R topics documented:

criticalmoisture .. 15
fitbusscher ... 16
fitlbc ... 18
fitsoilwater .. 19
fitsoilwater2 .. 20
fitsoilwater3 .. 21
fitsoilwater4 .. 22
fitsoilwater5 .. 23
fitsoilwater_App .. 25
fun2form ... 25
getInitiallbc ... 26
hemb ... 27
hydraulicCutOff .. 28
hydraulicCutOff2 ... 30
iwc ... 32
Kr_h ... 34
Kr_theta .. 35
liquidlimit ... 36
llwr ... 37
llwrPTF .. 41
LLWR_App .. 43
llwr_llmpr ... 44
LLWR_LLMPR_App .. 47
maxcurv ... 47
particle.sedimentation ... 49
particle.sedimentation_App 50
plotCIsigmaP ... 51
PredComp .. 52
psd ... 53
r ... 54
Rsq ... 55
r_App ... 56
sigmaP ... 57
simSigmaP .. 60
Sindex .. 61
skp1994 ... 63
SoilAggregate .. 63
soilDeformation .. 64
soilStrength ... 67
soilStrength2 ... 69
soilStrength3 ... 70
soilStrength4 ... 72
soilStrength5 ... 73
soilwater .. 74
soilwater2 .. 75
soilwater3 .. 77
soilwater4 .. 78
soilwater5 .. 79
soilphysics-package

Description

Basic and model-based soil physical analyses.

Details

Package: soilphysics
Type: Package
Version: 5.0
Date: 2022-06-06
License: GPL (>= 2)

Functions for modelling the load bearing capacity and the penetration resistance, and for predicting the stress applied by agricultural machines in the soil profile. The package allows one to model the soil water retention through six different models. There are some useful and easy-to-use functions to perform parameter estimation of these models. Methods to obtain the preconsolidation stress are available, such as the standard of Casagrande (1936) and so on. It is possible to quantify soil water availability for plants through the Least Limiting Water Range approach as well as the Integral Water Capacity. Moreover, it is possible to determine the water suction at the point of hydraulic cut-off. Also, users can deal with the high-energy-moisture-characteristics (HEMC) methodology proposed by Pierson and Mulla (1989), which is used to analyze the aggregate stability. There is a function to determine the soil critical moisture and the maximum bulk density for one or more samples, based on the Proctor (1933) compaction test. Other utilities like a function to calculate the soil liquid limit, the void ratio and to determine the maximum curvature point are available.

Note

soilphysics is an ongoing project. We welcome any and all criticism, comments and suggestions.

Author(s)

Anderson Rodrigo da Silva, Renato Paiva de Lima

Maintainer: Anderson Rodrigo da Silva <anderson.agro@hotmail.com>
References

aggreg.stability

Soil Aggregate-Size Distribution

Description

It calculates the mean weight diameter (MWD), the geometric mean diameter (GMD) and the soil aggregates size distribution per class based on the mass of the aggregates retained in each sieve from a total soil mass used for the soil aggregate stability test.

Usage

`aggreg.stability(sample.id = NA, dm.classes, aggre.mass)`

Arguments

- `sample.id` optional; a character vector containing the sample names.
- `dm.classes` a numeric vector containing the aggregates classes, in mm.
- `aggre.mass` a `data.frame` consisting of columns with soil aggregates mass (g) of each one of the corresponding `dm.classes`.

Details

The user must arrange a `data.frame` with lines representing the samples and the columns representing the mass of the aggregates retained in each one of the meshes (corresponding to each size class) in the aggregate stability test.
Value

A data.frame containing the values of MWD, GMD, total soil mass (total.mass) used in the aggregate stability test and the percentage of soil aggregate size distribution per class.

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com>

References

Examples

```r
data(SoilAggregate)
classes <- c(3, 1.5, 0.75, 0.375, 0.178, 0.053)
aggreg.stability(sample.id = SoilAggregate[,1],
                  dm.classes = classes, aggre.mass = SoilAggregate[,2])
```

End (not run)
Usage

aggreg.stability_App()

Value

A shiny app

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com>

See Also

stressTraffic

bulkDensity

Soil Bulk Density Data Set

Description

This data set refers to five observations of soil bulk density and soil moisture per sample. There are four soil samples.

Usage

data(bulkDensity)

Format

A data frame with 20 observations on the following 3 variables.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>a factor with levels s1 s2 s3 s4, the 'ID' of each soil sample.</td>
</tr>
<tr>
<td>MOIS</td>
<td>a numeric vector containing soil moisture values (cm^3 / cm^3).</td>
</tr>
<tr>
<td>BULK</td>
<td>a numeric vector containing soil bulk density values (g / cm^3).</td>
</tr>
</tbody>
</table>

Source

Simulated data.

Examples

data(bulkDensity)
summary(bulkDensity)
compaction

Soil Compaction Data Set

Description

This data set refers to physical soil variables related to soil compaction.

Usage

data(compaction)

Format

A data frame with 50 observations on the following 4 variables.

PR a numeric vector containing soil penetration resistance values (MPa).
BD a numeric vector containing soil bulk density values (g/cm³).
Mois a numeric vector containing soil moisture values (cm³/cm³).
PS a numeric vector containing soil preconsolidation stress values (kPa).

Source

Simulated data.

Examples

data(compaction)
summary(compaction)

compressive_properties

Estimation of compressive properties by Defossez et al. (2003)

Description

It calculates the compressive parameters N and lambda using the pedo-transfer function from Defossez et al. (2003)

Usage

compressive_properties(water.content, soil=c("Loess", "Calcareous"))
Arguments

water.content a numeric vector containing the values of gravimetric water content, %
soil the soil group 'Loess' or 'Calcareous'. See examples

Details

In Defossez et al. (2003), the recompression index, kappa, was assumed as 0.0058 for both soil group.

Value

N the specific volume at $p = 1kPa$, N
CI the compression index, lambda

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com> Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

stressTraffic

Examples

EXAMPLE 1 - For Loess and Calcareous soil

water.content <- 25
compressive_properties(water.content=water.content, soil="Loess")
compressive_properties(water.content=water.content, soil="Calcareous")

EXAMPLE 2 - For Loess soil

water.content <- seq(from=5,to=30,len=20)
out <- compressive_properties(water.content=water.content, soil="Loess")
plot(x=water.content ,y=out$N, ylab="N", xlab="Bulk density") # plot for N
plot(x=water.content ,y=out$CI, ylab="Lambda", xlab="Bulk density") # plot for compression index

EXAMPLE 3 - For Calcareous soil

water.content <- seq(from=5,to=30,len=20)
out <- compressive_properties(water.content=water.content, soil="Calcareous")
plot(x=water.content ,y=out$N, ylab="N", xlab="Bulk density") # plot for N
plot(x=water.content ,y=out$CI, ylab="Lambda", xlab="Bulk density") # plot for compression index

End (not run)
compressive_properties2

Estimation of compressive properties by Keller and Arvidsson (2007)

Description

It calculates the compressive parameters N and lambda using the pedo-transfer function from Keller and Arvidsson (2007)

Usage

compressive_properties2(particle.density, bulk.density)

Arguments

 particle.density
 a numeric vector containing the values of particle density, Mgm⁻³
 bulk.density
 a numeric vector containing the values of bulk density, Mgm⁻³

Details

In Keller and Arvidsson (2007), the recompression index, kappa, was found as 0.042 for all soil.

Value

 N
 the specific volume at p = 1kPa, N
 CI
 the compression index, lambda

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com> Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

stressTraffic
Examples

EXAMPLE 1

```r
compressive_properties2(particle.density=2.65, bulk.density=1.5)
```

EXAMPLE 2

```r
BD <- seq(from=1.2, to=1.8, by=0.01)  # range of bulk density from 1.2 to 1.8
out <- compressive_properties2(particle.density=2.65, bulk.density=BD)

plot(x=BD, y=out$N, ylab="N", xlab="Bulk density")  # for N
plot(x=BD, y=out$CI, ylab="Compression index (CI)", xlab="Bulk density")  # for compression index

# End (not run)
```

compressive_properties3

Estimation of compressive properties by de Lima et al. (2018)

Description

It calculates the compressive parameters N, lambda and kappa using the pedo-transfer function from de Lima et al. (2018)

Usage

```r
compressive_properties3(bulk.density, matric.suction, soil=c("SandyLoam","SandyClayLoam"))
```

Arguments

- **bulk.density**: a numeric vector containing the values of bulk density, Mgm^{-3}
- **matric.suction**: a numeric vector containing the values of matric suction, hPa
- **soil**: the soil texture group 'SandyLoam' or 'SandyClayLoam'. See examples

Details

Pedo-transfer function developed under no-till condition. See de Lima et al. (2018)

Value

- **N**: the specific volume at $p = 1kPa$, N
- **CI**: the compression index, lambda
- **k**: the recompression index, kappa

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com> Anderson Rodrigo da Silva <anderson.agro@hotmail.com>
References

See Also

stressTraffic

Examples

EXAMPLE 1

```r
compressive_properties3(bulk.density=1.5, matric.suction=100, soil="SandyLoam")
compressive_properties3(bulk.density=1.5, matric.suction=100, soil="SandyClayLoam")
```

EXAMPLE 2 for SandyLoam soil

```r
matric.suction <- seq(from=30, to=1000, len=100)
out <- compressive_properties3(bulk.density=1.5, matric.suction=matric.suction, soil="SandyLoam")
plot(x=matric.suction, y=out$N, ylab="N", xlab="Matric suction (hPa)", log="x") # plot for N
# plot for lambda
plot(x=matric.suction, y=out$lambda, ylab="lambda", xlab="Matric suction (hPa)", log="x")
# plot for kappa
plot(x=matric.suction, y=out$k, ylab="kappa", xlab="Matric suction (hPa)", log="x")
```

EXAMPLE 3 for SandyClayLoam soil

```r
matric.suction <- seq(from=30, to=1000, len=100)
out <- compressive_properties3(bulk.density=1.5, matric.suction=matric.suction, soil="SandyClayLoam")
plot(x=matric.suction, y=out$N, ylab="N", xlab="Matric suction (hPa)", log="x") # plot for N
# plot for lambda
plot(x=matric.suction, y=out$lambda, ylab="lambda", xlab="Matric suction (hPa)", log="x")
# plot for kappa
plot(x=matric.suction, y=out$k, ylab="kappa", xlab="Matric suction (hPa)", log="x")
```

End (not run)
compressive_properties4

Estimation of compressive properties by de Lima et al. (2020)

Description

It calculates the compressive parameters N, lambda and kappa using the pedo-transfer function from de Lima et al. (2020)

Usage

compressive_properties4(matric.suction, soil=c("PloughLayer","PloughPan"))

Arguments

matric.suction a numeric vector containing the values of matric suction, hPa.
soil the soil compaction state 'PloughLayer' or 'PloughPan'. See the examples.

Details

Pedo-transfer function developed for a sandy loam soil texture. See de Lima et al. (2018)

Value

N the specific volume at $P = 1kPa$, N
CI the compression index, lambda
k the recompression index, kappa

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com> Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

stressTraffic
Examples

EXAMPLE 1

compressive_properties4(matric.suction=100, soil="PloughLayer")
compressive_properties4(matric.suction=100, soil="PloughPan")

EXAMPLE 2 for "PloughLayer"

matric.suction <- seq(from=10, to=10000, len=100)
out <- compressive_properties4(matric.suction=matric.suction, soil="PloughLayer")
plot(x=matric.suction, y=out$N, ylab="N", xlab="Matric suction (hPa)", log="x") # plot for N
plot for lambda
plot(x=matric.suction, y=out$lambda, ylab="lambda", xlab="Matric suction (hPa)", log="x")
plot for kappa
plot(x=matric.suction, y=out$k, ylab="kappa", xlab="Matric suction (hPa)", log="x")

EXAMPLE 3 for "PloughPan"

matric.suction <- seq(from=10, to=10000, len=100)
out <- compressive_properties4(matric.suction=matric.suction, soil="PloughPan")
plot for N
plot(x=matric.suction, y=out$N, ylab="N", xlab="Matric suction (hPa)", log="x")
plot for lambda
plot(x=matric.suction, y=out$lambda, ylab="lambda", xlab="Matric suction (hPa)", log="x")
plot for kappa
plot(x=matric.suction, y=out$k, ylab="kappa", xlab="Matric suction (hPa)", log="x")

End (not run)

compressive_properties5

Estimation of compressive properties by O’Sullivan et al. (1999)

Description

It calculates the compressive parameteres N, lambda and kappa using the pedo-transfer function from O’Sullivan et al. (1999)
compressive_properties5

Usage

compressive_properties5(water.content, soil=c("SandyLoam","ClayLoam"))

Arguments

water.content a numeric vector containing the values of gravimetric water content, %
soil the the soil texture group ’SandyLoam’ or ’ClayLoam’. See exemples.

