples per polygon to be read (for POLYGON or MULTIPOLYGON shapefile).
- **pol_avg**: Summarize samples for each polygon?
- **pol_id**: ID attribute for polygons.
- **multicores**: Number of threads to process the time series.
- **output_dir**: Directory where the time series will be saved as rds. Default is the current path.
- **progress**: A logical value indicating if a progress bar should be shown. Default is FALSE.
Value

A tibble with the metadata and data for each time series <longitude, latitude, start_date, end_date, label, cube, time_series>.

Note

There are four ways of specifying data to be retrieved using the "samples" parameter:

- CSV file: Provide a CSV file with columns "longitude", "latitude", "start_date", "end_date" and "label" for each sample
- SHP file: Provide a shapefile in POINT or POLYGON geometry containing the location of the samples and an attribute to be used as label. Also, provide start and end date for the time series.
- sits object: A sits tibble.
- sf object: An "sf" object with POINT or POLYGON geometry.
- data.frame: A data.frame with mandatory columns "longitude", "latitude".

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)

Gilberto Camara

Examples

```r
if (sits_run_examples()) {
 # reading a lat/long from a local cube
 # create a cube from local files
 data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
 raster_cube <- sits_cube(
 source = "BDC",
 collection = "MOD13Q1-6",
 data_dir = data_dir,
 delim = " ",
 parse_info = c("X1", "X2", "tile", "band", "date")
)
 samples <- tibble(longitude = -55.66738, latitude = -11.76990)
 point_ndvi <- sits_get_data(raster_cube, samples)
 #
 # reading samples from a cube based on a CSV file
 csv_file <- system.file("extdata/samples/samples_sinop_crop.csv", package = "sits")
)
 points <- sits_get_data(cube = raster_cube, samples = csv_file)
 #
 # reading a shapefile from BDC (Brazil Data Cube)
 # needs a BDC access key that can be obtained
 # for free by registering in the BDC website
 if (nchar(Sys.getenv("BDC_ACCESS_KEY")) > 0) {
 #
 }
```
sits_impute_linear

Replace NA values with linear interpolation

Description

Remove NA by linear interpolation

Usage

sits_impute_linear(data = NULL)

Arguments

data A time series vector or matrix

Value

A set of filtered time series using the imputation function.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
Examples

```r
if (sits_run_examples()) {
 # reading a lat/long from a local cube
 # create a cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
raster_cube <- sits_cube(
 source = "BDC",
 collection = "MOD13Q1-6",
 data_dir = data_dir,
 delim = ",",
 parse_info = c("X1", "X2", "tile", "band", "date")
)
samples <- tibble::tibble(longitude = -55.66738, latitude = -11.76990)
point_ndvi <- sits_get_data(
 cube = raster_cube,
 samples = samples,
 impute_fn = sits_impute_linear())
}
```

```
reading samples from a cube based on a CSV file
csv_file <- system.file("extdata/samples/samples_sinop_crop.csv", package = "sits")
points <- sits_get_data(cube = raster_cube, samples = csv_file)
```

sits_kfold_validate  Cross-validate time series samples

Description

Splits the set of time series into training and validation and perform k-fold cross-validation. Cross-validation is a technique for assessing how the results of a statistical analysis will generalize to an independent data set. It is mainly used in settings where the goal is prediction, and one wants to estimate how accurately a predictive model will perform. One round of cross-validation involves partitioning a sample of data into complementary subsets, performing the analysis on one subset (called the training set), and validating the analysis on the other subset (called the validation set or testing set).

The k-fold cross validation method involves splitting the dataset into k-subsets. For each subset is held out while the model is trained on all other subsets. This process is completed until accuracy is determine for each instance in the dataset, and an overall accuracy estimate is provided.

This function returns the confusion matrix, and Kappa values.

Usage

```r
sits_kfold_validate(
 samples,
 folds = 5,
 ml_method = sits_rfor(),
)```
sits_kfold_validate

 multicores = 2

Arguments

samples Time series.
folds Number of partitions to create.
ml_method Machine learning method.
multicores Number of cores to process in parallel.

Value

A caret::confusionMatrix object to be used for validation assessment.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>
Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
 # A dataset containing a tibble with time series samples
 # for the Mato Grosso state in Brasil
 # create a list to store the results
 results <- list()

 # accuracy assessment lightTAE
 acc_ltae <- sits_kfold_validate(samples_modis_4bands,
 folds = 5,
 ml_method = sits_lighttae()
)
 # use a name
 acc_ltae$name <- "LightTAE"
 # put the result in a list
 results[[length(results) + 1]] <- acc_ltae

 # Deep Learning - ResNet
 acc_rn <- sits_kfold_validate(samples_modis_4bands,
 folds = 5,
 ml_method = sits_resnet()
)
 acc_rn$name <- "ResNet"
 # put the result in a list
 results[[length(results) + 1]] <- acc_rn

save to xlsx file
sits_to_xlsx(results, file = "/accuracy_mato_grosso_dl.xlsx")

sits_labels
Get labels associated to a data set

Description

Finds labels in a sits tibble or data cube

Usage

```r
sits_labels(data)
```

```r
## S3 method for class 'sits'
sits_labels(data)
```

```r
## S3 method for class 'sits_cube'
sits_labels(data)
```

```r
## S3 method for class 'patterns'
sits_labels(data)
```

```r
## S3 method for class 'sits_model'
sits_labels(data)
```

Arguments

- `data`
 Time series or a cube.

Value

The labels associated to a set of time series or to a data cube.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

```r
# read a tibble with 400 samples of Cerrado and 346 samples of Pasture
data(cerrado_2classes)

# print the labels
sits_labels(cerrado_2classes)
```
sits_labels_summary

Description

Describes labels in a sits tibble

Usage

sits_labels_summary(data)

S3 method for class 'sits'
sits_labels_summary(data)

Arguments

data Valid sits tibble

Value

A tibble with the frequency of each label.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

read a tibble with 400 samples of Cerrado and 346 samples of Pasture
data(cerrado_2classes)
print the labels
sits_labels_summary(cerrado_2classes)

sits_label_classification

Build a labelled image from a probability cube

Description

Takes a set of classified raster layers with probabilities, and label them based on the maximum probability for each pixel.
Usage

`sits_label_classification(
 cube,
 multicores = 2,
 memsize = 4,
 output_dir = ".",
 version = "v1"
)
`

Arguments

- **cube**: Classified image data cube.
- **multicores**: Number of workers to label the classification in parallel.
- **memsize**: Maximum overall memory (in GB) to label the classification.
- **output_dir**: Output directory for classified files.
- **version**: Version of resulting image (in the case of multiple runs).

Value

A data cube with an image with the classified map.

Note

Please refer to the `sits` documentation available in `<https://e-sensing.github.io/sitsbook/>` for detailed examples.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

