Package ‘skedastic’

February 22, 2022

Type Package
Title Heteroskedasticity Diagnostics for Linear Regression Models
Version 1.0.4
heteroskedasticity tests, there are supporting functions that compute the
BLUS residuals of Theil (1965) <doi:10.1080/01621459.1965.10480851>, the
conditional two-sided p-values of Kulinskaya (2008) <arXiv:0810.2124v1>,
and probabilities for the nonparametric trend statistic of Lehmann (1975,
ISBN: 0-816-24996-1). Homoskedasticity refers to the assumption of
constant variance that is imposed on the model errors (disturbances);
heteroskedasticity is the violation of this assumption.

RdMacros Rdpack

Depends R (>= 3.6.0)

Imports Rdpack (>= 0.11.1), broom (>= 0.5.6), pracma (>= 2.2.9), gmp
(>= 0.5.13), Rmpfr (>= 0.8.0), arrangements (>= 1.1.8),
cubature (>= 2.0.4), quantreg (>= 5.55), CompQuadForm (>=
1.4.3), MASS (>= 7.3.47), boot (>= 1.3.24), bazar (>= 1.0.11),
expm (>= 0.999.4), data.table (>= 1.12.8), mvtnorm (>= 1.1.0),

Suggests knitr, rmarkdown, devtools, lmtest, car, tseries, tibble,
testthat, milbench

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

URL https://github.com/tjfarrar/skedastic

BugReports https://github.com/tjfarrar/skedastic/issues

NeedsCompilation no

Author Thomas Farrar [aut, cre] (<https://orcid.org/0000-0003-0744-6972>),
University of the Western Cape [cph]

Maintainer Thomas Farrar <tjfarrar@alumni.uwaterloo.ca>

Repository CRAN

Date/Publication 2022-02-22 00:58:40 UTC

R topics documented:

anscombe .. 3
bamsset .. 5
bickel ... 6
blus ... 8
breusch_pagan .. 10
carapeto_holt .. 12
cook_weisberg .. 14
countpeaks .. 15
dDtrend ... 16
diblasi_bowman .. 17
dpeak ... 19
Anscombe's Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the method of Anscombe (1961) for testing for heteroskedasticity in a linear regression model, with or without the studentising modification of Bickel (1978).

Usage

anscombe(mainlm, studentise = TRUE, statonly = FALSE)

Arguments

- mainlm
 - Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary
least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

studentise A logical. Should studentising modification of Bickel (1978) be implemented? Defaults to TRUE; if FALSE, the original form of the test proposed by Anscombe (1961) is used.

statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Details

Anscombe’s Test is among the earliest suggestions for heteroskedasticity diagnostics in the linear regression model. The test is not based on formally derived theory but on a test statistic that Anscombe intuited to be approximately standard normal under the null hypothesis of homoskedasticity. Bickel (1978) discusses the test and suggests a studentising modification (included in this function) as well as a robustifying modification (included in `bickel`). The test is two-tailed.

The original form of the test is as follows.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

See Also

`bickel`, which is a robust extension of this test.

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
anscombe(mtcars_lm)
anscombe(mtcars_lm, studentise = FALSE)
# Same as first example
mtcars_list <- list("y" = mtcars$mpg, "X" = cbind(1, mtcars$wt, mtcars$qsec, mtcars$am))
anscombe(mtcars_list)
```
Description

This function implements the Bartlett’s M Specification Error Test (BAMSET) method of Ramsey (1969) for testing for heteroskedasticity in a linear regression model.

Usage

```r
bamset(
  mainlm,
  k = 3,
  deflator = NA,
  correct = TRUE,
  omitatmargins = TRUE,
  omit = NA,
  statonly = FALSE
)
```

Arguments

- `mainlm`: Either an object of `class"lm"` (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

- `k`: An integer. The number of subsets (≥ 2) into which the BLUS residuals are to be partitioned. Defaults to 3, the value suggested in Ramsey (1969).

- `deflator`: Either a character specifying a column name from the design matrix of `mainlm` or an integer giving the index of a column of the design matrix. This variable is suspected to be related to the error variance under the alternative hypothesis. `deflator` may not correspond to a column of 1's (intercept). Default `NA` means the data will be left in its current order (e.g. in case the existing index is believed to be associated with error variance).

- `correct`: A logical. Should the test statistic be divided by a scaling constant to improve the chi-squared approximation? Defaults to `TRUE`.

- `omitatmargins`: A logical. Should the indices of observations at the margins of the k subsets be passed to `blus` as the `omit` argument? If `TRUE` (the default), this overrides any `omit` argument passed directly. If `FALSE`, the `omit` argument must be specified and cannot be left as `NA`.

- `omit`: An integer. A warning is given if `omit` is not `NA`.

- `statonly`: A logical. Should a single statistic be returned? Defaults to `FALSE`.

This function uses the Bartlett’s M Specification Error Test (BAMSET) method of Ramsey (1969) for testing for heteroskedasticity in a linear regression model.
omit

A numeric vector of length \(p \) (the number of columns in the linear model design matrix) giving the indices of \(p \) observations to omit in the BLUS residual vector; or a character partially matching "first" (for the first \(p \) observations), "last" (for the last \(p \) observations), or "random" (for a random sample of \(p \) indices between 1 and \(n \)). Defaults to "first".

statonly

A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Details

BAMSET is an analogue of Bartlett’s \(M \) Test for heterogeneity of variances across independent samples from \(k \) populations. In this case the populations are \(k \) subsets of the residuals from a linear regression model. In order to meet the independence assumption, BLUS residuals are computed, meaning that only \(n - p \) observations are used (where \(n \) is the number of rows and \(p \) the number of columns in the design matrix). Under the null hypothesis of homoskedasticity, the test statistic is asymptotically chi-squared distributed with \(k - 1 \) degrees of freedom. The test is right-tailed.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
bamset(mtcars_lm, deflator = "qsec", k = 3)

# BLUS residuals cannot be computed with given 'omit' argument and so
# omitted indices are randomised:
bamset(mtcars_lm, deflator = "qsec", k = 4, omitatmargins = FALSE, omit = "last")
```

Bickel’s Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the method of Bickel (1978) for testing for heteroskedasticity in a linear regression model, with or without the scale-invariance modification of Carroll and Ruppert (1981).
Usage

```{r}
bickel(
  mainlm,
  fitmethod = c("lm", "rlm"),
  a = "identity",
  b = c("hubersq", "tanhsq"),
  scale_invariant = TRUE,
  k = 1.345,
  statonly = FALSE,
  ...
)
```

Arguments

- **mainlm**: Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

- **fitmethod**: A character indicating the method to be used to fit the regression model. This can be "OLS" for ordinary least squares (the default) or "robust" in which case a robust fitting method is called from `rlm`.

- **a**: A character argument specifying the name of a function to be applied to the fitted values, or an integer \(m \) in which case the function applied is \(f(x) = x^m \). Defaults to "identity" for `identity`.

- **b**: A character argument specifying a function to be applied to the residuals. Defaults to Huber's function squared, as recommended by Carroll and Ruppert (1981). Currently the only supported functions are "hubersq" (for Huber's function squared) and "tanhsq" (for \(b(x) = \tanh(x)^2 \)).

- **scale_invariant**: A logical indicating whether the scale-invariance modification proposed by Carroll and Ruppert (1981) should be implemented. Defaults to `TRUE`.

- **k**: A double argument specifying a parameter for Huber's function squared; used only if \(b = \text{"hubersq"} \). This is not to be confused with the argument \(k2 \) that could be passed to `rlm` if the regression is fitted using robust methods. \(k \) defaults to 1.345.

- **statonly**: A logical. If `TRUE`, only the test statistic value is returned, instead of an object of class "htest". Defaults to `FALSE`.

- **...**: Optional arguments to be passed to `rlm`

Details

Bickel's Test is a robust extension of Anscombe's Test (Anscombe 1961) in which the OLS residuals and estimated standard error are replaced with an \(M \) estimator. Under the null hypothesis of ho-
moskedasticity, the distribution of the test statistic is asymptotically standard normally distributed. The test is two-tailed.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

See Also

discussions of this test in Carroll and Ruppert (1981) and Ali and Giaccotto (1984).

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
bickel(mtcars_lm)
bickel(mtcars_lm, fitmethod = "rlm")
bickel(mtcars_lm, scale_invariant = FALSE)
```

blus

Compute Best Linear Unbiased Scalar-Covariance (BLUS) residuals from a linear model

Description

This function computes the Best Linear Unbiased Scalar-Covariance (BLUS) residuals from a linear model, as defined in Theil (1965) and explained further in Theil (1968).

Usage

```r
blus(
  mainlm,
  omit = c("first", "last", "random"),
  keepNA = TRUE,
  exhaust = NA,
  seed = 1234
)
```
Arguments

mainlm Either an object of class "lm" (e.g., generated by \texttt{lm}), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

omit A numeric vector of length \(p \) (the number of columns in the linear model design matrix) giving the indices of \(p \) observations to omit in the BLUS residual vector; or a character partially matching "first" (for the first \(p \) observations), "last" (for the last \(p \) observations), or "random" (for a random sample of \(p \) indices between 1 and \(n \)). Defaults to "first".

keepNA A logical. Should BLUS residuals for omitted observations be returned as \texttt{NA}_real_ to preserve the length of the residual vector?

exhaust An integer. If singular matrices are encountered using the passed value of omit, how many random combinations of \(p \) indices should be attempted before an error is thrown? If \texttt{NA} (the default), all possible combinations are attempted provided that \(\binom{n}{p} \leq 10^4 \); otherwise up to \(10^4 \) random samples of size \(p \) from \(1:n \) are attempted (with replacement). Integer values of exhaust greater than \(1e4L \) are treated as \texttt{NA}.

seed An integer specifying a seed to pass to \texttt{set.seed} for random number generation. This allows reproducibility of bootstrap results. The value \texttt{NA} results in not setting a seed.

Details

Under the ideal linear model conditions, the BLUS residuals have a scalar covariance matrix \(\sigma^2 I \) (meaning they have a constant variance and are mutually uncorrelated), unlike the OLS residuals, which have covariance matrix \(\sigma^2 M \) where \(M \) is a function of the design matrix. Use of BLUS residuals could improve the performance of tests for heteroskedasticity and/or autocorrelation in the linear model. A linear model with \(n \) observations and an \(n \times p \) design matrix yields only \(n - p \) BLUS residuals. The choice of which \(p \) observations will not be represented in the BLUS residuals is specified within the algorithm.

Value

A double vector of length \(n \) containing the BLUS residuals (with \texttt{NA}_real_) for omitted observations, or a double vector of length \(n - p \) containing the BLUS residuals only (if keepNA is set to FALSE)

References

See Also

H. D. Vinod’s online article, *Theil’s BLUS Residuals and R Tools for Testing and Removing Autocorrelation and Heteroscedasticity*, for an alternative function for computing BLUS residuals.

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
blus(mtcars_lm)
plot(mtcars_lm$residuals, blus(mtcars_lm))
# Same as first example
mtcars_list <- list("y" = mtcars$mpg, "X" = cbind(1, mtcars$wt, mtcars$qsec, mtcars$am))
blus(mtcars_list)
# Again same as first example
mtcars_list2 <- list("e" = mtcars_lm$residuals, "X" = cbind(1, mtcars$wt, mtcars$qsec, mtcars$am))
blus(mtcars_list2)
# BLUS residuals cannot be computed with `omit = "last"` in this example, so
# omitted indices are randomised:
blus(mtcars_lm, omit = "last")
```

Description

This function implements the popular method of Breusch and Pagan (1979) for testing for heteroskedasticity in a linear regression model, with or without the studentising modification of Koenker (1981).

