Package ‘slouch’

February 21, 2020

Type Package
Title Stochastic Linear Ornstein-Uhlenbeck Comparative Hypotheses
Version 2.1.4
Date 2020-02-21
Description An implementation of a phylogenetic comparative method. It can fit univariate among-
species Ornstein-Uhlenbeck models of phenotypic trait evolution, where the trait evolves to-
wards a primary optimum. The optimum can be modelled as a single parameter, as multiple dis-
crete regimes on the phylogenetic tree, and/or with continuous covari-
ates. See also Hansen (1997) <doi:10.2307/2411186>, But-
5646.2008.00412.x>.
License GPL-2
LazyData FALSE
ByteCompile FALSE
RoxygenNote 7.0.2
Depends R (>= 3.0.0), base, stats
Imports crayon, parallel, ape, memoise
Suggests knitr, rmarkdown, bookdown, testthat
URL http://github.com/kopperud/slouch
BugReports http://github.com/kopperud/slouch/issues
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation no
Author Bjørn Tore Kopperud [aut, cre],
 Jason Pienaar [aut],
 Kjetil Lysne Voje [aut],
 Steven Hecht Orzack [aut],
 Thomas F. Hansen [aut],
 Mark Grabowski [ctb]
Maintainer Bjørn Tore Kopperud <kopperud@protonmail.com>
Description

References

Author(s)

Maintainer: Bjørn Tore Kopperud <kopperud@protonmail.com>

Authors:

- Jason Pienaar
- Kjetil Lysne Voje
- Steven Hecht Orzack
- Thomas F. Hansen

Other contributors:

- Mark Grabowski [contributor]

See Also

Useful links:

- http://github.com/kopperud/slouch

artiodactyla

Artiodactyla Phylogeny

Description

A phylogenetic tree of Artiodactyla (even-toed ungulates).

Usage

data(artiodactyla)

Format

An object of class "phylo", from package "ape".

References

The tree is taken from Toljagic et al. (2017).

Examples

data(artiodactyla)
library(ape)
plot(artiodactyla)

Note: This tree also has regime information for each internal node in the tree:
print(artiodactyla$node.label)

brown.fit

Function to fit Brownian-motion models of trait evolution

Description

Function to fit Brownian-motion models of trait evolution

Usage

brown.fit(
 phy,
 species = NULL,
 sigma2_y_values = NULL,
 response,
 mv.response = NULL,
 fixed.fact = NULL,
 direct.cov = NULL,
 mv.direct.cov = NULL,
 mcov.direct.cov = NULL,
 random.cov = NULL,
 mv.random.cov = NULL,
 mcov.random.cov = NULL,
 estimate.Ya = FALSE,
 interactions = FALSE,
 hessian = FALSE,
 support = 2,
 convergence = 1e-06,
 nCores = 1,
 hillclimb = TRUE,
 lower = 1e-08,
 upper = NULL,
 verbose = FALSE
)

Arguments

phy an object of class `phylo`, must be rooted.
species

a character vector of species tip labels, typically the "species" column in a data frame. This column needs to be an exact match and same order as phy$tip.label

sigma2_y_values

a vector of one or more candidates for sigma squared (y) to be evaluated in grid search.

response

a numeric vector of a trait to be treated as response variable

mv.response

numeric vector of the observational variances of each response trait. E.g if response is a mean trait value, mv.response is the within-species squared standard error of the mean.

fixed_fact

factor of regimes on the terminal edges of the tree, in same order as species. If this is used, phy$node.label needs to be filled with the corresponding internal node regimes, in the order of node indices (root: n+1),(n+2),(n+3), ...

direct.cov

Direct effect independent variables

mv.direct.cov

Estimation variances for direct effect independent variables. Must be the same shape as direct.cov

mcov.direct.cov

Estimation covariances between the response variable and direct effect independent variables. Most be the same shape as direct.cov

random.cov

Independent variables each modeled as a brownian motion

mv.random.cov

Estimation variances for the brownian covariates. Must be the same shape as random.cov

mcov.random.cov

Estimation covariances between the response variable and random effect independent variables. Most be the same shape as random.cov

estimate.Ya

independently estimates the ancestral state under Brownian motion. Note that, for an intercept model, the intercept IS the ancestral state estimate (since there are no directional or stabilizing trends in a standard Brownian motion).

