es()
is a part of smooth
package and is a wrapper for the ADAM
function with distribution="dnorm"
. It implements
Exponential Smoothing in the ETS form, selecting the most appropriate
model among 30 possible ones.
We will use some of the functions of the greybox
package
in this vignette for demonstrational purposes.
Let’s load the necessary packages:
require(smooth)
require(greybox)
The simplest call for the es()
function is:
<- es(BJsales, h=12, holdout=TRUE, silent=FALSE) ourModel
## Forming the pool of models based on... ANN , AAN , Estimation progress: 33 %44 %56 %67 %78 %89 %100 %... Done!
ourModel
## Time elapsed: 0.21 seconds
## Model estimated using es() function: ETS(AAdN)
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 237.6516
## Persistence vector g:
## alpha beta
## 0.9156 0.3339
## Damping parameter: 0.8587
## Sample size: 138
## Number of estimated parameters: 6
## Number of degrees of freedom: 132
## Information criteria:
## AIC AICc BIC BICc
## 487.3032 487.9444 504.8667 506.4464
##
## Forecast errors:
## ME: 2.794; MAE: 2.948; RMSE: 3.629
## sCE: 14.75%; Asymmetry: 87.7%; sMAE: 1.297%; sMSE: 0.025%
## MASE: 2.475; RMSSE: 2.365; rMAE: 0.951; rRMSE: 0.947
In this case function uses branch and bound algorithm to form a pool of models to check and after that constructs a model with the lowest information criterion. As we can see, it also produces an output with brief information about the model, which contains:
holdout=TRUE
).The function has also produced a graph with actual values, fitted values and point forecasts.
If we need prediction interval, then we can use the
forecast()
method:
plot(forecast(ourModel, h=12, interval="prediction"))
The same model can be reused for different purposes, for example to produce forecasts based on newly available data:
es(BJsales, model=ourModel, h=12, holdout=FALSE)
## Time elapsed: 0 seconds
## Model estimated using es() function: ETS(AAdN)
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 255.4135
## Persistence vector g:
## alpha beta
## 0.9156 0.3339
## Damping parameter: 0.8587
## Sample size: 150
## Number of estimated parameters: 1
## Number of degrees of freedom: 149
## Information criteria:
## AIC AICc BIC BICc
## 512.8269 512.8539 515.8376 515.9053
We can also extract the type of model in order to reuse it later:
modelType(ourModel)
## [1] "AAdN"
This handy function also works with ets()
from forecast
package.
If we need actual values from the model, we can use
actuals()
method from greybox
package:
actuals(ourModel)
## Time Series:
## Start = 1
## End = 138
## Frequency = 1
## [1] 200.1 199.5 199.4 198.9 199.0 200.2 198.6 200.0 200.3 201.2 201.6 201.5
## [13] 201.5 203.5 204.9 207.1 210.5 210.5 209.8 208.8 209.5 213.2 213.7 215.1
## [25] 218.7 219.8 220.5 223.8 222.8 223.8 221.7 222.3 220.8 219.4 220.1 220.6
## [37] 218.9 217.8 217.7 215.0 215.3 215.9 216.7 216.7 217.7 218.7 222.9 224.9
## [49] 222.2 220.7 220.0 218.7 217.0 215.9 215.8 214.1 212.3 213.9 214.6 213.6
## [61] 212.1 211.4 213.1 212.9 213.3 211.5 212.3 213.0 211.0 210.7 210.1 211.4
## [73] 210.0 209.7 208.8 208.8 208.8 210.6 211.9 212.8 212.5 214.8 215.3 217.5
## [85] 218.8 220.7 222.2 226.7 228.4 233.2 235.7 237.1 240.6 243.8 245.3 246.0
## [97] 246.3 247.7 247.6 247.8 249.4 249.0 249.9 250.5 251.5 249.0 247.6 248.8
## [109] 250.4 250.7 253.0 253.7 255.0 256.2 256.0 257.4 260.4 260.0 261.3 260.4
## [121] 261.6 260.8 259.8 259.0 258.9 257.4 257.7 257.9 257.4 257.3 257.6 258.9
## [133] 257.8 257.7 257.2 257.5 256.8 257.5
We can also use persistence or initials only from the model to construct the other one:
