Package ‘sommer’

September 11, 2022

Type Package
Title Solving Mixed Model Equations in R
Version 4.2.0
Date 2022-09-09
Author Giovanny Covarrubias-Pazaran
Maintainer Giovanny Covarrubias-Pazaran <cova_ruber@live.com.mx>
Description Structural multivariate-univariate linear mixed model solver for estimation of multiple random effects with unknown variance-covariance structures (e.g., heterogeneous and unstructured) and known covariance among levels of random effects (e.g., pedigree and genomic relationship matrices) (Covarrubias-Pazaran, 2016 <doi:10.1371/journal.pone.0156744>; Maier et al., 2015 <doi:10.1016/j.ajhg.2014.12.006>). REML estimates can be obtained using the Direct-Inversion Newton-Raphson and Direct-Inversion Average Information algorithms for the problems r x r (r being the number of records) or using the mixed-model-equations-based average information algorithm for the problem c x c (c being the number of coefficients to estimate). Spatial models can also be fitted using the two-dimensional spline functionality available in sommer.
Depends R (>= 3.5.0), Matrix (>= 1.1.1), methods, stats, MASS, lattice, crayon
License GPL (>= 2)
Imports Rcpp (>= 0.12.19)
LinkingTo Rcpp, RcppArmadillo, RcppProgress
Suggests rmarkdown, knitr, plyr, parallel, orthopolynom, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-09-10 22:10:12 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Package/Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sommer-package</td>
<td>4</td>
</tr>
<tr>
<td>A.mat</td>
<td>10</td>
</tr>
<tr>
<td>add.diallel.vars</td>
<td>11</td>
</tr>
<tr>
<td>adiag1</td>
<td>12</td>
</tr>
<tr>
<td>AI</td>
<td>14</td>
</tr>
<tr>
<td>anova.mmeec</td>
<td>17</td>
</tr>
<tr>
<td>anova.mmer</td>
<td>18</td>
</tr>
<tr>
<td>AR1</td>
<td>19</td>
</tr>
<tr>
<td>ARMA</td>
<td>20</td>
</tr>
<tr>
<td>atc</td>
<td>21</td>
</tr>
<tr>
<td>atcg1234</td>
<td>22</td>
</tr>
<tr>
<td>atr</td>
<td>24</td>
</tr>
<tr>
<td>bathy.colors</td>
<td>25</td>
</tr>
<tr>
<td>bbasis</td>
<td>25</td>
</tr>
<tr>
<td>bivariateRun</td>
<td>26</td>
</tr>
<tr>
<td>build.HMM</td>
<td>27</td>
</tr>
<tr>
<td>coef.mmecc</td>
<td>29</td>
</tr>
<tr>
<td>coef.mmer</td>
<td>30</td>
</tr>
<tr>
<td>CS</td>
<td>31</td>
</tr>
<tr>
<td>csc</td>
<td>32</td>
</tr>
<tr>
<td>csr</td>
<td>33</td>
</tr>
<tr>
<td>D.mat</td>
<td>34</td>
</tr>
<tr>
<td>dToMatrix</td>
<td>35</td>
</tr>
<tr>
<td>dsc</td>
<td>37</td>
</tr>
<tr>
<td>dsr</td>
<td>38</td>
</tr>
<tr>
<td>DT_augment</td>
<td>39</td>
</tr>
<tr>
<td>DT_btdta</td>
<td>40</td>
</tr>
<tr>
<td>DT_cornhybrids</td>
<td>41</td>
</tr>
<tr>
<td>DT_cpdata</td>
<td>43</td>
</tr>
<tr>
<td>DT_example</td>
<td>44</td>
</tr>
<tr>
<td>DT_expdsgns</td>
<td>46</td>
</tr>
<tr>
<td>DT_fulldiall</td>
<td>47</td>
</tr>
<tr>
<td>DT_gryphon</td>
<td>49</td>
</tr>
<tr>
<td>DT_h2</td>
<td>50</td>
</tr>
<tr>
<td>DT_halfdiall</td>
<td>52</td>
</tr>
<tr>
<td>DT_ige</td>
<td>53</td>
</tr>
<tr>
<td>DT_legendre</td>
<td>54</td>
</tr>
<tr>
<td>DT_mohring</td>
<td>56</td>
</tr>
<tr>
<td>DT_polyploid</td>
<td>58</td>
</tr>
<tr>
<td>DT_rice</td>
<td>60</td>
</tr>
<tr>
<td>DT_sleepstudy</td>
<td>62</td>
</tr>
<tr>
<td>DT_technow</td>
<td>63</td>
</tr>
<tr>
<td>DT_wheat</td>
<td>65</td>
</tr>
<tr>
<td>DT_yatesoats</td>
<td>67</td>
</tr>
<tr>
<td>E.mat</td>
<td>68</td>
</tr>
<tr>
<td>EM</td>
<td>69</td>
</tr>
</tbody>
</table>
R topics documented:

fcm ... 73
fitted.mmec ... 74
fitted.mmer ... 75
fixm ... 77
gsvr ... 78
GWAS ... 80
H.mat ... 88
imputev .. 89
isc ... 90
jet.colors ... 91
LD.decay .. 92
leg ... 93
list2usmat ... 95
manhattan ... 96
map.plot .. 97
MEMMA .. 99
mmec ... 101
mmer ... 107
overlay ... 117
plot.mmec ... 119
plot.mmer ... 120
pmonitor .. 121
predict.mmec ... 122
predict.mmer ... 124
randef ... 127
residuals.mmec ... 128
residuals.mmer ... 128
simGECorMat ... 129
spl2Da ... 130
spl2Db ... 133
spl2Dc ... 137
spl2Dmats ... 140
summary.mmec .. 143
summary.mmer .. 144
tpsmmbwrapper .. 144
transformConstraints .. 147
transp .. 148
unsm ... 149
usc ... 150
usr ... 151
vpredict .. 152
vs ... 154
vsc ... 157
vsr ... 159
wald.test ... 163

Index 166
Description

Sommer is a structural multivariate-univariate linear mixed model solver for multiple random effects allowing the specification and/or estimation of variance covariance structures. REML estimates can be obtained using two major methods

Direct-Inversion (Newton-Raphson and Average Information) » mmer function
Henderson’s mixed model equations (Average Information) » mmec function

The algorithms are coded in C++ using the Armadillo library to optimize dense matrix operations common in genomic models. Sommer was designed to include complex covariance structures, e.g., additive, dominance and epistatic relationship structures or other covariance structures.

The mmer function can deal well with small and medium-size data sets (< 10,000 observations/records for average computers given the computational burden carried by the direct-inversion algorithms) since it works in the c > r problem and inverts an r x r matrix (being r the number of records). On the other hand, the mmec function can deal with greater number of records as long as the number of coefficients to estimate is < 20,000 coefficients since it works in the r > c problem and inverts a c x c matrix (being c the #of coefficients). The predict.mmer and predict.mmec functions can be used to obtain adjusted means. This package returns variance-covariance components, BLUPs, BLUEs, residuals, fitted values, variances-covariances for fixed and random effects, etc.

Functions for genetic analysis

The package provides kernels to estimate additive (A.mat), dominance (D.mat), epistatic (E.mat), single-step (H.mat) relationship matrices for diploid and polyploid organisms. It also provides flexibility to fit other genetic models such as full and half diallel models and random regression models.

A good converter from letter code to numeric format is implemented in the function atcg1234, which supports higher ploidy levels than diploid. Additional functions for genetic analysis have been included such as build a genotypic hybrid marker matrix (build.HMM), plot of genetic maps (map.plot), creation of manhattan plots (manhattan). If you need to use pedigree you need to convert your pedigree into a relationship matrix (use the ‘getA’ function from the pedigreemm package).

Functions for statistical analysis and S3 methods

The vpredict function can be used to estimate standard errors for linear combinations of variance components (e.g. ratios like h2). S3 methods are available for some parameter extraction such as:
+ predict.mmer, predict.mmec,
+ fitted.mmer, fitted.mmec,
+ residuals.mmer, residuals.mmec,
+ summary.mmer, summary.mmec,
Functions for trial analysis

Recently, spatial modeling has been added added to sommer using the two-dimensional spline (spl2Da and spl2Db for mmer and spl2Dc for mmec) functions.

Keeping sommer updated

The sommer package is updated on CRAN every 3-months due to CRAN policies but you can find the latest source at https://github.com/covaruber/sommer. This can be easily installed typing the following in the R console:

library(devtools)
install_github("covaruber/sommer")

This is recommended since bugs fixes will be immediately available in the GitHub source but not in CRAN until the next update.