Details

See O’Sullivan et al. (1999).

Value

N the specific volume at p = 1kPa, N
CI the compression index, lambda
k the recompression index, kappa

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com> Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

stressTraffic

Examples

EXAMPLE 1
water.content <- 15
compressive_properties5(water.content=water.content, soil="SandyLoam")
compressive_properties5(water.content=water.content, soil="ClayLoam")

EXAMPLE 2 - SandyLoam
water.content <- seq(from=5, to=20, len=20)
out <- compressive_properties5(water.content=water.content, soil="SandyLoam")
plot(x=water.content ,y=out$N, ylab="N", xlab="Bulk density") # plot for N
plot(x=water.content ,y=out$lambda, ylab="lambda", xlab="Bulk density") # plot for lambda
plot(x=water.content ,y=out$kappa, ylab="kappa", xlab="Bulk density") # plot for kappa
EXAMPLE 3 - ClayLoam

```r
water.content <- seq(from=10, to=25, len=20)
out <- compressive_properties5(water.content=water.content, soil="ClayLoam")
plot(x=water.content, y=out$N, ylab="N", xlab="Bulk density")  # plot for N
plot(x=water.content, y=out$lambda, ylab="lambda", xlab="Bulk density")  # plot for lambda
plot(x=water.content, y=out$kappa, ylab="kappa", xlab="Bulk density")  # plot for rkappa
```

End (not run)

criticalmoisture
Critical Moisture and Maximum Bulk Density

Description

Function to determine the soil Critical Moisture and the Maximum Bulk Density based on the Proctor (1933) compaction test. It estimates compaction curve by fitting a quadratic regression model.

Usage

```r
criticalmoisture(theta, Bd, samples = NULL, graph = TRUE, ...)
maxbulkdensity(theta, Bd, samples = NULL, graph = TRUE, ...)
```

Arguments

- `theta`
a vector containing the soil moisture values.
- `Bd`
a vector containing the the soil bulk density values.
- `samples`
optional; a vector indicating the multiple samples. Default is NULL (one sample). See details.
- `graph`
logical; if TRUE (default), the soil compaction curve is plotted.
- `...`
further graphical arguments.

Details

If `samples` is ispecified, then it must has the same length of `theta` and `Bd`.

Value

An object of class `criticalmoisture`, i.e., a matrix containing the quadratic model coefficients (rows 1 to 3), the R-squared (row 4), the sample size (row 5), the critical soil moisture (row 6) and the maximum bulk density (row 7), per sample.
Note

maxbulkdensity is just an alias of criticalmoisture.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

maxcurv

Examples

```
# example 1 (1 sample)
mois <- c(0.083, 0.092, 0.108, 0.126, 0.135)
bulk <- c(1.86, 1.92, 1.95, 1.90, 1.87)
criticalmoisture(theta = mois, Bd = bulk)

# example 2 (4 samples)
data(bulkDensity)
attach(bulkDensity)
criticalmoisture(theta = MOIS, Bd = BULK, samples = Id)
```

End (not run)

fitbusscher

Self-starting Nls Busscher's (1990) Model for Soil Penetration Resistance

Description

Function to self start the nonlinear Busscher's (1990) model for penetration resistance, i.e., \(Pr = b_0 \ast (\theta^{b_1}) \ast (Bd^{b_2}) \). It creates initial estimates (by log-linearization) of the parameters b0, b1 and b2 and uses them to provide its least-squares estimates through *nls*.

Usage

`fitbusscher(Pr, theta, Bd, ...)`
Arguments

- Pr: a numeric vector containing penetration resistance values.
- theta: a numeric vector containing soil moisture values at which to evaluate the model.
- Bd: a numeric vector containing bulk density values at which to evaluate the model.
- ... further arguments to \texttt{nls}.

Value

A \texttt{nls} output (see \texttt{help(nls)}).

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

\texttt{fitlbc, nls, summary.nls, predict.nls, Rsq}

Examples

data(compaction)
attach(compaction)
out <- fitbusscher(Pr = PR, theta = Mois, Bd = BD)
summary(out)
Rsq(out)

3D plot
X <- seq(min(Mois), max(Mois), len = 30) # theta
Y <- seq(min(BD), max(BD), len = 30) # Bd
f <- function(x, y) coef(out)[1] * (x^coef(out)[2]) * (y^coef(out)[3])
Z <- outer(X, Y, f)
persp(X, Y, Z,
xlab = "Soil moisture",
ylab = "Soil bulk density",
zlab = "Penetration resistance",
ticktype = "detailed",
phi = 20, theta = 30)

End (not run)
Description

This function creates initial parameter estimates of the nonlinear Load Bearing Capacity (Dias Jr., 1994) model, i.e., $\sigma_P = 10^{(b_0 + b_1 \theta)}$, by using two methods: a getInitial method or a log-linearization. Then, it uses them to provide its least-squares estimates via nls.

Usage

fitlbc(theta, sigmaP, ...)

Arguments

theta a numeric vector containing soil moisture values.

sigmaP a numeric vector containing values of soil preconsolidation stress.

... further arguments to nls.

Value

A nls object.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

sigmaP, fitbusscher, maxcurv, Rsq

Examples

data(compaction)
attach(compaction)
out <- fitlbc(theta = Mois, sigmaP = PS)
summary(out)
Rsq(out)
curve(10^(coef(out)[1] + coef(out)[2]*x))

End (not run)
fitsoilwater

Interactive Estimation of van Genuchten's (1980) Model Parameters

Description

An interactive graphical adjustment of the soil water retention curve via van Genuchten’s (1980) formula. The nonlinear least-squares estimates can be achieved taking the graphical initial values.

Usage

```r
fitsoilwater(theta, x, xlab = NULL, ylab = NULL, ...)
```

Arguments

- `theta` a numeric vector containing the values of soil water content.
- `x` a numeric vector containing the matric potential values.
- `xlab` a label for the x axis; if is NULL, the label "Matric potential" is used.
- `ylab` a label for the y axis; if is NULL, the label "Soil water content" is used.
- `...` further graphical arguments; see `par`.

Value

A plot of `theta` versus `x` and the curve of the current fitted model according to the adjusted parameters in an external interactive panel. Pressing the button "NLS estimates" a `nls` summary of the fitted model is printed on console whether convergence is achieved, otherwise a warning box of "No convergence" is shown.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

- `nls`, `soilwater`

Examples

```r
# Liu et al. (2011)
h <- c(0.001, 50.65, 293.77, 790.14, 992.74, 5065, 10130, 15195)
w <- c(0.5650, 0.4013, 0.2502, 0.2324, 0.2307, 0.1926, 0.1812, 0.1730)
fitsoilwater(w, h)
# End (not run)
```
fitsoilwater2

Description

An interactive graphical adjustment of the soil water retention curve via Groenevelt and Grant (2004) formula. The nonlinear least-squares estimates can be achieved taking the graphical initial values.

Usage

fitsoilwater2(theta, x, x0 = 6.653, xlab = NULL, ylab = NULL, ...)

Arguments

theta
a numeric vector containing the values of soil water content.

x
a numeric vector containing pF (pore water suction) values. See soilwater2.

x0
the value of pF at which the soil water content becomes zero. The default is 6.653.

xlab
a label for the x axis; if is NULL, the label "pF" is used.

ylab
a label for the y axis; if is NULL, the label "Soil water content" is used.

...
further graphical arguments; see par.

Value

A plot of theta versus x and the curve of the current fitted model according to the adjusted parameters in an external interactive panel. Pressing the button "NLS estimates" a nls summary of the fitted model is printed on console whether convergence is achieved, otherwise a warning box of "No convergence" is shown.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

nls, soilwater2, soilwater
Examples

```r
w <- c(0.417, 0.354, 0.117, 0.048, 0.029, 0.017, 0.007, 0)
pF <- 0:7
fitsoilwater2(w, pF)

# End (not run)
```

Description

An interactive graphical adjustment of the soil water retention curve through the Dexter’s (2008) formula. The nonlinear least-squares estimates can be achieved taking the graphical initial values.

Usage

```r
fitsoilwater3(theta, x, xlab = NULL, ylab = NULL, ...)
```

Arguments

- `theta`: a numeric vector containing the values of soil water content.
- `x`: a numeric vector containing the values of applied air pressure.
- `xlab`: a label for the x axis; if is NULL, the label "pF" is used.
- `ylab`: a label for the y axis; if is NULL, the label "Soil water content" is used.
- `...`: further graphical arguments; see `par`.

Value

A plot of `theta` versus `x` and the curve of the current fitted model according to the adjusted parameters in an external interactive panel. Pressing the button "NLS estimates" a `nls` summary of the fitted model is printed on console whether convergence is achieved, otherwise a warning box of "No convergence" is shown.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

`soilwater3`, `nls`, `fitsoilwater2`
Examples

data extracted from Liu et al. (2011)

h <- c(0.001, 50.65, 293.77, 790.14, 992.74, 5065, 10130, 15195)
w <- c(0.5650, 0.4013, 0.2502, 0.2324, 0.2307, 0.1926, 0.1812, 0.1730)

fitsoilwater3(w, h)

End (not run)

fitsoilwater4

Self-starting Nls Power Models for Soil Water Retention

Description

Function to self start the following nonlinear power models for soil water retention:

\[
\theta = \exp(a + b \cdot Bd) \psi^c
\]

(Silva et al., 1994)

\[
\theta = a \psi^c
\]

(Ross et al., 1991)

where \(\theta \) is the soil water content.

fitsoilwater() creates initial estimates (by log-linearization) of the parameters \(a, b \) and \(c \) and uses them to provide its least-squares estimates through *nls*.

Usage

`fitsoilwater4(theta, psi, Bd, model = c("Silva", "Ross"))`

Arguments

- `theta` a numeric vector containing values of soil water content.
- `psi` a numeric vector containing values of water potential (Psi).
- `Bd` a numeric vector containing values of dry bulk density.
- `model` a character; the model to be used for calculating the soil water content. It must be one of the two: "Silva" (default) or "Ross".

Value

A "nls" object containing the fitted model.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>
References

See Also

fitsoilwater4, soilwater, soilwater2, soilwater3

Examples

```r
data(skp1994)
# Example 1
ex1 <- with(skp1994,
    fitsoilwater4(theta = W, psi = h, model = "Ross"))
ex1
summary(ex1)

# Example 2
ex2 <- with(skp1994,
    fitsoilwater4(theta = W, psi = h, Bd = BD, model = "Silva"))
ex2
summary(ex2)

# Not run
```

fitsoilwater5

Interactive Estimation of the Modified van Genuchten’s Model Parameters

Description

An interactive graphical adjustment of the soil water retention curve via the van Genuchten’s formula, modified by Pierson and Mulla (1989). The nonlinear least-squares estimates can be achieved taking the graphical initial values. It may be useful to estimate the parameters needed in the high-energy-moisture-characteristics (HEMC) method, which is used to analyze the aggregate stability.

Usage

```r
fitsoilwater5(theta, x, theta_S, xlab = NULL, ylab = NULL, ...)
```

Arguments

- `theta` a numeric vector containing the values of soil water content.
- `x` a numeric vector containing the matric potential values.
- `theta_S` an offset; a value for the parameter theta_S, the water content at saturation. See details.
xlab a label for the x axis; if is NULL, the label "Matric potential" is used.

ylab a label for the y axis; if is NULL, the label "Soil water content" is used.

... further graphical arguments; see `par`.

Details

The parameter theta_S must be passed as an argument. It is recommended to consider it as the highest water content value in the data set or the water content at saturation.

Value

A plot of theta versus x and the curve of the current fitted model according to the adjusted parameters in an external interactive panel. Pressing the button "NLS estimates" a `nls` summary of the fitted model is printed on console whether convergence is achieved, otherwise a warning box of "No convergence" is shown.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

`nls`, `soilwater5`

Examples

```r
h <- seq(0.1, 40, by = 2)
w <- c(0.735, 0.668, 0.635, 0.612, 0.559, 0.462, 0.369, 0.319, 0.296, 0.282,
0.269, 0.256, 0.249, 0.246, 0.239, 0.236, 0.229, 0.229, 0.226, 0.222)
plot(w ~ h)

# suggestions of starting values: thetaR = 0.35, alpha = 0.1, n = 10,
# b0 = 0.02, b1 = -0.0057, b2 = 0.00004 (Not run)

fitsoilwater5(theta = w, x = h, theta_S = 0.70)

# End (Not run)
```
fitsoilwater_App

A shiny for fitting soil water retention curves

Description

A shiny for fitting soil water retention curves

Usage

```r
fitsoilwater_App()
```

Value

A shiny app

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com>

See Also

`stressTraffic`

fun2form

Converting Function to Formula

Description

An accessoril function to convert an object of class 'function' to an object of class 'formula'.

