Package ‘snpsettest’

September 9, 2023

Title A Set-Based Association Test using GWAS Summary Statistics

Version 0.1.2

Description The goal of ‘snpsettest’ is to provide simple tools that perform set-based association tests (e.g., gene-based association tests) using GWAS (genome-wide association study) summary statistics. A set-based association test in this package is based on the statistical model described in VEGAS (versatile gene-based association study), which combines the effects of a set of SNPs accounting for linkage disequilibrium between markers. This package uses a different approach from the original VEGAS implementation to compute set-level p values more efficiently, as described in [GitHub](https://github.com/HimesGroup/snpsettest/wiki/Statistical-test-in-snpsettest).

License GPL (>= 3)

Depends R (>= 3.1.0)

Imports gaston, data.table, Rcpp

Suggests tidyr, knitr, rmarkdown

VignetteBuilder knitr

LinkingTo Rcpp, RcppArmadillo

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

URL https://github.com/HimesGroup/snpsettest

BugReports https://github.com/HimesGroup/snpsettest/issues

NeedsCompilation yes

Author Jaehyun Joo [aut, cre],
 Blanca Himes [aut]

Maintainer Jaehyun Joo <jaehyunjoo@outlook.com>

Repository CRAN

Date/Publication 2023-09-09 17:30:02 UTC
R topics documented:

- exGWAS .. 2
- gene.curated.GRCh37 3
- gene.curated.GRCh38 3
- harmonize_sumstats 4
- map.snp_to_gene 6
- read_reference_bed 7
- snpset_test 8

Index .. 10

exGWAS

An example file of GWAS summary statistics

Description

An example file of GWAS summary statistics

Usage

```r
exGWAS
```

Format

Data frame with columns

- **id** SNP ID.
- **chr** chromosome.
- **pos** base-pair position.
- **A1, A2** allele codes.
- **pvalue** p value.

Examples

```r
head(exGWAS)
```
gene.curated.GRCh37

Human gene information from the GENCODE GRCh37 version

Description
Human gene information was extracted from the GENCODE release 19. This data only contains ‘KNOWN’ status genes with the following gene biotypes: protein-coding, Immunoglobulin (Ig) variable chain and T-cell receptor (TcR) genes.

Usage
gene.curated.GRCh37

Format
Data frame with columns
gene.id SNP ID.
chr chromosome.
start genomic start location (1-based).
end genomic end location.
strand genomic strand.
gene.name gene symbols mapped to the GENCODE genes.
gene.type gene biotypes in the GENCODE genes.

Source

Examples
head(gene.curated.GRCh37)

gene.curated.GRCh38

Human gene information from the GENCODE GRCh38 version

Description
Human gene information was extracted from the GENCODE release 37. This data only contains genes with the following gene biotypes: protein-coding, Immunoglobulin (Ig) variable chain and T-cell receptor (TcR) genes.

Usage
gene.curated.GRCh38
Format

Data frame with columns

- **gene.id** SNP ID.
- **chr** chromosome.
- **start** genomic start location (1-based).
- **end** genomic end location.
- **strand** genomic strand.
- **gene.name** gene symbols mapped to the GENCODE genes.
- **gene.type** gene biotypes in the GENCODE genes.

Source

https://www.gencodegenes.org/human/release_37.html

Examples

head(gene.curated.GRCh38)

harmonize_sumstats Harmonizing GWAS summary to reference data

Description

Finds an intersection of variants between GWAS summary and reference data.

Usage

harmonize_sumstats(
 sumstats,
 x,
 match_by_id = TRUE,
 check_strand_flip = FALSE,
 return_indice = FALSE
)

Arguments

- **sumstats** A data frame with two columns: "id" and "pvalue".
 - id = SNP ID (e.g., rs numbers)
 - pvalue = SNP-level p value
 If match_by_id = FALSE, it requires additional columns: "chr", "pos", "A1" and "A2".
 - chr = chromosome
harmonize_sumstats

- pos = base-pair position (must be integer)
- A1, A2 = allele codes (allele order is not important)

x A bed.matrix object created using the reference data.

match_by_id If TRUE, SNP matching will be performed by SNP IDs instead of genomic position and allele codes. Default is TRUE.

check_strand_flip Only applies when match_by_id = FALSE. If TRUE, the function 1) removes ambiguous A/T and G/C SNPs for which the strand is not obvious, and 2) attempts to find additional matching entries by flipping allele codes (i.e., A->T, T->A, C->G, G->A). If the GWAS genotype data itself is used as the reference data, it would be safe to set FALSE. Default is FALSE.

return_indice Only applied when match_by_id = FALSE. If TRUE, the function provides an additional column indicating whether the match is with swapped alleles. If check_strand_flip = TRUE, the function also provides an additional column indicating whether the match is with flipped strand. Unnecessary for gene-based tests in this package, but may be useful for other purposes (e.g., harmonization for meta-analysis that needs to flip the sign of beta for a match with swapped alleles).

Details

Pre-processing of GWAS summary data is required because the sets of variants available in a particular GWAS might be poorly matched to the variants in reference data. SNP matching can be performed either 1) by SNP ID or 2) by chromosome code, base-pair position, and allele codes, while taking into account possible strand flips and reference allele swap. For matched entries, the SNP IDs in GWAS summary data are replaced with the ones in the reference data.

Value

A data frame with columns: "id", "chr", "pos", "A1", "A2" and "pvalue". If return_indice = TRUE, the data frame includes additional columns key_, swapped_, and flipped_. key_ is "chr_pos_A1_A2" in sumstat (the original input before harmonization). swapped_ contains a logical vector indicating reference allele swap. flipped_ contains a logical vector indicating strand flip.