Usage

```r
breusch_pagan(mainlm, auxdesign = NA, koenker = TRUE, statonly = FALSE)
```

Arguments

- `mainlm` Either an object of `class "lm"` (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

```r
```
breusch_pagan

auxdesign A data.frame or matrix representing an auxiliary design matrix of containing exogenous variables that (under alternative hypothesis) are related to error variance, or a character "fitted.values" indicating that the fitted \(\hat{y} \) values from OLS should be used. If set to NA (the default), the design matrix of the original regression model is used. An intercept is included in the auxiliary regression even if the first column of auxdesign is not a vector of ones.

goenker A logical. Should studentising modification of Koenker (1981) be implemented? Defaults to TRUE; if FALSE, the original form of the test proposed by Breusch and Pagan (1979) is used.

statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Details

The Breusch-Pagan Test entails fitting an auxiliary regression model in which the response variable is the vector of squared residuals from the original model and the design matrix \(Z \) consists of one or more exogenous variables that are suspected of being related to the error variance. In the absence of prior information on a possible choice of \(Z \), one would typically use the explanatory variables from the original model. Under the null hypothesis of homoskedasticity, the distribution of the test statistic is asymptotically chi-squared with parameter degrees of freedom. The test is right-tailed.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

See Also

`lmtest::bptest`, which performs exactly the same test as this function; `car::ncvTest`, which is not the same test but is implemented in `cook_weisberg::white_lm`, which is a special case of the Breusch-Pagan Test.

Examples

\r
\r
```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
breusch_pagan(mtcars_lm)
breusch_pagan(mtcars_lm, koenker = FALSE)
# Same as first example
mtcars_list <- list("y" = mtcars$mpg, "X" = cbind(1, mtcars$wt, mtcars$qsec, mtcars$am))
breusch_pagan(mtcars_list)
```
Description

This function implements the two methods (parametric and nonparametric) of Carapeto and Holt (2003) for testing for heteroskedasticity in a linear regression model.

Usage

carapeto_holt(
 mainlm,
 deflator = NA,
 prop_central = 1/3,
 group1prop = 1/2,
 qfmethod = "imhof",
 alternative = c("greater", "less", "two.sided"),
 twosidedmethod = c("doubled", "kulinskaya"),
 statonly = FALSE
)

Arguments

mainlm
Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

deflator
Either a character specifying a column name from the design matrix of `mainlm` or an integer giving the index of a column of the design matrix. This variable is suspected to be related to the error variance under the alternative hypothesis. `deflator` may not correspond to a column of 1’s (intercept). Default NA means the data will be left in its current order (e.g. in case the existing index is believed to be associated with error variance).

prop_central
A double specifying the proportion of central observations to exclude when comparing the two subsets of observations. round is used to ensure the number of central observations is an integer. Defaults to \(\frac{1}{3} \).

group1prop
A double specifying the proportion of remaining observations (after excluding central observations) to allocate to the first group. The default value of \(\frac{1}{2} \) means that an equal number of observations is assigned to the first and second groups.
carapeto_holt

qfmethod
A character, either "imhof", "davies", or "integrates", corresponding to the algorithm argument of pRQF. The default is "imhof".

alternative
A character specifying the form of alternative hypothesis. If it is suspected that the error variance is positively associated with the deflator variable, "greater". If it is suspected that the error variance is negatively associated with deflator variable, "less". If no information is available on the suspected direction of the association, "two.sided". Defaults to "greater".

twosidedmethod
A character indicating the method to be used to compute two-sided p-values for the parametric test when alternative is "two.sided". The argument is passed to twosidedpval as its method argument.

statonly
A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Details
The test is based on the methodology of Goldfeld and Quandt (1965) but does not require any auxiliary regression. It entails ordering the observations by some suspected deflator (one of the explanatory variables) in such a way that, under the alternative hypothesis, the observations would now be arranged in decreasing order of error variance. A specified proportion of the most central observations (under this ordering) is removed, leaving a subset of lower observations and a subset of upper observations. The test statistic is then computed as a ratio of quadratic forms corresponding to the sums of squared residuals of the upper and lower observations respectively. p-values are computed by the Imhof algorithm in pRQF.

Value
An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Examples
```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
carapeto_holt(mtcars_lm, deflator = "qsec", prop_central = 0.25)  # Same as previous example
mtcars_list <- list("y" = mtcars$mpg, "X" = cbind(1, mtcars$wt, mtcars$qsec, mtcars$am))
carapeto_holt(mtcars_list, deflator = 3, prop_central = 0.25)
```
Cook-Weisberg Score Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the score test of Cook and Weisberg (1983) for testing for heteroskedasticity in a linear regression model.

Usage

```r
cook_weisberg(
  mainlm,
  auxdesign = NA,
  hetfun = c("mult", "add", "logmult"),
  statonly = FALSE
)
```

Arguments

- **mainlm**: Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "x" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

- **auxdesign**: A data.frame or matrix representing an auxiliary design matrix of containing exogenous variables that (under alternative hypothesis) are related to error variance, or a character "fitted.values" indicating that the fitted \(\hat{y} \) values from OLS should be used. If set to NA (the default), the design matrix of the original regression model is used. An intercept is included in the auxiliary regression even if the first column of auxdesign is not a vector of ones.

- **hetfun**: A character describing the form of \(w(\cdot) \), the error variance function under the heteroskedastic alternative. Possible values are "mult" (the default), corresponding to \(w(Z_i, \lambda) = \exp \left\{ \sum_{j=1}^{q} \lambda_j Z_{ij} \right\} \), "add", corresponding to \(w(Z_i, \lambda) = \left(1 + \sum_{j=1}^{q} \lambda_j Z_{ij} \right)^2 \), and "logmult", corresponding to \(w(Z_i, \lambda) = \exp \left\{ \sum_{j=1}^{q} \lambda_j \log Z_{ij} \right\} \). The multiplicative and log-multiplicative cases are considered in Cook and Weisberg (1983); the additive case is discussed, inter alia, by Griffiths and Surekha (1986). Results for the additive and multiplicative models are identical for this test. Partial matching is used.

- **statonly**: A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.
Details

The Cook-Weisberg Score Test entails fitting an auxiliary regression model in which the response variable is the vector of standardised squared residuals $e_i^2/\hat{\sigma}^2$ from the original OLS model and the design matrix is some function of Z, an $n \times q$ matrix consisting of q exogenous variables, appended to a column of ones. The test statistic is half the residual sum of squares from this auxiliary regression. Under the null hypothesis of homoskedasticity, the distribution of the test statistic is asymptotically chi-squared with q degrees of freedom. The test is right-tailed.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

See Also

car::ncvTest, which implements the same test. Calling car::ncvTest with var.formula argument omitted is equivalent to calling skedastic::cook_weisberg with auxdesign = "fitted.values", hetfunc = "additive". Calling car::ncvTest with var.formula = ~ X (where X is the design matrix of the linear model with the intercept column omitted) is equivalent to calling skedastic::cook_weisberg with default auxdesign and hetfunc values. The hetfunc = "multiplicative" option has no equivalent in car::ncvTest.

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
cook_weisberg(mtcars_lm)
cook_weisberg(mtcars_lm, auxdesign = "fitted.values", hetfunc = "logmult")
```

Description

This function computes the number of peaks in a double vector, with peak defined as per Goldfeld and Quandt (1965). The function is used in the Goldfeld-Quandt nonparametric test for heteroskedasticity in a linear model. NA and NaN values in the sequence are ignored.
Usage
countpeaks(x)

Arguments
x A double vector.

Value
An integer value between 0 and length(x) - 1 representing the number of peaks in the sequence.

References

See Also
goldfeld_quandt

Examples
set.seed(9586)
countpeaks(stats::rnorm(20))
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
countpeaks(mtcars_lm$residuals)

dDtrend

Probability mass function of nonparametric trend statistic D

Description
This function computes Pr(D = k), i.e. the probability mass function for \(D = \sum_{i=1}^{n} (R_i - i)^2 \), the nonparametric trend statistic proposed by Lehmann (1975), under the assumption that the ranks \(R_i \) are computed on a series of \(n \) independent and identically distributed random variables with no ties. The function is used within horn in computing p-values for Horn’s nonparametric test for heteroskedasticity in a linear regression model (Horn 1981). The support of \(D \) consists of consecutive even numbers from 0 to \(\frac{n(n-1)(n+1)}{3} \), with the exception of the case \(n = 3 \), when the value 4 is excluded from the support. Note that computation speed for \(k = "all" \) is about the same as when \(k \) is set to an individual integer value, because the entire distribution is still computed in the latter case.

Usage
dDtrend(k = "all", n, override = FALSE)
Arguments

k An integer of length ≥ 1 or a character "all" (the default) indicating that the probability mass function should be applied to the entire support of D.

n A positive integer representing the number of observations in the series. Note that computation time increases rapidly with n and is infeasible for $n > 11$.

override A logical. By default, the function aborts if $n > 11$ due to the prohibitively slow computation (which may cause some systems to crash). Setting this argument to TRUE overrides the abort.

Value

A double vector containing the probabilities corresponding to the integers in its names attribute.

References

See Also

horn

Examples