Usage

```r
fun2form(fun, y = NULL)
```

Arguments

- `fun` a object of class 'function'. It must be a one-line-written function, with no curly braces "{
- `y` optional; a character defining the left side of the formula, `y = fun()`.

Value

An object of class `formula`.

Warning

Numerical values into `fun` with three or more digits may cause miscalculation.
Author(s)
Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

See Also
function, formula

Examples

```r
g <- function(x) Asym * exp(-b2 * b3 ^ x) # Gompertz Growth Model
gun2form(g, "y")

# f1 <- function(w) {exp(w)} # error
# fun2form(f1, "x")
f2 <- function(w) exp(w) # ok
fun2form(f2, "x")

# End (not run)
```

getInitiallbc Get Initial Parameter Estimates for the Load Bearing Capacity Model

Description

This is a `getInitial` function that evaluates initial parameter estimates for the Load Bearing Capacity model via `SSlbc`.

Usage

```r
getInitiallbc(theta, sigmaP)
```

Arguments

- **theta**: a numeric vector containing values of soil moisture.
- **sigmaP**: a numeric vector containing values of preconsolidation stress.

Value

A numeric vector containing the estimates of the parameters b0 and b1.

Author(s)
Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

hemc

High-Energy-Moisture-Characteristics Aggregate Stability

Description

A function to determine the modal suction, volume of drainable pores, structural index and stability ratio using the high-energy-moisture-characteristics (HEMC) method by Pierson & Mulla (1989), which is used to analyze the aggregate stability. Before using `hemc()`, the user may estimate the parameters of the Modified van Genuchten’s Model through the function `fitsoilwater5()`.

Usage

```r
hemc(x, theta_R, theta_S, alpha, n, b1, b2, 
    graph = TRUE, from = 1, to = 30, 
    xlab = expression(Psi ~ (J~kg^{-1})), 
    ylab = expression(d ~ theta/d ~ Psi), ...)
```

Arguments

- `x` a vector containing matric potential values.
- `theta_R` a numeric vector of length two containing the parameter values in the following order: fast and slow.
- `theta_S` a numeric vector of length two containing the parameter values in the following order: fast and slow.
- `alpha` a numeric vector of length two containing the parameter values in the following order: fast and slow.
- `n` a numeric vector of length two containing the parameter values in the following order: fast and slow.
- `b1` a numeric vector of length two containing the parameter values in the following order: fast and slow.
- `b2` a numeric vector of length two containing the parameter values in the following order: fast and slow.
- `graph` logical; if TRUE (default), a graphical solution is shown.
- `from` the lower limit for the x-axis

See Also

`getInitial, SS1bc, nls, sigmaP`

Examples

```r
data(compaction)
attach(compaction)
getInitialbC(theta = Mois, sigmaP = PS)

# End (not run)
```
to the lower limit for the x-axis

xlab a label for the x-axis

ylab a label for the y-axis

... further graphical arguments

Value

A list of two objects: 1) a matrix containing the Modal Suction, the Volume of Drainable Pores (VDP) and the Structural Index for both, fast and slow wetting; and 2) the value of Stability Ratio.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

fitsoilwater5

Examples

```r
ehmc(x = seq(1, 30), theta_R = c(0.27, 0.4), theta_S = c(0.65, 0.47),
alpha = c(0.1393, 0.0954), n = c(6.37, 7.47),
b1 = c(-0.008421, -0.011970), b2 = c(0.0001322, 0.0001552))

# End (Not run)
```

hydraulicCutOff

The matric potential at the point of hydraulic cut-off obtained from DE (Dexter et al., 2008) and GG (Groenevelt & Grant, 2004) water retention curves.

Description

The pore water suction at the point of hydraulic cut-off occurs at the point where the residual water content, obtained from Dexter et al. (2008), intercepts with the Groenevelt & Grant (2004) retention curve.

Usage

```r
hydraulicCutOff(theta_R, k0, k1, n, x0 = 6.653)
```
Arguments

theta_R a parameter that represents the residual water content at the the Dexter’s (2008) Water Retention Model.

k0 a parameter value, extracted from the water retention curve based on the Groenevelt & Grant (2004) formula.

k1 a parameter value, extracted from the water retention curve based on the Groenevelt & Grant (2004) formula.

n a parameter value, extracted from the water retention curve based on the Groenevelt & Grant (2004) formula.

x0 the value of pF (pore water suction) at which the soil water content becomes zero. The default is 6.653.

Value

The water suction at the point of hydraulic cut-off.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

fitsoilwater2, fitsoilwater3

Examples

Dexter et al. (2012), Table 4A
hydraulicCutOff(0.1130, 6.877, 0.6508, 1.0453)
hydraulicCutOff(0.1122, 12.048, 0.4338, 2.0658)

End (not run)
The matric potential at the point of hydraulic cut-off using the point of maximum curvature of DE (Dexter et al. 2008) water retention curve.

Description

The pore water suction at the point of hydraulic cut-off occurs at the point where the residual water content, obtained from Dexter et al. (2008), intercepts with the Groenevelt & Grant (2004) retention curve. This function calculates the Hydraulic Cut-Off using the point of maximum curvature of the DE (Dexter et al. 2008) curve.

Usage

```
hydraulicCutOff2(theta_R, a1, a2, p1, p2, graph = FALSE, ...)
```

Arguments

- `theta_R`: the residual water content from Dexter’s (2008) water retention curve (g/g).
- `a1`: a water content parameter from Dexter’s (2008) water retention curve (g/g).
- `a2`: a water content parameter from Dexter’s (2008) water retention curve (g/g).
- `p1`: a matric potential parameter from Dexter’s (2008) water retention curve (hPa).
- `graph`: logical; if TRUE a graphical solution with the maximum curvature point is displayed.
- `...`: further graphical arguments. See `par`

Details

The arguments are the fitting parameters from Dexter’s (2008) water retention curve, which can be fitted using `fitsoilwater3`. Further examples of how to use these parameters are given in Dexter et al. (2012).

Value

A `data.frame` containing the values of matric potential (hPa), pF and water content (w) at the hydraulic cut-off (hco) point.

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com>
References

See Also

`hydraulicCutOff`, `fitsoilwater3`

Examples

Example 1: soils from Dexter et al. (2012), Table 4

```r
hydraulicCutOff2(theta_R=0.1130,a1=0.0808,a2=0.0576,p1=4043.2,p2=269.1,
  graph = TRUE, ylim=c(-0.05,0.15)) # Soil 1

hydraulicCutOff2(theta_R=0.0998,a1=0.1456,a2=0.0162,p1=3156.0,p2=71.51,
  graph = TRUE, ylim=c(-0.20,0.30)) # Soil 4

hydraulicCutOff2(theta_R=0.0709,a1=0.0195,a2=0.1794,p1=4467.5,p2=1395.5,
  graph = TRUE, ylim=c(-0.20,0.30)) # Soil 7

hydraulicCutOff2(theta_R=0.0359,a1=0.1014,a2=0.0459,p1=1282.4,p2=56.93,
  graph = TRUE, ylim=c(-0.10,0.20)) # Soil 10

hydraulicCutOff2(theta_R=0.0736,a1=0.0522,a2=0.0321,p1=3516.2,p2=90.54,
  graph = TRUE, ylim=c(-0.05,0.15)) # Soil 14
```

Example 2:

Fitting the water retention curve through the Dexter's (2008) curve

```r
h <- c(0.001, 50.65, 293.77, 790.14, 992.74, 5065, 10130, 15195)
w <- c(0.5650, 0.4013, 0.2502, 0.2324, 0.2307, 0.1926, 0.1812, 0.1730)
if (interactive()) {
  fitsoilwater3(theta=w, x=h)
}
```

Using the fitted parameter

```r
hydraulicCutOff2(theta_R=0.1738,a1=0.07505,a2=0.316,p1=3673, p2=70.38,
  graph = TRUE, ylim=c(-0.40,0.60))
```

End (not run)
Integral Water Capacity (IWC)

Description

Quantifying the soil water availability for plants through the IWC approach. The theory was based on the work of Groenevelt et al. (2001), Groenevelt et al. (2004) and Asgarzadeh et al. (2014), using the van Genuchten-Mualem Model for estimation of the water retention curve and a simple power model for penetration resistance. The salinity effect on soil available water is also implemented here, according to Groenevelt et al. (2004).

Usage

```r
iwc(theta_R, theta_S, alpha, n, a, b, hos = 0,
    graph = TRUE,
    xlab = "Matric head (cm)",
    ylab = expression(cm^-1),
    xlim1 = NULL,
    xlim2 = NULL,
    xlim3 = NULL,
    ylim1 = NULL,
    ylim2 = NULL,
    ylim3 = NULL,
    col12 = c("black", "blue", "red"),
    col3 = c("orange", "black"),
    lty12 = c(1, 3, 2),
    lty3 = c(2, 1), ...
)
```

Arguments

- `theta_R`: the residual water content \((m^3 m^{-3})\); a numeric parameter from van Genuchten’s model; see details.
- `theta_S`: the water content at saturation \((m^3 m^{-3})\); a numeric parameter from van Genuchten’s model; see details.
- `alpha`: a scale parameter from van Genuchten’s model; see details.
- `n`: a shape parameter from van Genuchten’s model; see details.
- `a`: a parameter of the soil penetration resistance model; see details.
- `b`: a parameter of the soil penetration resistance model; see details.
- `hos`: optional; the value of osmotic head of the saturated soil extract (cm). Used only if one is concerned about the salinity effects on the water available for plants. Default is zero. See Groenevelt et al. (2004) for more details.
- `graph`: logical; if TRUE (default), graphics for both dry and wet range are built.
- `xlab`: a label for x-axis.
- `ylab`: a label for y-axis.
\texttt{xlim1, xlim2, xlim3}

the x limits (x1, x2) of each plot. See \texttt{plot.default}.

\texttt{ylim1, ylim2, ylim3}

the y limits (y1, y2) of each plot. See \texttt{plot.default}.

\texttt{col12}

a vector of length 3 containing the color of each line of the first two plots. See \texttt{par}.

\texttt{col3}

a vector of length 2 containing the color of each line of the third plot. See \texttt{par}.

\texttt{lty12}

a vector of length 3 containing the line types for the first two plots. See \texttt{par}.

\texttt{lty3}

a vector of length 2 containing the line types for the third plot. See \texttt{par}.

... further graphical parameters. See \texttt{par}.

\textbf{Details}

The parameters of the van Genuchten-Mualem Model can be estimated through the function \texttt{fitsoilwater()}.

The soil penetration resistance model is given by: $PR = a \cdot h^b$, where h is the soil water content and a and b are the fitting parameters.

\textbf{Value}

A table containing each integration of IWC (integral water capacity, in m/m) and EI (integral energy calculation, in J/kg).

\textbf{Author(s)}

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

\textbf{References}

\textbf{See Also}

\texttt{soilwater, fitsoilwater, llwr}

\textbf{Examples}

\begin{verbatim}
example 1 (Fig 1b, Asgarzadeh et al., 2014)
iwc(theta_R = 0.0160, theta_S = 0.4828, alpha = 0.0471, n = 1.2982,
a = 0.2038, b = 0.2558, graph = TRUE)

example 2 (Table 1, Asgarzadeh et al., 2014)
iwc(theta_R = 0.166, theta_S = 0.569, alpha = 0.029, n = 1.308,
\end{verbatim}
Description

A closed-form analytical expressions for calculating the relative unsaturated hydraulic conductivity as a function of soil water tension (h) based on van Genuchten’s water retention curve.

Usage

\[\text{Kr}_h(\text{Ks}, \alpha, n, h, f=0.5) \]

Arguments

- **Ks**: Saturated hydraulic conductivity (e.g. cm/day).
- **alpha**: The scale parameter of the van Genuchten’s model (hPa^-1).
- **n**: The shape parameter in van Genuchten’s formula.
- **h**: The water tension (hPa).
- **f**: The pore-connectivity parameter. Default 0.5 [Mualem, 1976].

Value

numeric, the value of unsaturated hydraulic conductivity.