interactions

a logical value. Whether to model interactions between (all) direct-effect continuous covariates and categorical regimes (experimental). Defaults to FALSE

hessian

use the approximate hessian matrix at the likelihood peak as found by the hillclimber, to compute standard errors for the parameters that enter in parameter search.

support

a scalar indicating the size of the support set, defaults to 2 units of log-likelihood.

convergence

threshold of iterative GLS estimation for when beta is considered to be converged.

nCores

number of CPU cores used in grid-search. If 2 or more cores are used, all print statements are silenced during grid search. If performance is critical it is recommended to compile and link R to a multithreaded BLAS, since most of the heavy computations are common matrix operations. Even if a singlethreaded BLAS is used, this may or may not improve performance, and performance may vary with OS.

hillclimb

logical, whether to use hillclimb parameter estimation routine or not. This routine (L-BFGS-B from optim()) may be combined with the grid-search, in which case it will on default start on the sigma and halflife for the local ML found by the grid-search.
lower lower bounds for the optimization routine, defaults to 1e-8. When running direct
effect models without observational error, it may be useful to specify a positive
lower bounds for the sigma squared, since the residual variance-covariance ma-
trix is degenerate when sigma = 0.

upper upper bounds for the optimization routine, defaults to 10 * var(response) *
max(treeheight).

verbose a logical value indicating whether to print a summary in each iteration of param-
eter search. May be useful when diagnosing unexpected behaviour or crashes.

Value

An object of class 'slouch', essentially a list with the following fields:

parameter_space a list of the entire parameter space traversed by the grid search and the hill-
climber as applicable.

tree a list of parameters concerning the tree:
 • phy - an object of class 'phy'
 • T.term - a numeric vector including the time from the root of the tree to the
tip, for all taxa 1,2,3... n.
 • ta - for all pairs of species, the time from their most recent common ancestor
 (mrca) to the root of the tree.
 • tia - for all pairs of species, the time from their mrca to the tip of species i.
 • tja - the transpose of tia.
 • tij - for all pairs of species, the time from species i to their mrca, plus the
 time from their mrca to species j. In other words, tia + transpose(tia).
 • times - for all nodes (1,2,3... n, root, root+1, ...) in the tree, the time from
 the root to said node.
 • lineages - for all species (1,2,3... n), a list of their branch times and regimes
 as painted on the tree.
 • regimes - for all nodes (1,2,3... n, root, root+1, ...) in the tree, the respective
 regime as specified by "phy$node.label" and "fixed.fact".

modfit a list of statistics to characterize model fit

supportplot a list or matrix used to plot the grid search

supported_range a matrix indicating the interval of grid search that is within the support region.
If the grid search values are carefully selected, this may be used to estimate the
true support region.

V the residual variance-covariance matrix for the maximum likelihood model as
found by parameter search.

evolpar maximum likelihood estimates of parameters under the chosen model.

beta_primary regression coefficients and associated objects. Whether the regression coeffi-
cients are to be interpreted as optima or not depend on the type of model and
model estimates.
Description

Plot the hillclimber trajectory

Usage

hillclimbplot(x, ...)

S3 method for class 'slouch'
hillclimbplot(x, ...)

Arguments

x An object of class 'slouch'
...

Methods (by class)

- slouch: Hillclimbplot for the 'slouch object'

Examples

library(slouch)
library(ape)

data(neocortex)
data(artiodactyla)

neocortex <- neocortex[match(artiodactyla$tip.label, neocortex$species),]

m0 <- slouch.fit(phy = artiodactyla,
 species = neocortex$species,
 control = fixed.fact,
 brownian.predictors = climblog_df,
 n.par = beta_evolutionary,
 fixed.fact = fixed.fact,
 control = control)
logLik.slouch

Extract Log-Likelihood

Description

Extract Log-Likelihood

Usage

S3 method for class 'slouch'
logLik(object, ...)

Arguments

object An object of class 'slouch'

... Additional arguments.