```r
prob <- dDtrend(k = "all", n = 9)
values <- as.integer(names(prob))
plot(c(values[1], values[1]), c(0, prob[1]), type = "l",
     axes = FALSE, xlab = expression(k), ylab = expression(Pr(D == k)),
     xlim = c(0, 250), ylim = c(0, 1.05 * max(prob)))
axis(side = 1, at = seq(0, 250, 25), las = 2)
for (i in seq_along(values)) {
  lines(c(values[i], values[i]), c(0, prob[i]))
}
```

diblasi_bowman *Diblasi and Bowman's Test for Heteroskedasticity in a Linear Regression Model*

Description

This function implements the nonparametric test of Diblasi and Bowman (1997) for testing for heteroskedasticity in a linear regression model.
Usage
diblasi_bowman(
 mainlm,
 distmethod = c("moment.match", "bootstrap"),
 H = 0.08,
 ignorecov = TRUE,
 B = 500L,
 seed = 1234,
 statonly = FALSE
)

Arguments

mainlm Either an object of class "lm" (e.g., generated by \texttt{lm}), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
distmethod A character specifying the method by which to estimate the \(p \)-values, either "moment.match" or "bootstrap".
H A hyperparameter denoting the bandwidth matrix in the kernel function used for weights in nonparametric smoothing. If a double of length 1 (the default), \(H \) is set to \(h I_{p'p'} \) where \(h \) is the scalar bandwidth value entered and \(I_{p'p'} \) is the \(p' \times p' \) identity matrix (where \(p' \) is the number of columns in the \(X \) matrix, excluding an intercept if present). If a double of length \(p' \), \(H \) is set to \(\text{diag}(h) \) where \(h \) is the bandwidth vector entered. If \(H \) is a \(p' \times p' \) matrix it is used as is. Any other dimensionality of \(H \) results in an error.
ignorecov A logical. If \text{TRUE} (the default), the variance-covariance matrix of \(s \) is assumed to be diagonal. (This assumption is, strictly speaking, invalid, but usually yields a reasonable approximation. Computation time is prohibitive for large sample sizes if set to \text{FALSE}).
B An integer specifying the number of nonparametric bootstrap replications to be used, if \text{distmethod="bootstrap"}.
seed An integer specifying a seed to pass to \text{set.seed} for random number generation. This allows reproducibility of bootstrap results. The value \text{NA} results in not setting a seed.
statonly A logical. If \text{TRUE}, only the test statistic value is returned, instead of an object of class "htest". Defaults to \text{FALSE}.

Details

The test entails undertaking a transformation of the OLS residuals \(s_i = \sqrt{|e_i|} - E_0(\sqrt{|e_i|}) \), where \(E_0 \) denotes expectation under the null hypothesis of homoskedasticity. The kernel method of nonparametric regression is used to fit the relationship between these \(s_i \) and the explanatory variables.
This leads to a test statistic T that is a ratio of quadratic forms involving the vector of s_i and the matrix of normal kernel weights. Although nonparametric in its method of fitting the possible heteroskedastic relationship, the distributional approximation used to compute p-values assumes normality of the errors.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
diblasi_bowman(mtcars_lm)
diblasi_bowman(mtcars_lm, ignorecov = FALSE)
diblasi_bowman(mtcars_lm, distmethod = "bootstrap")

# Example discussed in Diblasi and Bowman (1997)
malecats_lm <- lm(Hwt ~ Bwt, data = boot::catsM)
diblasi_bowman(malecats_lm, H = (max(boot::catsM$Bwt) - min(boot::catsM$Bwt)) / 8)
```

dpeak

Probability mass function of number of peaks in an i.i.d. random sequence

Description

This function computes $P(n,k)$ as defined by Goldfeld and Quandt (1965), i.e. the probability that a sequence of n independent and identically distributed random variables contains exactly k peaks, with peaks also as defined by Goldfeld and Quandt (1965). The function is used in ppeak to compute p-values for the Goldfeld-Quandt nonparametric test for heteroskedasticity in a linear model.

Usage

```r
dpeak(k, n, usedata = FALSE)
```

Arguments

- **k**: An integer or a sequence of integers strictly incrementing by 1, with all values between 0 and n – 1 inclusive. Represents the number of peaks in the sequence.
- **n**: A positive integer representing the number of observations in the sequence.
usedata A logical. Should probability mass function values be read from `dpeakdat` rather than computing them? This option will save significantly on computation time if \(n < 170 \) but is currently only available for \(n \leq 1000 \).

Value

A double between 0 and 1 representing the probability of exactly \(k \) peaks occurring in a sequence of \(n \) independent and identically distributed continuous random variables. The double has a names attribute with the values corresponding to the probabilities. Computation time is very slow for \(n > 170 \) (if `usedata` is `FALSE`) and for \(n > 1000 \) regardless of `usedata` value.

References

See Also

`ppeak`, `goldfeld_quandt`

Examples

```r
dpeak(0:9, 10)
plot(0:9, dpeak(0:9, 10), type = "p", pch = 20, xlab = "Number of Peaks",
     ylab = "Probability")

# This would be extremely slow if usedata were set to FALSE:
prob <- dpeak(0:199, 200, usedata = TRUE)
plot(0:199, prob, type = "l", xlab = "Number of Peaks", ylab = "Probability")

# 'dpeakdat' is a dataset containing probabilities generated from 'dpeak'
utils::data(dpeakdat)
expval <- unlist(lapply(dpeakdat,
                        function(p) sum(p * 0:(length(p) - 1))))
plot(1:1000, expval[1:1000], type = "l", xlab = parse(text = "n"),
     ylab = "Expected Number of Peaks")
```

dpeakdat *Probability distribution for number of peaks in a continuous, uncorrelated stochastic series*

Description

A dataset containing the probability mass function for the distribution of the number of peaks in a continuous, uncorrelated stochastic series. These probabilities were generated from the `dpeak` function. This function is computationally very slow for \(n > 170 \); thus the functions of the skedastic package that require peak probabilities (`ppeak` and `goldfeld_quandt`) by default obtain the probabilities from this data set rather than from `dpeak`, provided that \(n \leq 1000 \).
Usage
dpeakdat

Format
A list of 1000 objects. The nth object is a double vector of length n, with elements representing the probability of k peaks for k = 0, 1, ..., n - 1.

Dufour et al.’s Monte Carlo Test for Heteroskedasticity in a Linear Regression Model

Description
This function implements the method of Dufour et al. (2004) for testing for heteroskedasticity in a linear regression model.

Usage

dufour_etal(
 mainlm,
 hettest,
 R = 1000L,
 alternative = c("greater", "less", "two.sided"),
 errorgen = stats::rnorm,
 errorparam = list(),
 seed = 1234,
 ...
)

Arguments

mainlm Either an object of class "lm" (e.g., generated by \texttt{lm}), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

hettest A character specifying the name of a function that implements a heteroskedasticity test on a linear regression model. The function is called with the \texttt{statonly} argument set to TRUE to improve computational efficiency.

R An integer specifying the number of Monte Carlo replicates to generate. Defaults to 1000.
alternative The tailedness of the test whose statistic is computed by hettest function; one of "greater" (the default), "less", or "two.sided".

errorgen A function, or a character specifying the name of a function, from which the random errors are to be generated. The function should correspond to a continuous probability distribution that has (or at least can have) a mean of 0. Defaults to \texttt{rnorm}.

errorparam An optional list of parameters to pass to errorgen. This argument is ignored if errorgen is \texttt{rnorm}, since mean must be set to 0, and sd is set to 1 because the heteroskedasticity test implemented by hettest function is assumed to be scale invariant. If errorgen is not \texttt{rnorm}, errorparam should be chosen in such a way that the error distribution has a mean of 0.

seed An integer specifying a seed to pass to \texttt{set.seed} for random number generation. This allows reproducibility of Monte Carlo results. A value of \texttt{NA} results in not setting a seed.

... Additional arguments to pass to function with name hettest

Details

The test implements a Monte Carlo procedure as follows. (1) The observed value of the test statistic T_0 is computed using function with name hettest. (2) R replications of the random error vector are generated from the distribution specified using errorgen. (3) R replications of the test statistic, T_1, T_2, \ldots, T_R, are computed from the generated error vectors. (4) The empirical p-value is computed as $\hat{G}_{R}(T_0) + \frac{1}{R+1}$, where $\hat{G}_{R}(x) = \sum_{j=1}^{R} 1_{T_j \geq x}$, 1_{\cdot} being the indicator function. The test is right-tailed, regardless of the tailedness of hettest. Note that the heteroskedasticity test implemented by hettest must have a test statistic that is continuous and that is invariant with respect to nuisance parameters (σ^2 and β). Note further that if hettest is goldfeld_quandt with method argument "parametric", the replicated Goldfeld-Quandt F statistics are computed directly within this function rather than by calling goldfeld_quandt, due to some idiosyncratic features of this test. Note that, if alternative is set to "two.sided", the one-sided p-value is doubled (\texttt{twosidedpval} cannot be used in this case).

Value

An object of \texttt{class} "htest". If object is not assigned, its attributes are displayed in the console as a \texttt{tibble} using \texttt{tidy}.

References

Examples

\begin{verbatim}
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
dufour_etal(mtcars_lm, hettest = "breusch_pagan")
\end{verbatim}
evans_king

Evans-King Tests for Heteroskedasticity in a Linear Regression Model

Description

This function implements the two methods of Evans and King (1988) for testing for heteroskedasticity in a linear regression model.

Usage

evans_king(
 mainlm,
 method = c("GLS", "LM"),
 deflator = NA,
 lambda_star = 5,
 qfmethod = "imhof",
 statonly = FALSE
)

Arguments

mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

method A character indicating which of the two tests derived in Evans and King (1988) should be implemented. Possible values are "GLS" and "LM"; partial matching is used (which is not case-sensitive).

deflator Either a character specifying a column name from the design matrix of mainlm or an integer giving the index of a column of the design matrix. This variable is suspected to be related to the error variance under the alternative hypothesis. deflator may not correspond to a column of 1's (intercept). Default NA means the data will be left in its current order (e.g. in case the existing index is believed to be associated with error variance).

lambda_star A double; coefficient representing the degree of heteroskedasticity under the alternative hypothesis. Evans and King (1985) suggests 2.5, 5, 7.5, and 10 as values to consider, and Evans and King (1988) finds that 2.5 and 5 perform best empirically. This parameter is used only for the "GLS" method; the "LM" method represents the limiting case as \(\lambda^* \rightarrow 0 \). Defaults to 5.

qfmethod A character, either "imhof", "davies", or "integrate", corresponding to the algorithm argument of pRQF. The default is "imhof".

statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.
Details

The test entails putting the data rows in increasing order of some specified deflator (e.g., one of the explanatory variables) that is believed to be related to the error variance by some non-decreasing function. There are two statistics that can be used, corresponding to the two values of the method argument. In both cases the test statistic can be expressed as a ratio of quadratic forms in the errors, and thus the Imhof algorithm is used to compute \(p \)-values. Both methods involve a left-tailed test.

Value

An object of class \code{"htest"}. If object is not assigned, its attributes are displayed in the console as a \code{tibble} using \code{tidy}.

References

See Also

Evans and King (1985), which already anticipates one of the tests.