Tutorials

For tutorials on how to perform different analysis with sommer please look at the vignettes by typing in the terminal:

vignette("v1.sommer.quick.start")
vignette("v2.sommer.changes.and.faqs")
vignette("v3.sommer.qg")
vignette("v4.sommer.gxe")

or visit https://covaruber.github.io

Getting started

The package has been equipped with several datasets to learn how to use the sommer package:

* DT_halfdiallel, DT_fulldiallel and DT_mohring datasets have examples to fit half and full diallel designs.
* DT_h2 to calculate heritability
* DT_cornhybrids and DT_technow datasets to perform genomic prediction in hybrid single crosses
* DT_wheat dataset to do genomic prediction in single crosses in species displaying only additive effects.
* DT_cpdata dataset to fit genomic prediction models within a biparental population coming from 2 highly heterozygous parents including additive, dominance and epistatic effects.
* DT_polyplid to fit genomic prediction and GWAS analysis in polyploids.
* DT_gryphon data contains an example of an animal model including pedigree information.
* DT_bdata dataset contains an animal (birds) model.
* DT_legendre simulated dataset for random regression model.
* DT_sleepstudy dataset to know how to translate lme4 models to sommer models.
Differences of sommer >= 4.1.7 with previous versions

Since version 4.1.7 I have introduced the mme-based average information function ‘mmec’ which is much faster when dealing with the \(r > c \) problem (more records than coefficients to estimate). This introduces its own covariance structure functions such as vsc(),usc(),dsc(),atc(),csc(). Please give it a try, although is in early phase of development.

Differences of sommer >= 3.7.0 with previous versions

Since version 3.7 I have completly redefined the specification of the variance-covariance structures to provide more flexibility to the user. This has particularly helped the residual covariance structures and the easier combination of custom random effects and overlay models. I think that although this will bring some uncomfortable situations at the beggining, in the long term this will help users to fit better models. In esence, I have abandoned the asreml formulation (not the structures available) given it’s limitations to combine some of the sommer structures but all covariance structures can now be fitted using the ‘vsr’ functions.

Differences of sommer >= 3.0.0 with previous versions

Since version 3.0 I have decided to focus in developing the multivariate solver and for doing this I have decided to remove the M argument (for GWAS analysis) from the mmer function and move it to it’s own function GWAS.

Before the mmer solver had implemented the usr(trait), diag(trait), at(trait) asreml formulation for multivariate models that allow to specify the structure of the trait in multivariate models. Therefore the MVM argument was no longer needed. After version 3.7 now the multi-trait structures can be specified in the \(Gt \) and \(Gtc \) arguments of the \texttt{vsr} function.

The Average Information algorithm had been removed in the past from the package because of its instability to deal with very complex models without good initial values. Now after 3.7 I have brought it back after I noticed that starting with NR the first three iterations gives enough flexibility to the AI algorithm.

Keep in mind that sommer uses direct inversion (DI) algorithm which can be very slow for datasets with many observations (big ‘n’). The package is focused in problems of the type \(p > n \) (more random effect(s) levels than observations) and models with dense covariance structures. For example, for experiment with dense covariance structures with low-replication (i.e. 2000 records from 1000 individuals replicated twice with a covariance structure of 1000x1000) sommer will be faster than MME-based software. Also for genomic problems with large number of random effect levels, i.e. 300 individuals (\(n \)) with 100,000 genetic markers (\(p \)). On the other hand, for highly replicated trials with small covariance structures or \(n > p \) (i.e. 2000 records from 200 individuals replicated 10 times with covariance structure of 200x200) asreml or other MME-based algorithms will be much faster and I recommend you to use that software.

