Package ‘snSMART’

July 19, 2023

Type Package
Title Small N Sequential Multiple Assignment Randomized Trial Methods
Version 0.2.3
Maintainer Michael Kleinsasser <mkleinsa@umich.edu>
License GPL-2
URL https://github.com/sidiwang/snSMART
BugReports https://github.com/sidiwang/snSMART/issues
Depends R (>= 3.5.0), EnvStats (>= 2.4.0)
Imports bayestestR (>= 0.11.0), condMVNorm (>= 2020.1), cubature (>= 2.0.4.1), geepack (>= 1.3-1), HDInterval (>= 0.2.0), pracma (>= 2.3.3), rjags (>= 4-12), tidyr (>= 1.1.2), truncdist (>= 1.0-1)
Suggests coda (>= 0.19-2)
Biarch true
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
SystemRequirements JAGS 4.x.y
NeedsCompilation no
Author Sidi Wang [aut], Kelley Kidwell [aut], Michael Kleinsasser [cre]
Repository CRAN
Date/Publication 2023-07-19 19:50:02 UTC
R topics documented:

BJSM_binary ... 2
BJSM_c ... 6
data_binary ... 9
data_dose ... 9
groupseqDATA_full ... 10
groupseqDATA_look1 .. 11
group_seq ... 12
LPJSM_binary ... 15
sample_size ... 17
summary.BJSM_binary .. 19
summary.BJSM_dose_binary .. 19
summary.group_seq ... 20
trialDataMF .. 21

 BJSM for snSMART (3 active treatments/placebo and 2 dose level)
with binary outcome

Description

This function implements the BJSM (Bayesian Joint Stage Modeling) method which borrows information across both stages to estimate the individual response rate of each treatment/dose level in a snSMART design with binary outcomes.

Usage

BJSM_binary(
 data,
prior_dist,
pi_prior,
 normal.par,
beta_prior,
n_MCMC_chain,
n.adapt,
BURN.IN = 100,
thin = 1,
MCMC_SAMPLE,
 ci = 0.95,
six = TRUE,
DTR = TRUE,
jags.model_options = NULL,
coda.samples_options = NULL,
verbode = FALSE,
...
Arguments

data trial data with 4 columns: `treatment_stageI`, `response_stageI`, `treatment_stageII`, and `response_stageII`. Missing data is allowed in stage 2.

prior_dist for 3 active treatment design: vector of three values ("prior distribution for \(\pi_1 \)", "prior distribution for \(\beta_0 \)"), "prior distribution for \(\beta_1 \)"). User can choose from "gamma", "beta", "pareto". e.g. `prior_dist = c("beta", "beta", "pareto")`; for dose level design: vector of two values ("prior distribution for \(\pi_P \)", "prior distribution for \(\beta \)"

pi_prior for 3 active treatment design: vector of six values (a, b, c, d, e, f), where a and b are the parameter a and parameter b of the prior distribution for \(\pi_{1A} \), c and d are the parameter a and parameter b of the prior distribution for \(\pi_{1B} \), and e and f are the parameter a and parameter b of the prior distribution for \(\pi_{1C} \). for dose level design: vector of two values (a, b). a is the parameter a of the prior distribution for \(\pi \) (response rate) of placebo. b is the parameter b of the prior distribution for \(\pi \) of placebo. Please check the Details section for more explanation

normal.par for dose level design: vector of two values (normal.mean, normal.var). our function assumes that the logarithm of treatment effect ratio follows a Gaussian prior distribution \(N(\mu, \sigma^2) \), that is \(\log(\pi_L/\pi_P) N(\text{normal.mean, normal.var}) \) and \(\log(\pi_H/\pi_P) N(\text{normal.mean, normal.var}) \). normal.mean is the mean of this Gaussian prior. normal.var is the variance of this Gaussian prior distribution

beta_prior for 3 active treatment design: vector of four values (a, b, c, d). a is the value of parameter a of the prior distribution for linkage parameter \(\beta_0 \) or \(\beta_{0m} \), b is the value of parameter b of the prior distribution for linkage parameter \(\beta_0 \) or \(\beta_{0m} \). c is the value of parameter a of the prior distribution for linkage parameter \(\beta_1 \) or \(\beta_{1m} \). d is the value of parameter b of the prior distribution for linkage parameter \(\beta_1 \) or \(\beta_{1m} \). for dose level design: vector of two values (a, b). a is the parameter a of the prior distribution for linkage parameter \(\beta_1 \). b is the parameter b of the prior distribution for linkage parameter \(\beta_1 \). Please check the Details section for more explanation