Author(s)

Renato Paiva de Lima <renato_agro@hotmail.com>

References

Examples

```r
# EXAMPLE 1
Kr_h(Ks = 1.06*10^2, alpha = 0.048, n = 1.5,h=100, f=0.5)
```

```r
# EXAMPLE 2
x <- seq(log10(1), log10(1000), len=100)
h <- 10^x
y <- Kr_h(Ks = 1.06*10^2, alpha = 0.048, n = 1.5,h, f=0.5)
plot(x=h, y=y, log="yx", xlab="h (hPa)", ylab="n",
ylab="'", ylim=c(0.001,100), xlim=c(1,10000))
mtext(expression(K[r] ~ (cm~d^-1)), 2, line=2)
ax <- c(0.001, 0.01, 0.1, 1, 10, 100)
axis(2, at=ax, labels=ax)
```  

End (not run)

Kr_theta
Unsaturated Hydraulic Conductivity as a function of water content

Description

A closed-form analytical expressions for calculating the relative unsaturated hydraulic conductivity as a function of soil water content based on van Genuchten’s water retention curve.

Usage

```r
Kr_theta(theta, thetaS, thetaR, n, Ks, f=0.5)
```

Arguments

- `theta` The volumetric water content (m3/m3).
- `thetaS` The volumetric water content at the saturation (m3/m3).
- `thetaR` The volumetric residual water content (m3/m3).
- `n` The shape parameter in van Genuchten’s formula.
- `Ks` Saturated hydraulic conductivity (e.g. cm/day).
- `f` The pore-connectivity parameter. Default 0.5 [Mualem, 1976].

Value

numeric, the value of unsaturated hydraulic conductivity.

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com>
References

Examples

```r
# EXAMPLE 1
Kr_theta(theta=0.45, thetaS=0.5, thetaR=0.15, n = 2, Ks = 1.06*10^2, f=0.5)

# EXAMPLE 2
thetaS <- 0.50
thetaR <- 0.15
theta <- seq(thetaS, thetaR, len=50)
y <- Kr_theta(theta=theta, thetaS=thetaS, thetaR=thetaR, n = 2, Ks = 1.06*10^2, f=0.5)

# Just for this example, we are removing the "0" value
# for plotting the graph in log scale, sence log10(0) results in "-Inf"
Kr <- y[-50]
w <- theta[-50]

plot(x=w, y=Kr, xlab=expression(theta~(m^3~m^-3)),
ylim=c(0.001,100), log="y", yaxt="n",
ylab="", xlim=c(0.15,0.50))
mtext(expression(K[r] ~ (cm~d^-1)), 2, line=2)
ax <- c(0.001, 0.01, 0.1, 1, 10, 100)
axis(2, at=ax, labels=ax)
```

liquidlimit

Soil Liquid Limit

Description

Function to determine the soil Liquid Limit by using the Sowers (1965) method.

\[LL = \theta \times \left(\frac{n}{25} \right)^{0.12} \]

Usage

`liquidlimit(theta, n)`
Arguments

theta the soil moisture value corresponding to n drops.
n the number of drops.

Value

The soil moisture value corresponding to the Liquid Limit.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

criticalmoisture

Examples

liquidlimit(theta = 0.34, n = 22)

M <- c(0.34, 0.29, 0.27, 0.25, 0.20)
N <- c(22, 24, 25, 26, 28)
liquidlimit(theta = M, n = N)

End (not run)

llwr

Least Limiting Water Range (LLWR)

Description

Graphical solution for the Least Limiting Water Range and parameter estimation of the related water retention and penetration resistance curves. A summary containing standard errors and statistical significance of the parameters is also given.
Usage

llwr(theta, h, Bd, Pr,
 particle.density, air,
 critical.PR, h.FC, h.WP,
 water.model = c("Silva", "Ross"),
 Pr.model = c("Busscher", "noBd"),
 pars.water = NULL, pars.Pr = NULL,
 graph = TRUE, graph2 = TRUE,
 xlab = expression(Bulk~Density~(Mg~m^{-3})),
 ylab = expression(theta~(m^{3}~m^{-3})),
 main = "Least Limiting Water Range", ...)

Arguments

theta a numeric vector containing values of volumetric water content (m3 m$^{-3}$).

h a numeric vector containing values of matric head (cm, Psi, MPa, kPa, ...).

Bd a numeric vector containing values of dry bulk density (Mg m$^{-3}$). Note that Bd can also be a vector of length 1. See details.

Pr a numeric vector containing values of penetration resistance (MPa, kPa, ...).

particle.density the value of the soil particle density (Mg m$^{-3}$).

air the value of the limiting volumetric air content (m3 m$^{-3}$).

critical.PR the value of the critical soil penetration resistance.

h.FC the value of matric head at the field capacity (cm, MPa, kPa, hPa, ...).

h.WP the value of matric head at the wilting point (cm, MPa, kPa, hPa, ...).

water.model a character; the model to be used for calculating the soil water content. It must be one of the two: "Silva" (default) or "Ross". See details.

Pr.model a character; the model to be used to predict soil penetration resistance. It must be one of the two: "Busscher" (default) or "noBd". See details.

pars.water optional; a numeric vector containing the estimates of the three parameters of the soil water retention model employed. If NULL (default), llwr() estimates them using a Newton-Raphson algorithm. See details.

pars.Pr optional; a numeric vector containing estimates of the three parameters of the model proposed by Busscher (1990) for the functional relationship among Pr, theta and Bd. If NULL (default), llwr() estimates them using a Newton-Raphson algorithm. Moreover, if Pr.model = "noBd", then the third value is considered to be null.

graph logical; if TRUE (default) a graphical solution for the Least Limiting Water Range is plotted.

graph2 logical; if TRUE (default) a line of the Least Limiting Water Range as a function of bulk density is plotted. If graph = FALSE, then llwr() will automatically consider graph2 = FALSE too.

xlab a title for the x axis; the default is Bulk Density (Mg m$^{-3}$).
ylab a title for the y axis; the default is $\theta \ (m^3 \ m^{-3})$.

main a main title for the graphic; the default is "Least Limiting Water Range"

... further graphical arguments.

Details

The numeric vectors theta, h, Bd and Pr are supposed to have the same length, and their values should have appropriate unit of measurement. For fitting purposes, it is not advisable to use vectors with less than five values. It is possible to calculate the LLWR for a specific (unique) value of bulk density. In this case, Bd should be a vector of length 1 and, therefore, it is not possible to fit the models "Silva" and "Busscher", for water content and penetration resistance, respectively.

The model employed by Silva et al. (1994) for the soil water content (θ) as a function of the soil bulk density (ρ) and the matric head (h) is:

$$\theta = \exp(a + b\rho)h^c$$

The model proposed by Ross et al. (1991) for the soil water content (θ) as a function of the matric head (h) is:

$$\theta = ah^c$$

The penetration resistance model, as presented by Busscher (1990), is given by

$$Pr = b_0 \ast (\theta^{b_1}) \ast (\rho^{b_2})$$

If the argument Bd receives a single value of bulk density, then llwr() fits the following simplified model (option noBd):

$$Pr = b_0 \ast \theta^{b_1}$$

Value

A list of

- **limiting.theta**
 a n x 4 matrix containing the limiting values of water content for each input value of bulk density at the volumetric air content (thetaA), penetration resistance (thetaPR), field capacity (thetaFC) and wilting point (thetaWP).

- **pars.water**
 a "nls" object or a numeric vector containing estimates of the three parameters of the model employed by Silva et al. (1994) for the functional relationship among theta, Bd and h.

- **r.squared.water**
 a "Rsq" object containing the pseudo and the adjusted R-squared for the water model.

- **pars.Pr**
 a "nls" object or a numeric vector containing estimates of the three parameters of the penetration resistance model.
r.squared.Pr a "Rsq" object containing the pseudo and the adjusted R-squared for the penetration resistance model.

area numeric; the value of the shaded (LLWR) area. Calculated only when Bd is a vector of length > 1.

LLWR numeric; the value of LLWR ($m^3 m^{-3}$) corresponding to Bd. Calculated only when Bd is a single value.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

`fitbusscher`

Examples

```r
# Example 1 - part of the data set used by Leao et al. (2005)
data(skp1994)
ex1 <- with(skp1994,
  llwr(theta = W, h = h, Bd = BD, Pr = PR,
  particle.density = 2.65, air = 0.1,
  critical.PR = 2, h.FC = 100, h.WP = 15000))
ex1

# Example 2 - specifying the parameters (Leao et al., 2005)
a <- c(-0.9175, -0.3027, -0.0835) # Silva et al. model of water content
b <- c(0.0827, -1.6087, 3.0570) # Busscher's model
ex2 <- with(skp1994,
  llwr(theta = W, h = h, Bd = BD, Pr = PR,
  particle.density = 2.65, air = 0.1,
  critical.PR = 2, h.FC = 0.1, h.WP = 1.5,
  pars.water = a, pars.Pr = b))
ex2
```
Example 3 - specifying a single value for Bd
ex3 <- with(skp1994,
 llwr(theta = W, h = h, Bd = 1.45, Pr = PR,
 particle.density = 2.65, air = 0.1,
 critical.PR = 2, h.FC = 100, h.WP = 15000))
ex3

End (not run)

llwrPTF

Least Limiting Water Range (LLWR) Using Pedo-Transfer Functions

Description

It calculates Least Limiting Water Range (LLWR) using pedo-transfer functions in according to Silva & Kay (1997) and Silva et al. (2008), for Canadian and Brazilian soils, respectively.

Usage

llwrPTF(air, critical.PR, h.FC, h.WP, p.density, Bd, clay.content, org.carbon = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>air</td>
<td>the value of the limiting volumetric air content, m^3m^{-3}</td>
</tr>
<tr>
<td>critical.PR</td>
<td>the value of the critical soil penetration resistance, MPa</td>
</tr>
<tr>
<td>h.FC</td>
<td>the value of matric suction at the field capacity, hPa</td>
</tr>
<tr>
<td>h.WP</td>
<td>the value of matric suction at the wilting point, hPa</td>
</tr>
<tr>
<td>p.density</td>
<td>the value of the soil particle density, Mgm^{-3}</td>
</tr>
<tr>
<td>Bd</td>
<td>a numeric vector containing values of dry bulk density, Mgm^{-3}. Note that Bd can also be a vector of length 1.</td>
</tr>
<tr>
<td>clay.content</td>
<td>a numeric vector containing values of clay content to each bulk density, %</td>
</tr>
<tr>
<td>org.carbon</td>
<td>a numeric vector containing values of organic carbon to each bulk density, %, for Canadian soils. Default is 2%. See details.</td>
</tr>
</tbody>
</table>

Details

Note that org.carbon is only required for Canadian soil. If it is not passed, LLWR for Canadian soil is calculated with 2% of organic carbon.

Value

A list of

- LLWR.B: LLWR for Brazilian soils
- LLWR.C: LLWR for Canadian soils
Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com>
Anderson Rodrigo da Silva <anderson.agro@hotmail.com>
Alvaro Pires da Silva <apisilva@usp.br>

References

Examples

EXEMPLE 1 (for Brazilian Soils)
llwrPTF(air=0.1,critical.PR=2, h.FC=100, h.WP=15000,p.density=2.65,
 Bd=c(1.2,1.3,1.4,1.5,1.35),clay.content=c(30,30,35,38,40))

EXEMPLE 2 (for Canadian Soils)
llwrPTF(air=0.1,critical.PR=2, h.FC=100, h.WP=15000,p.density=2.65,
 Bd=c(1.2,1.3,1.4),clay.content=c(30,30,30), org.carbon=c(1.3,1.5,2))

EXEMPLE 3 (combining it with soil stress)
stress <- stressTraffic(inflation.pressure=200,
 recommended.pressure=200,
 tyre.diameter=1.8,
 tyre.width=0.4,
 wheel.load=4000,
 conc.factor=c(4,5,5,5,5),
 layers=c(0.05,0.1,0.3,0.5,0.7,1),
 plot.contact.area = FALSE)

stress.p <- stress$Stress$sigma_mean
layers <- stress$Stress$Layers
n <- length(layers)
def <- soilDeformation(stress = stress.p,
 p.density = rep(2.67,n),
 iBD = rep(1.55,n),
 N = rep(1.9392,n),
 CI = rep(0.06037,n),
 k = rep(0.00608,n),
 k2 = rep(0.01916,n),
 m = rep(1.3,n),graph=TRUE,ylim=c(1.4,1.8))
Graph LLWR, considering Brazilian soils
plot(x = 1, y = 1, xlim=c(0,0.2),ylim=c(1,0),xaxt = "n", ylab = "Soil Depth",xlab="", type="l", main=""
axis(3)
mtext("LLWR",side=3,line=2.5)
i.LLWR <- llwrPTF(air=0.1,critical.PR=2, h.FC=100,
 h.WP=15000,p.density=2.65,
 Bd=def$iBD,clay.content=rep(20,n))
f.LLWR <- llwrPTF(air=0.1,critical.PR=2, h.FC=100,
 h.WP=15000,p.density=2.65,
 Bd=def$fBD,clay.content=rep(20,n))
points(x=i.LLWR$LLWR.B, y=layers, type="l"); points(x=i.LLWR$LLWR.B, y=layers,pch=15)
points(x=f.LLWR$LLWR.B, y=layers, type="l", col=2); points(x=f.LLWR$LLWR.B, y=layers,pch=15, col=2)

End (not run)

LLWR_App

A shiny for calculation of the usual least limiting water range

Description

A shiny for calculation of the usual least limiting water range

Usage

LLWR_App()

Value

A shiny app

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com>

See Also

stressTraffic
llwr_llmpr

Least Limiting Water (LLWR) and Matric Potential Ranges (LLMPR)

Description

A graphical solution and calculation of the least limiting water range and least limiting water matric potential range, including the corresponding the water content and water tensions limits.