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
evans_king(mtcars_lm, deflator = "qsec", method = "GLS")
evans_king(mtcars_lm, deflator = "qsec", method = "LM")
```

\echo{glejser}{Glejser Test for Heteroskedasticity in a Linear Regression Model}

Description

This function implements the method of Glejser (1969) for testing for "multiplicative" heteroskedasticity in a linear regression model. Mittelhammer et al. (2000) gives the formulation of the test used here.

Usage

```r
glejser(
  mainlm,
  auxdesign = NA,
  sigmaest = c("main", "auxiliary"),
  statonly = FALSE
)
```
Arguments

`mainlm` Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

`auxdesign` A data.frame or matrix representing an auxiliary design matrix of containing exogenous variables that (under alternative hypothesis) are related to error variance, or a character "fitted.values" indicating that the fitted \(\hat{y}_i \) values from OLS should be used. If set to NA (the default), the design matrix of the original regression model is used. An intercept is included in the auxiliary regression even if the first column of `auxdesign` is not a vector of ones.

`sigmaest` A character indicating which model residuals to use in the \(\hat{\sigma}^2 \) estimator in the denominator of the test statistic. If "main" (the default), the OLS residuals from the original model are used; this produces results identical to the Glejser Test in SHAZAM software. If "auxiliary", the OLS residuals from the auxiliary model are used, as in Mittelhammer et al. (2000). Partial matching is used.

`statonly` A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Details

Glejser’s Test entails fitting an auxiliary regression model in which the response variable is the absolute residual from the original model and the design matrix \(Z \) consists of one or more exogenous variables that are suspected of being related to the error variance. In the absence of prior information on a possible choice of \(Z \), one would typically use the explanatory variables from the original model. Under the null hypothesis of homoskedasticity, the distribution of the test statistic is asymptotically chi-squared with parameter degrees of freedom. The test is right-tailed.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a `tibble` using `tidy`.

References

See Also

the description of the test in SHAZAM software (which produces identical results).
Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
glejser(mtcars_lm)
```

godfrey_orme

Godfrey and Orme's Nonparametric Bootstrap Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the method of Godfrey and Orme (1999) for testing for heteroskedasticity in a linear regression model. The procedure is more clearly described in Godfrey et al. (2006).

Usage

```r
godfrey_orme(
  mainlm,  # Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
  hettest,  # A character specifying the name of a function that implements a heteroskedasticity test on a linear regression model. The function is called with the statonly argument set to TRUE to improve computational efficiency.
  B = 1000L,  # An integer specifying the number of nonparametric bootstrap samples to generate. Defaults to 1000L.
  alternative = c("greater", "less", "two.sided"),  # The tailedness of the test whose statistic is computed by hettest function; one of "greater" (the default), "less", or "two.sided".
  seed = 1234,  # An integer specifying a seed to pass to set.seed for random number generation. This allows reproducibility of bootstrap results. A value of NA results in not setting a seed.
  ...  # Additional arguments to pass to function with name hettest
)
```

Arguments

- **mainlm**: Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
- **hettest**: A character specifying the name of a function that implements a heteroskedasticity test on a linear regression model. The function is called with the statonly argument set to TRUE to improve computational efficiency.
- **B**: An integer specifying the number of nonparametric bootstrap samples to generate. Defaults to 1000L.
- **alternative**: The tailedness of the test whose statistic is computed by hettest function; one of "greater" (the default), "less", or "two.sided".
- **seed**: An integer specifying a seed to pass to `set.seed` for random number generation. This allows reproducibility of bootstrap results. A value of NA results in not setting a seed.
- **...**: Additional arguments to pass to function with name hettest
Details

The procedure runs as follows. (1) The observed value of the test statistic T_0 is computed using function with name `hettest`. (2) A sample $e_1^*, e_2^*, \ldots, e_n^*$ is drawn with replacement from the OLS residuals. (3) Bootstrapped response values are computed as $y_i^* = x_i'\hat{\beta} + e_i^*, i = 1, 2, \ldots, n$. (4) Bootstrapped test statistic value T^* is computed from the regression of y^* on X using function `hettest`. (5) Steps (2)-(4) are repeated until B bootstrapped test statistic values are computed. (6) Empirical p-value is computed by comparing the bootstrapped test statistic values to the observed test statistic value. Note that, if `alternative` is set to "two.sided", the one-sided p-value is doubled (twosidedpval cannot be used in this case).

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a `tibble` using `tidy`.

References

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
godfrey_orme(mtcars_lm, hettest = "breusch_pagan")
```

```
goldfeld_quandt  Goldfeld-Quandt Tests for Heteroskedasticity in a Linear Regression Model

Description

This function implements the two methods (parametric and nonparametric) of Goldfeld and Quandt (1965) for testing for heteroskedasticity in a linear regression model.

Usage

```r
goldfeld_quandt(
 mainlm,
 method = c("parametric", "nonparametric"),
 deflator = NA,
 prop_central = 1/3,
 group1prop = 1/2,
 alternative = c("greater", "less", "two.sided"),
)```
Arguments

mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

method A character indicating which of the two tests derived in Goldfeld and Quandt (1965) should be implemented. Possible values are "parametric" and "nonparametric". Default is "parametric". It is acceptable to specify only the first letter.

deflator Either a character specifying a column name from the design matrix of mainlm or an integer giving the index of a column of the design matrix. This variable is suspected to be related to the error variance under the alternative hypothesis. deflator may not correspond to a column of 1's (intercept). Default NA means the data will be left in its current order (e.g. in case the existing index is believed to be associated with error variance).

prop_central A double specifying the proportion of central observations to exclude from the F test (when method is "parametric" only). \(\text{round} \) is used to ensure the number of central observations is an integer. The value must be small enough to allow the two auxiliary regressions to be fit; otherwise an error is thrown. Defaults to \(1 / 3 \).

group1prop A double specifying the proportion of remaining observations (after excluding central observations) to allocate to the first group. The default value of \(1 / 2 \) means that an equal number of observations is assigned to the first and second groups.

alternative A character specifying the form of alternative hypothesis. If it is suspected that the error variance is positively associated with the deflator variable, "greater". If it is suspected that the error variance is negatively associated with deflator variable, "less". If no information is available on the suspected direction of the association, "two.sided". Defaults to "greater".

prob A vector of probabilities corresponding to values of the test statistic (number of peaks) from 0 to \(n - 1 \) inclusive (used only when method is "nonparametric"). If NA (the default), probabilities are calculated within the function by calling ppeak. The user can improve computational performance of the test (for instance, when the test is being used repeatedly in a simulation) by pre-specifying the exact probability distribution of the number of peaks using this argument, e.g. by calling the \(n \)th element of dpeakdat (or \((n - p) \)th element, if BLUS residuals are used).
twosidedmethod A character indicating the method to be used to compute two-sided p-values for the parametric test when alternative is "two.sided". The argument is passed to `twosidedpval` as its method argument.

restype A character specifying which residuals to use: "ols" for OLS residuals (the default) or the "blus" for BLUS residuals. The advantage of using BLUS residuals is that, under the null hypothesis, the assumption that the random series is independent and identically distributed is met (whereas with OLS residuals it is not). The disadvantage of using BLUS residuals is that only \(n - p \) residuals are used rather than the full \(n \). This argument is ignored if `method` is "parametric".

statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Details

The parametric test entails putting the data rows in increasing order of some specified deflator (one of the explanatory variables). A specified proportion of the most central observations (under this ordering) is removed, leaving a subset of lower observations and a subset of upper observations. Separate OLS regressions are fit to these two subsets of observations (using all variables from the original model). The test statistic is the ratio of the sum of squared residuals from the 'upper' model to the sum of squared residuals from the 'lower' model. Under the null hypothesis, the test statistic is exactly F-distributed with numerator and denominator degrees of freedom equal to \((n - c)/2 - p \) where \(n \) is the number of observations in the original regression model, \(c \) is the number of central observations removed, and \(p \) is the number of columns in the design matrix (number of parameters to be estimated, including intercept).

The nonparametric test entails putting the residuals of the linear model in increasing order of some specified deflator (one of the explanatory variables). The test statistic is the number of peaks, with the \(j \)th absolute residual \(|e_j| \) defined as a peak if \(|e_j| \geq |e_i| \) for all \(i < j \). The first observation does not constitute a peak. If the number of peaks is large relative to the distribution of peaks under the null hypothesis, this constitutes evidence for heteroskedasticity.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

See Also

`lmtest::gqtest`, another implementation of the Goldfeld-Quandt Test (parametric method only).
Examples

```r
tcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
goldfeld_quandt(tcars_lm, deflator = "qsec", prop_central = 0.25)
# This is equivalent to lmtest::gqtest(tcars_lm, fraction = 0.25, order.by = mtcars$qsec)
goldfeld_quandt(tcars_lm, deflator = "qsec", method = "nonparametric",
restype = "blus")
goldfeld_quandt(tcars_lm, deflator = "qsec", prop_central = 0.25, alternative = "two.sided")
goldfeld_quandt(tcars_lm, deflator = "qsec", method = "nonparametric",
restype = "blus", alternative = "two.sided")
```

harrison_mccabe

Harrison and McCabe’s Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the method of Harrison and McCabe (1979) for testing for heteroskedasticity in a linear regression model.

Usage

```r
harrison_mccabe(
mainlm,
deflator = NA,
m = 0.5,
alternative = c("less", "greater", "two.sided"),
twosidedmethod = c("doubled", "kulinskaya"),
qfmethod = "imhof",
statonly = FALSE
)
```

Arguments

- **mainlm**: Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

- **deflator**: Either a character specifying a column name from the design matrix of `mainlm` or an integer giving the index of a column of the design matrix. This variable is suspected to be related to the error variance under the alternative hypothesis. `deflator` may not correspond to a column of 1's (intercept). Default `NA` means the data will be left in its current order (e.g. in case the existing index is believed to be associated with error variance).
Either a double giving the proportion of the n diagonal elements of A that are ones, or an integer giving the index m up to which the diagonal elements are ones. Defaults to 0.5.

A character specifying the form of alternative hypothesis. If it is suspected that the error variance is positively associated with the deflator variable, "less". If it is suspected that the error variance is negatively associated with deflator variable, "greater". If no information is available on the suspected direction of the association, "two.sided". Defaults to "less".

A character indicating the method to be used to compute two-sided p-values for the parametric test when alternative is "two.sided". The argument is passed to `twosidedpval` as its method argument.

A character, either "imhof", "davies", or "integrate", corresponding to the algorithm argument of `pRQF`. The default is "imhof".

A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

The test assumes that heteroskedasticity, if present, is monotonically related to one of the explanatory variables (known as the deflator). The OLS residuals e are placed in increasing order of the deflator variable and we let A be an $n \times n$ selector matrix whose first m diagonal elements are 1 and all other elements are 0. The alternative hypothesis posits that the error variance changes around index m. Under the null hypothesis of homoskedasticity, the ratio of quadratic forms $Q = \frac{e'Ae}{e'e}$ should be close to $\frac{m}{n}$. Since the test statistic Q is a ratio of quadratic forms in the errors, the Imhof algorithm is used to compute p-values (with normality of errors assumed).

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

`lmtest::hmctest`, another implementation of the Harrison-McCabe Test. Note that the p-values from that function are simulated rather than computed from the distribution of a ratio of quadratic forms in normal random vectors.

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
harrison_mccabe(mtcars_lm, deflator = "qsec")
```
Harvey Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the method of Harvey (1976) for testing for "multiplicative" heteroskedasticity in a linear regression model. Mittelhammer et al. (2000) gives the formulation of the test used here.

Usage

```
harvey(mainlm, auxdesign = NA, statonly = FALSE)
```

Arguments

- **mainlm**: Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

- **auxdesign**: A data.frame or matrix representing an auxiliary design matrix of containing exogenous variables that (under alternative hypothesis) are related to error variance, or a character "fitted.values" indicating that the fitted \hat{y}_i values from OLS should be used. If set to NA (the default), the design matrix of the original regression model is used. An intercept is included in the auxiliary regression even if the first column of auxdesign is not a vector of ones.