```r
if (sits_run_examples()) {
  # select a set of samples
  samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
  # create a random forest model
  rfor_model <- sits_train(samples_ndvi, sits_rfor())
  # create a data cube from local files
  data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
  cube <- sits_cube(
    source = "BDC",
    collection = "MOD13Q1-6",
    data_dir = data_dir,
    delim = ",",
    parse_info = c("X1", "X2", "tile", "band", "date")
  )
  # classify a data cube
  probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
  # plot the probability cube
```
plot(probs_cube)
smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube)
plot the smoothed cube
plot(bayes_cube)
label the probability cube
label_cube <- sits_label_classification(bayes_cube)
plot the labelled cube
plot(label_cube)

sits_lighttae

Train a model using Lightweight Temporal Self-Attention Encoder

Description
Implementation of Light Temporal Attention Encoder (L-TAE) for satellite image time series
This function is based on the paper by Vivien Garnot referenced below and code available on github at https://github.com/VSainteuf/lightweight-temporal-attention-pytorch If you use this method, please cite the original TAE and the LTAE paper.
We also used the code made available by Maja Schneider in her work with Marco Körner referenced below and available at https://github.com/maja601/RC2020-psetae.

Usage
sits_lighttae(
samples = NULL,
samples_validation = NULL,
epochs = 150,
batch_size = 128,
validation_split = 0.2,
optimizer = torchopt::optim_adamw,
opt_hparams = list(lr = 0.005, eps = 1e-08, weight_decay = 1e-06),
lr_decay_epochs = 50,
lr_decay_rate = 1,
patience = 20,
min_delta = 0.01,
verbose = FALSE
)

Arguments
samples Time series with the training samples.
samples_validation Time series with the validation samples. if the samples_validation parameter is provided, the validation_split parameter is ignored.
epochs Number of iterations to train the model.
batch_size Number of samples per gradient update.
validation_split Fraction of training data to be used as validation data.
optimizer Optimizer function to be used.
opt_hparams Hyperparameters for optimizer: lr : Learning rate of the optimizer eps: Term added to the denominator to improve numerical stability. weight_decay: L2 regularization
lr_decay_epochs Number of epochs to reduce learning rate.
lr_decay_rate Decay factor for reducing learning rate.
patience Number of epochs without improvements until training stops.
min_delta Minimum improvement in loss function to reset the patience counter.
verbose Verbosity mode (TRUE/FALSE). Default is FALSE.

Value
A fitted model to be used for classification of data cubes.

Note
Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)
Charlotte Pelletier, <charlotte.pelletier@univ-ubs.fr>
Gilberto Camara, <gilberto.camara@inpe.br>
Rolf Simoes, <rolf.simoes@inpe.br>

References

Examples
if (sits_run_examples()) {
 # select a set of samples
 samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
 # create a lightTAE model
 torch_model <- sits_train(samples_ndvi, sits_lighttae())
plot the model
plot(torch_model)

create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
 source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = ",",
parse_info = c("X1", "X2", "tile", "band", "date")
)

classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = torch_model)

plot the probability cube
plot(probs_cube)

smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube)

plot the smoothed cube
plot(bayes_cube)

label the probability cube
label_cube <- sits_label_classification(bayes_cube)

plot the labelled cube
plot(label_cube)

sits_merge

Merge two data sets (time series or cubes)

Description

To merge two series, we consider that they contain different attributes but refer to the same data cube, and spatiotemporal location. This function is useful to merge different bands of the same locations. For example, one may want to put the raw and smoothed bands for the same set of locations in the same tibble.

To merge data cubes, they should share the same sensor, resolution, bounding box, timeline, and have different bands.

Usage

sits_merge(data1, data2, ..., suffix = c(".1", ".2"))

S3 method for class 'sits'
sits_merge(data1, data2, ..., suffix = c(".1", ".2"))

S3 method for class 'raster_cube'
sits_merge(data1, data2, ..., suffix = c(".1", ".2"))
sits_mixture_model

Multiple endmember spectral mixture analysis

Description

Create a multiple endmember spectral mixture analyses fractions images. To calculate the fraction of each endmember, the non-negative least squares (NNLS) solver is used. The NNLS implementation was made by Jakob Schwalb-Willmann in RStoolbox package (licensed as GPL>=3).

Usage

sits_mixture_model(
 cube,
 endmembers_spectra,
 memsize = 1,
 multicores = 2,
 output_dir = getwd(),
 rmse_band = TRUE,
)

Arguments

data1 Time series or cube to be merged.
data2 Time series or cube to be merged.
... Additional parameters
suffix If there are duplicate bands in data1 and data2 these suffixes will be added.

Value

merged data sets

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
 # Retrieve a time series with values of NDVI
 point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")

 # Filter the point using the Whittaker smoother
 point_whit <- sits_filter(point_ndvi, sits_whittaker(lambda = 3.0))

 # Merge time series
 point_ndvi <- sits_merge(point_ndvi, point_whit, suffix = c("", ".WHIT"))

 # Plot the two points to see the smoothing effect
 plot(point_ndvi)
}

sits_mixture_model
sits_mixture_model

```r
remove_outliers = TRUE,
progress = TRUE
)
```

Arguments

cube
A sits data cube.

database_spectra
Reference endmembers spectra in a tibble format. (see details below).

database_spectra
Reference endmembers spectra in a tibble format. (see details below).

memsize
Memory available for mixture model (in GB).

multicores
Number of cores to be used for generate the mixture model.

output_dir
Directory for output file.

rmse_band
A boolean indicating whether the error associated with the linear model should be generated. If true, a new band with the errors for each pixel is generated using the root mean square measure (RMSE). Default is TRUE.

remove_outliers
A boolean indicating whether values larger and smaller than the limits in the image metadata, and missing values should be marked as NA. This parameter can be used when the cloud component is added to the mixture model. Default is TRUE.

progress
Show progress bar? Default is TRUE.

Value

a sits cube with the generated fractions.

Note

The `endmembers_spectra` parameter should be a tibble, csv or a shapefile. `endmembers_spectra` must have the following columns: `type`, which defines the endmembers that will be created and the columns corresponding to the bands that will be used in the mixture model.

Author(s)

Felipe Carvalho, <felipe.carvalho@inpe.br>
Felipe Carlos, <efelipecarlos@gmail.com>
Rolf Simoes, <rolf.simoes@inpe.br>
Alber Sanchez, <alber.ipia@inpe.br>

References

RStoolbox package (https://github.com/bleutner/RStoolbox/)
Examples

```r
if (sits_run_examples()) {
  # --- Create a cube based on a local MODIS data
  data_dir <- system.file("extdata/raster/mod13q1", package = "sits")

  modis_cube <- sits_cube(
    source = "BDC",
    collection = "MOD13Q1-6",
    data_dir = data_dir,
    delim = "_"
  )

  endmembers_spectra <- tibble::tibble(
    type = c("vegetation", "not-vegetation"),
    NDVI = c(8500, 3400)
  )

  mixture_cube <- sits_mixture_model(
    cube = modis_cube,
    endmembers_spectra = endmembers_spectra,
    memsize = 4,
    multicores = 2,
    output_dir = tempdir()
  )
}
```

sits_mlp
Train multi-layer perceptron models using torch

Description

Use a multi-layer perceptron algorithm to classify data. This function uses the R "torch" and "luz" packages. Please refer to the documentation of those package for more details.

Usage

```r
sits_mlp(
  samples = NULL,
  samples_validation = NULL,
  layers = c(512, 512, 512),
  dropout_rates = c(0.2, 0.3, 0.4),
  optimizer = torchopt::optim_adamw,
  opt_hpars = list(lr = 0.001, eps = 1e-08, weight_decay = 1e-06),
  epochs = 100,
  batch_size = 64,
  validation_split = 0.2,
  patience = 20,
)```
sits_mlp

```
min_delta = 0.01,
verbose = FALSE
```

Arguments

- **samples**: Time series with the training samples.
- **samples_validation**: Time series with the validation samples. If the `samples_validation` parameter is provided, the `validation_split` parameter is ignored.
- **layers**: Vector with number of hidden nodes in each layer.
- **dropout_rates**: Vector with the dropout rates (0,1) for each layer.
- **optimizer**: Optimizer function to be used.
- **opt_hparams**: Hyperparameters for optimizer: lr : Learning rate of the optimizer eps: Term added to the denominator to improve numerical stability. weight_decay: L2 regularization
- **epochs**: Number of iterations to train the model.
- **batch_size**: Number of samples per gradient update.
- **validation_split**: Number between 0 and 1. Fraction of the training data for validation. The model will set apart this fraction and will evaluate the loss and any model metrics on this data at the end of each epoch.
- **patience**: Number of epochs without improvements until training stops.
- **min_delta**: Minimum improvement in loss function to reset the patience counter.
- **verbose**: Verbosity mode (TRUE/FALSE). Default is FALSE.

Value

A torch mlp model to be used for classification.

Note

The parameters for the MLP have been chosen based on the work by Wang et al. 2017 that takes multilayer perceptrons as the baseline for time series classifications: (a) Three layers with 512 neurons each, specified by the parameter `layers`; (b) dropout rates of 10 (c) the "optimizer_adam" as optimizer (default value); (d) a number of training steps (`epochs`) of 100; (e) a `batch_size` of 64, which indicates how many time series are used for input at a given steps; (f) a validation percentage of 20 will be randomly set side for validation. (g) The "relu" activation function.

# References


Please refer to the sits documentation available in [https://e-sensing.github.io/sitsbook/](https://e-sensing.github.io/sitsbook/) for detailed examples.
## Description

This function takes a set of time series samples as input estimates a set of patterns. The patterns are calculated using a GAM model. The idea is to use a formula of type \( y \sim s(x) \), where \( x \) is a temporal reference and \( y \) if the value of the signal. For each time, there will be as many predictions as there are sample values. The GAM model predicts a suitable approximation that fits the assumptions of the statistical model, based on a smooth function.
This method is based on the "createPatterns" method of the dtwSat package, which is also described in the reference paper.

Usage

sits_patterns(data = NULL, freq = 8, formula = y ~ s(x), ...)

Arguments

- **data** Time series.
- **freq** Interval in days for estimates.
- **formula** Formula to be applied in the estimate.
- **...** Any additional parameters.

Value

Time series with patterns.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)

Victor Maus, <vwmaus1@gmail.com>
Gilberto Camara, <gilberto.camara@inpe.br>
Rolf Simoes, <rolf.simoes@inpe.br>

References


Examples

```r
if (sits_run_examples()) {
 patterns <- sits_patterns(cerrado_2classes)
 plot(patterns)
}
```
sits_reduce_imbalance  
Reduce imbalance in a set of samples

Description

Takes a sits tibble with different labels and returns a new tibble. Deals with class imbalance using the synthetic minority oversampling technique (SMOTE) for oversampling. Undersampling is done using the SOM methods available in the sits package.

Usage

sits_reduce_imbalance(
  samples,
  n_samples_over = 200,
  n_samples_under = 400,
  multicores = 2
)

Arguments

- **samples**: Sample set to rebalance
- **n_samples_over**: Number of samples to oversample for classes with samples less than this number (use n_samples_over = NULL to avoid oversampling).
- **n_samples_under**: Number of samples to undersample for classes with samples more than this number (use n_samples_over = NULL to avoid oversampling).
- **multicores**: Number of cores to process the data (default 2).