Usage

```
llwr_llmpr(thetaR, thetaS, alpha, n, d, e, f = NULL, critical.PR, PD, Bd = NULL, h.FC, h.PWP, air.porosity,
labels = c("AIR", "FC", "PWP", "PR"), ylab = "",
graph1 = TRUE, graph2 = FALSE, ...)
```

Arguments

- `thetaR` the residual water content, \(m^3m^{-3}\)
- `thetaS` the water content at saturation, \(m^3m^{-3}\)
- `alpha` the scale parameter of the van Genuchten's model, \(hPa^{-1}\)
- `n` the shape parameter of the van Genuchten's model
- `d` a parameter of Busscher soil penetration resistance model. See details.
- `e` a parameter of Busscher soil penetration resistance model. See details.
- `f` a parameter of Busscher soil penetration resistance model. See details.
- `critical.PR` the limiting value of soil penetration resistance, MPa
- `PD` particle density, \(Mgm^{-3}\)
- `Bd` the bulk density to be displayed at bottom of the graph (optional), \(Mgm^{-3}\)
- `h.FC` the value of water tension at field capacity, hPa
- `h.PWP` the value of water tension at wilting point, hPa
- `air.porosity` the volumetric air-filled porosity
- `labels` the labels to h.FC, h.PWP, air.porosity and critical.PR
- `ylab` a title for the y-axis
- `graph1` logical; if TRUE (default) a graphical solution for the Least Limiting Water Range is displayed
- `graph2` logical; if TRUE (default) a graphical solution for the Least Limiting Matric Potential Range is displayed
- `...` Further graphical arguments
Details

The penetration resistance model, as presented by Busscher (1990), is given by
\[
PR = d \times \theta^e \times BD^f.
\]
In this model, BD (bulk density) is calculated from thetaS (soil total porosity) and PD (particles density), i.e.,
\[
BD = PD \times \text{thetaS}^{-1}.
\]
If the argument \(f\) is not passed, the model becomes \(PR = d \times \theta^e\).

Value

A list of the LLWR and LLMPR, including the corresponding the water content and water tensions limits.

Author(s)

Renato Paiva de Lima <renato_agro@hotmail.com>

References

Examples

Parameters from Leon et al. (2018), for usual physical restrictions threshold

```r
llwr_llmpr(thetaR=0.1180, thetaS=0.36, alpha=0.133, n=1.30,
  d=0.005, e=-2.93, f=3.54, PD=2.65,
critical.PR=4, h.FC=100, h.PWP=15000, air.porosity=0.1,
labels=c("AFP", "FC","PWP", "PR"),
graph1=TRUE,graph2=FALSE, ylab=expression(psi~(hPa)), ylim=c(15000,1))
mtext(expression("Bulk density"~(Mg~m^-3)),1,line=2.2, cex=0.8)
```
```r
llwr_llmpr(thetaR=0.1180, thetaS=0.36, alpha=0.133, n=1.30, d=0.005, e=-2.93, f=3.54, PD=2.65, critical.PR=4, h.FC=100, h.PWP=15000, air.porosity=0.1, graph1=FALSE, graph2=TRUE, labels=c("Air-filled porosity", "Field capacity", "Permanent wilting point", "Penetration resistance"), ylim=c(0.1,0.30), ylab=expression(theta~(m^3~m^-3)))
mtext(expression("Bulk density"~(Mg~m^-3)),1,line=2.2, cex=0.8)

# Without bulk density effects in Busscher's model (i.e. f=NULL)
llwr_llmpr(thetaR=0.1180, thetaS=0.36, alpha=0.133, n=1.30, d=0.0165, e=-2.93, PD=2.65, critical.PR=3, h.FC=100, h.PWP=15000, air.porosity=0.1, graph1=TRUE, graph2=FALSE, ylim=c(15000,1), ylab=expression(psi~(hPa)))
mtext(expression("Bulk density"~(Mg~m^-3)),1,line=2.2, cex=0.8)

# Parameters from Leon et al. (2018), calculated physical restrictions threshold
thetaR <- 0.1180
thetaS <- 0.36
alpha <- 0.133
n <- 1.30
clay.content <- 15 # clay content 15 %
mim.gas.diffusion <- 0.005
root.elongation.rate <- 0.3 # root elongation rate 30%
FC <- ((1/alpha)*((n-1)/n)*)((1-2*n)/n) # Assouline and Or (2014)
PWP <- 10^((3.514 + 0.0250*clay.content)) # Dexter et al. (2012)
AIR.critical <- (mim.gas.diffusion*(thetaS)^2)*(1/(10/3)) # Millington and Quirk (1961)
PR.critical <- log(root.elongation.rate)/-0.4325 # Moraes et al. (2018)
llwr_llmpr(thetaR=thetaR, thetaS=thetaS, alpha=alpha, n=n, d=0.005, e=-2.93, f=3.54, PD=2.65, ylim=c(15000,1), critical.PR=PR.critical, h.FC=FC, h.PWP=PWP, air.porosity=AIR.critical, graph1=TRUE, graph2=FALSE, ylim=c(0.1,0.30), ylab=expression(psi~(hPa)))
mtext(expression("Bulk density"~(Mg~m^-3)),1,line=2.2, cex=0.8)
llwr_llmpr(thetaR=thetaR, thetaS=thetaS, alpha=alpha, n=n, d=0.005, e=-2.93, f=3.54, PD=2.65, critical.PR=PR.critical, h.FC=FC, h.PWP=PWP, air.porosity=AIR.critical, graph1=FALSE, graph2=TRUE)
```

A shiny for calculation of least limiting water and matric potential ranges of agricultural soils with calculated physical restriction thresholds

Description

A shiny for calculation of least limiting water and matric potential ranges of agricultural soils with calculated physical restriction thresholds

Usage

LLWR_LLMPR_App()

Value

A shiny app

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com>

See Also

stressTraffic

maxcurv Maximum Curvature Point

Description

Function to determine the maximum curvature point of an univariate nonlinear function of x.

Usage

maxcurv(x.range, fun,
method = c("general", "pd", "LRP", "spline"),
x0ini = NULL,
graph = TRUE, ...)

Arguments

- `x.range`: a numeric vector of length two, the range of x.
- `fun`: a function of x; it must be a one-line-written function, with no curly braces '{}'.
- `method`: a character indicating one of the following: "general" - for evaluating the general curvature function \(k\), "pd" - for evaluating perpendicular distances from a secant line, "LRP" - a NLS estimate of the maximum curvature point as the breaking point of Linear Response Plateau model, "spline" - a NLS estimate of the maximum curvature point as the breaking point of a piecewise linear spline. See details.
- `x0ini`: an initial x-value for the maximum curvature point. Required only when "LRP" or "spline" are used.
- `graph`: logical; if TRUE (default) a curve of `fun` is plotted.
- ... further graphical arguments.

Details

The method "LRP" can be understood as an especial case of "spline". And both models are fitted via `nls`. The method "pd" is an adaptation of the method proposed by Lorentz et al. (2012). The "general" method should be preferred for finding global points. On the other hand, "pd", "LRP" and "spline" are suitable for finding local points of maximum curvature.

Value

A list of

- `fun`: the function of x.
- `x0`: the x critical value.
- `y0`: the y critical value.
- `method`: the method of determination (input).

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

`function`, `curve`
Examples

Example 1: an exponential model
f <- function(x) exp(-x)
maxcurv(x.range = c(-2, 5), fun = f)

Example 2: Gompertz Growth Model
Asym <- 8.5
b2 <- 2.3
b3 <- 0.6
g <- function(x) Asym * exp(-b2 * b3 ^ x)
maxcurv(x.range = c(-5, 20), fun = g)

using "pd" method
maxcurv(x.range = c(-5, 20), fun = g, method = "pd")

using "LRP" method
maxcurv(x.range = c(-5, 20), fun = g, method = "LRP", x0ini = 6.5)

Example 3: Lessman & Atkins (1963) model for optimum plot size
a = 40.1
b = 0.72
cv <- function(x) a * x^-b
maxcurv(x.range = c(1, 50), fun = cv)

using "spline" method
maxcurv(x.range = c(1, 50), fun = cv, method = "spline", x0ini = 6)

End (not run)

particle.sedimentation

Sedimentation time of soil particles in aqueous media

Description

It calculates the sedimentation time of soil particles in aqueous media using Stokes equation, i.e., the time needed for the particles of soil larger than the size attributed as input to sediment in aqueous media, usually water.

Usage

```
particle.sedimentation(d, h=0.2, g=9.81, v=0.001, Pd=2650, Wd=1000)
```

Arguments

d: the lower limit of soil particle diameter (micrometers) to sediment within the calculated time.

h: the vertical distance (meters) from which the particles fall. Default is 0.2 m.
particle.sedimentation_App

g the acceleration of gravity, in m/s^2. Default is 9.81 m/s^2.

v the viscosity of the fluid, in N/s/m^2. Default is 0.001 N/s/m^2, for water at 20 degrees Celsius.

Pd the particle density, in kg/m^3. Default is 2650 kg/m^3.

Wd the density of the fluid, in kg/m^3. Default is 1000 kg/m^3.

Value

A data.frame containing the estimated time for the sedimentation of particles.

Author(s)

Renato Puiva de Lima <renato_agro_@hotmail.com>

References

Examples

Example 1
particle.sedimentation(d=2, h=0.2, g=9.81, v=1.002*10^-3, Pd=2650, Wd=1000)

Example 2
d <- c(2000, 200, 50, 10, 2, 1)
time <- particle.sedimentation(d=d, h=0.2, g=9.81, v=1.002*10^-3, Pd=2650, Wd=1000)

plot(x=d, y=time$hours, log = "x", xaxt="n",
 ylab = "time of sedimentation (hours)", xlab = "particle diameter (micrometer)")

axis(1, at=d, labels=d)

End (not run)

particle.sedimentation_App

A shiny for time of particle sedimentation

Description

A shiny for time of particle sedimentation

Usage

particle.sedimentation_App()

Value

A shiny app
plotCIsigmaP

Author(s)
Renato Puiva de Lima <renato_agro_@hotmail.com>

See Also
stressTraffic

plotCIsigmaP Percentile Confidence Intervals for Simulated Preconsolidation Stress

Description
Build and plot percentile confidence intervals for preconsolidation stress simulated from simSigmaP.

Usage
plotCIsigmaP(msim, conf.level = 0.95, shade.col = "orange", ordered = TRUE, xlim = NULL, xlab = expression(sigma[P]), las = 1, mar = c(4.5, 6.5, 2, 1), ...)

Arguments

msim an object of class "simSigmaP".
conf.level the confidence level for the intervals.
shade.col a character or number indicating the color of the shaded area delimiting each CI. See colors.
ordered logical; should the intervals be displayed according to the value of the simulated mean?
xlim optional; a numeric vector of length two containing the limits of the x-axis.
xlab optional; a character indicating the x-axis label.
las optional; see par.
mar optional; see par.
... further graphical parameters; see par.

Value
A numeric matrix containing the simulated mean, coefficient of variation, lower and upper CI limits and the name of the method used to calculate the preconsolidation stress.

Author(s)
Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

See Also
simSigmaP, sigmaP
Examples

```r
# input data: stress and void ratio
pres <- c(1, 12.5, 25, 50, 100, 200, 400, 800, 1600)
VR <- c(1.43, 1.41, 1.40, 1.39, 1.35, 1.31, 1.25, 1.18, 1.12)

# simulation (may take a few seconds)
simres <- simSigmaP(VR, pres, nsim = 30)
head(simres)

# percentile confidence intervals
ci <- plotCIsigmaP(simres, conf.level = 0.95,
                     shade.col = "blue", ordered = TRUE)
print(ci)

# End (Not run)
```

PredComp

A shiny for simulation of soil compaction

Description

A shiny for for simulation of soil compaction

Usage

`PredComp()`

Value

A shiny app

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com>

See Also

`stressTraffic`
Description

The unimodal soil pore size distribution based on van Genuchten’s model.