# Provided initials
es(BJsales, model=modelType(ourModel),
h=12, holdout=FALSE,
initial=ourModel$initial)
## Time elapsed: 0.01 seconds
## Model estimated using es() function: ETS(AAdN)
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 255.3054
## Persistence vector g:
## alpha beta
## 0.9645 0.2960
## Damping parameter: 0.8739
## Sample size: 150
## Number of estimated parameters: 4
## Number of degrees of freedom: 146
## Information criteria:
## AIC AICc BIC BICc
## 518.6108 518.8867 530.6534 531.3445
# Provided persistence
es(BJsales, model=modelType(ourModel),
h=12, holdout=FALSE,
persistence=ourModel$persistence)
## Time elapsed: 0.02 seconds
## Model estimated using es() function: ETS(AAdN)
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 255.4113
## Persistence vector g:
## alpha beta
## 0.9156 0.3339
## Damping parameter: 0.8566
## Sample size: 150
## Number of estimated parameters: 4
## Number of degrees of freedom: 146
## Information criteria:
## AIC AICc BIC BICc
## 518.8226 519.0985 530.8651 531.5563
or provide some arbitrary values:
es(BJsales, model=modelType(ourModel),
h=12, holdout=FALSE,
initial=200)
## Time elapsed: 0.02 seconds
## Model estimated using es() function: ETS(AAdN)
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 255.3549
## Persistence vector g:
## alpha beta
## 0.9735 0.2897
## Damping parameter: 0.8755
## Sample size: 150
## Number of estimated parameters: 5
## Number of degrees of freedom: 145
## Information criteria:
## AIC AICc BIC BICc
## 520.7097 521.1264 535.7629 536.8068
Using some other parameters may lead to completely different model and forecasts (see discussion of the additional parameters in the online textbook about ADAM):
es(BJsales, h=12, holdout=TRUE, loss="MSEh", bounds="a", ic="BIC")
## Time elapsed: 0.83 seconds
## Model estimated using es() function: ETS(AAN)
## Distribution assumed in the model: Normal
## Loss function type: MSEh; Loss function value: 88.75
## Persistence vector g:
## alpha beta
## 1.5468 0.0000
##
## Sample size: 138
## Number of estimated parameters: 4
## Number of degrees of freedom: 134
## Information criteria:
## AIC AICc BIC BICc
## 1018.671 1018.971 1030.380 1031.121
##
## Forecast errors:
## ME: -0.521; MAE: 1.234; RMSE: 1.377
## sCE: -2.75%; Asymmetry: -47.1%; sMAE: 0.543%; sMSE: 0.004%
## MASE: 1.036; RMSSE: 0.898; rMAE: 0.398; rRMSE: 0.359
You can play around with all the available parameters to see what’s their effect on the final model.
In order to combine forecasts we need to use “C” letter:
es(BJsales, model="CCN", h=12, holdout=TRUE)
## Time elapsed: 0.23 seconds
## Model estimated: ETS(CCN)
## Loss function type: likelihood
##
## Number of models combined: 10
## Sample size: 138
## Average number of estimated parameters: 6.3012
## Average number of degrees of freedom: 131.6988
##
## Forecast errors:
## ME: 2.813; MAE: 2.968; RMSE: 3.654
## sCE: 14.851%; sMAE: 1.306%; sMSE: 0.026%
## MASE: 2.492; RMSSE: 2.382; rMAE: 0.957; rRMSE: 0.954
Model selection from a specified pool and forecasts combination are called using respectively:
# Select the best model in the pool
es(BJsales, model=c("ANN","AAN","AAdN","MNN","MAN","MAdN"),
h=12, holdout=TRUE)
## Time elapsed: 0.11 seconds
## Model estimated using es() function: ETS(AAdN)
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 237.6516