Value

A sits tibble with reduced sample imbalance.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

References


Examples

```r
if (sits_run_examples()) {
 # print the labels summary for a sample set
 sits_labels_summary(samples_modis_4bands)
 # reduce the sample imbalance
 new_samples <- sits_reduce_imbalance(samples_modis_4bands,
 n_samples_over = 200,
 n_samples_under = 200,
 multicores = 1)
 # print the labels summary for the rebalanced set
 sits_labels_summary(new_samples)
}
```

`sits_regularize`  
*Build a regular data cube from an irregular one*

Description

Produces regular data cubes for analysis-ready data (ARD) image collections. Analysis-ready data (ARD) collections available in AWS, MPC, USGS and DEAfrica are not regular in space and time. Bands may have different resolutions, images may not cover the entire time, and time intervals are not regular. For this reason, subsets of these collection need to be converted to regular data cubes before further processing and data analysis.

This function requires users to include the cloud band in their ARD-based data cubes.

Usage

```r
sits_regularize(
cube,
period,
res,
roi = NULL,
output_dir,
multicores = 1,
memsize = 4,
progress = TRUE
)
```
Arguments

- **cube**: `sits_cube` object whose observation period and/or spatial resolution is not constant.
- **period**: ISO8601-compliant time period for regular data cubes, with number and unit, where "D", "M" and "Y" stand for days, month and year; e.g., "P16D" for 16 days.
- **res**: Spatial resolution of regularized images (in meters).
- **roi**: A named numeric vector with a region of interest. See more above.
- **output_dir**: Valid directory for storing regularized images.
- **multicores**: Number of cores used for regularization; used for parallel processing of input.
- **memsize**: Memory available for regularization (in GB).
- **progress**: show progress bar?

Value

A `sits_cube` object with aggregated images.

Note

Please refer to the `sits` documentation available in [https://e-sensing.github.io/sitsbook/](https://e-sensing.github.io/sitsbook/) for detailed examples.

The "roi" parameter defines a region of interest. It can be an sf_object, a shapefile, or a bounding box vector with named XY values ("xmin", "xmax", "ymin", "ymax") or named lat/long values ("lat_min", "lat_max", "long_min", "long_max"). The `sits_regularize` function will crop the images that contain the roi region.

The aggregation method used in `sits_regularize` sorts the images based on cloud cover, where images with the fewest clouds at the top of the stack. Once the stack of images is sorted, the method uses the first valid value to create the temporal aggregation.

The input (non-regular) ARD cube needs to include the cloud band for the regularization to work.

References


Examples

```r
if (sits_run_examples()) {
 # define a non-regular Sentinel-2 cube in AWS
 s2_cube_open <- sits_cube(
 source = "AWS",
 collection = "SENTINEL-S2-L2A-COGS",
 tiles = c("20LKP", "20LLP"),
 bands = c("B8A", "SCL"),
 start_date = "2018-10-01",
 end_date = "2018-11-01"
)
```
# Create a directory to store the regularized images
if (!dir.exists(dir_images)) {
  dir.create(dir_images)
}

# Regularize the cube
rg_cube <- sits_regularize(
  cube = s2_cube_open,
  output_dir = dir_images,
  res = 60,
  period = "P16D",
  multicores = 2,
  memsize = 16
)

---

**sits_resnet**  
*Train ResNet classification models*

**Description**

Use a ResNet architecture for classifying image time series. The ResNet (or deep residual network) was proposed by a team in Microsoft Research for 2D image classification. ResNet tries to address the degradation of accuracy in a deep network. The idea is to replace a deep network with a combination of shallow ones. In the paper by Fawaz et al. (2019), ResNet was considered the best method for time series classification, using the UCR dataset. Please refer to the paper for more details.

The R-torch version is based on the code made available by Zhiguang Wang, author of the original paper. The code was developed in python using keras. https://github.com/cauchyturing (repo: UCR_Time_Series_Classification_Deep_Learning_Baseline)

The R-torch version also considered the code by Ignacio Oguiza, whose implementation is available at https://github.com/timeseriesAI/tsai/blob/main/tsai/models/ResNet.py.

There are differences between Wang’s Keras code and Oguiza torch code. In this case, we have used Wang’s keras code as the main reference.

**Usage**

```r
sits_resnet(
 samples = NULL,
 samples_validation = NULL,
 blocks = c(64, 128, 128),
 kernels = c(7, 5, 3),
 epochs = 100,
 batch_size = 64,
 validation_split = 0.2,
 optimizer = torchopt::optim_adamw,
```
```r
opt_hparams = list(
 lr = 0.001, eps = 1e-08, weight_decay = 1e-06),
 lr_decay_epochs = 1,
 lr_decay_rate = 0.95,
 patience = 20,
 min_delta = 0.01,
 verbose = FALSE
)
```

**Arguments**

- `samples` - Time series with the training samples.
- `samples_validation` - Time series with the validation samples. If the `samples_validation` parameter is provided, the `validation_split` parameter is ignored.
- `blocks` - Number of 1D convolutional filters for each block of three layers.
- `kernels` - Size of the 1D convolutional kernels.
- `epochs` - Number of iterations to train the model. For each layer of each block.
- `batch_size` - Number of samples per gradient update.
- `validation_split` - Fraction of training data to be used as validation data.
- `optimizer` - Optimizer function to be used.
- `opt_hparams` - Hyperparameters for optimizer: `lr`: Learning rate of the optimizer `eps`: Term added to the denominator to improve numerical stability. `weight_decay`: L2 regularization
  - `lr_decay_epochs` - Number of epochs to reduce learning rate.
  - `lr_decay_rate` - Decay factor for reducing learning rate.
  - `patience` - Number of epochs without improvements until training stops.
  - `min_delta` - Minimum improvement in loss function to reset the patience counter.
  - `verbose` - Verbosity mode (TRUE/FALSE). Default is FALSE.

**Value**

A fitted model to be used for classification.

**Note**

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

**Author(s)**

Gilberto Camara, <gilberto.camara@inpe.br>
Rolf Simoes, <rolf.simoes@inpe.br>
Felipe Souza, <lipecaso@gmail.com>
Alber Sanchez, <alber.ipia@inpe.br>

Charlotte Pelletier, <charlotte.pelletier@univ-ubs.fr>

Daniel Falbel, <dfalbel@gmail.com>

References


Examples

```r
if (sits_run_examples()) {
 # select a set of samples
 samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
 # create a ResNet model
 torch_model <- sits_train(samples_ndvi, sits_resnet())
 # plot the model
 plot(torch_model)
 # create a data cube from local files
 data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
 cube <- sits_cube(
 source = "BDC",
 collection = "MOD13Q1-6",
 data_dir = data_dir,
 delim = ",",
 parse_info = c("X1", "X2", "tile", "band", "date")
)
 # classify a data cube
 probs_cube <- sits_classify(data = cube, ml_model = torch_model)
 # plot the probability cube
 plot(probs_cube)
 # smooth the probability cube using Bayesian statistics
 bayes_cube <- sits_smooth(probs_cube)
 # plot the smoothed cube
 plot(bayes_cube)
 # label the probability cube
 label_cube <- sits_label_classification(bayes_cube)
 # plot the labelled cube
 plot(label_cube)
}
```
sits_rfor  

Train random forest models

Description

Use Random Forest algorithm to classify samples. This function is a front-end to the "randomForest" package. Please refer to the documentation in that package for more details.

Usage

sits_rfor(samples = NULL, num_trees = 120, mtry = NULL, ...)

Arguments

- `samples`: Time series with the training samples.
- `num_trees`: Number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times (default: 120).
- `mtry`: Number of variables randomly sampled as candidates at each split (default: NULL - use default value of randomForest::randomForest() function, i.e. floor(sqrt(features))).
- `...`: Other parameters to be passed to ‘randomForest::randomForest’ function.

Value

Model fitted to input data (to be passed to `sits_classify`).

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)

Alexandre Ywata de Carvalho, <alexandre.ywata@ipea.gov.br>
Rolf Simoes, <rolf.simoes@inpe.br>
Gilberto Camara, <gilberto.camara@inpe.br>

Examples

```r
if (sits_run_examples()) {
 # Example of training a model for time series classification
 # Retrieve the samples for Mato Grosso
 # train a random forest model
 rf_model <- sits_train(samples_modis_4bands, ml_method = sits_rfor(mtry = 20))
 # select the bands to classify the point
 sample_bands <- sits_bands(samples_modis_4bands)
```
sits_run_examples

Informs if sits examples should run

Description
This function informs if sits examples should run. This is useful to avoid running slow examples in CRAN environment.

Usage
sits_run_examples()

Value
A logical value

Examples
if (sits_run_examples()) {
  # set examples to FALSE
  sits_config(run_examples = FALSE)
  isFALSE(sits_run_examples())
  # recover config state
  sits_config(run_examples = TRUE)
}

sits_run_tests

Informs if sits tests should run

Description
This function informs if sits test should run. Useful to avoid running slow tests in CRAN environment. Behaviour controlled by environmental variable R_CONFIG_ACTIVE_TESTS

Usage
sits_run_tests()
sits_sample

Sample a percentage of a time series

Description

Takes a sits tibble with different labels and returns a new tibble. For a given field as a group criterion, this new tibble contains a given number or percentage of the total number of samples per group. Parameter n: number of random samples. Parameter frac: a fraction of random samples. If n is greater than the number of samples for a given label, that label will be sampled with replacement. Also, if frac > 1, all sampling will be done with replacement.