n_MCMC_chain number of MCMC chains, default to 1.
n.adapt the number of iterations for adaptation
BURN.IN number of burn-in iterations for MCMC
thin thinning interval for monitors
MCMC_SAMPLE number of iterations for MCMC
CI coverage probability for credible intervals, default = 0.95
six TRUE or FALSE. If TRUE, will run the six beta model (allow for estimating beta_0m and beta_1m values that differ among different treatments m), if FALSE will run the two beta model. default = TRUE. Only need to specify this for 3 active treatment design.
DTR TRUE or FALSE. If TRUE, will also return the expected response rate of dynamic treatment regimens. default = TRUE. Only need to specify this for 3 active treatment design.
jags.model_options a list of optional arguments that are passed to jags.model() function.
coda.samples_options a list of optional arguments that are passed to coda.samples() function.
verbose TRUE or FALSE. If FALSE, no function message and progress bar will be printed.
... further arguments. Not currently used.
x object to summarize.

Details

For gamma distribution, prior.a is the shape parameter r, prior.b is the rate parameter lambda. For beta distribution, prior.a is the shape parameter a, prior.b is the shape parameter b. For pareto distribution, prior.a is the scale parameter alpha, prior.b is the shape parameter c (see jags user manual).

The individual response rate is regarded as a permanent feature of the treatment. The second stage outcome is modeled conditionally on the first stage results linking the first and second stage response probabilities through linkage parameters. The first stage response rate is denoted as π_m for treatment m. In the two β model, the second stage response rate for first stage responders is equal to $\beta_1 \pi_m$. For nonresponders to treatment m in the first stage who receive treatment m' in the second stage, the second stage response rate in the second stage is equal to $\beta_0 \pi_{m'}$. In the six β model, the second stage response rate of the first stage responders to treatment m is denoted by $\beta_{1m} \pi_m$, and the second stage response rate of the non-responders to first stage treatment SmS who receive treatment m' in the second stage is denoted by $\beta_{0m} \pi_{m'}$. All the βs are linkage parameters.

Please refer to the paper listed under reference section for standard snSMART trial design and detailed definition of parameters.

Note that this package does not include the JAGS library, users need to install JAGS separately. Please check this page for more details: https://sourceforge.net/projects/mcmc-jags/

Value

posterior_sample

an mcmc.list object generated through the coda.samples() function, which includes posterior samples of the link parameters and response rates generated through the MCMC process.
pi_hat_bjsm estimate of response rate/treatment effect
se_hat_bjsm standard error of the response rate
ci_pi_A(P), ci_pi_B(L), ci_pi_C(H)
 x% credible intervals for treatment A(P), B(L), C(H)
diff_AB(PL), diff_BC(LH), diff_AC(PH)
 estimate of differences between treatments A(P) and B(L), B(L) and C(H), A(P) and C(H)
ci_diff_AB(PL), ci_diff_BC(LH), ci_diff_AC(PH)
 x% credible intervals for the estimated differences between treatments A(P) and B(L), B(L) and C(H), A(P) and C(H)
se_AB(PL), se_BC(LH), se_AC(PH)
 standard error for the estimated differences between treatments A(P) and B(L), B(L) and C(H), A(P) and C(H)
beta0_hat, beta1_hat
 linkage parameter beta0 and beta1 estimates
se_beta0_hat, se_beta1_hat
 standard error of the estimated value of linkage parameter beta0 and beta1
inc_beta0_hat, inc_beta1_hat
 linkage parameter beta0 and beta1 credible interval
pi_DTR_est expected response rate of dynamic treatment regimens (DTRs)
pi_DTR_se standard error for the estimated DTR response rate
ci_pi_AB, ci_pi_AC, ci_pi_BA, ci_pi_BC, ci_pi_CA, ci_pi_CB
 x% credible intervals for the estimated DTR response rate

References

See Also

LPJSM_binary
sample_size

Examples

mydata <- data_binary
BJSM_result <- BJSM_binary(
data = mydata, prior_dist = c("beta", "beta", "pareto"),
pi_prior = c(0.4, 1.6, 0.4, 1.6, 0.4, 1.6), beta_prior = c(1.6, 0.4, 3, 1),
n_MCMC_chain = 1, n.adapt = 1000, MCMC_SAMPLE = 2000, ci = 0.95,
six = TRUE, DTR = TRUE, verbose = FALSE
)