Examples

```r
## GWAS summary statistics
head(exGWAS)

## Load reference genotype data
bfile <- system.file("extdata", "example.bed", package = "snpsettest")
x <- read_reference_bed(path = bfile)

## Harmonize by SNP IDs
hsumstats1 <- harmonize_sumstats(exGWAS, x)

## Harmonize by genomic position and allele codes
```
map_snp_to_gene

Map SNPs to genes

Description

Annotate SNPs onto their neighboring genes (or arbitrary genomic regions) to perform set-based association tests.

Usage

map_snp_to_gene(
 info_snp,
 info_gene,
 extend_start = 20L,
 extend_end = 20L,
 only_sets = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| info_snp | A data frame with columns: "id", "chr", and "pos".
| | • id = SNP ID (e.g., rs numbers) |
| | • chr = chromosome |
| | • pos = base-pair position |
| info_gene | A data frame with columns: "gene.id", "chr", "start", and "end".
| | • gene.id = gene ID (or identifier for genomic regions) |
| | • chr = chromosome (must be the same chromosome coding scheme in info_snp) |
| | • start = genomic start position |
| | • end = genomic end position |
| | If a gene has multiple intervals, SNPs mapped to any of them will be merged |
| | into a single set. Please assign unique IDs if you don’t want this behavior. |
| extend_start | A single non-negative integer, allowing for a certain kb window before the |
| | gene to be included. Default is 20 (= 20kb). |
| extend_end | A single non-negative integer, allowing for a certain kb window after the |
| | gene to be included. Default is 20 (= 20kb). |
| only_sets | If TRUE, only sets of SNPs for individual genes are returned. Otherwise, |
| | both sets and mapping information are returned. Default is FALSE. |
read_reference_bed

Value

A nested list containing following components:

- sets: a named list where each index represents a separate set of SNPs
- map: a data frame containing SNP mapping information

Examples

```r
## GWAS summary statistics
head(exGWAS)

## Gene information data
head(gene.curated.GRCh37)

## Map SNPs to genes
snp_sets <- map_snp_to_gene(exGWAS, gene.curated.GRCh37)

## Better to use harmonized GWAS data for gene mapping
bfile <- system.file("extdata", "example.bed", package = "snpsettest")
x <- read_reference_bed(path = bfile)
hsumstats <- harmonize_sumstats(exGWAS, x)
snp_sets <- map_snp_to_gene(hsumstats, gene.curated.GRCh37)
```

Description

Create a `bed.matrix` object from a .bed file. The function expects .fam and .bim files under the same directory. See `gaston::read.bed.matrix` for more details.

Usage

```r
read_reference_bed(path, ...)
```

Arguments

- `path`: A path to the .bed file
- `...`: Further arguments used in `gaston::read.bed.matrix`

Value

A `gaston::bed.matrix` object with a Z-standardized genotype matrix
snpset_test

Examples

```r
## Get a path to the example .bed file
bfile <- system.file("extdata", "example.bed", package = "snpsettest")

## Read a .bed file
x <- read_reference_bed(path = bfile)
```

snpset_test

Set-based association tests

Description

Perform set-based association tests between multiple sets of SNPs and a phenotype using GWAS summary statistics. If the function encounters missing genotypes in the reference data, they will be imputed with genotype means.

Usage

`snpset_test(hsumstats, x, snp_sets, method = c("saddle", "davies"))`

Arguments

- `hsumstats`: A data frame processed by `harmonize_sumstats`.
- `x`: A `bed.matrix` object created from the reference data.
- `snp_sets`: A named list where each index represents a separate set of SNPs.
- `method`: A method to compute a set-level p value. "saddle" uses Kuonen's saddlepoint approximation (1999) and "davies" uses the algorithm of Davies (1980). When "davies" method failed to produce a meaningful result, "saddle" method is used as a fallback. Default is "saddle".

Value

A data.table with columns: "set.id", "pvalue", "n.snp", "top.snp.id" and "top.snp.pvalue"

- `set.id`: a name of SNP set
- `tstat`: a test statistic
- `pvalue`: a set-level p value
- `n.snp`: the number of SNPs used in a test
- `top.snp.id`: SNP ID with the smallest p-value within a set of SNPs
- `top.snp.pvalue`: The smallest p-value within a set of SNPs

References

Examples

```r
## GWAS summary statistics
head(exGWAS)

## Load reference genotype data
bfile <- system.file("extdata","example.bed", package = "snpsettest")
x <- read_reference_bed(path = bfile)

## GWAS harmonization with reference data
hsumstats <- harmonize_sumstats(exGWAS, x)

## Perform a set-based test with an arbitrary SNP set
snpset_test(hsumstats, x, list(test = c("SNP_880","SNP_1533","SNP_4189")))

## Gene information data
head(gene.curated.GRCh37)

## Map SNPs to genes
snp_sets <- map_snp_to_gene(hsumstats, gene.curated.GRCh37)

## Perform gene-based association tests
out <- snpset_test(hsumstats, x, snp_sets$sets)
```
Index

* datasets
 exGWAS, 2
 gene.curated.GRCh37, 3
 gene.curated.GRCh38, 3

exGWAS, 2

gaston::bed.matrix, 7
gaston::read.bed.matrix, 7
gene.curated.GRCh37, 3
gene.curated.GRCh38, 3

harmonize_sumstats, 4, 8
map.snp_to_gene, 6
read-reference-bed, 7
.snpset.test, 8