Usage

sits_sample(data, n = NULL, frac = NULL, oversample = TRUE)

Arguments

data      Input sits tibble.

n          Number of samples to pick from each group of data.

frac       Percentage of samples to pick from each group of data.

oversample Oversample classes with small number of samples?

Value

A sits tibble with a fixed quantity of samples.
Author(s)
Rolf Simoes, <rolf.simoes@inpe.br>

Examples

# Retrieve a set of time series with 2 classes
data(cerrado_2classes)
# Print the labels of the resulting tibble
sits_labels(cerrado_2classes)
# Samples the data set
data <- sits_sample(cerrado_2classes, n = 10)
# Print the labels of the resulting tibble
sits_labels(data)

sits_select
Filter bands on a data set (tibble or cube)

Description
Filter only the selected bands from a tibble or a data cube.

Usage

sits_select(data, bands, ...)

## S3 method for class 'sits'
sits_select(data, bands, ...)

## S3 method for class 'sits_cube'
sits_select(data, bands, ..., tiles = NULL)

## S3 method for class 'patterns'
sits_select(data, bands, ...)

Arguments

- data: A sits tibble or data cube.
- bands: Character vector with the names of the bands.
- ...: Additional parameters to be provided in the select function.
- tiles: Character vector with the names of the tiles.

Value
For sits tibble, returns a sits tibble with the selected bands. For data cube, a data cube with the selected bands.
Author(s)
Rolf Simoes, <rolf.simoes@inpe.br>

Examples

# Retrieve a set of time series with 2 classes
data(cerrado_2classes)
# Print the original bands
sits_bands(cerrado_2classes)
# Select only the NDVI band
data <- sits_select(cerrado_2classes, bands = c("NDVI"))
# Print the labels of the resulting tibble
sits_bands(data)

sits_smooth
Smooth probability cubes with spatial predictors

Description
Takes a set of classified raster layers with probabilities, whose metadata is created by sits_cube, and applies a smoothing function. There are three options, defined by the "type" parameter:

- "bayes": Use a bayesian smoother
- "bilateral": Use a bilateral smoother

Usage

sits_smooth(cube, type = "bayes", ...)

## S3 method for class 'bayes'
sits_smooth(
  cube,
  type = "bayes",
  ..., 
  window_size = 5,
  smoothness = 20,
  covar = FALSE,
  multicores = 2,
  memsize = 4,
  output_dir = ".",
  version = "v1"
)

## S3 method for class 'bilateral'
sits_smooth(
  cube,
sits_smooth

```r
 type = "bilateral",
 ...
 window_size = 5,
 sigma = 8,
 tau = 0.1,
 multicores = 2,
 memsize = 4,
 output_dir = ".",
 version = "v1"
)
```

**Arguments**

- **cube** Probability data cube
- **type** Type of smoothing
- **...** Parameters for specific functions
- **window_size** Size of the neighbourhood.
- **smoothness** Estimated variance of logit of class probabilities (Bayesian smoothing parameter). It can be either a matrix or a scalar.
- **covar** a logical argument indicating if a covariance matrix must be computed as the prior covariance for bayesian smoothing.
- **multicores** Number of cores to run the smoothing function
- **memsize** Maximum overall memory (in GB) to run the smoothing.
- **output_dir** Output directory for image files
- **version** Version of resulting image (in the case of multiple tests)
- **sigma** Standard deviation of the spatial Gaussian kernel (for bilateral smoothing)
- **tau** Standard deviation of the class probs value (for bilateral smoothing)

**Value**

A tibble with metadata about the output raster objects.

**Note**

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

**Author(s)**

Gilberto Camara, <gilberto.camara@inpe.br>
Rolf Simoes, <rolf.simoes@inpe.br>

**References**

Examples

```r
if (sits_run_examples()) {
 # select a set of samples
 samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
 # create a ResNet model
 torch_model <- sits_train(samples_ndvi, sits_resnet())
 # plot the model
 plot(torch_model)
 # create a data cube from local files
 data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
 cube <- sits_cube(
 source = "BDC",
 collection = "MOD13Q1-6",
 data_dir = data_dir,
 delim = ",",
 parse_info = c("X1", "X2", "tile", "band", "date")
)
 # classify a data cube
 probs_cube <- sits_classify(data = cube, ml_model = torch_model)
 # plot the probability cube
 plot(probs_cube)
 # smooth the probability cube using Bayesian statistics
 bayes_cube <- sits_smooth(probs_cube)
 # plot the smoothed cube
 plot(bayes_cube)
 # label the probability cube
 label_cube <- sits_label_classification(bayes_cube)
 # plot the labelled cube
 plot(label_cube)
}
```

---

`sits_som`  
*Use SOM for quality analysis of time series samples*

Description

These functions use self-organized maps to perform quality analysis in satellite image time series.

`sits_som_map()` creates a SOM map, where high-dimensional data is mapped into a two-dimensional map, keeping the topological relations between data patterns. Each sample is assigned to a neuron, and neurons are placed in the grid based on similarity.

`sits_som_evaluate_cluster()` analyses the neurons of the SOM map, and builds clusters based on them. Each cluster is a neuron or a set of neurons categorized with the same label. It produces a tibble with the percentage of mixture of classes in each cluster.

`sits_som_clean_samples()` evaluates the quality of the samples based on the results of the SOM map. The algorithm identifies noisy samples, using 'prior_threshold' for the prior probability and 'posterior_threshold' for the posterior probability. Each sample receives an evaluation tag according to the following rule: (a) If the prior probability is < 'prior_threshold', the sample is tagged as "remove"; (b) If the prior probability is >= 'prior_threshold' and the posterior probability is
sits_som

>='posterior_threshold', the sample is tagged as "clean"; (c) If the prior probability is >= 'posterior_threshold' and the posterior probability is < 'posterior_threshold', the sample is tagged as "analyze" for further inspection. The user can define which tagged samples will be returned using the "keep" parameter, with the following options: "clean", "analyze", "remove".

Usage

```r
sits_som_map(
 data,
 grid_xdim = 10,
 grid_ydim = 10,
 alpha = 1,
 rlen = 100,
 distance = "euclidean",
 som_radius = 2,
 mode = "online"
)
```

```r
sits_som_clean_samples(
 som_map,
 prior_threshold = 0.6,
 posterior_threshold = 0.6,
 keep = c("clean", "analyze")
)
```

```r
sits_som_evaluate_cluster(som_map)
```

Arguments

data A tibble with samples to be clustered.
grid_xdim X dimension of the SOM grid (default = 25).
grid_ydim Y dimension of the SOM grid.
alpha Starting learning rate (decreases according to number of iterations).
rlen Number of iterations to produce the SOM.
distance The type of similarity measure (distance).
som_radius Radius of SOM neighborhood.
mode Type of learning algorithm (default = "online").
som_map Object returned by `sits_som_map`.
prior_threshold Threshold of conditional probability (frequency of samples assigned to the same SOM neuron).
posterior_threshold Threshold of posterior probability (influenced by the SOM neighborhood).
keep Which types of evaluation to be maintained in the data.
Value

`sits_som_map()` produces a list with three members: (1) the samples tibble, with one additional column indicating to which neuron each sample has been mapped; (2) the Kohonen map, used for plotting and cluster quality measures; (3) a tibble with the labelled neurons, where each class of each neuron is associated to two values: (a) the prior probability that this class belongs to a cluster based on the frequency of samples of this class allocated to the neuron; (b) the posterior probability that this class belongs to a cluster, using data for the neighbours on the SOM map.

`sits_som_clean_samples()` produces a sits tibble with an two additional columns. The first indicates if each sample is clean, should be analyzed or should be removed. The second indicates the posterior probability of the sample.

`sits_som_evaluate_cluster()` produces a tibble with the clusters found by the SOM map. For each cluster, it provides the percentage of classes inside it.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)

Lorena Alves, <lorena.santos@inpe.br>
Karine Ferreira. <karine.ferreira@inpe.br>

References


Examples

```r
if (sits_run_examples()) {
 # create a som map
 som_map <- sits_som_map(samples_modis_4bands)
 # plot the som map
 plot(som_map)
 # evaluate the som map and create clusters
 clusters_som <- sits_som_evaluate_cluster(som_map)
 # plot the cluster evaluation
 plot(clusters_som)
 # clean the samples
 new_samples <- sits_som_clean_samples(som_map)
}
```
Train support vector machine models

Description

This function receives a tibble with a set of attributes X for each observation Y. These attributes are the values of the time series for each band. The SVM algorithm is used for multiclass-classification. For this purpose, it uses the "one-against-one" approach, in which k(k-1)/2 binary classifiers are trained; the appropriate class is found by a voting scheme. This function is a front-end to the "svm" method in the "e1071" package. Please refer to the documentation in that package for more details.