Usage

```r
psd(thetaS, thetaR, alpha, n, h)
```

Arguments

- `thetaS`: the water content at saturation.
- `thetaR`: the residual water content.
- `alpha`: the scale parameter of the van Genuchten’s model (hPa-1).
- `n`: the shape parameter in van Genuchten’s formula.
- `h`: a vector of water tension (hPa) on the range of water retention curve.

Value

A numeric vector containing the soil pore size distribution as a function of soil water tension.

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com>

References

Examples

```r
# EXAMPLE 1
x <- seq(log10(1), log10(15000), len=100)
h <- 10^x
y <- psd(thetaR = 0.15, thetaS = 0.55, alpha = 0.048, n = 1.5, h=h)
plot(x=h, y=y, log="x", xlab="h (hPa)", ylab=expression(delta*theta/delta*h), ylim=c(0,0.005))

# EXAMPLE 2
x <- seq(log10(1), log10(15000), len=100)
h <- 10^x
y <- psd(thetaR = 0.20, thetaS = 0.61, alpha = 0.1232, n = 1.3380,h=h)
```
plot(x=h, y=y, log="x", xlab="h (hPa)", ylab=expression(delta*theta/delta*h), ylim=c(0,0.03))

EXAMPLE 3
x <- seq(log10(1), log10(15000), len=100)
h <- 10^x
y <- psd(thetaR = 0.154, thetaS = 0.600, alpha = 0.103, n = 2.365, h=h)
plot(x=h, y=y, log="x", xlab="h (hPa)", ylab=expression(delta*theta/delta*h), ylim=c(0,0.03))
ax <- c(1, 10, 100, 1000, 10000)
radius <- r(h=ax)
axis(3, at=ax, labels=round(radius, 2))
mtext("Equivalent pore radius"~(mu*m), 3, line=2.5, cex=0.9)

r

Equation of capillary

Description

The equivalent pore radius as a function of soil water tension.

Usage

```r
r(h, surface.tension.water=0.072, water.density=1000, water.pore.contact.angle=0)
```

Arguments

- `h` The water tension (hPa).
- `surface.tension.water` Surface tension of water (N/m).
- `water.density` Density of water (kg/m^3).
- `water.pore.contact.angle` Water pore contact angle (degrees).

Value

The equivalent pore radius, in micrometer.

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com>

References

Examples

```r
x <- seq(log10(1), log10(15000), len=50)
h <- 10^x
y <- r(h=h)
plot(x=h, y=y, log="yx", xlab="h (hPa)", ylab="", ylim=c(0.1, 1500))
ax <- c(0.1, 1, 10, 100, 1000, 1500)
axis(2, at=ax, labels=ax)
mtext("Pore radius"~ (mu*m), 2, line=2.5)
```

End (not run)

Rsq

Multiple R-squared

<table>
<thead>
<tr>
<th>Rsq</th>
<th>Multiple R-squared</th>
</tr>
</thead>
</table>

Description

Function to calculate the *multiple R-squared* and the *adjusted R-squared* from a fitted model via `lm` or `aov`, i.e., linear models. For a model fitted via `nls`, nonlinear models, the *pseudo R-squared* is returned.

Usage

```r
Rsq(model)
```

Arguments

- `model` a model fitted via `lm`, `aov` or `nls`.

Value

A list of

- `R.squared` the multiple R-squared (for linear models) or the Pseudo R-squared (for nonlinear models).
- `adj.R.squared` the adjusted R-squared.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

See Also

- `lm`, `summary.lm`, `aov`, `nls`
Examples

example 1 [linear model]
y <- rnorm(10)
x <- 1:10
fit <- lm(y ~ x)
summary(fit)
Rsq(fit)

example 2 [nonlinear model for Load Bearing Capacity]
data(compaction)
attach(compaction)
out <- fitlbc(theta = Mois, sigmaP = PS)
summary(out)
Rsq(out)

End (not run)

r_App

A shiny for equation of capillarity

Description

A shiny for equation of capillarity

Usage

r_App()

Value

A shiny app

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com>

See Also

stressTraffic
Preconsolidation Stress

Description

A function to determine the preconsolidation stress (σ_P). It is a parameter obtained from the soil compression curve and has been used as an indicator of soil load-bearing capacity as well as to characterize the impacts suffered by the use of machines. The function sigmaP() contains implementations of the main methods for determining the pre-consolidation stress, such as the Casagrande method, the method of Pacheco Silva, the regression methods and the method of the virgin compression line intercept.

Usage

sigmaP(voidratio, stress, n4VCL = 3,
method = c("casagrande", "VCLzero", "reg1", "reg2", "reg3", "reg4", "pacheco"),
mcp = NULL, graph = TRUE, ...)

Arguments

voidratio a numeric vector containing void ratio (or bulk density) values.
stress a numeric vector containing the applied stress sequence.
n4VCL the number of points for calculating the slope of the soil Virgin Compression Line (VCL), which is obtained by linear regression.
method a character indicating which method is to be computed; one of the following: casagrande (default), VCLzero, reg1, reg2, reg3, reg4 or pacheco; see Details.
mcp the maximum curvature point in log10 scale of stress; required only if the method casagrande is used.
graph logical; if TRUE (default) the compression curve is plotted.
... further graphical arguments.

Details

casagrande is the method proposed by Casagrande (1936). The preconsolidation stress obtained via VCLzero corresponds to the intersection of the soil Virgin Compression Line (VCL) with the x-axis at zero applied stress, as described by Arvidsson & Keller (2004). reg1, reg2, reg3 and reg4 are regression methods that obtain the preconsolidation stress value as the intercept of the VCL and a regression line fitted with the first two, three, four and five points of the curve, respectively, as described by Dias Junior & Pierce (1995). pacheco is the method of Pacheco Silva (ABNT, 1990).

You may follow the flowchart below to understand the determination of the preconsolidation stress through sigmaP().
Value

A list of

\(\sigma_{\text{pre}} \) the preconsolidation stress.

\textit{method} the method used as argument.

\textit{mcp} the maximum curvature point in log10 scale of stress; stored only if the method casagrande is used.

\textit{CI} the compression index.

\textit{SI} the swelling index.
Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

voidratio, maxcurv, fitlbc

Examples

pres <- c(1, 12.5, 25, 50, 100, 200, 400, 800, 1600)
VR <- c(0.846, 0.829, 0.820, 0.802, 0.767, 0.717, 0.660, 0.595, 0.532)

plot(VR ~ log10(pres), type = "b") # find the 'mcp'
sigmaP(VR, pres, method = "casagrande", mcp = 1.6, n4VCL = 2)

fitting the VCL
sigmaP(VR, pres, method = "casagrande", mcp = 1.6, n4VCL = 3)

self-calculation of 'mcp' argument for Casagrande method
sigmaP(VR, pres, method = "casagrande", n4VCL = 3)

Pacheco method
sigmaP(VR, pres, method = "pacheco")

Regression method
sigmaP(VR, pres, method = "reg3")

End (not run)
Description

Simulating preconsolidation stress, compression and swelling indices, based on a multivariate Gaussian distribution for the parameters of the compression curve.

Usage

```r
simSigmaP(voidratio, stress, 
what.out = c("sigmaP", "CI", "SI"), 
method = c("casagrande", "VCLzero", "reg1", "reg2", "reg3", "reg4", "pacheco"), 
n4VCL = 3, nsim = 100)
```

Arguments

- **voidratio**: a numeric vector containing void ratio (or bulk density) values.
- **stress**: a numeric vector containing the applied stress sequence.
- **what.out**: a character indicating which \(\sigma_P \) output should be simulated. It must be one of "sigmaP" (default), "CI" or "SI".
- **method**: a character vector indicating which methods should be used.
- **n4VCL**: the number of points for calculating the slope of the soil Virgin Compression Line (VCL), which is obtained by linear regression. Default is 3.
- **nsim**: the number of simulations. Default is 100. Warning: it may cause time demanding.

Value

A numeric matrix containing the simulated values for each method selected as input.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

See Also

- `sigmaP`
- `plotCIsigmaP`

Examples

```r
# input data: stress and void ratio
pres <- c(1, 12.5, 25, 50, 100, 200, 400, 800, 1600)
VR <- c(1.43, 1.41, 1.40, 1.39, 1.35, 1.31, 1.25, 1.18, 1.12)

# simulation (may take a few seconds)
simres <- simSigmaP(VR, pres, nsim = 30)
```
The S Index

Description

Function to calculate the S index (Dexter, 2004) for evaluating the soil physical quality based on the Water Retention Curve (van Genuchten, 1980).

\[S = -n \ast (\theta_S - \theta_R) \ast (1 + 1/m)^{-1+m} \]

Usage

\texttt{Sindex(theta_R, theta_S, alpha, n, m = 1 - 1/n, vcov = NULL, nsim = 999, conf.level = 0.95, graph = TRUE, ...)}

Arguments

- \texttt{theta_R} the residual water content.
- \texttt{theta_S} the water content at saturation.
- \texttt{alpha} a scale parameter of the van Genuchten’s formula.
- \texttt{n} a shape parameter in van Genuchten’s formula.
- \texttt{m} a shape parameter in van Genuchten’s Formula. Default is \(1 - 1/n\) (Mualem, 1976).
- \texttt{vcov} optional (default is \texttt{NULL}); a variance-covariance matrix of the estimates which is used to perform Monte Carlo simulations of the parameters \texttt{theta_R}, \texttt{theta_S}, \texttt{alpha} and \texttt{n} for building a simulated confidence interval of the S index (in modulus).
- \texttt{nsim} the number of Monte Carlo simulations; default is 999. It is used only if \texttt{vcov} is specified.
- \texttt{conf.level} the confidence level; default is 0.95. It is used only if \texttt{vcov} is specified.
- \texttt{graph} logical; if TRUE (default), the soil water retention curve is plotted.
- ... further graphical arguments.
Value

A list of

- h_i: the modulus of the water potential at the inflection point.
- θ_i: the water content at the inflection point.
- $S.index$: the modulus of the S index.
- **PhysicalQuality**: A character indicating the soil physical quality, as proposed by Dexter (2004).
- **simCI**: the simulated confidence interval. It is stored only if vcov is specified.
- **conf.level**: the confidence level for the simulated confidence interval. It is stored only if vcov is specified.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

soilwater, *fitsoilwater*

Examples

```r
# Dexter (2004, Table 1)
Sindex(0, 0.395, 0.0217, 1.103, xlim = c(0, 1000))
Sindex(0, 0.335, 0.0616, 1.139, xlim = c(0, 1000))
# ...
Sindex(0, 0.226, 0.0671, 1.581, xlim = c(0, 1000))

# End (not run)
```
skp1994

LLWR Data Set

Description

Data set presented by Leao et al. (2005), for determining the Least Limiting Water Range.

Usage

`data(skp1994)`

Format

A data frame with 64 observations on the following 4 variables:

- **BD** a numeric vector containing soil bulk density values, in Mg/m³.
- **W** a numeric vector containing volumetric water content values, in m³/m³.
- **PR** a numeric vector containing penetration resistance values, in MPa.
- **h** a numeric vector containing matric head values, in cm.

Source

Examples

`data(skp1994)`

`summary(skp1994)`

SoilAggregate

Soil Aggregate Size Data Set

Description

Data set for determining soil aggregate size distribution.

Usage

`data(SoilAggregate)`
soilDeformation

Format

A data frame with 12 observations on 7 variables.

ID a factor with the names of the soil samples.
D3
D1.5
D0.75
D0.375
D0.178
D0.053

Examples

data(SoilAggregate)
summary(SoilAggregate)

soilDeformation

Soil deformation by O’Sullivan and Robertson (1996)

Description

It calculates bulk density variation as a function of the applied mean normal stress using critical state theory, by O’Sullivan and Robertson (1996).

Usage

soilDeformation(stress, p.density, iBD, N, CI, k, k2, m, graph = FALSE, ...)

Arguments

stress a numeric vector containing the values of mean normal stress, kPa; Note that stress can also be a vector of length 1.
p.density a numeric vector containing the values of particle density to each stress, Mgm$^{-3}$.
iBD a numeric vector containing the values of initial bulk density to each stress, Mgm$^{-3}$.
N the specific volume at p = 1 kPa, to each stress
CI the compression index, to each stress; check details
k the recompression index, to each stress; check details
k2 the slope of the steeper recompression line to each stress (similar to the k’ in O’Sullivan and Robertson (1996) model); check details
m the value that separates yield line and VCL to each stress; check details
graph logical; shall soilDeformation plot the graph model (only the first parameters set is plotted)?
... further graphical arguments. See par.
Details

The specific volume \(v \) is given as \(v = PD / BD \), where PD is particle density and BD is the bulk density. Please, check each parameter from O’Sullivan and Robertson (1996) model in the figure below.