BJSM_result2 <- BJSM_binary(
data = mydata, prior_dist = c("beta", "beta", "pareto"),
pi_prior = c(0.4, 1.6, 0.4, 1.6, 0.4, 1.6), beta_prior = c(1.6, 0.4, 3, 1),
n_MCMC_chain = 1, n.adapt = 10000, MCMC_SAMPLE = 60000, ci = 0.95,
six = FALSE, DTR = FALSE, verbose = FALSE
)

summary(BJSM_result)
summary(BJSM_result2)

data <- data_dose
BJSM_dose_result <- BJSM_binary(
data = data_dose, prior_dist = c("beta", "gamma"),
pi_prior = c(3, 17), normal.par = c(0.2, 100), beta_prior = c(2, 2),
n_MCMC_chain = 2, n.adapt = 1000, MCMC_SAMPLE = 6000, ci = 0.95, verbose = FALSE
)

summary(BJSM_dose_result)

BJSM continuous (snSMART with three active treatments and a continuous outcome design)

Description

BJSM (Bayesian Joint Stage Modeling) method that borrows information across both stages to estimate the individual response rate of each treatment (with continuous outcome and a mapping function).

Usage

```r
BJSM_c(
data,
xi_prior.mean, xi_prior.sd, phi3_prior.sd,
n_MCMC_chain, n.adapt, MCMC_SAMPLE, ci = 0.95,
)
```
n.digits,
thin = 1,
BURN.IN = 100,
jags.model_options = NULL,
coda.samples_options = NULL,
verbose = FALSE,
...
)

S3 method for class 'BJSM_c'
summary(object, ...)

S3 method for class 'summary.BJSM_c'
print(x, ...)

S3 method for class 'BJSM_c'
print(x, ...)

Arguments

- **data**
 - Trial dataset with columns: id, trt1 (treatment 1), stage1outcome, stay (stay = 1 if patient stay on the same treatment in stage 2, otherwise stay = 0), trt2 (treatment 2), stage2outcome
- **xi_prior.mean**
 - A 3-element vector of mean of the prior distributions (normal distribution) for \(\xi \) (treatment effect). Please check the Details section for more explanation.
- **xi_prior.sd**
 - A 3-element vector of standard deviation of the prior distributions (normal distribution) for \(\xi \) (treatment effect). Please check the Details section for more explanation.
- **phi3_prior.sd**
 - Standard deviation of the prior distribution (folded normal distribution) of \(\phi_3 \) (if the patient stays on the same treatment, \(\phi_3 \) is the cumulative effect of stage 1 that occurs on the treatment longer term). Please check the Details section for more explanation.
- **n_MCMC_chain**
 - Number of MCMC chains, default to 1
- **n.adapt**
 - The number of iterations for adaptation
- **MCMC_SAMPLE**
 - Number of iterations for MCMC
- **ci**
 - Coverage probability for credible intervals, default = 0.95
- **n.digits**
 - Number of digits to keep in the final estimation of treatment effect
- **thin**
 - Thinning interval for monitors
- **BURN.IN**
 - Number of burn-in iterations for MCMC
- **jags.model_options**
 - A list of optional arguments that are passed to jags.model() function.
- **coda.samples_options**
 - A list of optional arguments that are passed to coda.samples() function.
- **verbose**
 - TRUE or FALSE. If FALSE, no function message and progress bar will be printed.
... further arguments. Not currently used.

Details

section 2.2.1 and 2.2.2 of the paper listed under reference provides a detailed description of the assumptions and prior distributions of the model.