Usage

sits_svm(
  samples = NULL,
  formula = sits_formula_linear(),
  scale = FALSE,
  cachesize = 1000,
  kernel = "radial",
  degree = 3,
  coef0 = 0,
  cost = 10,
  tolerance = 0.001,
  epsilon = 0.1,
  cross = 10,
  ...
)

Arguments

samples Time series with the training samples.
formula Symbolic description of the model to be fit. (default: sits_formula_linear).
scale Logical vector indicating the variables to be scaled.
cachesize Cache memory in MB (default = 1000).
kernel Kernel used in training and predicting. options: "linear", "polynomial", "radial", "sigmoid" (default: "radial").
degree Exponential of polynomial type kernel (default: 3).
coef0 Parameter needed for kernels of type polynomial and sigmoid (default: 0).
cost Cost of constraints violation (default: 10).
tolerance Tolerance of termination criterion (default: 0.001).
epsilon Epsilon in the insensitive-loss function (default: 0.1).
cross Number of cross validation folds applied to assess the quality of the model (default: 10).
... Other parameters to be passed to e1071::svm function.
Train a model using Temporal Self-Attention Encoder

Description

Implementation of Temporal Attention Encoder (TAE) for satellite image time series classification.

This function is based on the paper by Vivien Garnot referenced below and code available on github at https://github.com/VSainteuf/pytorch-psetae.

We also used the code made available by Maja Schneider in her work with Marco Körner referenced below and available at https://github.com/maja601/RC2020-psetae.

If you use this method, please cite Garnot’s and Schneider’s work.

Value

Model fitted to input data (to be passed to sits_classify)

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)

Alexandre Ywata de Carvalho, <alexandre.ywata@ipea.gov.br>
Rolf Simoes, <rolf.simoes@inpe.br>
Gilberto Camara, <gilberto.camara@inpe.br>

Examples

```r
if (sits_run_examples()) {
 # Example of training a model for time series classification
 # Retrieve the samples for Mato Grosso
 # train an SVM model
 ml_model <- sits_train(samples_modis_4bands, ml_method = sits_svm)
 # select the bands to classify the point
 sample_bands <- sits_bands(samples_modis_4bands)
 point_4bands <- sits_select(point_mt_6bands, bands = sample_bands)
 # classify the point
 point_class <- sits_classify(point_4bands, ml_model)
 plot(point_class)
}
```
Usage

```r
sits_tae(
 samples = NULL,
 samples_validation = NULL,
 epochs = 150,
 batch_size = 64,
 validation_split = 0.2,
 optimizer = torchopt::optim_adamw,
 opt_hparams = list(lr = 0.001, eps = 1e-08, weight_decay = 1e-06),
 lr_decay_epochs = 1,
 lr_decay_rate = 0.95,
 patience = 20,
 min_delta = 0.01,
 verbose = FALSE
)
```

Arguments

- **samples**
  Time series with the training samples.
- **samples_validation**
  Time series with the validation samples. If the `samples_validation` parameter is provided, the `validation_split` parameter is ignored.
- **epochs**
  Number of iterations to train the model.
- **batch_size**
  Number of samples per gradient update.
- **validation_split**
  Number between 0 and 1. Fraction of training data to be used as validation data.
- **optimizer**
  Optimizer function to be used.
- **opt_hparams**
  Hyperparameters for optimizer: `lr` : Learning rate of the optimizer `eps` : Term added to the denominator to improve numerical stability. `weight_decay` : L2 regularization
- **lr_decay_epochs**
  Number of epochs to reduce learning rate.
- **lr_decay_rate**
  Decay factor for reducing learning rate.
- **patience**
  Number of epochs without improvements until training stops.
- **min_delta**
  Minimum improvement to reset the patience counter.
- **verbose**
  Verbosity mode (TRUE/FALSE). Default is FALSE.

Value

A fitted model to be used for classification.

Note

Please refer to the sits documentation available in `<https://e-sensing.github.io/sitsbook/>` for detailed examples.
Author(s)

Charlotte Pelletier, <charlotte.pelletier@univ-ubs.fr>
Gilberto Camara, <gilberto.camara@inpe.br>
Rolf Simoes, <rolf.simoes@inpe.br>

References


Examples

```r
if (sits_run_examples()) {
 # select a set of samples
 samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
 # create a TAE model
 torch_model <- sits_train(samples_ndvi, sits_tae())
 # plot the model
 plot(torch_model)
 # create a data cube from local files
 data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
 cube <- sits_cube(
 source = "BDC",
 collection = "MOD13Q1-6",
 data_dir = data_dir,
 delim = "-",
 parse_info = c("X1", "X2", "tile", "band", "date")
)
 # classify a data cube
 probs_cube <- sits_classify(data = cube, ml_model = torch_model)
 # plot the probability cube
 plot(probs_cube)
 # smooth the probability cube using Bayesian statistics
 bayes_cube <- sits_smooth(probs_cube)
 # plot the smoothed cube
 plot(bayes_cube)
 # label the probability cube
 label_cube <- sits_label_classification(bayes_cube)
 # plot the labelled cube
 plot(label_cube)
}
```
Description

Use a TempCNN algorithm to classify data, which has two stages: a 1D CNN and a multi-layer perceptron. Users can define the depth of the 1D network, as well as the number of perceptron layers.

This function is based on the paper by Charlotte Pelletier referenced below. If you use this method, please cite the original tempCNN paper.

The torch version is based on the code made available by the BreizhCrops team: Marc Russwurm, Charlotte Pelletier, Marco Korner, Maximilian Zollner. The original python code is available at the website https://github.com/dl4sits/BreizhCrops. This code is licensed as GPL-3.

Usage

```r
sits_tempcnn(
 samples = NULL,
 samples_validation = NULL,
 cnn_layers = c(128, 128, 128),
 cnn_kernels = c(7, 7, 7),
 cnn_dropout_rates = c(0.2, 0.2, 0.2),
 dense_layer_nodes = 256,
 dense_layer_dropout_rate = 0.5,
 epochs = 150,
 batch_size = 64,
 validation_split = 0.2,
 optimizer = torchopt::optim_adamw,
 opt_hparams = list(lr = 0.005, eps = 1e-08, weight_decay = 1e-06),
 lr_decay_epochs = 1,
 lr_decay_rate = 0.95,
 patience = 20,
 min_delta = 0.01,
 verbose = FALSE
)
```

Arguments

- **samples** Time series with the training samples.
- **samples_validation** Time series with the validation samples. If the `samples_validation` parameter is provided, the `validation_split` parameter is ignored.
- **cnn_layers** Number of 1D convolutional filters per layer.
- **cnn_kernels** Size of the 1D convolutional kernels.
- **cnn_dropout_rates** Dropout rates for 1D convolutional filters.
dense_layer_nodes
Number of nodes in the dense layer.

dense_layer_dropout_rate
Dropout rate (0,1) for the dense layer.

epochs
Number of iterations to train the model.

batch_size
Number of samples per gradient update.

validation_split
Fraction of training data to be used for validation.

optimizer
Optimizer function to be used.

opt_hparams
Hyperparameters for optimizer: lr : Learning rate of the optimizer eps: Term added to the denominator to improve numerical stability. weight_decay: L2 regularization

lr_decay_epochs
Number of epochs to reduce learning rate.

lr_decay_rate
Decay factor for reducing learning rate.

patience
Number of epochs without improvements until training stops.

min_delta
Minimum improvement in loss function to reset the patience counter.

verbose
Verbosity mode (TRUE/FALSE). Default is FALSE.

Value
A fitted model to be used for classification.

Note
Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)
Charlotte Pelletier, <charlotte.pelletier@univ-ubs.fr>
Gilberto Camara, <gilberto.camara@inpe.br>
Rolf Simoes, <rolf.simoes@inpe.br>
Felipe Souza, <lipecaso@gmail.com>

References
Examples

```r
if (sits_run_examples()) {
 # select a set of samples
 samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
 # create a TempCNN model
 torch_model <- sits_train(samples_ndvi, sits_tempcnn())
 # plot the model
 plot(torch_model)
 # create a data cube from local files
 data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
 cube <- sits_cube(
 source = "BDC",
 collection = "MOD13Q1-6",
 data_dir = data_dir,
 delim = ",",
 parse_info = c("X1", "X2", "tile", "band", "date")
)
 # classify a data cube
 probs_cube <- sits_classify(data = cube, ml_model = torch_model)
 # plot the probability cube
 plot(probs_cube)
 # smooth the probability cube using Bayesian statistics
 bayes_cube <- sits_smooth(probs_cube)
 # plot the smoothed cube
 plot(bayes_cube)
 # label the probability cube
 label_cube <- sits_label_classification(bayes_cube)
 # plot the labelled cube
 plot(label_cube)
}
```

---

`sits_timeline`  
*Get timeline of a cube or a set of time series*

Description

This function returns the timeline for a given data set, either a set of time series, a data cube, or a trained model.

Usage

`sits_timeline(data)`

Arguments

data  
either a sits tibble, a data cube, or a trained model.

Value

Timeline of sample set or of data cube.
Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

sits_timeline(samples_modis_4bands)

sits_time_series

Get the time series for a row of a sits tibble

Description

Returns the time series associated to a row of the a sits tibble

Usage

sits_time_series(data)

Arguments

data A sits tibble with one or more time series.