Value

A list of

- \(iBD \) initial bulk density, \(Mgm^{-3} \)
- \(fBD \) final bulk density, \(Mgm^{-3} \)
- \(vi \) initial specific volume
- \(vf \) final specific volume
- \(I \) variation of soil bulk density (%) after the applied stress

Author(s)

Renato Paiva de Lima <renato_agro@hotmail.com>
Anderson Rodrigo da Silva <anderson.agro@hotmail.com>
Alvaro Pires da Silva <apisilva@usp.br>
References

Examples

EXAMPLE 1
soilDeformation(stress = 300,
 p.density = 2.67,
 iBD = 1.55,
 N = 1.9392,
 CI = 0.06037,
 k = 0.00608,
 k2 = 0.01916,
 m = 1.3,graph=TRUE,ylim=c(1.4,1.8))

EXAMPLE 2 (combining it with soil stress)
stress <- stressTraffic(inflation.pressure=200,
 recommended.pressure=200,
 tyre.diameter=1.8,
 tyre.width=0.4,
 wheel.load=4000,
 conc.factor=c(4,5,5,5,5,5),
 layers=c(0.05,0.1,0.3,0.5,0.7,1),
 plot.contact.area = FALSE)
stress.mean <- stress$Stress$sigma_mean
layers <- stress$Stress$Layers
n <- length(layers)
def <- soilDeformation(stress = stress.mean,
 p.density = rep(2.67, n),
 iBD = rep(1.55,n),
 N = rep(1.9392,n),
 CI = rep(0.06037,n),
 k = rep(0.00608,n),
 k2 = rep(0.01916,n),
 m = rep(1.3,n),graph=TRUE,ylim=c(1.4,1.8))

Graph
plot(x = 1, y = 1,
 xlim=c(1.4,1.7),ylim=c(1,0),xaxt = "n",
 ylab = "Soil Depth",xlab ="", type="l", main="")
axis(3)
mtext("Bulk Density",side=3,line=2.5)

initial.BD <- def$iBD
final.BD <- def$fBD
soilStrength

Estimation of precompression stress by Severiano et al. (2013)

Description

It calculates the precompression stress using the pedo-transfer function from Severiano et al. (2013)

Usage

soilStrength(clay.content, matric.suction = NULL, water.content = NULL)

Arguments

clay.content a numeric vector containing the values of clay for each soil layer, %. Note that it can also be a unique value.
matric.suction a numeric vector containing the values of matric suction for each clay content, kPa.
water.content a numeric vector containing the values of water content for each clay content, m³m⁻³. Note that water.content must be passed if matric.suction is not. See details.

Details

Intervals of soil water content/matric suction to be used as input for estimating soil strength according to Severiano et al. (2013).

<table>
<thead>
<tr>
<th>Clay content (%)</th>
<th>Matric suction (kPa)</th>
<th>Water content (m³ m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 20</td>
<td>1-10,000</td>
<td>0.41-0.05</td>
</tr>
<tr>
<td>21-31</td>
<td>1-10,000</td>
<td>0.44-0.09</td>
</tr>
<tr>
<td>32-37</td>
<td>1-10,000</td>
<td>0.45-0.11</td>
</tr>
<tr>
<td>38-52</td>
<td>1-10,000</td>
<td>0.49-0.13</td>
</tr>
<tr>
<td>< 52</td>
<td>1-10,000</td>
<td>0.50-0.15</td>
</tr>
</tbody>
</table>

Value

A two-columns data frame:

Pc the precompression stress (Severiano et al. 2013)
LL.Pc the lower limit of precompression stress in accordance to the Terranimo model criteria (see Stettler et al. 2014). Note: LL.Pc = Pc*0.5
UL.Pc the upper limit of precompression stress in accordance to the Terranimo model criteria (see Stettler et al. 2014). Note: UL.Pc = Pc*1.1
Author(s)
Renato Paiva de Lima <renato_agro_@hotmail.com>
Anderson Rodrigo da Silva <anderson.agro@hotmail.com>
Alvaro Pires da Silva <apisilva@usp.br>

References

See Also
stressTraffic

Examples

EXEMPLE 1 (using water content)
soilStrength(clay.content=c(25,28,30,30,30),
 water.content = c(0.26,0.27,0.29,0.32,0.32))

EXEMPLE 2 (using matric suction)
soilStrength(clay.content=c(25,28,30,30,30),
 matric.suction = c(100,330,1000,3000,5000))

EXAMPLE 3 (combining it with soil stress)
stress <- stressTraffic(inflation.pressure=200,
 recommended.pressure=200,
 tyre.diameter=1.8,
 tyre.width=0.4,
 wheel.load=4000,
 conc.factor=c(4,5,5,5,5),
 layers=c(0.05,0.1,0.3,0.5,0.7,1),
 plot.contact.area = FALSE)

strength <- soilStrength(clay.content=c(25,28,30,30,30,30),
 matric.suction = c(30,100,100,100,200,200))

Graph
plot(x = 1, y = 1,
 xlim=c(0,300),ylim=c(1,0),xaxt = "n",
 ylab = "Soil Depth",xlab ="", type="l", main="")
axis(3)
mtext("Vertical Stress",side=3,line=2.5)
soilStrength2

Description

It calculates the precompression stress using the pedo-transfer function from Schjonning and Lamande (2018)

Usage

soilStrength2(bulk.density, matric.suction, clay.content)

Arguments

clay.content a numeric vector containing the values of clay content, %
matric.suction a numeric vector containing the values of matric suction, hPa
bulk.density a numeric vector containing the values of soil bulk density, $Mg m^{-3}$
soilStrength3

Details
The function returns 0 for soil properties values beyond the range for which the function was built.

Value
- PC: the precompression stress

Author(s)
Renato Paiva de Lima <renato_agro_@hotmail.com> Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also
- stressTraffic

Examples

```r
# EXAMPLE 1
soilStrength3(bulk.density=1.46, matric.suction=100, clay.content=0.3)

# EXAMPLE 2
matric.suction <- seq(from=60, to=1000, len=50) # range of matric suction from 60 to 1200 hPa
out <- soilStrength3(bulk.density=1.46, matric.suction=matric.suction, clay.content=0.3)
plot(x=matric.suction, y=out, ylab="Precompression stress (kPa)", xlab="Matric suction (hPa)")
```

soilStrength3
Estimation of precompression stress by Saffih-Hdadi et al. (2009)

Description
It calculates the precompression stress using the pedo-transfer function from Saffih-Hdadi et al. (2009)

Usage

```r
soilStrength3(bulk.density, water.content, texture=c("VeryFine", "Fine", "MediumFine", "Medium", "Coarse"))
```
soilStrength3

Arguments

bulk.density a numeric vector containing the values of soil bulk density, Mgm^{-3}
water.content a numeric vector containing the values of gravimetric water content, %
texture the soil texture group. See exemples

Details

The function returns 0 for soil properties values beyond the range for which the function was built.

Value

PC the precompression stress

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com> Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

stressTraffic

Examples

EXAMPLE 1

soilStrength3(bulk.density=1.1, water.content=40, texture="VeryFine")
soilStrength3(bulk.density=1.2, water.content=20, texture="Fine")
soilStrength3(bulk.density=1.3, water.content=15, texture="MediumFine")
soilStrength3(bulk.density=1.4, water.content=15, texture="Medium")
soilStrength3(bulk.density=1.5, water.content=10, texture="Coarse")

End (not run)
soilStrength4

Estimation of precompression stress by Lebert and Horn (1991)

Description

It calculates the soil strength through precompression stress using the pedo-transfer function from Lebert and Horn (1991)

Usage

soilStrength4(BD=1.55, AC=10, AWC=15, PWP=26, Ks=0.29,
 OM=1.5, C=30, phi=36, texture="Clay>35", pF=1.8)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD</td>
<td>a numeric vector containing the values of soil bulk density, Mgm^{-3}</td>
</tr>
<tr>
<td>AC</td>
<td>a numeric vector containing the values of volumetric air capacity at the specified pF, %</td>
</tr>
<tr>
<td>AWC</td>
<td>a numeric vector containing the values of volumetric available water at the specified pF, %</td>
</tr>
<tr>
<td>PWP</td>
<td>a numeric vector containing the values of volumetric non available water capacity (pF > 4.2), %</td>
</tr>
<tr>
<td>Ks</td>
<td>a numeric vector containing the values of saturated hydraulic conductivity, 10^3cms^{-1}</td>
</tr>
<tr>
<td>OM</td>
<td>a numeric vector containing the values of organic matter, %</td>
</tr>
<tr>
<td>C</td>
<td>a numeric vector containing the values of cohesion at the specified pF, kPa</td>
</tr>
<tr>
<td>phi</td>
<td>a numeric vector containing the values of angle of internal friction at the specified pF, degree</td>
</tr>
<tr>
<td>texture</td>
<td>the soil texture classification. See details</td>
</tr>
<tr>
<td>pF</td>
<td>the '1.8' or '2.5' value pF</td>
</tr>
</tbody>
</table>

Details

The function returns '0' for soil properties values beyond the range for which the function was built. The default for this function is the values given in the application example by Horn and Fleige (2003). In the 'texture' argument, the user must pass the textural classification 'Sand', 'SandLoam', 'Silt', 'Clay<35' or 'Clay>35'. See examples.

Value

PC the precompression stress

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com> Anderson Rodrigo da Silva <anderson.agro@hotmail.com>
soilStrength5

References

See Also

stressTraffic

Examples

soilStrength4(BD=1.55,AC=10,AWC=15,PWP=26,Ks=0.29,OM=1.5,
 C=30,phi=36,texture="Clay>35", pF=1.8) # Exemple from Horn and Fleige (2003), Table 7

End (not run)

soilStrength5

Estimation of precompression stress by Imhoff et al. (2004)

Description

It calculates the soil strength using precompression stress using the pedo-transfer function from Imhoff et al. (2004)

Usage

soilStrength5(bulk.density, water.content, clay.content)

Arguments

bulk.density a numeric vector containing the values of soil bulk density, \(Mg m^{-3}\)
water.content a numeric vector containing the values of water content, (g/g)
clay.content a numeric vector containing the values of clay content, %

Details

The function returns 0 for soil properties values beyond the range for which the function was built.

Value

PC the precompression stress

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com> Anderson Rodrigo da Silva <anderson.agro@hotmail.com>
soilwater

References

See Also

stressTraffic

Examples

EXAMPLE 1

soilStrength5(clay.content=60, water.content=0.30, bulk.density=1.25)
soilStrength5(clay.content=35, water.content=0.23, bulk.density=1.40)
soilStrength5(clay.content=20, water.content=0.10, bulk.density=1.60)

EXAMPLE 2

water.content <- seq(0.1, 0.30, len=20) # range of water content from 0.1 to 0.30 (g g^-1)
out <- soilStrength5(clay.content=20, water.content=water.content, bulk.density=1.60)
plot(x=water.content, y=out,
 ylab="Precompression stress (kPa)", xlab="Water content")

End (not run)

soilwater

Soil Water Retention, based on the van Genuchten's (1980) formula

Description

Function to calculate the soil water content based on the van Genuchten’s (1980) formula:

\[
\theta = \theta_R + (\theta_S - \theta_R)(1 + (\alpha x)^n)^{-m}
\]

Usage

soilwater(x, theta_R, theta_S, alpha, n, m = 1 - 1/n, saturation.index = FALSE)

Arguments

- x: the matric potential.
- theta_R: the residual water content.
- theta_S: the water content at saturation.
- alpha: a scale parameter of the van Genuchten’s formula.
- n: a shape parameter in van Genuchten’s formula.
a shape parameter in van Genuchten’s Formula. Default is $1 - 1/n$ (Mualem, 1976).

Value

The the soil water content or the saturation index (a value between 0 and 1).

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com> (code adapted from the function swc(), package soilwater (Cordano et al., 2012.).)

References

See Also

fitsoilwater

Examples

example 1
soilwater(x = 0.1, theta_R = 0.06, theta_S = 0.25, alpha = 21, n = 2.08)
curve(soilwater(x, theta_R = 0.06, theta_S = 0.25, alpha = 21, n = 2.08))

example 2 (punctual predictions)
p <- seq(0, 1, length.out = 10)
m <- soilwater(x = p, theta_R = 0.06, theta_S = 0.25, alpha = 21, n = 2.08)
points(m ~ p, type = "b", col = "red")

End (not run)
Description

Function to calculate the soil water content based on the Groenevelt & Grant (2004) model. It is based on thermodynamic principles. Therefore, it is appropriate for the case in which thermodynamic equilibrium has been attained by diffusion of water. In this case, the water retention curve is given by:

\[\theta = k_1 \exp(-k_0/x_0^n) - k_1 \exp(-k_0/x^n) \]

where \(x = \log h \) (pore water suction), and \(h \) is in units of hPa.

