Package ‘smd’

October 14, 2022

Type Package
Title Compute Standardized Mean Differences
Version 0.6.6
Imports MASS (>= 7.3-50), methods (>= 3.5.1)
Suggests testthat, stddiff, tableone, knitr, dplyr, purrr, markdown, rmarkdown
License MIT + file LICENSE
URL https://docs.novisci.com/smd/
BugReports https://gitlab.novisci.com/nsstat/smd/issues
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
VignetteBuilder knitr
Repository CRAN
NeedsCompilation no
Author Bradley Saul [aut, cre],
 Alex Breskin [ctb],
 Catie Wiener [ctb],
 Matt Phelan [ctb]
Maintainer Bradley Saul <bsaul@novisci.com>
Date/Publication 2020-10-22 09:20:02 UTC

R topics documented:

 smd .. 2

Index 4
smd

Compute Standardized Mean Difference

Description

Computes the standardized mean difference (SMD) between two groups.

\[
d = \sqrt{D'S^{-1}D}
\]

where \(D\) is a vector of differences between group 1 and 2 and \(S\) is the covariance matrix of these differences. If \(D\) is length 1, the result is multiplied by \(\text{sign}(D)\).

In the case of a numeric or integer variable, this is equivalent to:

\[
d = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{(s_1^2 + s_2^2)/2}}
\]

where \(\bar{x}_g\) is the sample mean for group \(g\) and \(s_g^2\) is the sample variance.

For a logical or factor with only two levels, the equation above is \(\bar{x}_g = \hat{p}_g\), i.e. the sample proportion and \(s_g^2 = \hat{p}_g(1 - \hat{p}_g)\).

Usage

```r
smd(x, g, w, std.error = FALSE, na.rm = FALSE, gref = 1L)
```

S4 method for signature 'character,ANY,missing'
```
smd(x, g, w, std.error = FALSE, na.rm = FALSE, gref = 1L)
```

S4 method for signature 'character,ANY,numeric'
```
smd(x, g, w, std.error = FALSE, na.rm = FALSE, gref = 1L)
```

S4 method for signature 'logical,ANY,missing'
```
smd(x, g, w, std.error = FALSE, na.rm = FALSE, gref = 1L)
```

S4 method for signature 'logical,ANY,numeric'
```
smd(x, g, w, std.error = FALSE, na.rm = FALSE, gref = 1L)
```

S4 method for signature 'matrix,ANY,missing'
```
smd(x, g, w, std.error = FALSE, na.rm = FALSE, gref = 1L)
```

S4 method for signature 'matrix,ANY,numeric'
```
smd(x, g, w, std.error = FALSE, na.rm = FALSE, gref = 1L)
```

S4 method for signature 'list,ANY,missing'
```
smd(x, g, w, std.error = FALSE, na.rm = FALSE, gref = 1L)
```

S4 method for signature 'list,ANY,numeric'
```
smd

smd(x, g, w, std.error = FALSE, na.rm = FALSE, gref = 1L)

## S4 method for signature 'data.frame,ANY,missing'
smd(x, g, w, std.error = FALSE, na.rm = FALSE, gref = 1L)

## S4 method for signature 'data.frame,ANY,numeric'
smd(x, g, w, std.error = FALSE, na.rm = FALSE, gref = 1L)

Arguments

x          a vector or matrix of values

w          a vector of at least 2 groups to compare. This should coercable to a factor.

w          a vector of numeric weights (optional)

std.error  Logical indicator for computing standard errors using compute_smd_var. De-

na.rm      Remove NA values from x? Defaults to FALSE.

args       an integer indicating which level of g to use as the reference group. Defaults to

Value

a data.frame containing standardized mean differences between levels of g for values of x. The
data.frame contains the columns:

- term: the level being comparing to the reference level
- estimate: SMD estimates
- std.error: (if std.error = TRUE) SMD standard error estimates

Examples

x <- rnorm(100)
g <- rep(1:2, each = 50)
smd(x, g)
Index

compute_smd_var, 3

smd, 2
smd, character, ANY, missing-method (smd), 2
smd, character, ANY, numeric-method (smd), 2
smd, data.frame, ANY, missing-method (smd), 2
smd, data.frame, ANY, numeric-method (smd), 2
smd, list, ANY, missing-method (smd), 2
smd, list, ANY, numeric-method (smd), 2
smd, logical, ANY, missing-method (smd), 2
smd, logical, ANY, numeric-method (smd), 2
smd, matrix, ANY, missing-method (smd), 2
smd, matrix, ANY, numeric-method (smd), 2