Value

A tibble in sits format with the time series.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

sits_time_series(cerrado_2classes)
sits_to_csv

Export a sits tibble metadata to the CSV format

Description

Converts metadata from a sits tibble to a CSV file. The CSV file will not contain the actual time series. Its columns will be the same as those of a CSV file used to retrieve data from ground information ("latitude", "longitude", "start_date", "end_date", "cube", "label").

Usage

sits_to_csv(data, file)

Arguments

data Time series.
file Name of the exported CSV file.

Value
No return value, called for side effects.

Author(s)
Gilberto Camara, <gilberto.camara@inpe.br>

Examples

csv_file <- paste0(tempdir(), "/cerrado_2classes.csv")
sits_to_csv(cerrado_2classes, file = csv_file)

sits_to_xlsx

Save accuracy assessments as Excel files

Description

Saves confusion matrices as Excel spreadsheets. This function takes the a list of accuracy assessments generated by sits_accuracy and saves them in an Excel spreadsheet.

Usage

sits_to_xlsx(acc_lst, file, data = NULL)
sits_train

Train classification models

Arguments

- `acc_lst` A list of accuracy statistics
- `file` The file where the XLSX data is to be saved.
- `data` (optional) Print information about the samples

Value

No return value, called for side effects.

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

```r
if (sits_run_examples()) {
 # A dataset containing a tibble with time series samples
 # for the Mato Grosso state in Brasil
 # create a list to store the results
 results <- list()

 # accuracy assessment lightTAE
 acc_ltae <- sits_kfold_validate(samples_modis_4bands,
 folds = 5,
 multicores = 1,
 ml_method = sits_lighttae()
)
 # use a name
 acc_ltae$name <- "LightTAE"

 # put the result in a list
 results[[length(results) + 1]] <- acc_ltae

 # save to xlsx file
 sits_to_xlsx(results, file = "./accuracy_mato_grosso_dl.xlsx")
}
```
Description

Given a tibble with a set of distance measures, returns trained models. Currently, sits supports the following models: 'svm' (see sits_svm), random forests (see sits_rfor), extreme gradient boosting (see sits_xgboost), and different deep learning functions, including multi-layer perceptrons (see sits_mlp), 1D convolution neural networks sits_tempcnn, deep residual networks sits_resnet and self-attention encoders sits_lighttae

Usage

sits_train(samples, ml_method = sits_svm())

Arguments

samples
Time series with the training samples.
ml_method
Machine learning method.

Value

Model fitted to input data to be passed to sits_classify

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>
Gilberto Camara, <gilberto.camara@inpe.br>
Alexandre Ywata de Carvalho, <alexandre.ywata@ipea.gov.br>

Examples

# Retrieve the set of samples for Mato Grosso (provided by EMBRAPA)
# fit a training model (RFOR model)
samples <- sits_select(samples_modis_4bands, bands = c("NDVI"))
ml_model <- sits_train(samples, sits_rfor(num_trees = 50))
# get a point and classify the point with the ml_model
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
class <- sits_classify(point_ndvi, ml_model)

sits_tuning Tuning machine learning models hyper-parameters

Description

Machine learning models use stochastic gradient descent (SGD) techniques to find optimal solutions. To perform SGD, models use optimization algorithms which have hyperparameters that have to be adjusted to achieve best performance for each application.

This function performs a random search on values of selected hyperparameters. Instead of performing an exhaustive test of all parameter combinations, it selecting them randomly. Validation
sits_tuning is done using an independent set of samples or by a validation split. The function returns the best hyper-parameters in a list.

Hyper-parameters passed to params parameter should be passed by calling sits_tuning_hparams() function.

Usage

sits_tuning(
  samples,
  samples_validation = NULL,
  validation_split = 0.2,
  ml_method = sits_tempcnn(),
  params = sits_tuning_hparams(optimizer = torchopt::optim_adamw, opt_hparams = list(lr = beta(0.3, 5))),
  trials = 30,
  multicores = 2,
  progress = FALSE
)

Arguments

samples | Time series set to be validated.
samples_validation | Time series set used for validation.
validation_split | Percent of original time series set to be used for validation (if samples_validation is NULL)
ml_method | Machine learning method.
params | List with hyper parameters to be passed to ml_method. User can use uniform, choice, randint, normal, lognormal, loguniform, and beta distribution functions to randomize parameters.
trials | Number of random trials to perform the random search.
multicores | Number of cores to process in parallel
progress | Show progress bar?

Value

A tibble containing all parameters used to train on each trial ordered by accuracy

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

References

Examples

```r
if (sits_run_examples()) {
 # find best learning rate parameters for TempCNN
 tuned <- sits_tuning(
 samples_modis_4bands,
 ml_method = sits_tempcnn(),
 params = sits_tuning_hparams(
 optimizer = choice(
 torchopt::optim_adamw
),
 opt_hparams = list(
 lr = beta(0.3, 5)
)
),
 trials = 4,
 multicores = 2,
 progress = FALSE
)
 # obtain best accuracy, kappa and best_lr
 accuracy <- tuned$accuracy[[1]]
 kappa <- tuned$kappa[[1]]
 best_lr <- tuned$opt_hparams[[1]]$lr
}
```

sits_tuning_hparams  Tuning machine learning models hyper-parameters

Description

This function allow user building the hyper-parameters space used by `sits_tuning()` function search randomly the best parameter combination.

User should pass the possible values for hyper-parameters as constant or by calling the following random functions:

- `uniform(min = 0, max = 1, n = 1)`: returns random numbers from a uniform distribution with parameters min and max.
- `choice(..., replace = TRUE, n = 1)`: returns random objects passed to ... with replacement or not (parameter replace).
- `randint(min, max, n = 1)`: returns random integers from a uniform distribution with parameters min and max.
- `normal(mean = 0, sd = 1, n = 1)`: returns random numbers from a normal distribution with parameters min and max.
- `lognormal(meanlog = 0, sdlog = 1, n = 1)`: returns random numbers from a lognormal distribution with parameters min and max.
- `loguniform(minlog = 0, maxlog = 1, n = 1)`: returns random numbers from a loguniform distribution with parameters min and max.
**sits_twdtw_classify**

Find matches between patterns and time series using **TWDTW**

**Description**

Returns the results of the TWDTW matching function. The TWDTW matching function compares the values of a satellite image time series with the values of known patterns and tries to match each pattern to a part of the time series.

- **beta(shape1, shape2, n = 1)**: returns random numbers from a beta distribution with parameters min and max.

These functions accepts n parameter to indicate how many values should be returned.

**Usage**

`sits_tuning_hparams(...)`

**Arguments**

...  

Used to prepare hyper-parameter space

**Value**

A list containing the hyper-parameter space to be passed to `sits_tuning()`’s `params` parameter.

**Examples**

```r
if (sits_run_examples()) {
 # find best learning rate parameters for TempCNN
 tuned <- sits_tuning(
 samples_modis_4bands,
 ml_method = sits_tempcnn(),
 params = sits_tuning_hparams(
 optimizer = choice(
 torchopt::optim_adamw,
 torchopt::optim_yogi
),
 opt_hparams = list(
 lr = beta(0.3, 5)
),
 trials = 4,
 multicores = 2,
 progress = FALSE
),
 trials = 4,
 multicores = 2,
 progress = FALSE
)
}
```
The TWDTW (time-weighted dynamical time warping) is a version of the Dynamic Time Warping method for LUCC mapping using a sequence of multi-band satellite images. Methods based on dynamic time warping are flexible to handle irregular sampling and out-of-phase time series, and they have achieved significant results in time series analysis. In contrast to standard DTW, the TWDTW method is sensitive to seasonal changes of natural and cultivated vegetation types. It also considers inter-annual climatic and seasonal variability.

Usage

```
sits_twdtw_classify(
 samples,
 patterns,
 bands = NULL,
 dist_method = "euclidean",
 alpha = -0.1,
 beta = 100,
 theta = 0.5,
 span = 0,
 keep = FALSE,
 start_date = NULL,
 end_date = NULL,
 interval = "12 month",
 overlap = 0.5,
 .plot = TRUE
)
```

Arguments

- **samples**: A sits tibble to be classified using TWDTW.
- **patterns**: Patterns to be used for classification.
- **bands**: Names of the bands to be used for classification.
- **dist_method**: Name of the method to derive the local cost matrix.
- **alpha**: Steepness of the logistic function used for temporal weighting (a double value).
- **beta**: Midpoint (in days) of the logistic function.
- **theta**: Relative weight of the time distance compared to the dtw distance.
- **span**: Minimum number of days between two matches of the same pattern in the time series (approximate).
- **keep**: Keep internal values for plotting matches?
- **start_date**: Start date of the classification period.
- **end_date**: End date of the classification period.
- **interval**: Period between two classifications in months.
- **overlap**: Minimum overlapping between one match and the interval of classification.
- **.plot**: Plot the output?
Value

A dtwSat S4 object with the matches.