Note that this package does not include the JAGS library, users need to install JAGS separately. Please check this page for more details: https://sourceforge.net/projects/mcmc-jags/

Value

- **posterior_sample**: an mcmc.list object generated through the coda.samples() function, which includes posterior samples of the link parameters and response rates generated through the MCMC process
- **mean_estimate**: BJSM estimate of each parameter:
 1. phi1 - lingering effect of the first treatment
 2. phi3 - if the patient stays on the same treatment, phi3 is the cumulative effect of stage 1 that occurs on the treatment longer term
 3. xi_{j} - the expected effect of treatment j, j = 1, 2, 3 in the first stage
 4. V1, V2 are the variance-covariance matrix of the multivariate distribution. V1 is for patients who stay on the same treatment, and V2 is for patients who switch treatments.
- **ci_estimate**: x% credible interval for each parameter. By default round to 2 decimal places, if more decimals are needed, please access the results by [YourResultName]$ci_estimates$CI_low or [YourResultName]$ci_estimates$CI_high

References

Examples

```r
trialData <- trialDataMF

BJSM_result <- BJSM_c(
  data = trialData, xi_prior.mean = c(50, 50, 50),
  xi_prior.sd = c(50, 50, 50), phi3_prior.sd = 20, n_MCMC_chain = 1,
  n.adapt = 1000, MCMC_SAMPLE = 5000, BURIN.IN = 1000, ci = 0.95, n.digits = 5, verbose = FALSE
)

summary(BJSM_result)
print(BJSM_result)
```
data_binary

Dataset with binary outcomes

Description

sample dataset of snSMART (3 active treatment) with binary outcomes

Usage

`data_binary`

Format

This data frame contains the following columns:

- `treatment_stageI` treatment received in stage 1 - possible values: 1 (placebo), 2, 3
- `response_stageI` whether patients respond to stage 1 treatment - possible values: 0 (nonresponder), 1 (responder)
- `treatment_stageII` treatment received in stage 2 - possible values: 2, 3
- `response_stageII` whether patients respond to stage 2 treatment - possible values: 0 (nonresponder), 1 (responder)

Examples

```r
mydata <- data_binary
LPJSM_result <- LPJSM_binary(data = mydata, six = TRUE, DTR = TRUE)
```

data_dose

Dose Level dataset with binary outcomes

Description

sample dataset of snSMART (dose level treatment) with binary outcomes

Usage

`data_dose`
groupseqDATA_full

Format

This data frame contains the following columns:

- **treatment.stageI** - treatment received in stage 1 - possible values: 1 (placebo), 2, 3
- **response.stageI** - whether patients respond to stage 1 treatment - possible values: 0 (nonresponder), 1 (responder)
- **treatment.stageII** - treatment received in stage 2 - possible values: 2, 3
- **response.stageII** - whether patients respond to stage 2 treatment - possible values: 0 (nonresponder), 1 (responder)

Examples

```r
mydata <- data_dose
BJSM_dose_result <- BJSM_binary(
  data = data_dose, prior_dist = c("beta", "gamma"),
  pi_prior = c(3, 17), normal.par = c(0.2, 100), beta_prior = c(2, 2),
  n_MCMC_chain = 2, n.adapt = 100, MCMC_SAMPLE = 2000, ci = 0.95
)
```

groupseqDATA_full
Group sequential full data

Description

Sample dataset of group sequential trial design snSMART, can be used for final analysis

Usage

`groupseqDATA_full`

Format

This data frame contains the following columns:

- **time.1st.trt** - first treatment time
- **time.1st.resp** - first response time
- **time.2nd.trt** - second treatment time
- **time.2nd.resp** - second response time
- **trt.1st** - treatment arm for first treatment
- **resp.1st** - response for first treatment
- **trt.2nd** - treatment arm for second treatment
- **resp.2nd** - response for second treatment
Examples

```r
mydata <- groupseqDATA_full
group_seq(
data = mydata, interim = FALSE, prior_dist = c("beta", "beta", "pareto"),
        pi_prior = c(0.4, 1.6, 0.4, 1.6, 0.4, 1.6),
beta_prior = c(1.6, 0.4, 3, 1), MCMC_SAMPLE = 6000, n.adapt = 1000,
n_MCMC_chain = 1, ci = 0.95, DTR = TRUE
)
```

Description

Sample dataset of group sequential trial design snSMART, can be used for interim analysis.

Usage

`groupseqDATA_look1`

Format

This data frame contains the following columns:

- `time.1st.trt` first treatment time
- `time.1st.resp` first response time
- `time.2nd.trt` second treatment time
- `time.2nd.resp` second response time
- `trt.1st` treatment arm for first treatment
- `resp.1st` response for first treatment
- `trt.2nd` treatment arm for second treatment
- `resp.2nd` response for second treatment

Examples

```r
mydata <- groupseqDATA_look1
group_seq(
data = mydata, interim = TRUE, drop_threshold_pair = c(0.5, 0.4),
        prior_dist = c("beta", "beta", "pareto"), pi_prior = c(0.4, 1.6, 0.4, 1.6, 0.4, 1.6),
beta_prior = c(1.6, 0.4, 3, 1), MCMC_SAMPLE = 6000, n.adapt = 1000, n_MCMC_chain = 1
)
```
group_seq

BJSM method for interim analysis and final analysis of group sequential trial design

Description

After obtain real trial data, this function can be used to decide which arm to drop in an interim analysis or provide a full final analysis.