Value

An object of class 'logLik'

Examples

data(artiodactyla)
data(neocortex)

neocortex <- neocortex[match(artiodactyla$tip.label, neocortex$species),]

m0 <- slouch.fit(phy = artiodactyla,
 species = neocortex$species,
 response = neocortex$neocortex_area_mm2_log_mean,
 mv.response = neocortex$neocortex_se_squared,
 hillclimb = TRUE)

logLik(m0)
lseq

Logarithmically spaced sequence

Description
Logarithmically spaced sequence

Usage
lseq(from = 1, to = 1e+05, length.out = 6)

Arguments
from the starting value of the sequence. Must be positive.
to the terminal value of the sequence. Must be larger than input to "from".
length.out desired length of the sequence. Must not be negative.

Value
A sequence of logarithmically spaced numbers.

Examples
lseq(1, 1000, length.out = 4)

neocortex

Artiodactyl brain data

Description
Morphological data on mean neocortex area (mm^2), mean brain size (g) and mean body size (g)
for 43 species, including estimates of within-species observational error. These standard errors
are not based directly on the unbiased sample variance estimator. The sample variances were first
calculated, then a "global sample variance" was estimated using a weighted average. Lastly, the
global sample variance was divided by the respective within-species sample size for each species to
obtain the squared standard error as reported in the dataset.

Usage
data(neocortex)

Format
An object of class "data.frame".
References

The following literature includes details on the original data collection.

See also:

Examples

data(neocortex)
plot(neocortex$brain_mass_g_log_mean, neocortex$neocortex_area_mm2_log_mean)

plot.slouch Plot Grid Search

Description

Graphical plot of parameter space traversed by the grid search.

Usage

```r
## S3 method for class 'slouch'
plot(x, theta = 30, phi = 30, expand = 0.5, ltheta = 120, shade = 0.75, ...)
```
print.slouch

Arguments

x An object of class 'slouch'

theta angles defining the viewing direction. theta gives the azimuthal direction and phi the colatitude.

phi angles defining the viewing direction. theta gives the azimuthal direction and phi the colatitude.

expand a expansion factor applied to the z coordinates. Often used with 0 < expand < 1 to shrink the plotting box in the z direction.

ltheta if finite values are specified for ltheta and lphi, the surface is shaded as though it was being illuminated from the direction specified by azimuth ltheta and colatitude lphi.

shade the shade at a surface facet is computed as \((1+d)/2\)^shade, where d is the dot product of a unit vector normal to the facet and a unit vector in the direction of a light source. Values of shade close to one yield shading similar to a point light source model and values close to zero produce no shading. Values in the range 0.5 to 0.75 provide an approximation to daylight illumination.

... Additional parameters passed to persp(...) or plot(...)

Examples

```r
data(artiodactyla)
data(neocortex)

neocortex <- neocortex[match(artiodactyla$tip.label, neocortex$species), ]

m0 <- slouch.fit(phy = artiodactyla,
    h1_values = seq(0.001, 50, length.out = 15),
    v1_values = seq(0.001, 3, length.out = 15),
    species = neocortex$species,
    response = neocortex$body_mass_g_log_mean,
    mv.response = neocortex$body_mass_g_log_varmean,
    fixed.fact = neocortex$diet)

plot(m0)
```

Description

Print, minimalist output

Usage

```r
## S3 method for class 'slouch'
print(x, ...)
```
Arguments

 x An object of class 'slouch'
 ... additional parameters

Examples

data(artiodactyla)
data(neocortex)

neocortex <- neocortex[match(artiodactyla$tip.label, neocortex$species),]
m0 <- slouch.fit(phy = artiodactyla,
 hl_values = seq(0.001, 4, length.out = 10),
 vy_values = seq(0.001, 0.05, length.out = 10),
 species = neocortex$species,
 response = neocortex$neocortex_area_mm2_log_mean,
 mv.response = neocortex$neocortex_se_squared,
 random.cov = neocortex$brain_mass_g_log_mean,
 mv.random.cov = neocortex$brain_se_squared,
 fixed.fact = neocortex$diet,
 hillclimb = FALSE)

regimeplot.slouch
Plot the internal regimes for a given fitted model

Description
Plot the internal regimes for a given fitted model

Usage

S3 method for class 'slouch'
regimeplot(x, ...)

Arguments

 x an object of class 'slouch'
 ... additional parameters passed to plot.phylo(...)

