Package ‘slfm’

November 28, 2023

Type Package
Title Fitting a Bayesian Sparse Latent Factor Model in Gene Expression Analysis
Version 1.0.2
Author Vinicius Mayrink [aut, cre], Joao Duarte [aut]
Maintainer Vinicius Mayrink <vdinizm@gmail.com>
Depends R (>= 3.1.0)
Description Set of tools to find coherent patterns in gene expression (microarray) data using a Bayesian Sparse Latent Factor Model (SLFM) <DOI:10.1007/978-3-319-12454-4_15>. Considerable effort has been put to build a fast and memory efficient package, which makes this proposal an interesting and computationally convenient alternative to study patterns of gene expressions exhibited in matrices. The package contains the implementation of two versions of the model based on different mixture priors for the loadings: one relies on a degenerate component at zero and the other uses a small variance normal distribution for the spike part of the mixture.
Imports Rcpp (>= 0.11.0), coda, lattice
LinkingTo Rcpp, RcppArmadillo
Encoding UTF-8
License GPL-2
NeedsCompilation yes
RoxygenNote 7.2.3
Repository CRAN
Date/Publication 2023-11-28 18:10:02 UTC

R topics documented:

plot_matrix ... 2
print.slfm ... 3
process_matrix .. 3
slfm ... 4
slfm_list ... 5
slfm_package ... 6
Description

Function to build a heat map displaying the values of given data matrix. This graph is useful for a visual inspection of the spatial distribution of the observations within the target matrix.

Usage

plot_matrix(
 y,
 standardize.rows = TRUE,
 reorder.rows = TRUE,
 reorder.cols = TRUE,
 high.contrast = TRUE
)

Arguments

y: data matrix to be evaluated.
standardize.rows: logical argument (default = TRUE) indicating whether to standardize the rows of y to build the image.
reorder.rows: logical argument (default = TRUE) indicating whether to reorder the rows of y to highlight a pattern.
reorder.cols: logical argument (default = TRUE) indicating whether to reorder the columns of y to highlight a pattern.
high.contrast: logical argument (default = TRUE) indicating whether to apply a transformation to increase contrast in the image of y.

See Also

slfm, process_matrix, slfm_list
print.slfm

Print method for an slfm object

Description

Print method for an slfm object

Usage

S3 method for class 'slfm'
print(x, ...)

Arguments

x object of the class 'slfm'.
...
 further arguments passed to or from other methods.

process_matrix

process_matrix

Description

Function to apply a procedure to pre-process the gene expression data saved in matrices. This pre-
processing step is required to allow a fair analysis of the results obtained from the SLFM model.

Usage

process_matrix(path, output_path, sample_size)

Arguments

path path to the directory containing the set of matrices to be pre-processed.
output_path path to the directory intended to accommodate the saved pre-processed matrices.
sample_size number of matrices to be used on the principal component analysis.

See Also

slfm, slfm_list, plot_matrix
Description

Bayesian Sparse Latent Factor Model (SLFM) designed for the analysis of coherent patterns in gene expression data matrices. Details about the methodology being applied here can be found in Duarte and Mayrink (2015) and Duarte and Mayrink (2019).

Usage

```r
slfm(
x, 
a = 2.1,
b = 1.1,
gamma_a = 1,
gamma_b = 1,
omega_0 = 0.01,
omega_1 = 10,
sample = 1000,
burnin = round(0.25 * sample),
lag = 1,
degenerate = FALSE
)
```

Arguments

- **x**: matrix with the pre-processed data.
- **a**: positive shape parameter of the Inverse Gamma prior distribution (default = 2.1).
- **b**: positive scale parameter of the Inverse Gamma prior distribution (default = 1.1).
- **gamma_a**: positive 1st shape parameter of the Beta prior distribution (default = 1).
- **gamma_b**: positive 2nd shape parameter of the Beta prior distribution (default = 1).
- **omega_0**: prior variance of the spike mixture component (default = 0.01).
- **omega_1**: prior variance of the slab mixture component (default = 10).
- **sample**: sample size to be considered for inference after the burn in period (default = 1000).
- **burnin**: size of the burn in period in the MCMC algorithm (default = sample/4).
- **lag**: lag to build the chains based on spaced draws from the Gibbs sampler (default = 1).
- **degenerate**: logical argument (default = FALSE) indicating whether to use the degenerate version of the mixture prior for the factor loadings.
slfm_list