Usage

group_seq(
 data,
 interim = TRUE,
 drop_threshold_pair = NULL,
 prior_dist,
 pi_prior,
 beta_prior,
 MCMC_SAMPLE,
 n.adapt,
 thin = 1,
 BURN.IN = 100,
 n_MCMC_chain,
 ci = 0.95,
 DTR = TRUE,
 jags.model.options = NULL,
 coda.samples.options = NULL,
 verbose = FALSE,
 ...
)

S3 method for class 'summary.group_seq'
print(x, ...)

S3 method for class 'group_seq'
print(x, ...)

Arguments

data dataset should include 8 columns: time.1st.trt (first treatment starts time), time.1st.resp (first response time), time.2nd.trt (second treatment starts time), time.2nd.resp (second response time), trt.1st (treatment arm for first treatment), resp.1st (response for first treatment), trt.2nd (treatment arm for second treatment), resp.2nd (response for second treatment) data yet to be observed should be marked as "NA"

interim indicates whether user is conducting an interim analysis via BJSM (interim = TRUE) or an final analysis via BJSM (interim = FALSE)
drop_threshold_pair

A vector of 2 values (drop_threshold_tau_l, drop_threshold_psi_l). Both drop_threshold_tau_l and drop_threshold_psi_l should be between 0 and 1. only assign value to this parameter when interim = TRUE. See the details section for more explanation.

prior_dist

Vector of three values ("prior distribution for pi", "prior distribution for beta0", "prior distribution for beta1"). User can choose from "gamma", "beta", "pareto". e.g. prior_dist = c("beta", "beta", "pareto")

pi_prior

Vector of six values (a, b, c, d, e, f), where a and b are the parameter a and parameter b of the prior distribution for pi_1A, c and d are the parameter a and parameter b of the prior distribution for pi_1B, and e and f are the parameter a and parameter b of the prior distribution for pi_1C. Please check the Details section for more explanation.

beta_prior

Vector of four values (beta0_prior.a, beta0_prior.b, beta1_prior.a, beta1_prior.c). beta0_prior.a is the parameter a of the prior distribution for linkage parameter beta0. beta0_prior.b is the parameter b of the prior distribution for linkage parameter beta0. beta1_prior.a is the parameter a of the prior distribution for linkage parameter beta1. beta1_prior.c is the parameter b of the prior distribution for linkage parameter beta1. Please check the Details section for more explanation.

MCMC_SAMPLE

Number of iterations for MCMC

n_adapt

The number of iterations for adaptation

thin

Thinning interval for monitors

BURN_IN

Number of burn-in iterations for MCMC

n_MCMC_chain

Number of MCMC chains, default to 1

ci

Coverage probability for credible intervals, default = 0.95. Only assign value to this parameter when interim = FALSE.

DTR

If TRUE, will also return the expected response rate of dynamic treatment regimens. Default = TRUE. Only assign value to this parameter when interim = FALSE.

jags.model_options

A list of optional arguments that are passed to jags.model() function.

coda.samples_options

A list of optional arguments that are passed to coda.samples() function.

verbose

TRUE or FALSE. If FALSE, no function message and progress bar will be printed.

...

Further arguments. Not currently used.

x

Object to summarize.

Details

For gamma distribution, prior.a is the shape parameter r, prior.b is the rate parameter lambda. For beta distribution, prior.a is the shape parameter a, prior.b is the shape parameter b. For pareto distribution, prior.a is the scale parameter alpha, prior.b is the shape parameter c (see JAGS user manual). The individual response rate is regarded as a permanent feature of the treatment.
The second stage outcome is modeled conditionally on the first stage results linking the first and second stage response probabilities through linkage parameters.