Author(s)

Victor Maus, <vwmaus1@gmail.com>
Gilberto Camara, <gilberto.camara@inpe.br>

References


Examples

```r
if (sits_run_examples()){
 # Retrieve the set of samples for the Mato Grosso region
 samples <- sits_select(samples_modis_4bands, bands = c("NDVI", "EVI"))

 # get a point and classify the point with the ml_model
 point <- sits_select(point_mt_6bands, bands = c("NDVI", "EVI"))

 # plot the series
 plot(point)

 # obtain a set of patterns for these samples
 patterns <- sits_patterns(samples)
 plot(patterns)

 # find the matches between the patterns and the time series
 # using the TWDTW algorithm
 # (uses the dtwSat R package)
 matches <- sits_twdtw_classify(point, patterns,
 bands = c("NDVI", "EVI"),
 alpha = -0.1, beta = 100, theta = 0.5, keep = TRUE
)
}
```

sits_uncertainty

Estimate classification uncertainty based on probs cube

Description

Calculate the uncertainty cube based on the probabilities produced by the classifier. Takes a probability cube as input. The uncertainty measure is relevant in the context of active learning, and helps to increase the quantity and quality of training samples by providing information about the confidence of the model. The supported types of uncertainty are 'entropy', 'least', 'margin' and 'ratio'.
'entropy' is the difference between all predictions expressed as entropy, 'least' is the difference between 100 prediction, 'margin' is the difference between the two most confident predictions, and 'ratio' is the ratio between the two most confident predictions.

Usage

```r
sits_uncertainty(
 cube,
 type = "least",
 ...,
 multicores = 2,
 memsize = 8,
 output_dir = ".",
 version = "v1"
)
```

```r
S3 method for class 'entropy'
sits_uncertainty(
 cube,
 type = "entropy",
 ...,
 window_size = 5,
 window_fn = "median",
 multicores = 2,
 memsize = 4,
 output_dir = ".",
 version = "v1"
)
```

```r
S3 method for class 'least'
sits_uncertainty(
 cube,
 type = "least",
 ...,
 window_size = 5,
 window_fn = "median",
 multicores = 2,
 memsize = 4,
 output_dir = ".",
 version = "v1"
)
```

```r
S3 method for class 'margin'
sits_uncertainty(
 cube,
 type = "margin",
 ...,
 window_size = 5,
 window_fn = "median",
```
multicores = 2,
memsize = 4,
output_dir = ".",
version = "v1"
)

## S3 method for class 'ratio'
sits_uncertainty(
cube,
type = "ratio",
...,  
window_size = 5,
window_fn = "median",
multicores = 2,
memsize = 4,
output_dir = ".",
version = "v1"
)

Arguments

cube Probability data cube.
type Method to measure uncertainty. See details.
... Parameters for specific functions.
multicores Number of cores to run the function.
memsize Maximum overall memory (in GB) to run the function.
output_dir Output directory for image files.
version Version of resulting image. (in the case of multiple tests)
window_size Size of neighborhood to calculate entropy.
window_fn Function to be applied in entropy calculation.

Value

An uncertainty data cube

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
Rolf Simoes, <rolf.simoes@inpe.br>
Alber Sanchez, <alber.ipia@inpe.br>
sits_uncertainty_sampling

References


Examples

```r
if (sits_run_examples()) {
 # select a set of samples
 samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
 # create a random forest model
 rfor_model <- sits_train(samples_ndvi, sits_rfor())
 # create a data cube from local files
 data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
 cube <- sits_cube(
 source = "BDC",
 collection = "MOD13Q1-6",
 data_dir = data_dir,
 delim = ".",
 parse_info = c("X1", "X2", "tile", "band", "date")
)
 # classify a data cube
 probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
 # calculate uncertainty
 uncert_cube <- sits_uncertainty(probs_cube)
 # plot the resulting uncertainty cube
 plot(uncert_cube)
}
```

sits_uncertainty_sampling

_Suggest samples for enhancing classification accuracy_

Description

Suggest samples for regions of high uncertainty as predicted by the model. The function selects data points that have confused an algorithm. These points don’t have labels and need be manually labelled by experts and then used to increase the classification’s training set.

This function is best used in the following context

- 1. Select an initial set of samples.
- 2. Train a machine learning model.
- 3. Build a data cube and classify it using the model.
- 4. Run a Bayesian smoothing in the resulting probability cube.
- 5. Create an uncertainty cube.
- 6. Perform uncertainty sampling.

The Bayesian smoothing procedure will reduce the classification outliers and thus increase the likelihood that the resulting pixels with high uncertainty have meaningful information.
sits_uncertainty_sampling

Usage

sits_uncertainty_sampling(
  uncert_cube,
  n = 100,
  min_uncert = 0.4,
  sampling_window = 10
)

Arguments

uncert_cube  An uncertainty cube. See sits_uncertainty.
n          Number of suggested points.
min_uncert   Minimum uncertainty value to select a sample.
sampling_window
              Window size for collecting points (in pixels). The minimum window size is 10.

Value

A tibble with longitude and latitude in WGS84 with locations which have high uncertainty and meet the minimum distance criteria.

Author(s)

Alber Sanchez, <alber.ipia@inpe.br>
Rolf Simoes, <rolf.s simoes@inpe.br>
Felipe Carvalho, <felipe.carvalho@inpe.br>
Gilberto Camara, <gilberto.camara@inpe.br>

References


Examples

if (sits_run_examples()) {
  # create a data cube
  data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
  cube <- sits_cube(
    source = "BDC",
    collection = "MOD13Q1-6",
    data_dir = data_dir,
    delim = "_",
    parse_info = c("X1", "X2", "tile", "band", "date")
  )
  # build a random forest model
  samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
  rfor_model <- sits_train(samples_ndvi, ml_method = sits_rfor())
}
# classify the cube
probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
# create an uncertainty cube
uncert_cube <- sits_uncertainty(probs_cube)
# obtain a new set of samples for active learning
# the samples are located in uncertain places
new_samples <- sits_uncertainty_sampling(uncert_cube)
}

sits_validate  Validate time series samples

---

Description

One round of cross-validation involves partitioning a sample of data into complementary subsets, performing the analysis on one subset (called the training set), and validating the analysis on the other subset (called the validation set or testing set).

The function takes two arguments: a set of time series with a machine learning model and another set with validation samples. If the validation sample set is not provided, The sample dataset is split into two parts, as defined by the parameter validation_split. The accuracy is determined by the result of the validation test set.

This function returns the confusion matrix, and Kappa values.

Usage

sits_validate(
samples,
samples_validation = NULL,
validation_split = 0.2,
ml_method = sits_rfor()
)

Arguments

samples  Time series set to be validated.
samples_validation  Time series set used for validation.
validation_split  Percent of original time series set to be used for validation (if samples_validation is NULL).
ml_method  Machine learning method.

Value

A caret::confusionMatrix object to be used for validation assessment.
sits\_values

**Author(s)**

Rolf Simoes, <rolf.simoes@inpe.br>
Gilberto Camara, <gilberto.camara@inpe.br>

**Examples**

```r
if (sits_run_examples()){
 conf_matrix \leftarrow\text{\text{\text{\text{\text{\text{\text{sits_validate(cerrado_2classes)}}}}}}
}
```

---

### Description

This function returns the values of a sits tibble (according a specified format). This function is useful to use packages such as ggplot2, dtwclust, or kohonen that require values that are rowwise or colwise organized.

### Usage

```r
sits_values(data, bands = NULL, format = "cases_dates_bands")
```

### Arguments

- **data**
  - A sits tibble with time series for different bands.
- **bands**
  - Bands whose values are to be extracted.
- **format**
  - A string with either "cases\_dates\_bands" or "bands\_cases\_dates" or "bands\_dates\_cases".

### Value

A matrix with values.

### Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

### Examples

```r
Retrieve a set of time series with 2 classes
data(cerrado_2classes)
retrieve the values split by bands and dates
ls1 \leftarrow\text{\text{sits_values(cerrado_2classes}[1:2,]\,},
\text{format = "bands_dates_cases")
retrieve the values split by cases (occurrences)
ls2 \leftarrow\text{\text{sits_values(cerrado_2classes}[1:2,]\,},
\text{format = "cases_dates_bands")
retrieve the values split by bands and cases (occurrences)
ls3 \leftarrow\text{\text{sits_values(cerrado_2classes}[1:2,]\,},
\text{format = "bands_cases_dates")
```
sits_view

View data cubes and samples in leaflet

Description
Uses leaflet to visualize time series, raster cube and classified images

Usage
sits_view(x, ...)