Value
nothing

Methods (by class)

 • slouch: Regimeplot for the 'slouch' object
Examples

```r
data(artiodactyla)
data(neocortex)

neocortex <- neocortex[match(artiodactyla$tip.label, neocortex$species),]

m0 <- slouch.fit(phy = artiodactyla,
                  species = neocortex$species,
                  response = neocortex$body_mass_g_log_mean,
                  mv.response = neocortex$body_mass_g_log_varmean,
                  fixed.fact = neocortex$diet,
                  hillclimb = TRUE)

regimeplot(m0)
```

slouch.fit
Function to fit Ornstein-Uhlenbeck models of trait evolution

Description

Function to fit Ornstein-Uhlenbeck models of trait evolution

Usage

```r
slouch.fit(
  phy,
  species = NULL,
  hl_values = NULL,
  a_values = NULL,
  vy_values = NULL,
  sigma2_y_values = NULL,
  response,
  mv.response = NULL,
  fixed.fact = NULL,
  direct.cov = NULL,
  mv.direct.cov = NULL,
  mcov.direct.cov = NULL,
  random.cov = NULL,
  mv.random.cov = NULL,
  mcov.random.cov = NULL,
  estimate.Ya = FALSE,
  estimate.bXa = FALSE,
  interactions = FALSE,
  hessian = FALSE,
  support = 2,
  convergence = 1e-06,
)```
nCores = 1,
hillclimb = TRUE,
lower = c(1e-08, 1e-08),
upper = Inf,
verbose = FALSE)

Arguments

phy an object of class ‘phylo’, must be rooted.

species a character vector of species tip labels, typically the "species" column in a data frame. This column needs to be an exact match and same order as phy$tip.label

hl_values a vector of candidate phylogenetic half-life values to be evaluated in grid search. Optional.
a_values a vector of candidate rate of adaptation values to be evaluated in grid search. Optional.
v_y_values a vector of candidate stationary variances for the response trait, to be evaluated in grid search. Optional.
sigma2_y_values alternative to vy_values, if the stationary variance is reparameterized as the variance parameter for the Brownian motion.

response a numeric vector of a trait to be treated as response variable

mv.response numeric vector of the observational variances of each response trait. E.g if response is a mean trait value, mv.response is the within-species squared standard error of the mean.

fixed.fact factor of regimes on the terminal edges of the tree, in same order as species. If this is used, phy$node.label needs to be filled with the corresponding internal node regimes, in the order of node indices (root: n+1),(n+2),(n+3), ...

direct.cov Direct effect independent variables

mv.direct.cov Estimation variances for direct effect independent variables. Must be the same shape as direct.cov

mcov.direct.cov Estimation covariances between the response variable and direct effect independent variables. Most be the same shape as direct.cov

random.cov Independent variables each modeled as a brownian motion

mv.random.cov Estimation variances for the brownian covariates. Must be the same shape as random.cov

mcov.random.cov Estimation covariances between the response variable and random effect independent variables. Most be the same shape as random.cov

estimate.Ya a logical value indicating whether "Ya" should be estimated. If true, the intercept K = 1 is expanded to Ya = exp(-a*t) and b0 = 1-exp(-a*t). If models with categorical covariates are used, this will instead estimate a separate primary optimum for the root niche, “Ya”. This only makes sense for non-ultrametric trees. If the tree is ultrametric, the model matrix becomes singular.
estimate.bXa a logical value indicating whether "bXa" should be estimated. If true, bXa = 1-exp(-a*t) - (1-(1-exp(-a*t))/(a*t)) is added to the model matrix, estimating b*Xa. Same requirements as for estimating Ya.

interactions a logical value. Whether to model interactions between (all) direct-effect continuous covariates and categorical regimes (experimental). Defaults to FALSE

hessian use the approximate hessian matrix at the likelihood peak as found by the hillclimber, to compute standard errors for the parameters that enter in parameter search.

support a scalar indicating the size of the support set, defaults to 2 units of log-likelihood.

convergence threshold of iterative GLS estimation for when beta is considered to be converged.

nCores number of CPU cores used in grid-search. If 2 or more cores are used, all print statements are silenced during grid search. If performance is critical it is recommended to compile and link R to a multithreaded BLAS, since most of the heavy computations are common matrix operations. Even if a singlethreaded BLAS is used, this may or may not improve performance, and performance may vary with OS.