(paper provided in the reference section, section 2.2.2 Bayesian decision rules. drop_threshold_taul and drop_threshold_psi_l correspond to tau_l and psi_l respectively)

Please refer to the paper listed under reference section for detailed definition of parameters. Note that this package does not include the JAGS library, users need to install JAGS separately. Please check this page for more details: https://sourceforge.net/projects/mcmc-jags/

Value

if interim = TRUE, this function returns either 0 - no arm is dropped, or A/B/C - arm A/B/C is dropped

if interim = FALSE, this function returns:

posterior_sample
an mcmc.list object generated through the coda.samples() function, which includes posterior samples of the link parameters and response rates generated through the MCMC process

pi_hat_bjsm estimate of response rate/treatment effect
se_hat_bjsm standard error of the response rate
ci_pi_A, ci_pi_B, ci_pi_C
x% credible intervals for treatment A, B, C

diff_AB, diff_BC, diff_AC
estimate of differences between treatments A and B, B and C, A and C

ci_diff_AB, ci_diff_BC, ci_diff_AC
x% credible intervals for the differences between treatments A and B, B and C, A and C

se_AB, se_BC, se_AC
standard error for the differences between treatments A and B, B and C, A and C

beta0_hat, beta1_hat
linkage parameter beta0 and beta1 estimates

se_beta0_hat, se_beta1_hat
standard error of the estimated value of linkage parameter beta0 and beta1

Ci_beta0_hat, ci_beta1_hat
linkage parameter beta0 and beta1 credible interval

pi_DTR_est expected response rate of dynamic treatment regimens (DTRs)

pi_DTR_se standard error for the estimated DTR response rate

ci_pi_AB, ci_pi_AC, ci_pi_BA, ci_pi_BC, ci_pi_CA, ci_pi_CB
x% credible intervals for the estimated DTR response rate

References

Examples

```r
mydata <- groupseqDATA_look1
result1 <- group_seq(
  data = mydata, interim = TRUE, drop_threshold_pair = c(0.5, 0.4),
  prior_dist = c("beta", "beta", "pareto"), pi_prior = c(0.4, 1.6, 0.4, 1.6, 0.4, 1.6),
  beta_prior = c(1.6, 0.4, 3, 1), MCMC_SAMPLE = 6000, n.adapt = 1000, n_MCMC_chain = 1
)
summary(result1)

mydata <- groupseqDATA_full
result2 <- group_seq(
  data = mydata, interim = FALSE, prior_dist = c("beta", "beta", "pareto"),
  pi_prior = c(0.4, 1.6, 0.4, 1.6, 0.4, 1.6),
  beta_prior = c(1.6, 0.4, 3, 1), MCMC_SAMPLE = 6000, n.adapt = 1000,
  n_MCMC_chain = 1, ci = 0.95, DTR = TRUE
)
summary(result2)
```

`LPJSM_binary`
`LPJSM for snSMART with binary outcomes (3 active treatments or placebo and two dose level)`

Description

A joint-stage regression model (LPJSM) is a frequentist modeling approach that incorporates the responses of both stages as repeated measurements for each subject. Generalized estimating equations (GEE) are used to estimate the response rates of each treatment. The marginal response rates for each DTR can also be obtained based on the GEE results.

Usage

```r
LPJSM_binary(data, six = TRUE, DTR = TRUE, ...)

## S3 method for class 'LPJSM_binary'
summary(object, ...)

## S3 method for class 'summary.LPJSM_binary'
print(x, ...)

## S3 method for class 'LPJSM_binary'
print(x, ...)
```
Arguments

data: dataset with columns named as treatment_stageI, response_stageI, treatment_stageII and response_stageII

six: if TRUE, will run the six beta model, if FALSE will run the two beta model. Default is six = TRUE

DTR: if TRUE, will also return the expected response rate and its standard error of dynamic treatment regimens

... further arguments. Not currently used.

object: object to print

x: object to summarize.

Value

a list containing

GEE_output: original output of the GEE (geeglm) model

pi_hat: estimate of response rate/treatment effect

sd_pi_hat: standard error of the response rate

pi_DTR_hat: expected response rate of dynamic treatment regimens (DTRs)

pi_DTR_se: standard deviation of DTR estimates

References

See Also

BJSM_binary

call

Examples

data <- data_binary

LPJSM_result <- LPJSM_binary(data = data, six = TRUE, DTR = TRUE)

summary(LPJSM_result)
Sample size calculation for snSMART with 3 active treatments and a binary outcome

Description

conduct Bayesian sample size calculation for a snSMART design with 3 active treatments and a binary outcome to distinguish the best treatment from the second-best treatment using the Bayesian joint stage model.