- **statonly**: A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Details

Harvey’s Test entails fitting an auxiliary regression model in which the response variable is the log of the vector of squared residuals from the original model and the design matrix Z consists of one or more exogenous variables that are suspected of being related to the error variance. In the absence of prior information on a possible choice of Z, one would typically use the explanatory variables from the original model. Under the null hypothesis of homoskedasticity, the distribution of the test statistic is asymptotically chi-squared with parameter degrees of freedom. The test is right-tailed.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.
hetplot

References

See Also

the description of the test in SHAZAM software (which produces identical results).

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
harvey(mtcars_lm)
harvey(mtcars_lm, auxdesign = "fitted.values")
```

hetplot

Graphical Methods for Detecting Heteroskedasticity in a Linear Regression Model

Description

This function creates various two-dimensional scatter plots that can aid in detecting heteroskedasticity in a linear regression model.

Usage

```r
hetplot(
  mainlm, 
  horzvar = "index", 
  vertvar = "res", 
  vertfun = "identity", 
  filetype = NA, 
  values = FALSE, 
  ...
)
```

Arguments

- `mainlm`: Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary
least squares residuals, one can also pass a vector of residuals in the list, which
should either be the third object or be named "e".

horzvar
A character vector describing the variable(s) to plot on horizontal axes ("index"
for the data index \(i\), "fitted.values" for the OLS predicted values \(\hat{y}_i\), "fitted.values2"
for transformed OLS predicted values \(m_{ii}\hat{y}_i\), and/or names of explanatory vari-
able columns). "explanatory" passes all explanatory variable columns. "log_"
concatenated with names of explanatory variable columns passes logs of those
explanatory variables. "log_explanatory" passes logs of all explanatory vari-
able. If more than one variable is specified, a separate plot is created for each.

vertvar
A character vector describing the variable to plot on the vertical axis ("res" for
OLS residuals [the default], "res_blus" for BLUS residuals, "res_stand" for
standardised OLS residuals: \(e_i/\hat{\sigma}\), "res_constvar" for OLS residuals trans-
formed to have constant variance: \(e_i/\sqrt{m_{ii}}\), "res_stud" for studentised OLS
residuals: \(e_i/(s\sqrt{m_{ii}})\). If more than one value is specified, a separate plot is
created for each.

vertfun
A character vector giving the name of a function to apply to the vertvar vari-
able. Values that can be coerced to numeric such as "2" are taken to be powers
to which vertvar should be set. If multiple values are specified, they are all
applied to each element of vertvar. Common choices might be "identity"
(the default), "abs" (absolute value), and "2" (squaring).

filetype
A character giving the type of image file to which the plot(s) should be written.
Values can be "png", "bmp", "jpeg", or "tiff". Image files are written to a
subdirectory called "hetplot" within the R session’s temporary directory, which
can be located using `tempdir()`. The files should be moved or copied to another
location if they are needed after the R session is ended. Default filenames con-
tain timestamps for uniqueness. If `NA` (the default), no image files are written,
and in this case, if there are multiple plots, they are plotted on a single device
using the "mfrow" graphical parameter. If many plots are requested at once, it
is advisable to write them to image files.

values
A logical. Should the sequences corresponding to the horizontal and vertical
variable(s) be returned in a list object?

...
Arguments to be passed to methods, such as graphical parameters (see `par`), pa-
rameters for `plot`, for `graphics devices`, and/or the `omit` argument for function `blus`, if BLUS residuals are being plotted. If it is desired to pass the type
argument to a graphics device, use `gtype =`, since a type argument will be
passed to `plot`.

Details

The variable plotted on the horizontal axis could be the original data indices, one of the explanatory
variables, the OLS predicted (fitted) values, or any other numeric vector specified by the user.
The variable plotted on the vertical axis is some function of the OLS residuals or transformed
version thereof such as the BLUS residuals Theil (1968) or standardised or studentised residuals as
discussed in Cook and Weisberg (1983). A separate plot is created for each (horzvar, vertvar,
vertfun) combination.
Honda's Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the two-sided LM Test of Honda (1989) for testing for heteroskedasticity in a linear regression model.

Usage

honda(
 mainlm,
 deflator = NA,
 alternative = c("two.sided", "greater", "less"),
 twosidedmethod = c("doubled", "kulinskaya"),
 qfmethod = "imhof",
 statonly = FALSE
)
Arguments

mainlm
Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

deflator
Either a character specifying a column name from the design matrix of `mainlm` or an integer giving the index of a column of the design matrix. This variable is suspected to be related to the error variance under the alternative hypothesis. `deflator` may not correspond to a column of 1's (intercept). Default `NA` means the data will be left in its current order (e.g. in case the existing index is believed to be associated with error variance).

alternative
A character specifying the form of alternative hypothesis. If it is suspected that the error variance is positively associated with the deflator variable, "greater". If it is suspected that the error variance is negatively associated with deflator variable, "less". If no information is available on the suspected direction of the association, "two.sided". Defaults to "greater".

twosidedmethod
A character indicating the method to be used to compute two-sided p-values for the parametric test when alternative is "two.sided". The argument is passed to `twosidedpval` as its method argument.

qfmethod
A character, either "imhof", "davies", or "integrate", corresponding to the algorithm argument of `pRQF`. The default is "imhof".

statonly
A logical. If `TRUE`, only the test statistic value is returned, instead of an object of class "htest". Defaults to `FALSE`.

Details
The test assumes that heteroskedasticity, if present, would be either of the form $\sigma_i^2 = \sigma^2(1 + \theta z_i)$ or of the form $\sigma_i^2 = \sigma^2 e^{\theta z_i}$, where z_i is a deflator (a nonstochastic variable suspected of being related to the error variance), σ^2 is some unknown constant, and θ is an unknown parameter representing the degree of heteroskedasticity. Since the test statistic $Q = \frac{e' A e}{e' e}$ is a ratio of quadratic forms in the errors, the Imhof algorithm is used to compute p-values. Since the null distribution is in general asymmetrical, the two-sided p-value is computed using the conditional method of Kulinskaya (2008), setting $A = 1$.

Value
An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References
Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
honda(mtcars_lm, deflator = "qsec")
```

horn

Horn's Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the nonparametric test of Horn (1981) for testing for heteroskedasticity in a linear regression model.

Usage

```r
horn(mainlm, deflator = NA, restype = c("ols", "blus"), alternative = c("two.sided", "greater", "less"), exact = (nres <= 10), statonly = FALSE, ...)
```

Arguments

- `mainlm` Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

- `deflator` Either a character specifying a column name from the design matrix of `mainlm` or an integer giving the index of a column of the design matrix. This variable is suspected to be related to the error variance under the alternative hypothesis. `deflator` may not correspond to a column of 1's (intercept). Default NA means the data will be left in its current order (e.g. in case the existing index is believed to be associated with error variance).
restype A character specifying which residuals to use: "ols" for OLS residuals (the default) or the "blus" for BLUS residuals. The advantage of using BLUS residuals is that, under the null hypothesis, the assumption that the random series is independent and identically distributed is met (whereas with OLS residuals it is not). The disadvantage of using BLUS residuals is that only \(n - p \) residuals are used rather than the full \(n \).

alternative A character specifying the form of alternative hypothesis; one of "two.sided" (default), "greater", or "less". "two.sided" corresponds to any trend in the absolute residuals when ordered by deflator. "greater" corresponds to a negative trend in the absolute residuals when ordered by deflator. "less" corresponds to a positive trend in the absolute residuals when ordered by deflator. (Notice that \(D \) tends to be small when there is a positive trend.)

exact A logical. Should exact \(p \)-values be computed? If FALSE, a normal approximation is used. Defaults to TRUE only if the number of absolute residuals being ranked is \(\leq 10 \).

statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

... Optional further arguments to pass to blus.

Details
The test entails specifying a 'deflator', an explanatory variable suspected of being related to the error variance. Residuals are ordered by the deflator and the nonparametric trend statistic \(D = \sum (R_i - i)^2 \) proposed by Lehmann (1975) is then computed on the absolute residuals and used to test for an increasing or decreasing trend, either of which would correspond to heteroskedasticity. Exact probabilities for the null distribution of \(D \) can be obtained from functions dDtrend and pDtrend, but since computation time increases rapidly with \(n \), use of a normal approximation is recommended for \(n > 10 \). Lehmann (1975) proves that \(D \) is asymptotically normally distributed and the approximation of the statistic \(Z = (D - E(D))/\sqrt{V(D)} \) to the standard normal distribution is already quite good for \(n = 11 \).

The expectation and variance of \(D \) (when ties are absent) are respectively \(E(D) = \frac{n^3 - n}{n} \) and \(V(D) = \frac{n^2(n+1)^2(n-1)}{30} \); see Lehmann (1975) for \(E(D) \) and \(V(D) \) when ties are present. When ties are absent, a continuity correction is used to improve the normal approximation. When exact distribution is used, two-sided \(p \)-value is computed by doubling the one-sided \(p \)-value, since the distribution of \(D \) is symmetric. The function does not support the exact distribution of \(D \) in the presence of ties, so in this case the normal approximation is used regardless of \(n \).

Value
An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
horn(mtcars_lm, deflator = "qsec")
horn(mtcars_lm, deflator = "qsec", restype = "blus")
```

li_yao

Li-Yao ALRT and CVT Tests for Heteroskedasticity in a Linear Regression Model

Description

This function implements the two methods of Li and Yao (2019) for testing for heteroskedasticity in a linear regression model.

Usage

```r
li_yao(mainlm, method = c("alrt", "cvt"), baipanyin = TRUE, statonly = FALSE)
```

Arguments

- **mainlm**: Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

- **method**: A character indicating which of the two tests derived in Li and Yao (2019) should be implemented. Possible values are "alrt" (approximate likelihood-ratio test) and "cvt" (coefficient-of-variation test). Default is "cvt". Partial matching is used.

- **baipanyin**: A logical. Should the central limit theorem of Bai et al. (2016) be used to determine the p-value for the coefficient-of-variation test (assuming normally distributed errors)? If FALSE, the asymptotic null distribution in Li and Yao (2019) is used, which requires the assumption that the design variables are random and normally distributed. This argument is ignored if method is "alrt".

- **statonly**: A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.
Details

These two tests are straightforward to implement; in both cases the test statistic is a function only of the residuals of the linear regression model. Furthermore, in both cases the test statistic is asymptotically normally distributed under the null hypothesis of homoskedasticity. Both tests are right-tailed. These tests are designed to be especially powerful in high-dimensional regressions, i.e. when the number of explanatory variables is large.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
li_yao(mtcars_lm, method = "alrt")
li_yao(mtcars_lm, method = "cvt")
li_yao(mtcars_lm, method = "cvt", baipanyin = FALSE)
# Same as first example
li_yao(list("e" = mtcars_lm$residuals), method = "alrt")
```

pDtrend

Cumulative distribution function of nonparametric trend statistic D

Description

This function computes $\Pr(D \leq k)$ ($\Pr(D \geq k)$), i.e. lower (upper) cumulative probabilities for $D = \sum_{i=1}^{n}(R_i - i)^2$, the nonparametric trend statistic proposed by Lehmann (1975), under the assumption that the ranks R_i are computed on a series of n independent and identically distributed random variables with no ties. The function may be used to compute one-sided p-values for the nonparametric test for heteroskedasticity of Horn (1981). Computation time is extremely slow for $n > 10$ if `usedata` is set to `FALSE`; thus a normal approximation is implemented, including a continuity correction.
Usage

```r
dDtrend(
  k,
  n,
  lower.tail = TRUE,
  exact = (n <= 10),
  tiefreq = NA,
  override = FALSE
)
```

Arguments

- **k**: An integer of length ≥ 1 or a character "all" indicating that the cumulative distribution function should be applied to the entire support of D. The latter is only acceptable when `exact` is `TRUE`, since the distribution is otherwise continuous.