## S3 method for class 'sits'
sits_view(x, ..., legend = NULL, palette = "Harmonic")

## S3 method for class 'som_map'
sits_view(
  x,
  ..., label,
  prob_max = 1,
  prob_min = 0.7,
  legend = NULL,
  palette = "Harmonic"
)

## S3 method for class 'raster_cube'
sits_view(
  x,
  ..., band = NULL,
  red = NULL,
  green = NULL,
  blue = NULL,
  tiles = NULL,
  dates = NULL,
  class_cube = NULL,
  legend = NULL,
  palette = "default"
)

## S3 method for class 'classified_image'
sits_view(x, ..., tiles = NULL, legend = NULL, palette = "default")

## S3 method for class 'probs_cube'
sits_view(x, ...)

## Default S3 method:
sits_view(x, ...)

Arguments

- **x**: Object of class "sits", "raster_cube" or "classified image".
- **...**: Further specifications for `sits_view`.
- **legend**: Named vector that associates labels to colors.
- **palette**: Palette provided in the configuration file.
- **label**: Label from the SOM map to be shown.
- **prob_max**: Maximum a posteriori probability for SOM neuron samples to be shown.
- **prob_min**: Minimum a posteriori probability for SOM neuron samples to be shown.
- **band**: For plotting grey images.
- **red**: Band for red color.
- **green**: Band for green color.
- **blue**: Band for blue color.
- **tiles**: Tiles to be plotted (in case of a multi-tile cube).
- **dates**: Dates to be plotted.
- **class_cube**: Classified cube to be overlayed on top on image.

Value

A leaflet object containing either samples or data cubes embedded in a global map that can be visualized directly in an RStudio viewer.

Note

Please refer to the `sits` documentation available in `<https://e-sensing.github.io/sitsbook/>` for detailed examples.

Author(s)

Gilberto Camara, `<gilberto.camara@inpe.br>`

Examples

```r
if (sits_run_examples()) {
 sits_view(cerrado_2classes)

 data_dir <- system.file("extdata/raster/mod13q1", package = "sits")

 modis_cube <- sits_cube(
 source = "BDC",
 collection = "MOD13Q1-6",
 data_dir = data_dir,
 parse_info = c("X1", "X2", "tile", "band", "date")
)
 # get the timeline
```
timeline <- sits_timeline(modis_cube)
# view the data cube
sits_view(modis_cube,
    band = "NDVI",
    dates = timeline[[1]]
)

samples_ndvi <- sits_select(samples_modis_4bands,
    bands = c("NDVI")
)
rf_model <- sits_train(samples_ndvi, sits_rfor())

modis_probs <- sits_classify(
    data = modis_cube,
    ml_model = rf_model,
    output_dir = tempdir(),
    memsize = 4,
    multicores = 1
)
modis_label <- sits_label_classification(modis_probs,
    output_dir = tempdir()
)

sits_view(modis_label)

sits_view(modis_cube,
    band = "NDVI",
    class_cube = modis_label,
    dates = sits_timeline(modis_cube)[[1]]
)

---

**sits_xgboost**

*Train extreme gradient boosting models*

**Description**

This function uses the extreme gradient boosting algorithm. Boosting iteratively adds basis functions in a greedy fashion so that each new basis function further reduces the selected loss function. This function is a front-end to the methods in the "xgboost" package. Please refer to the documentation in that package for more details.

**Usage**

sits_xgboost(
    samples = NULL,
    learning_rate = 0.15,
    min_split_loss = 1,
    max_depth = 5,
)
min_child_weight = 1,
max_delta_step = 1,
subsample = 0.8,
nfold = 5,
nrounds = 100,
early_stopping_rounds = 20,
verbose = FALSE
)

Arguments

samples Time series with the training samples.
learning_rate Learning rate: scale the contribution of each tree by a factor of $0 < lr < 1$ when it is added to the current approximation. Used to prevent overfitting. Default: 0.15
min_split_loss Minimum loss reduction to make a further partition of a leaf. Default: 1.
max_depth Maximum depth of a tree. Increasing this value makes the model more complex and more likely to overfit. Default: 5.
min_child_weight If the leaf node has a minimum sum of instance weights lower than min_child_weight, tree splitting stops. The larger min_child_weight is, the more conservative the algorithm is. Default: 1.
max_delta_step Maximum delta step we allow each leaf output to be. If the value is set to 0, there is no constraint. If it is set to a positive value, it can help making the update step more conservative. Default: 1.
subsample Percentage of samples supplied to a tree. Default: 0.8.
nfold Number of the subsamples for the cross-validation.
nrounds Number of rounds to iterate the cross-validation (default: 100)
early_stopping_rounds Training with a validation set will stop if the performance doesn’t improve for k rounds.
verbose Print information on statistics during the process

Value

Model fitted to input data (to be passed to sits_classify)

Note

Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>
Gilberto Camara, <gilberto.camara@inpe.br>
References


Examples

```r
if (sits_run_examples()) {
 # Example of training a model for time series classification
 # Retrieve the samples for Mato Grosso
 # train a xgboost model
 ml_model <- sits_train(samples_modis_4bands, ml_method = sits_xgboost)
 # select the bands to classify the point
 sample_bands <- sits_bands(samples_modis_4bands)
 point_4bands <- sits_select(point_mt_6bands, bands = sample_bands)
 # classify the point
 point_class <- sits_classify(point_4bands, ml_model)
 plot(point_class)
}
```

---

%>%

Pipe

Description

Magrittr compound assignment pipe-operator.

Arguments

lh, rhs A visualization and a function to apply to it.

Value

Apply lhs as input to rhs function

‘sits_labels<-‘ Change the labels of a set of time series

Description

Given a sits tibble with a set of labels, renames the labels to the specified in value.
Usage

```r
sits_labels(data) <- value

S3 replacement method for class 'sits'
sits_labels(data) <- value

S3 replacement method for class 'probs_cube'
sits_labels(data) <- value
```

Arguments

- `data`: Data cube or time series.
- `value`: A character vector used to convert labels. Labels will be renamed to the respective value positioned at the labels order returned by `sits_labels`.

Value

A sits tibble with modified labels.

A sits tibble with modified labels.

A probs cube with modified labels.

Author(s)

Rolf Simoes, <rolf.simoes@inpe.br>

Examples

```r
show original samples ("Cerrado" and "Pasture")
sits_labels(cerrado_2classes)
rename label samples to "Savanna" and "Grasslands"
sits_labels(cerrado_2classes) <- c("Savanna", "Grasslands")
see the change
sits_labels(cerrado_2classes)
```
Index

* datasets
  cerrado_2classes, 7
  point_mt_6bands, 22
  samples_l8_rondonia_2bands, 22
  samples_modis_4bands, 23
  .sits_get_top_values, 6
  ::, 6
  %>%, 109
  _PACKAGE (sits-package), 5
  'sits_labels<-', 109
  cerrado_2classes, 7
  plot, 7, 8–13, 15–21
  plot.classified_image, 7, 8
  plot.geo_distances, 10
  plot.patterns, 7, 11
  plot.predicted, 7, 12
  plot.probs_cube, 7, 13
  plot.raster_cube, 7, 14
  plot.rfor_model, 7, 16
  plot.sits, 7
  plot.som_evaluate_cluster, 7, 17
  plot.som_map, 7, 18
  plot.torch_model, 7, 19
  plot.uncertainty_cube, 7, 20
  plot.xgb_model, 7, 21
  point_mt_6bands, 22
  samples_l8_rondonia_2bands, 22
  samples_modis_4bands, 23
  sits (sits-package), 5
  sits-package, 5
  sits_accuracy, 23, 91
  sits_apply, 25, 45
  sits_as_sf, 27
  sits_bands, 28
  sits_bbox, 29
  sits_classify, 23, 30, 74, 84, 93, 108
  sits_cluster_clean, 34
  sits_cluster_dendro (sits_clustering), 32
  sits_cluster_frequency, 34
  sits_clustering, 32
  sits_confidence_sampling, 35
  sits_config (sits_configuration), 37
  sits_config_show (sits_configuration), 37
  sits_configuration, 37
  sits_cube, 39, 78
  sits_filter (sits_filters), 44
  sits_filters, 44
  sits_formula_linear, 46
  sits_formula_logref, 47
  sits_geo_dist, 48
  sits_get_data, 49
  sits_impute_linear, 31, 53
  sits_kfold_validate, 54
  sits_label_classification, 23, 57
  sits_labels, 56, 110
  sits_labels<-' (sits_labels<-'), 109
  sits_labels_summary, 57
  sits_lighttae, 30, 59, 93
  sits_list_collections, 40
  sits_list_collections (sits_configuration), 37
  sits_merge, 61
  sits_mixture_model, 62
  sits_mlp, 30, 64, 93
  sits_patterns, 66
  sits_reduce_imbalance, 68
  sits_regularize, 69
  sits_resnet, 30, 71, 93
  sits_rfor, 30, 74, 93
  sits_run_examples, 75
  sits_run_tests, 75
  sits_sample, 76
  sits_select, 77
  sits_sgolay, 31
sits_golay(sits_filters), 44
sits_smooth, 78
sits_som, 80
sits_som_clean_samples(sits_som), 80
sits_som_evaluate_cluster(sits_som), 80
sits_som_map, 81
sits_som_map(sits_som), 80
sits_svm, 30, 83, 93
sits_tae, 84
sits_tempcnn, 30, 87, 93
sits_time_series, 90
sits_timeline, 89
sits_to_csv, 91
sits_to_xlsx, 91
sits_train, 30, 31, 92
sits_tuning, 93
sits_tuning_hparams, 95
sits_twdtw_classify, 96
sits_uncertainty, 98
sits_uncertainty_sampling, 101
sits_validate, 103
sits_values, 104
sits_view, 105, 106
sits_whittaker, 31
sits_whittaker(sits_filters), 44
sits_xgboost, 30, 93, 107