Usage

```r
sample_size(pi, beta1, beta0, coverage, power, mu, n, verbose = FALSE)
```

S3 method for class 'sample_size'
summary(object, ...)

S3 method for class 'summary.sample_size'
print(x, ...)

S3 method for class 'sample_size'
print(x, ...)

Arguments

- **pi**
 - a vector with 3 values \((\pi_A, \pi_B, \pi_C)\). \(\pi_A\) is the response rate (ranges from 0.01 to 0.99) for treatment A, \(\pi_B\) is the response rate (ranges from 0.01 to 0.99) for treatment B, \(\pi_C\) is the response rate (ranges from 0.01 to 0.99) for treatment C

- **beta1**
 - the linkage parameter (ranges from 1.00 to 1/largest response rate) for first stage responders. (A smaller value leads to more conservative sample size calculation because two stages are less correlated)

- **beta0**
 - the linkage parameter (ranges from 0.01 to 0.99) for first stage non-responders. A larger value leads to a more conservative sample size calculation because two stages are less correlated

- **coverage**
 - the coverage rate (ranges from 0.01 to 0.99) for the posterior difference of top two treatments

- **power**
 - the probability (ranges from 0.01 to 0.99) for identify the best treatment

- **mu**
 - a vector with 3 values \((\mu_A, \mu_B, \mu_C)\). \(\mu_A\) is the prior mean (ranges from 0.01 to 0.99) for treatment A, \(\mu_B\) is the prior mean (ranges from 0.01 to 0.99) for treatment B, \(\mu_C\) is the prior mean (ranges from 0.01 to 0.99) for treatment C

- **n**
 - a vector with 3 values \((n_A, n_B, n_C)\). \(n_A\) is the prior sample size (larger than 0) for treatment A, \(n_B\) is the prior sample size (larger than 0) for treatment B, \(n_C\) is the prior sample size (larger than 0) for treatment C
verbose TRUE or FALSE. If FALSE, no function message and progress bar will be printed.

object object to summarize.

... further arguments. Not currently used.

x object to print

Details

Note that this package does not include the JAGS library, users need to install JAGS separately. Please check this page for more details: https://sourceforge.net/projects/mcmc-jags/ This function may take a few minutes to run

Value

final_N the estimated sample size per arm for this snSMART

critical_value critical value based on the provided coverage value

grid_result for each iteration we calculate l, where l belongs to \{2 \times (\pi_1 - \pi_2), \ldots, 0.02, 0.01\}; E(D): the mean of the posterior distribution of D, where D = \pi_1 = \pi_2; Var(D): the variance of the posterior distribution of D; N: the corresponding sample size; and power: the resulting power of this iteration

References

See Also

BJSM_binary

Examples

Not run:
short running time example
sampleSize <- sample_size(
 pi = c(0.7, 0.5, 0.25), beta1 = 1.4, beta0 = 0.5, coverage = 0.9,
 power = 0.3, mu = c(0.65, 0.55, 0.25), n = c(10, 10, 10)
)

End(Not run)

sampleSize <- sample_size(
 pi = c(0.7, 0.5, 0.25), beta1 = 1.4, beta0 = 0.5, coverage = 0.9,
 power = 0.8, mu = c(0.65, 0.55, 0.25), n = c(4, 2, 3)
Summary

summary.BJSM_binary

Summary:

Method for class `BJSM_binary`

Usage:

```r
### S3 method for class 'BJSM_binary'
summary(object, ...)
```

Arguments:

- `object`: An object of class `BJSM_binary`, usually, a result of a call to `BJSM_binary`
- `...`: Further arguments. Not currently used.

Value:

- **Treatment Effects Estimate**: A 3 x 5 matrix with columns for the estimated treatment effects, its standard error, coverage probability of its credible interval, lower bound for its credible interval and higher bound for its credible interval.
- **Differences between Treatments**: A 3 x 5 matrix with columns for the estimated differences in treatment effects between two treatments, its standard error, coverage probability of its credible interval, lower bound and higher bound of the credible interval.
- **Linkage Parameter Estimate**: A 2 x 5 matrix, if the two beta model is fitted, or a 6 x 5 matrix, if the six beta model is fitted, with columns for the estimated linkage parameters.
- **Expected Response Rate of Dynamic Treatment Regimens (DTR)**

Summary

summary.BJSM_dose_binary

Summary:

Method for class `BJSM_dose_binary`

Usage:

```r
### S3 method for class 'BJSM_dose_binary'
summary(object, ...)
```

Description:

- summary method for class `BJSM_dose_binary`
Arguments

object: an object of class BJSM_dose_binary, usually, a result of a call to \texttt{BJSM_binary}

... further arguments. Not currently used.