- **n**: A positive integer representing the number of observations in the series.

- **lower.tail**: A logical. Should lower tailed cumulative probability be calculated? Defaults to `TRUE`. Note that both lower- and upper-tailed cumulative probabilities are computed inclusive of `k`.

- **exact**: A logical. Should exact distribution of D be used by calling `dDtrend`? If `FALSE`, a normal approximation is used. If `tiefreq` is not `NA` (ties are present), normal approximation is used regardless of the value of `exact`. By default, `exact` is set to `TRUE` provided that $n <= 10$. Setting `exact` to `TRUE` for $n > 11$ results in an error unless `override` is set to `TRUE`.

- **tiefreq**: A double vector corresponding to the value of d_i in Lehmann (1975). These are the frequencies of the various tied ranks. If ties are absent, `NA` (the default).

- **override**: A logical. By default, the `dDtrend` function aborts if $n > 11$ due to the prohibitively slow computation (which may cause some systems to crash). Setting this argument to `TRUE` overrides the abort. Ignored unless `exact` is `TRUE`.

Value

A double between 0 and 1 representing the probability/ies of D taking on at least (at most) the value(s) in the names attribute.

References

See Also

dDtrend, horn
Examples

For an independent sample of size 9, the probability that D is <= 50 is
0.05399857
pDtrend(k = 50, n = 9)
Normal approximation of the above with continuity correction is
0.05193808
pDtrend(k = 50, n = 9, exact = FALSE)
For an independent sample of size 50, the probability that D is >= 20000 is
is 0.6093583
pDtrend(k = 2e4, n = 50, lower.tail = FALSE)

ppeak

Cumulative distribution function of number of peaks in an i.i.d. random sequence

Description

This function computes \(\sum_k P(n, k)\), i.e. the probability that a sequence of \(n\) independent and identically distributed random variables contains \(\geq k\) (\(\leq k\)) peaks, with peaks as defined in Goldfeld and Quandt (1965). The function may be used to compute \(p\)-values for the Goldfeld-Quandt non-parametric test for heteroskedasticity in a linear model. Computation time is very slow for \(n > 170\) if \(\text{usedata}\) is set to \(\text{FALSE}\).

Usage

ppeak(k, n, lower.tail = FALSE, usedata = TRUE)

Arguments

- \(k\) - An integer or a sequence of integers strictly incrementing by 1, with all values between 0 and \(n - 1\) inclusive. Represents the number of peaks in the sequence.
- \(n\) - A positive integer representing the number of observations in the sequence.
- \(\text{lower.tail}\) - A logical. Should lower tailed cumulative probability be calculated? Defaults to \(\text{FALSE}\) due to function being designed primarily for calculating \(p\)-values for the peaks test, which is by default an upper-tailed test. Note that both upper and lower tailed cumulative probabilities are computed inclusive of \(k\).
- \(\text{usedata}\) - A logical. Should probability mass function values be read from \(dpeakdat\) rather than computing them from \(dpeak\)? This option will save significantly on computation time if \(n < 170\) but is currently only available for \(n \leq 1000\).

Value

A double between 0 and 1 representing the probability of at least (at most) \(k\) peaks occurring in a sequence of \(n\) independent and identically distributed continuous random variables. The double has a names attribute with the values corresponding to the probabilities.
pRQF

References

See Also
dpeak, goldfeld_quandt

Examples

```r
# For an independent sample of size 250, the probability of at least 10
# peaks is 0.02650008
ppeak(k = 10, n = 250, lower.tail = FALSE, usedata = TRUE)
# For an independent sample of size 10, the probability of at most 2 peaks
# is 0.7060615
ppeak(k = 2, n = 10, lower.tail = TRUE, usedata = FALSE)
```

pRQF

Probabilities for a Ratio of Quadratic Forms in a Normal Random Vector

Description

This function computes cumulative probabilities (lower or upper tail) on a ratio of quadratic forms in a vector of normally distributed random variables. Most of the work is done by other functions, namely imhof, davies, or integrate (depending on the algorithm argument). It is assumed that the ratio of quadratic forms can be expressed as

\[R = \frac{x'Ax}{x'Bx} \]

where \(x \) is an \(n \)-dimensional normally distributed random variable with mean vector \(\mu \) and covariance matrix \(\Sigma \), and \(A \) and \(B \) are real-valued, symmetric \(n \times n \) matrices. Matrix \(B \) must be non-negative definite to ensure that the denominator of the ratio of quadratic forms is nonzero.

Usage

```r
pRQF(
  r,
  A,
  B,
  Sigma = diag(nrow(A)),
  algorithm = c("imhof", "davies", "integrate"),
  lower.tail = TRUE,
  usenames = FALSE
)
```
Arguments

- **r**: A double representing the value(s) for which $\Pr(R \leq r)$ or $\Pr(R \geq r)$ should be computed.
- **A**: A numeric, symmetric matrix that is symmetric.
- **B**: A numeric, symmetric, non-negative definite matrix having the same dimensions as **A**.
- **Sigma**: A numeric, symmetric matrix with the same dimensions as **A** and **B**, denoting the covariance matrix of the normal random vector. Defaults to the identity matrix, corresponding to the case in which the normal random variables are independent and identically distributed.
- **algorithm**: A character, either "imhof", "davies", or "integrate". Values "imhof" and "integrate" both implement the Imhof algorithm. The difference is that "imhof" means that **imhof** is used, whereas "integrate" means that **integrate** is used (which is slower). The Imhof algorithm is more precise than the Davies algorithm.
- **lower.tail**: A logical. If TRUE, the cumulative distribution function $\Pr(R \leq r)$ is computed; if FALSE, the survival function $\Pr(R \geq r)$ is computed.
- **usenames**: A logical. If TRUE, the function value has a names attribute corresponding to **r**.

Details

The function makes use of the fact that a probability statement involving a ratio of quadratic forms can be rewritten as a probability statement involving a quadratic form. Hence, methods for computing probabilities for a quadratic form in normal random variables, such as the Imhof algorithm (Imhof 1961) or the Davies algorithm (Davies 1980) can be applied to the rearranged expression to obtain the probability for the ratio of quadratic forms. Note that the Ruben-Farebrother algorithm (as implemented in **farebrother**) cannot be used here because the **A** matrix within the quadratic form (after rearrangement of the probability statement involving a ratio of quadratic forms) is not in general positive semi-definite.

Value

A double denoting the probability/ies corresponding to the value(s) **r**.

References

See Also

Duchesne and de Micheaux (2010), the article associated with the **imhof** and **davies** functions.
Examples

\[
\begin{align*}
n & \leftarrow 20 \\
A & \leftarrow \text{matrix(data = 1, nrow = } n, \text{ ncol = } n) \\
B & \leftarrow \text{diag}(n) \\
pRQF(r = 1, A = A, B = B) \\
pRQF(r = 1, A = A, B = B, \text{ algorithm = } \text{"integrate"}) \\
pRQF(r = 1:3, A = A, B = B, \text{ algorithm = } \text{"davies"})
\end{align*}
\]

rakauskas_zuokas Rackauskas-Zuokas Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the two methods of Rackauskas and Zuokas (2007) for testing for heteroskedasticity in a linear regression model.

Usage

rakauskas_zuokas(
 mainlm,
 alpha = 0,
 pvalmethod = \text{c("data", "sim")},
 R = 2^14,
 m = 2^17,
 sqZ = \text{FALSE},
 seed = 1234,
 statonly = \text{FALSE}
)

Arguments

- **mainlm**: Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

- **alpha**: A double such that \(0 \leq \alpha < 1/2\); a hyperparameter of the test. Defaults to 0.

- **pvalmethod**: A character, either "data" or "sim", determining which method to use to compute the empirical \(p\)-value. If "data", the dataset \(T_{\alpha}\) consisting of pre-generated Monte Carlo replicates from the asymptotic null distribution of the test statistic is loaded and used to compute empirical \(p\)-value. This is only available for certain values of alpha, namely \(i/32\) where \(i = 0, 1, \ldots, 15\). If "sim",...
Monte Carlo replicates are generated from the asymptotic null distribution. Partial matching is used.

R

An integer representing the number of Monte Carlo replicates to generate, if `pvalmethod == "sim"`. Ignored if `pvalmethod == "data"`.

m

An integer representing the number of standard normal variates to use when generating the Brownian Bridge for each replicate, if `pvalmethod == "sim"`. Ignored if `pvalmethod == "data"`. If number of observations is small, Rackauskas and Zuokas (2007) recommends using \(m = n \). The dataset \(T_\alpha \) used \(m = 2^{17} \) which is computationally intensive.

sqZ

A logical. If `TRUE`, the standard normal variates used in the Brownian Bridge when generating from the asymptotic null distribution are first squared, i.e. transformed to \(\chi^2(1) \) variates. This is recommended by Rackauskas and Zuokas (2007) when the number of observations is small. Ignored if `pvalmethod == "data"`.

seed

An integer representing the seed to be used for pseudorandom number generation when simulating values from the asymptotic null distribution. This is to provide reproducibility of test results. Ignored if `pvalmethod == "data"`. If user does not wish to set the seed, pass `NA`.

statonly

A logical. If `TRUE`, only the test statistic value is returned, instead of an object of `class"htest"`. Defaults to `FALSE`.

Details

Rackauskas and Zuokas propose a class of tests that entails determining the largest weighted difference in variance of estimated error. The asymptotic behaviour of their test statistic \(T_{n,\alpha} \) is studied using the empirical polygonal process constructed from partial sums of the squared residuals. The test is right-tailed.

Value

An object of `class"htest"`. If object is not assigned, its attributes are displayed in the console as a *tibble* using `tidy`.