## Persistence vector g:
## alpha beta
## 0.9156 0.3339
## Damping parameter: 0.8587
## Sample size: 138
## Number of estimated parameters: 6
## Number of degrees of freedom: 132
## Information criteria:
## AIC AICc BIC BICc
## 487.3032 487.9444 504.8667 506.4464
##
## Forecast errors:
## ME: 2.794; MAE: 2.948; RMSE: 3.629
## sCE: 14.75%; Asymmetry: 87.7%; sMAE: 1.297%; sMSE: 0.025%
## MASE: 2.475; RMSSE: 2.365; rMAE: 0.951; rRMSE: 0.947
# Combine the pool of models
es(BJsales, model=c("CCC","ANN","AAN","AAdN","MNN","MAN","MAdN"),
h=12, holdout=TRUE)
## Time elapsed: 0.11 seconds
## Model estimated: ETS(CCN)
## Loss function type: likelihood
##
## Number of models combined: 6
## Sample size: 138
## Average number of estimated parameters: 6.5053
## Average number of degrees of freedom: 131.4947
##
## Forecast errors:
## ME: 2.817; MAE: 2.968; RMSE: 3.654
## sCE: 14.872%; sMAE: 1.305%; sMSE: 0.026%
## MASE: 2.491; RMSSE: 2.382; rMAE: 0.957; rRMSE: 0.954
Now we introduce explanatory variable in ETS:
<- BJsales.lead x
and fit an ETSX model with the exogenous variable first:
es(BJsales, model="ZZZ", h=12, holdout=TRUE,
xreg=x)
## Time elapsed: 0.73 seconds
## Model estimated using es() function: ETSX(AMdN)
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 237.4933
## Persistence vector g (excluding xreg):
## alpha beta
## 0.9494 0.2913
## Damping parameter: 0.8762
## Sample size: 138
## Number of estimated parameters: 7
## Number of degrees of freedom: 131
## Information criteria:
## AIC AICc BIC BICc
## 488.9866 489.8482 509.4774 511.5999
##
## Forecast errors:
## ME: 2.875; MAE: 2.999; RMSE: 3.701
## sCE: 15.176%; Asymmetry: 89.9%; sMAE: 1.319%; sMSE: 0.027%
## MASE: 2.517; RMSSE: 2.412; rMAE: 0.967; rRMSE: 0.966
If we want to check if lagged x can be used for forecasting purposes,
we can use xregExpander()
function from
greybox
package:
es(BJsales, model="ZZZ", h=12, holdout=TRUE,
xreg=xregExpander(x), regressors="use")
## Time elapsed: 1.54 seconds
## Model estimated using es() function: ETSX(AMdN)
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 236.4443
## Persistence vector g (excluding xreg):
## alpha beta
## 0.9881 0.3253
## Damping parameter: 0.8288
## Sample size: 138
## Number of estimated parameters: 9
## Number of degrees of freedom: 129
## Information criteria:
## AIC AICc BIC BICc
## 490.8886 492.2949 517.2339 520.6984
##
## Forecast errors:
## ME: 2.352; MAE: 2.849; RMSE: 3.349
## sCE: 12.417%; Asymmetry: 72.6%; sMAE: 1.253%; sMSE: 0.022%
## MASE: 2.391; RMSSE: 2.183; rMAE: 0.919; rRMSE: 0.874
We can also construct a model with selected exogenous (based on IC):
es(BJsales, model="ZZZ", h=12, holdout=TRUE,
xreg=xregExpander(x), regressors="select")
## Time elapsed: 0.99 seconds
## Model estimated using es() function: ETS(AAdN)
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 237.6516
## Persistence vector g:
## alpha beta
## 0.9156 0.3339
## Damping parameter: 0.8587
## Sample size: 138
## Number of estimated parameters: 6
## Number of degrees of freedom: 132
## Information criteria:
## AIC AICc BIC BICc
## 487.3032 487.9444 504.8667 506.4464
##
## Forecast errors:
## ME: 2.794; MAE: 2.948; RMSE: 3.629
## sCE: 14.75%; Asymmetry: 87.7%; sMAE: 1.297%; sMSE: 0.025%
## MASE: 2.475; RMSSE: 2.365; rMAE: 0.951; rRMSE: 0.947
Finally, if you work with M or M3 data, and need to test a function on a specific time series, you can use the following simplified call:
es(Mcomp::M3$N2457, silent=FALSE)
This command has taken the data, split it into in-sample and holdout and produced the forecast of appropriate length to the holdout.