Value

Treatment Effects Estimate: a 3 x 5 matrix with columns for the estimated treatment effects, its standard error, coverage probability of its credible interval, lower bound for its credible interval and higher bound for its credible interval

Differences between Treatments: a 3 x 5 matrix with columns for the estimated differences in treatment effects between two treatments, its standard error, coverage probability of its credible interval, lower bound and higher bound of the credible interval

Linkage Parameter Estimate: a 6 x 5 matrix with columns for the estimated linkage parameters

summary.group_seq \hspace{1cm} Summarizing BJSM fits

Description

summary method for class "group_seq"

Usage

\[
\text{## S3 method for class 'group_seq'}
\text{summary(object, ...)}
\]

Arguments

object: an object of class "group_seq", usually, a result of a call to \texttt{group_seq}

... further arguments. Not currently used.

Value

Treatment Effects Estimate: a 3 x 5 matrix with columns for the estimated treatment effects, its standard error, coverage probability of its credible interval, lower bound for its credible interval and higher bound for its credible interval

Differences between Treatments: a 3 x 5 matrix with columns for the estimated differences in treatment effects between two treatments, its standard error, coverage probability of its credible interval, lower bound and higher bound of the credible interval

Linkage Parameter Estimate: a 2 x 5 matrix, if the two beta model is fitted, or a 6 x 5 matrix, if the six beta model is fitted, with columns for the estimated linkage parameters

Expected Response Rate of Dynamic Treatment Regimens (DTR)
Description

sample dataset of snSMART (mapping function) with continuous outcomes

Usage

trialDataMF

Format

This data frame contains the following columns:

- **id** participant ID
- **trt1** treatment received in stage 1 - possible values: 1 (placebo), 2, 3
- **stage1outcome** a number between 0-100 that represents the stage 1 treatment effect
- **stay** indicates whether the participant stayed on the same treatment arm in stage 2 - possible values: 0 (didn’t stay), 1 (stayed)
- **trt2** treatment received in stage 2 - possible values: 2, 3
- **stage2outcome** a number between 0-100 that represents the stage 2 treatment effect

Examples

```r
trialData <- trialDataMF

BJSM_result <- BJSM_c(
  data = trialData, xi_prior.mean = c(50, 50, 50),
  xi_prior.sd = c(50, 50, 50), phi3_prior.sd = 20, n_MCMC_chain = 1,
  n.adapt = 1000, MCMC_SAMPLE = 5000, ci = 0.95, n.digits = 5
)

summary(BJSM_result)
print(BJSM_result)
```
Index

* data
 data_binary, 9
data_dose, 9
groupseqDATA_full, 10
groupseqDATA_look1, 11
trialDataMF, 21

BJSM_binary, 2, 16, 18-20
BJSM_c, 6
data_binary, 9
data_dose, 9
group_seq, 12, 20
groupseqDATA_full, 10
groupseqDATA_look1, 11

LPJSM_binary, 5, 15
print.BJSM_binary(BJSM_binary), 2
print.BJSM_c(BJSM_c), 6
print.BJSM_dose_binary(BJSM_binary), 2
print.group_seq(group_seq), 12
print.LPJSM_binary(LPJSM_binary), 15
print.sample_size(sample_size), 17
print.summary.BJSM_binary(BJSM_binary), 2
print.summary.BJSM_c(BJSM_c), 6
print.summary.BJSM_dose_binary(BJSM_binary), 2
print.summary.group_seq(group_seq), 12
print.summary.LPJSM_binary(LPJSM_binary), 15
print.summary.sample_size(sample_size), 17

sample_size, 5, 16, 17
summary.BJSM_binary, 19
summary.BJSM_c(BJSM_c), 6
summary.BJSM_dose_binary, 19
summary.group_seq, 20

summary.LPJSM_binary(LPJSM_binary), 15
summary.sample_size(sample_size), 17
trialDataMF, 21