Value

- **x**: data matrix.
- **q_star**: matrix of MCMC chains for q_star parameter.
- **alpha**: summary table of MCMC chains for alpha parameter.
- **lambda**: summary table of MCMC chains for lambda parameter.
- **sigma**: summary table of MCMC chains for sigma parameter.
- **classification**: classification of each alpha ('present', 'marginal', 'absent')

References

- DOI:10.18637/jss.v090.i09 (Duarte and Mayrink; 2019)
- DOI:10.1007/978-3-319-12454-4_15 (Duarte and Mayrink; 2015)

See Also

- process_matrix, plot_matrix

Examples

```r
mat <- matrix(rnorm(2000), nrow = 20)
slfm(mat, sample = 1000)
```

Description

Function to fit the Bayesian Sparse Latent Factor Model to a group of data matrices within a directory. All matrices are supposed to have values representing the gene expression observed for different genes (rows) and different samples (columns).

Usage

```r
slfm_list(path = ".", recursive = TRUE, a = 2.1, b = 1.1, gamma_a = 1, gamma_b = 1, omega_0 = 0.01, omega_1 = 10, sample = 1000, burnin = round(0.25 * sample), lag = 1, degenerate = FALSE)
```

<table>
<thead>
<tr>
<th>slfm_list</th>
<th>slfm_list</th>
</tr>
</thead>
</table>

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path</td>
<td>path to the directory where the target data matrices are located.</td>
</tr>
<tr>
<td>recursive</td>
<td>logical argument (default = TRUE) indicating whether the function should look recursively inside folders.</td>
</tr>
<tr>
<td>a</td>
<td>positive shape parameter of the Inverse Gamma prior distribution (default = 2.1).</td>
</tr>
<tr>
<td>b</td>
<td>positive scale parameter of the Inverse Gamma prior distribution (default = 1.1).</td>
</tr>
<tr>
<td>gamma_a</td>
<td>positive 1st shape parameter of the Beta prior distribution (default = 1).</td>
</tr>
<tr>
<td>gamma_b</td>
<td>positive 2nd shape parameter of the Beta prior distribution (default = 1).</td>
</tr>
<tr>
<td>omega_0</td>
<td>prior variance of the spike mixture component (default = 0.01).</td>
</tr>
<tr>
<td>omega_1</td>
<td>prior variance of the slab mixture component (default = 10).</td>
</tr>
<tr>
<td>sample</td>
<td>sample size to be considered for inference after the burn in period (default = 1000).</td>
</tr>
<tr>
<td>burnin</td>
<td>size of the burn in period in the MCMC algorithm (default = sample/4).</td>
</tr>
<tr>
<td>lag</td>
<td>lag to build the chains based on spaced draws from the Gibbs sampler (default = 1).</td>
</tr>
<tr>
<td>degenerate</td>
<td>logical argument (default = FALSE) indicating whether to use the degenerate version of the mixture prior for the factor loadings.</td>
</tr>
</tbody>
</table>

See Also

slfm, process_matrix, plot_matrix

slfm_package

slfm: Fitting a Bayesian Sparse Latent Factor Model in Gene Expression Analysis

Description

Set of tools to find coherent patterns in gene expression (possibly microarray) data using a Bayesian Sparse Latent Factor Model (SLFM) <DOI:10.1007/978-3-319-12454-4_15>. Considerable effort has been put to build slfm fast and memory efficient, which makes this proposal an interesting and computationally convenient alternative to study patterns of gene expressions exhibited in matrices. The package contains the implementation of two versions of the model based on different mixture priors for the loadings: one relies on a degenerate component at zero and the other uses a small variance normal distribution for the spike part of the mixture. Additional functions are also available to handle data pre-processing procedures and to fit the model for a large number of probesets or genes. It includes functions to:

Details

* pre-process a set of matrices; * fit the available models to a set of matrices; * provide a detailed summarization of the model fit results.
Index

plot_matrix, 2, 3, 5, 6
print.slfm, 3
process_matrix, 2, 3, 5, 6

slfm, 2, 3, 4, 6
slfm-package (slfm_package), 6
slfm_list, 2, 3, 5
slfm_package, 6