hillclimb logical, whether to use hillclimb parameter estimation routine or not. This routine (L-BFGS-B from optim()) may be combined with the grid-search, in which case it will on default start on the sigma and halflife for the local ML found by the grid-search.

lower lower bounds for the optimization routine, defaults to c(0,0). First entry in vector is half-life, second is stationary variance. When running direct effect models without observational error, it may be useful to specify a positive lower bounds for the stationary variance, e.g c(0, 0.001), since the residual variance-covariance matrix is degenerate when sigma = 0.

upper upper bounds for the optimization routine, defaults to c(Inf, Inf).

verbose a logical value indicating whether to print a summary in each iteration of parameter search. May be useful when diagnosing unexpected behaviour or crashes.

Value

An object of class 'slouch’, essentially a list with the following fields:

parameter_space a list of the entire parameter space traversed by the grid search and the hillclimber as applicable.

tree a list of parameters concerning the tree:

• phy - an object of class 'phy'
• T.term - a numeric vector including the time from the root of the tree to the tip, for all taxa 1,2,3... n.
• ta - for all pairs of species, the time from their most recent common ancestor (mrca) to the root of the tree.
• tia - for all pairs of species, the time from their mrca to the tip of species i.
• tja - the transpose of tia.
• tij - for all pairs of species, the time from species i to their mrca, plus the
time from their mrca to species j. In other words, tia + transpose(tia).
• times - for all nodes (1,2,3... n, root, root+1, ...) in the tree, the time from
the root to said node.
• lineages - for all species (1,2,3... n), a list of their branch times and regimes
as painted on the tree.
• regimes - for all nodes (1,2,3... n, root, root+1, ...) in the tree, the respective
regime as specified by "phy$node.label" and "fixed.fact".

modfit a list of statistics to characterize model fit
supportplot a list or matrix used to plot the grid search
supported_range a matrix indicating the interval of grid search that is within the support region.
If the grid search values are carefully selected, this may be used to estimate the
true support region.
V the residual variance-covariance matrix for the maximum likelihood model as
found by parameter search.
evolpar maximum likelihood estimates of parameters under the chosen model.
beta_primary regression coefficients and associated objects. Whether the regression coeffi-
cients are to be interpreted as optima or not depend on the type of model and
model estimates.
beta_evolutionary under a random effect model, "beta_evolutionary" is the evolutionary regression
coefficients and associated objects.
n.par number of free parameters with which the likelihood criteria are penalized.
brownian_predictors under a random effect model, a matrix of means and standard errors for the in-
dependent Brownian motion variable(s). Not to be confused with the regression
coefficients when the residuals are under a "bm" model.
climblog_df a matrix of the path trajectory of the hillclimber routine.
fixed.fact the respective regimes for all species (1,2,3... n).
control internal parameters for control flow.

---

summary.slouch Model Summary

Description
Model Summary

Usage

## S3 method for class 'slouch'
summary(object, ...)
summary.slouch

Arguments

  object          An object of class 'slouch'
  ...            Additional arguments, unused.

Examples

```r
data(artiodactyla)
data(neocortex)

neocortex <- neocortex[match(artiodactyla$tip.label, neocortex$species),]

m0 <- slouch.fit(phy = artiodactyla,
 hl_values = seq(0.001, 4, length.out = 10),
 vy_values = seq(0.001, 0.05, length.out = 10),
 species = neocortex$species,
 response = neocortex$neocortex_area_mm2_log_mean,
 mv.response = neocortex$neocortex_se_squared,
 random.cov = neocortex$brain_mass_g_log_mean,
 mv.random.cov = neocortex$brain_se_squared,
 fixed.fact = neocortex$diet,
 hillclimb = FALSE)

summary(m0)

plot(m0, theta = 150)
```
Index

*Topic datasets
  artiodactyla, 3
  neocortex, 9

artiodactyla, 3
brown.fit, 4
hillclimbplot, 7
logLik.slouch, 8
lseq, 9
neocortex, 9
plot.slouch, 10
print.slouch, 11

regimeplot (regimeplot.slouch), 12
regimeplot.slouch, 12

slouch (slouch-package), 2
slouch-package, 2
slouch.fit, 13
summary.slouch, 16