Usage

\texttt{soilwater2(x, x0 = 6.653, k0, k1, n)}

Arguments

- \texttt{x} a numeric vector containing pF values.
- \texttt{x0} the value of pF (pore water suction) at which the soil water content becomes zero. The default is 6.653.
- \texttt{k0} a parameter value.
- \texttt{k1} a parameter value.
- \texttt{n} a parameter value.

Value

The the soil water content.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

\texttt{fitsoilwater2, soilwater}

Examples

\begin{verbatim}
pF <- 0:7
soilwater2(pF, k0 = 1.867, k1 = 0.426, n = 2.358)
End (not run)
\end{verbatim}
soilwater3

Soil Water Retention, based on the Dexter’s (2008) formula

Description

Function to calculate the soil water content based on the Dexter’s (2008) formula. It is based on the segregation of pore space in two categories what are called bi-modal pore size distributions. In this model, the pore space is divided into two parts: the textural porosity which occurs between the primary mineral particles, and the structural porosity which occurs between micro aggregates and/or any other compound particles. This is called the double-exponential (DE) water retention equation, given by:

\[\theta = \theta_R + a_1 \exp(-x/p_1) + a_2 \exp(-x/p_2) \]

where \(\theta \) is the gravimetric water content.

Usage

soilwater3(x, theta_R, a1, p1, a2, p2)

Arguments

- \(x \) a numeric vector containing the values of applied air pressure.
- \(\theta_R \) a parameter that represents the residual water content.
- \(a_1 \) a parameter that represents the drainable part of the textural pore space in units of gravimetric water content at saturation.
- \(p_1 \) a parameter that represents the applied air pressures characteristic for displacement of water from the textural pore space.
- \(a_2 \) a parameter that represents the total structural pore space in units of gravimetric water content at saturation.
- \(p_2 \) a parameter that represents the applied air pressure that is characteristic for displacing water from the structural pores.

Value

The soil water content.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

soilwater4

Soil Water Retention, based on Power Models

Description

Function to calculate the soil water content based on the following formulas:

$$\theta = \exp(a + b \times Bd)\psi^c$$

(Silva et al., 1994)

$$\theta = a\psi^c$$

(Ross et al., 1991)

where \(\theta\) is the soil water content.

Usage

soilwater4(psi, Bd, a, b, c, model = c("Silva", "Ross"))

Arguments

psi a numeric vector containing values of water potential (Psi).
Bd a numeric vector containing values of dry bulk density.
a a model-fitting parameter. See details.
b a model-fitting parameter. See details.
c a model-fitting parameter. See details.
model a character; the model to be used for calculating the soil water content. It must be one of the two: "Silva" (default) or "Ross".

Details

The parameters "a" and "c" have the same meaning in both models, but be aware that the parameter "a" of the model employed by Silva et al. (1994) is parameter "a" of the Ross et al. (1991) in a log10 scale.

See Also

fitsoilwater3, soilwater, soilwater2

Examples

soilwater3(x = 0, theta_R = 0.058, a1 = 0.233, p1 = 3.274, a2 = 0.070, p2 = 1.78)
soilwater3(x = 3, theta_R = 0.058, a1 = 0.233, p1 = 3.274, a2 = 0.070, p2 = 1.78)
soilwater3(x = 4, theta_R = 0.058, a1 = 0.233, p1 = 3.274, a2 = 0.070, p2 = 1.78)

End (not run)
Soil water content.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

fitsoilwater4, soilwater, soilwater2, soilwater3

Examples

```r
# End (not run)
```

soilwater5

Description

Function to calculate the soil water content based on the modified van Genuchten’s formula, as suggested by Pierson and Mulla (1989):

\[
\theta = \theta_R + (\theta_S - \theta_R)(1 + (\alpha x)^n)^{-m} + b_0 + b_1 x + b_2 x^2
\]

Usage

`soilwater5(x, theta_R, theta_S, alpha, n, m = 1 - 1/n, b0, b1, b2)`

Arguments

- `x` the matric potential.
- `theta_R` the residual water content.
- `theta_S` the water content at saturation.
- `alpha` a scale parameter of the van Genuchten’s formula.
- `n` a shape parameter in van Genuchten’s formula.
- `m` a shape parameter in van Genuchten’s Formula. Default is `1 - 1/n` (Mualem, 1976).
b0 a parameter added to the van Ganuchten’s formula.
b1 a parameter added to the van Ganuchten’s formula.
b2 a parameter (of quadratic term) added to the van Ganuchten’s formula.

Value
The soil water content or the saturation index (a value between 0 and 1).

Author(s)
Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also
fitsoilwater5

Examples
```r
soilwater5(x = 20, theta_R = 0.2735, theta_S = 0.478, alpha = 0.1029, 
n = 9.45, b0 = 0.2278, b1 = -0.0165, b2 = 0.000248)
curve(soilwater5(x, theta_R = 0.2735, theta_S = 0.478, alpha = 0.1029, 
n = 9.45, b0 = 0.2278, b1 = -0.0165, b2 = 0.000248),
from = 0, to = 40,
ylab = "Water content",
xlab = "Matric potential")
```

End (Not run)
stressTraffic

Arguments

- theta: a numeric vector of soil moisture values at which to evaluate the model.
- b0: a numeric parameter.
- b1: a numeric parameter.

Value

- a numeric vector with the same length of theta. It is the value of the expression \(10^{(b0 + b1 \cdot \theta)}\). Also, the gradient matrix with respect to the parameters is attached as an attribute named gradient.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

References

See Also

getInitiallbc, fitlbc, selfStart, nls, sigmaP

Examples

data(compaction)
attach(compaction)
ss <- SS1bc(Mois, 2.79, -2.33)
ss[1:50] # prediction
PS # original data of preconsolidation stress
ss # prediction and gradient

End (not run)
Arguments

inflation.pressure
 tyre inflation pressure, kPa
recommended.pressure
 recommended tyre inflation pressure at given load, kPa
tyre.diameter
 overall diameter of the unloaded tyre, m
tyre.width
 tyre width, m
wheel.load
 wheel load, kg
conc.factor
 concentration factor; a numeric vector ranging from 3 (wet soil) to 6 (dry soil),
 depending on water content.
layers
 a numeric vector containing values of depth (in meters) for the soil layers. Note
 that layers can also be a unique value
plot.contact.area
 logical; shall soilTraffic plot the distribution of stress over the contact area?
 ...
 further graphical arguments. See par.

Value

A list of

Area
 Contact area parameters.
Loads
 Estimated wheel loads.
Stress
 Stress propagation into soil; sigma_vertical: vertical stress; sigma_mean: mean
 normal stress
stress.matrix
 The matrix of applied stress at a specific depth and radial distance from the tyre
 centre.
fZStress
 The function of stress propagation in z direction (vertical stress).
fmeanStress
 The function of mean normal stress propagation.
fStress
 The function of stress propagation.
fXStress
 The function of stress propagation in x (footprint length or driving) direction.
fYStress
 The function of stress propagation in y (tire width) direction.

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com>
Anderson Rodrigo da Silva <anderson.agro@hotmail.com>
Alvaro Pires da Silva <apisilva@usp.br>

References

Keller, T. 2005. A model to predict the contact area and the distribution of vertical stress below
prediction of soil stresses and soil compaction due to agricultural field traffic including a synthesis
of analytical approaches. Soil and Tillage Research 93, 391-411.
Examples

stress <- stressTraffic(inflation.pressure=200, recommended.pressure=200, tyre.diameter=1.8, tyre.width=0.4, wheel.load=4000, conc.factor=c(4,5,5,5,5,5), layers=c(0.05,0.1,0.3,0.5,0.7,1), plot.contact.area = TRUE)

stress

Building a fancier plot for the contact area
library(fields)
image.plot(x = as.numeric(rownames(stress$stress.matrix)),
y = as.numeric(colnames(stress$stress.matrix)),
z = stress$stress.matrix,
xlab="Tyre footprint length (m)", ylab="Tyre width (m)")
End (not run)

Stress Propagation
Vertical Stress
stress.v <- stress$Stress$sigma_vertical
layers <- stress$Stress$Layers
plot(x = 1, y = 1, xlim=c(0,300), ylim=c(1,0), xaxt = "n",
 ylab = "Soil Depth", xlab="", type="l", main=""
)
axis(3)
mtext("Stress (kPa)", side=3, line=2.5)
lines(x=stress.v, y=layers)

Mean normal stress
stress.p <- stress$Stress$sigma_mean
lines(x=stress.p, y=layers, lty=2)
legend("bottomright", c("Vertical stress", "Normal mean stress"), lty = 1:2)

End (not run)

voidratio

Void Ratio

Description

A function to calculate the soil void ratio.

Usage

voidratio(wetsoil, drysoil, diam.cylinder, height.cylinder, dens.particle, deformation)
Arguments

wetsoil the weight of wet soil.
drysoil the weight of dry soil.
diam.cylinder the diameter of the cylinder.
height.cylinder the height of the cylinder.
dens.particle the particle density.
deformation a numeric vector containing soil deformation values.

Value

A numeric vector with same length of deformation containing void ratio values.

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

See Also

sigmaP

Examples

def <- c(0, 0.0230, 0.0352, 0.0605, 0.1070, 0.2525, 0.3395, 0.4250)
pres <- c(1, 12.5, 25, 50, 100, 200, 400, 800, 1600)
VR <- voidratio(wetsoil = 170.62, drysoil = 134.08, diam.cylinder = 6.95,
 height.cylinder = 2.5, dens.particle = 2.61, def)

VR

plot(VR ~ pres, type = "b",
ylab = "Void ratio",
xlab = "Applied stress (kPa)",
main = "Compression curve",
log = "x")

End (not run)
Value

A shiny app

Author(s)

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

See Also

fitsoilwater_App
Index

* datasets
 bulkDensity, 6
 compaction, 7
 skp1994, 63
 SoilAggregate, 63

 aggreg.stability, 4
 aggreg.stability_App, 5
 aov, 55

 bulkDensity, 6

 colors, 51
 compaction, 7
 compressive_properties, 7
 compressive_properties2, 9
 compressive_properties3, 10
 compressive_properties4, 12
 compressive_properties5, 13
 criticalmoisture, 15, 37
 curve, 48

 fitbusscher, 16, 18, 40
 fitlbc, 17, 18, 59, 81
 fitsoilwater, 19, 33, 62, 75
 fitsoilwater2, 20, 21, 29, 76
 fitsoilwater3, 21, 29–31, 78
 fitsoilwater4, 22, 23, 79
 fitsoilwater5, 23, 28, 80
 fitsoilwater_App, 25, 85
 formula, 25, 26
 fun2form, 25
 function, 26, 48

 getInitial, 26, 27
 getInitiallbc, 26, 81

 hemc, 27
 hydraulicCutOff, 28, 31
 hydraulicCutOff2, 30

 iwc, 32
 Kr_h, 34
 Kr_theta, 35
 liquidlimit, 36
 llwr, 33, 37
 LLWR_App, 43
 llwr_llmpr, 44
 LLWR_LLMPR_App, 47
 llwrPTF, 41
 lm, 55

 maxbulkdensity (criticalmoisture), 15
 maxcurv, 16, 18, 47, 59
 nls, 16–22, 24, 27, 48, 55, 81

 par, 19–21, 24, 30, 33, 51, 64, 82
 particle.sedimentation, 49
 particle.sedimentation_App, 50
 plot.default, 33
 plotCisigmaP, 51, 60
 PredComp, 52
 predict.nls, 17
 psd, 53

 r, 54
 r_App, 56
 Rsq, 17, 18, 55

 selfStart, 80, 81
 sigmaP, 18, 27, 51, 57, 60, 81, 84
 simSigmaP, 51, 60
 Sindex, 61
 skp1994, 63
 SoilAggregate, 63
 soilDeformation, 64
 soilphysics (soilphysics-package), 3
 soilphysics-package, 3
 soilStrength, 67
soilStrength2, 69
soilStrength3, 70
soilStrength4, 72
soilStrength5, 73
soilwater, 19, 20, 23, 33, 62, 74, 76, 78, 79
soilwater2, 20, 23, 75, 78, 79
soilwater3, 21, 23, 77, 79
soilwater4, 78
soilwater5, 24, 79
SSlbc, 26, 27, 80
stressTraffic, 6, 8, 9, 11, 12, 14, 25, 43, 47, 51, 52, 56, 68, 70, 71, 73, 74, 81
summary.lm, 55
summary.nls, 17
voidratio, 59, 83
WRC_App, 84