References

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
rackauskas_zuokas(mtcars_lm)
rackauskas_zuokas(mtcars_lm, alpha = 7 / 16)

n <- length(mtcars_lm$residuals)
rackauskas_zuokas(mtcars_lm, pvalmethod = "sim", m = n, sqZ = TRUE)
```
Simonoff-Tsai Tests for Heteroskedasticity in a Linear Regression Model

Description

This function implements the modified profile likelihood ratio test and score test of Simonoff and Tsai (1994) for testing for heteroskedasticity in a linear regression model.

Usage

```r
simonoff_tsai(
  mainlm,
  auxdesign = NA,
  method = c("mlr", "score"),
  hetfun = c("mult", "add", "logmult"),
  basetest = c("koenker", "cook_weisberg"),
  bartlett = TRUE,
  optmethod = "Nelder-Mead",
  statonly = FALSE,
  ...
)
```

Arguments

- **mainlm**: Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

- **auxdesign**: A `data.frame` or `matrix` representing an auxiliary design matrix of containing exogenous variables that (under alternative hypothesis) are related to error variance, or a character "fitted.values" indicating that the fitted \(\hat{y}_i \) values from OLS should be used. If set to NA (the default), the design matrix of the original regression model is used. An intercept is included in the auxiliary regression even if the first column of auxdesign is not a vector of ones.

- **method**: A character specifying which of the tests proposed in Simonoff and Tsai (1994) to implement. "mlr" corresponds to the modified profile likelihood ratio test, and "score" corresponds to the score test.

- **hetfun**: A character describing the form of \(w(\cdot) \), the error variance function under the heteroskedastic alternative. Possible values are "mult" (the default), corresponding to \(w(Z_i, \lambda) = \exp \left\{ \sum_{j=1}^{q} \lambda_j Z_{ij} \right\} \), "add", corresponding to \(w(Z_i, \lambda) = \exp \left(\sum_{j=1}^{q} \lambda_j Z_{ij} \right) \).
\[(1 + \sum_{j=1}^{q} \lambda_j Z_{ij})^2, \] and "logmult", corresponding to \(w(Z_i, \lambda) = \exp \left\{ \sum_{j=1}^{q} \lambda_j \log Z_{ij} \right\}. \]

The multiplicative and log-multiplicative cases are considered in Cook and Weisberg (1983); the additive case is discussed, inter alia, by Griffiths and Surekha (1986). Results for the additive and multiplicative models are identical for this test. Partial matching is used.

basetest A character specifying the base test statistic which is robustified using the added term described in Details. "koenker" corresponds to the test statistic produced by breusch_pagan with argument koenker set to TRUE, while "cook_weisberg" corresponds to the test statistic produced by cook_weisberg. Partial matching is used. This argument is only used if method is "score".

bartlett A logical specifying whether a Bartlett correction should be made, as per Ferrari et al. (2004), to improve the fit of the test statistic to the asymptotic null distribution. This argument is only applicable where method is "mlr", and is implemented only where hetfun is "mult" or "logmult".

optmethod A character specifying the optimisation method to use with optim, if method is "mlr". The default, "Nelder-Mead", corresponds to the default method value in optim. Warnings about Nelder-Mead algorithm being unreliable for one-dimensional optimization have been suppressed, since the algorithm does appear to work for the three implemented choices of hetfun.

statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Optional arguments to pass to optim, such as par (initial value of \(\lambda \)) and maxit (maximum number of iterations to use in optimisation algorithm), and trace (to provide detailed output on optimisation algorithm). Default initial value of \(\lambda \) is \(\text{rep}(1e-3, q) \).

Details

The Simonoff-Tsai Likelihood Ratio Test involves a modification of the profile likelihood function so that the nuisance parameter will be orthogonal to the parameter of interest. The maximum likelihood estimate of \(\lambda \) (called \(\delta \) in Simonoff and Tsai (1994)) is computed from the modified profile log-likelihood function using the Nelder-Mead algorithm in optim. Under the null hypothesis of homoskedasticity, the distribution of the test statistic is asymptotically chi-squared with \(q \) degrees of freedom. The test is right-tailed.

The Simonoff-Tsai Score Test entails adding a term to either the score statistic of Cook and Weisberg (1983) (a test implemented in cook_weisberg) or to that of Koenker (1981) (a test implemented in breusch_pagan with argument koenker set to TRUE), in order to improve the robustness of these respective tests in the presence of non-normality. This test likewise has a test statistic that is asymptotically \(\chi^2(q) \)-distributed and the test is likewise right-tailed.

The assumption of underlying both tests is that \(\text{Cov}(\epsilon) = \sigma^2 W \), where \(W \) is an \(n \times n \) diagonal matrix with \(i \)th diagonal element \(w_i = w(Z_i, \lambda) \). Here, \(Z_i \) is the \(i \)th row of an \(n \times q \) nonstochastic auxiliary design matrix \(Z \). Note: \(Z \) as defined here does not have a column of ones, but is concatenated to a column of ones when used in an auxiliary regression. \(\lambda \) is a \(q \)-vector of unknown parameters, and \(w(\cdot) \) is a real-valued, twice-differentiable function having the property that there exists some \(\lambda_0 \) for which \(w(Z_i, \lambda_0) = 0 \) for all \(i = 1, 2, \ldots, n \). Thus, the null hypothesis of homoskedasticity may be expressed as \(\lambda = \lambda_0 \).
In the score test, the added term in the test statistic is of the form

\[\sum_{j=1}^{q} \left(\sum_{i=1}^{n} h_{ij} t_{ij} \right) \tau_j \]

, where \(t_{ij} \) is the \((i,j)\)th element of the Jacobian matrix \(J \) evaluated at \(\lambda = \lambda_0 \):

\[t_{ij} = \frac{\partial w(Z_i, \lambda)}{\partial \lambda_j} \bigg|_{\lambda = \lambda_0} \]

, and \(\tau = (\tilde{J}' \tilde{J})^{-1}\tilde{J}'d \), where \(d \) is the \(n \)-vector whose \(i \)th element is \(e_i^2 \hat{\sigma}^{-2} \), \(\hat{\sigma}^2 = n^{-1} e'e \), and \(\tilde{J} = (I_n - 1_n 1'_n/n)J \).

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
simonoff_tsai(mtcars_lm, method = "score")
simonoff_tsai(mtcars_lm, method = "score", basetest = "cook_weisberg")
simonoff_tsai(mtcars_lm, method = "mlr")
simonoff_tsai(mtcars_lm, method = "mlr", bartlett = FALSE)
## Not run: simonoff_tsai(mtcars_lm, auxdesign = data.frame(mtcars$wt, mtcars$qsec),
## method = "mlr", hetfun = "logmult")
## End(Not run)
```
Szroeter's Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the method of Szroeter (1978) for testing for heteroskedasticity in a linear regression model.

Usage

```r
szroeter(mainlm, deflator = NA, h = SKH, qfmethod = "imhof", statonly = FALSE)
```

Arguments

- `mainlm` Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

- `deflator` Either a character specifying a column name from the design matrix of `mainlm` or an integer giving the index of a column of the design matrix. This variable is suspected to be related to the error variance under the alternative hypothesis. `deflator` may not correspond to a column of 1's (intercept). Default NA means the data will be left in its current order (e.g. in case the existing index is believed to be associated with error variance).

- `h` A non-decreasing function taking as its argument the index i of observations from 1 to n. Defaults to SKH, which is equivalent to \(h(i) = 2(1 - \cos \frac{\pi i}{n+1}) \). The function must be able to take a vector argument of length n.

- `qfmethod` A character, either "imhof", "davies", or "integrate", corresponding to the algorithm argument of `pRQF`. The default is "imhof".

- `statonly` A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Details

The test entails putting the data rows in increasing order of some specified deflator (e.g., one of the explanatory variables) that is believed to be related to the error variance by some non-decreasing function. The test statistic is a ratio of quadratic forms in the OLS residuals. It is a right-tailed test.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.
References

Examples

```r
tcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
szroeter(mtcars_lm, deflator = "qsec")
```

twosidedpval

Computation of Conditional Two-Sided p-Values

Description

Computes the conditional p-value P_C for a continuous or discrete test statistic, as defined in Kulinskaya (2008). This provides a method for computing a two-sided p-value from an asymmetric null distribution.

Usage

```r
twosidedpval(
  q,
  CDF,
  continuous,
  method = c("doubled", "kulinskaya", "minlikelihood"),
  Aloc,
  supportlim,
  ...
)
```

Arguments

- **q**: A double representing the quantile, i.e. the observed value of the test statistic for which a two-sided p-value is to be computed.
- **CDF**: A function representing the cumulative distribution function of the test statistic under the null hypothesis, i.e. $\Pr(T \leq q|H_0)$.
- **continuous**: A logical indicating whether the test statistic is a continuous (TRUE) or discrete (FALSE) random variable. Defaults to TRUE.
- **method**: A character specifying the method to use to calculate two-sided p-value; one of "doubled" (representing doubling of the one-sided p-value), "kulinskaya" (representing the method of Kulinskaya (2008)), or "minlikelihood" (representing the sum of probabilities for values with probability less than or equal to that of the observed value. Partial matching is used. Note that the "minlikelihood" method is available only for discrete distributions.
Aloc

A double representing a generic location parameter chosen to separate the tails of the distribution. Note that if Aloc corresponds to the median of CDF, there is no difference between the two methods, in the continuous case. If Aloc is not specified, the function attempts to compute the expectation of CDF using numerical integration and, if successful, uses this as Aloc. However, this may yield unexpected results, especially if CDF is not one of the cumulative distribution functions of well-known distributions included in the stats package.

supportlim

A numeric vector of length 2, giving the minimum and maximum values in the support of the distribution whose cumulative distribution function is CDF. This argument is only used if the distribution is discrete (i.e. if continuous is FALSE) and if method is "minlikelihood" or Aloc is not specified. If supportlim is not supplied, the function assumes that the support is -1e6:1e6. Values of -Inf and Inf may be supplied, but if so, the support is truncated at -1e6 and 1e6 respectively.

... Optional arguments to pass to CDF.

Details

Let T be a statistic that, under the null hypothesis, has cumulative distribution function F and probability density or mass function f. Denote by A a generic location parameter chosen to separate the two tails of the distribution. Particular examples include the mean $E(T|H_0)$, the mode $\arg\sup_t f(t)$, or the median $F^{-1}\left(\frac{1}{2}\right)$. Let q be the observed value of T.

In the continuous case, the conditional two-sided p-value centered at A is defined as

$$P^{A}(q) = \frac{F(q)}{F(A)}1_{q \leq A} + \frac{1 - F(q)}{1 - F(A)}1_{q > A}$$

where $1.$ is the indicator function. In the discrete case, $P^{A}(q)$ depends on whether A is an attainable value within the support of T. If A is not attainable, the conditional two-sided p-value centred at A is defined as

$$P^{A}(q) = \frac{\Pr(T \leq q)}{\Pr(T < A)}1_{q < A} + \frac{\Pr(T \geq q)}{\Pr(T > A)}1_{q > A}$$

If A is attainable, the conditional two-sided p-value centred at A is defined as

$$P^{A}(q) = \frac{\Pr(T \leq q)}{\Pr(T \leq A)/(1 + \Pr(T = A))}1_{q < A} + \frac{\Pr(T \geq q)}{\Pr(T \geq A)/(1 + \Pr(T = A))}1_{q > A}$$

Value

A double.

References

Examples

```r
# Computation of two-sided p-value for F test for equality of variances
n1 <- 10
n2 <- 20
set.seed(1234)
x1 <- stats::rnorm(n1, mean = 0, sd = 1)
x2 <- stats::rnorm(n2, mean = 0, sd = 3)

# 'Conventional' two-sided p-value obtained by doubling one-sided p-value:
stats::var.test(x1, x2, alternative = "two.sided")$p.value

# This is replicated in `twosidedpval` by setting `method` argument to "doubled"

# Conditional two-sided p-value centered at df (mean of chi-squared r.v.):

# Conditional two-sided p-value centered at df (mean of chi-squared r.v.):
```

Description

A matrix of 2^{14} rows and 16 columns. Each column contains 2^{14} Monte Carlo replicates from the distribution of T_α for a particular value of α, $\alpha = i/32$, $i = 0, 1, \ldots, 15$. The values were generated by first generating a Brownian Bridge using $m = 2^{17}$ standard normal variates and then applying Equation (11) from Rackauskas and Zuokas (2007). It can be used to compute empirical approximate p-values for implementation of the Rackauskas-Zuokas Test for heteroskedasticity. This is a time-saving measure because, while `rackauskas_zuokas` contains an option for simulating the p-value directly, this would be computationally intensive for the authors’ recommended m of 2^{17}. Passing the argument `pval.method = "data"` to `rackauskas_zuokas` instructs the function to use the pre-generated values in this data set to compute the empirical approximate p-value for the test.

Usage

`T_alpha`

Format

An object of class `matrix` (inherits from `array`) with 16384 rows and 16 columns.
Description

This function implements the residual maximum likelihood test of Verbyla (1993) for testing for heteroskedasticity in a linear regression model.

Usage

```r
verbyla(mainlm, auxdesign = NA, statonly = FALSE)
```

Arguments

- `mainlm` Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

- `auxdesign` A `data.frame` or `matrix` representing an auxiliary design matrix of containing exogenous variables that (under alternative hypothesis) are related to error variance, or a character "fitted.values" indicating that the fitted \hat{y}_i values from OLS should be used. If set to NA (the default), the design matrix of the original regression model is used. An intercept is included in the auxiliary regression even if the first column of `auxdesign` is not a vector of ones.

- `statonly` A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Details

Verbyla's Test entails fitting a generalised auxiliary regression model in which the response variable is the vector of standardised squared residuals $e_i^2/\hat{\sigma}^2$ from the original OLS model and the design matrix is some function of Z, an $n \times q$ matrix consisting of q exogenous variables, appended to a column of ones. The test statistic is half the residual sum of squares from this generalised auxiliary regression. Under the null hypothesis of homoskedasticity, the distribution of the test statistic is asymptotically chi-squared with q degrees of freedom. The test is right-tailed.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a `tibble` using `tidy`.
white_lm

References

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
verbyla(mtcars_lm)
verbyla(mtcars_lm, auxdesign = "fitted.values")
```

white_lm

White’s Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the popular method of White (1980) for testing for heteroskedasticity in a linear regression model.

Usage

```r
white_lm(mainlm, interactions = FALSE, statonly = FALSE)
```

Arguments

- **mainlm**: Either an object of `class "lm"` (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

- **interactions**: A logical. Should two-way interactions between explanatory variables be included in the auxiliary regression? Defaults to `FALSE`, since when interaction terms are present the test is not a pure test of heteroskedasticity but also of model specification.

- **statonly**: A logical. If `TRUE`, only the test statistic value is returned, instead of an object of `class "htest"`. Defaults to `FALSE`.
Details

White’s Test entails fitting an auxiliary regression model in which the response variable is the vector of squared residuals from the original model and the design matrix includes the original explanatory variables, their squares, and (optionally) their two-way interactions. The test statistic is the number of observations multiplied by the coefficient of determination from the auxiliary regression model:

\[T = nr_{aux}^2 \]

White’s Test is thus a special case of the method of Breusch and Pagan (1979). Under the null hypothesis of homoskedasticity, the distribution of the test statistic is asymptotically chi-squared with parameter degrees of freedom. The test is right-tailed.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

See Also

This function should not be confused with `tseries::white.test`, which does not implement the method of White (1980) for testing for heteroskedasticity in a linear model.

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
white_lm(mtcars_lm)
white_lm(mtcars_lm, interactions = TRUE)
```

wilcox_keselman

Wilcoxon and Keselman’s Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the nonparametric test of Wilcoxon and Keselman (2006) for testing for heteroskedasticity in a simple linear regression model, and extends it to the multiple linear regression model.
Usage

wilcox_keselman(
 mainlm,
 gammapar = 0.2,
 B = 500L,
 p.adjust.method = "none",
 seed = NA,
 rqwarn = FALSE,
 matchWRS = FALSE,
 statonly = FALSE
)

Arguments

mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

gammapar A double value between 0 and 0.5 exclusive specifying the quantile value \textit{gamma}. Defaults to 0.2.

B An integer specifying the number of nonparametric bootstrap samples to use to estimate standard error(s) of the quantile difference(s). Defaults to 500L.

p.adjust.method A character specifying the family-wise error rate method to use in adjusting \textit{p}-values (if it is a multiple linear regression model). The value is passed to \texttt{p.adjust}. By default no adjustment is made.

seed An integer specifying a seed to pass to \texttt{set.seed} for random number generation. This allows reproducibility of bootstrap results. The value \texttt{NA} results in not setting a seed.

rqwarn A logical specifying whether warnings generated by \texttt{rq.fit} (such as 'Solution may be nonunique') should be printed (\texttt{TRUE}) or suppressed (\texttt{FALSE}). Defaults to \texttt{FALSE}.

matchWRS A logical specifying whether bootstrap samples should be generated in the exact same manner as in the qhomtv2 function in \texttt{WRS} package. If \texttt{TRUE}, and \texttt{seed} is set to 2 and \texttt{B} to 100 and \texttt{p.adjust.method} to "none", results will be identical to those of the default settings of qhomtv2.

statonly A logical. If \texttt{TRUE}, only the test statistic value is returned, instead of an object of class "htest". Defaults to \texttt{FALSE}.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a \texttt{tibble} using \texttt{tidy}.

References

See Also

Rand R. Wilcox’s package WRS on Github; in particular the functions qhomt and qhomtv2, which implement this method for simple and multiple linear regression respectively.

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
wilcox_keselman(mtcars_lm)
```

yuce

Yüce’s Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the two methods of Yüce (2008) for testing for heteroskedasticity in a linear regression model.

Usage

```r
yuce(mainlm, method = c("A", "B"), statonly = FALSE)
```

Arguments

- `mainlm` Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "x" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

- `method` A character indicating which of the two tests presented in Yüce (2008) should be implemented. Possible values are "A" (the chi-squared test) and "B" (the t-test). Partial matching is used and the argument is not case-sensitive.

- `statonly` A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Details

These two tests are straightforward to implement; in both cases the test statistic is a function only of the residuals of the linear regression model. The first test statistic has an asymptotic chi-squared distribution and the second has an asymptotic t-distribution. In both cases the degrees of freedom are \(n - p \). The chi-squared test is right-tailed whereas the t-test is two-tailed.
Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Examples

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
yuce(mtcars_lm, method = "A")
yuce(mtcars_lm, method = "B")

Usage

zhou_etal(mainlm, auxdesign = NA, method = c("pooled", "covariate-specific", "hybrid"), Bperturbed = 500L, seed = 1234, statonly = FALSE)
Arguments

mainlm Either an object of class "lm" (e.g., generated by `lm`), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names "X" and "y" to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

auxdesign A data.frame or matrix representing an auxiliary design matrix of containing exogenous variables that (under alternative hypothesis) are related to error variance, or a character "fitted.values" indicating that the fitted \(\hat{y}_i \) values from OLS should be used. If set to NA (the default), the design matrix of the original regression model is used. An intercept is included in the auxiliary regression even if the first column of auxdesign is not a vector of ones.

method A character specifying which of the three test methods to implement; one of "pooled", "covariate-specific", or "hybrid" (which combines the other two). Partial matching is used.

Bperturbed An integer specifying the number of perturbation samples to generate when estimating the \(p \)-value. Defaults to 500L.

seed An integer specifying a seed to pass to `set.seed` for random number generation. This allows for reproducibility of perturbation sampling. A value of NA results in not setting a seed.

statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Examples

```r
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
zhou_etal(mtcars_lm, method = "pooled")
zhou_etal(mtcars_lm, method = "covariate-specific")
zhou_etal(mtcars_lm, method = "hybrid")
```
Index

* datasets
 dpeakdat, 20
 T_alpha, 53

anscombe, 3

bamset, 5
bickel, 4, 6
BLUS, 29, 34, 38
blus, 5, 8, 29, 34, 38
BLUS residuals, 6
breusch_pagan, 10, 48

car::ncvTest, 11, 15
carapoeto_holt, 12
class, 3–15, 18, 19, 21–33, 36–40, 45–50, 54–60
cook_weisberg, 11, 14, 48
countpeaks, 15
data frames, 35
data.frame, 11, 14, 25, 32, 47, 54, 60
davies, 43, 44
dDtrend, 16, 38, 41
diblasi_bowman, 17
dpeak, 19, 20, 42, 43
dpeakdat, 20, 20, 28, 42
dufour_etal, 21
evans_king, 23
farebrother, 44
gleichser, 24
godfrey_orme, 26
goldfeld_quandt, 16, 20, 27, 43
graphics devices, 34

harrison_mccabe, 30
harvey, 32
hetplot, 33

honda, 35
horn, 16, 17, 37, 41
identity, 7
imhof, 43, 44
integrate, 43, 44
li_yao, 39
lm, 3, 5, 7, 9, 10, 12, 14, 18, 21, 23, 25, 26, 28, 30, 32, 33, 36, 37, 39, 45, 47, 50, 54, 55, 57, 58, 60
lmtest::bptest, 11
lmtest::gqtest, 29
lmtest::hmctest, 31
matrix, 11, 14, 25, 32, 47, 54, 60

optim, 48

p.adjust, 57
par, 34
pDtrend, 38, 40
plot, 34
plot.lm, 35
ppeak, 19, 20, 42
pRQF, 13, 23, 31, 36, 43, 50
rackauskas_zuokas, 45, 53
rlm, 7
rnorm, 22
round, 12, 28
rq.fit, 57

set.seed, 9, 18, 22, 26, 57, 60
simonoff_tsai, 47
szroeter, 50

T_alpha, 45, 46, 53
tibble, 4, 6, 8, 11, 13, 15, 19, 22, 24, 25, 27, 29, 31, 32, 36, 38, 40, 46, 49, 50, 54, 56, 57, 59, 60
tidy, 4, 6, 8, 11, 13, 15, 19, 22, 24, 25, 27, 29, 31, 32, 36, 38, 40, 46, 49, 50, 54, 56, 57, 59, 60

tseries::white.test, 56
twosidedpval, 13, 22, 27, 29, 31, 36, 51

verblya, 54

white_lm, 11, 55
wilcox_keselman, 56

yuce, 58

zhou_etal, 59