Models Enabled

The core of the package are the \texttt{mmer} and \texttt{mmec} (formula-based) functions which solve the mixed model equations. The functions are an interface to call the ‘NR’ Direct-Inversion Newton-Raphson, ‘AI’ Direct-Inversion Average Information or the mme-based Average Information (Tunnicliffe 1989; Gilmour et al. 1995; Lee et al. 2016). Since version 2.0 sommer can handle multivariate models. Following Maier et al. (2015), the multivariate (and by extension the univariate) mixed model implemented has the form:
where \(y_i \) is a vector of trait phenotypes, \(\beta_i \) is a vector of fixed effects, \(u_i \) is a vector of random effects for individuals and \(e_i \) are residuals for trait \(i \) (\(i = 1, \ldots, t \)). The random effects (\(u_1 \ldots u_i \) and \(e_i \)) are assumed to be normally distributed with mean zero. \(X \) and \(Z \) are incidence matrices for fixed and random effects respectively. The distribution of the multivariate response and the phenotypic variance covariance (\(V \)) are:

where \(K \) is the relationship or covariance matrix for the kth random effect (\(u=1,\ldots,k \)), and \(R=I \) is an identity matrix for the residual term. The terms \(\sigma^2_{g_i} \) and \(\sigma^2_{e_i} \) denote the genetic (or any of the kth random terms) and residual variance of trait \(i \), respectively and \(\sigma_{g_{i,j}} \) and \(\sigma_{e_{i,j}} \) the genetic (or any of the kth random terms) and residual covariance between traits \(i \) and \(j \) (\(i=1,\ldots,t \), and \(j=1,\ldots,t \)). The algorithm implemented optimizes the log likelihood:

where \(|| \) is the determinant of a matrix. And the REML estimates are updated using a Newton optimization algorithm of the form:

Where, \(\theta \) is the vector of variance components for random effects and covariance components among traits, \(H^{-1} \) is the inverse of the Hessian matrix of second derivatives for the kth cycle, \(dL/d\sigma^2_i \) is the vector of first derivatives of the likelihood with respect to the variance-covariance components. The Eigen decomposition of the relationship matrix proposed by Lee and Van Der Werf (2016) was included in the Newton-Raphson algorithm to improve time efficiency. Additionally, the popular vpredict function to estimate standard errors for linear combinations of variance components (i.e. heritabilities and genetic correlations) was added to the package as well.

GWAS Models

The GWAS models in the sommer package are enabled by using the M argument in the functions \texttt{GWAS}, which is expected to be a numeric marker matrix. Markers are treated as fixed effects according to the model proposed by Yu et al. (2006) for diploids, and Rosyara et al. (2016) (for polyploids). The matrices \(X \) and \(M \) are both fixed effects, but they are separated by 2 different arguments to distinguish factors such as environmental and design factors for the argument “X” and markers with “M”.

The genome-wide association analysis is based on the mixed model:

\[
y = X\beta + Zg + M\tau + e
\]

where \(\beta \) is a vector of fixed effects that can model both environmental factors and population structure. The variable \(g \) models the genetic background of each line as a random effect with \(\text{Var}[g] = K\sigma^2 \). The variable \(\tau \) models the additive SNP effect as a fixed effect. The residual variance is \(\text{Var}[e] = I\sigma^2_e \)

When principal components are included (P+K model), the loadings are determined from an eigenvalue decomposition of the K matrix and are used in the fixed effect part.

The argument "P3D" introduced by Zhang et al. (2010) can be used with the P3D argument. When P3D=FALSE, this function is equivalent to AI/NR with REML where the variance components are estimated for each SNP or marker tested (Kang et al. 2008). When P3D=TRUE, it is equivalent to NR (Kang et al. 2010) where the assumption is that variance components for all SNP/markers are the same and therefore the variance components are estimated only once (and markers are tested in a WLS framework being the the weight matrix (M) the inverse of the phenotypic variance matrix (V)). Therefore, P3D=TRUE option is faster but can underestimate significance compared to P3D=FALSE.
Multivariate GWAS are based in Covarrubias-Pazaran et al. (2018, In preparation), which adjusts betas for all response variables and then does the regular GWAS with such adjusted betas or marker effects.

For extra details about the methods please read the canonical papers listed in the References section.

Bug report and contact

If you have any questions or suggestions please post it in https://stackoverflow.com or https://stats.stackexchange.com

I’ll be glad to help or answer any question. I have spent a valuable amount of time developing this package. Please cite this package in your publication. Type 'citation("sommer")' to know how to cite it.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G. 2018. Software update: Moving the R package sommer to multivariate mixed models for genome-assisted prediction. doi: https://doi.org/10.1101/354639

Examples

For CRAN time limitations most lines in the examples are silenced with one '#'
mark, remove them and run the examples

===

EXEMPLARY

Different models with sommer

```r
data(DT_example)
DT <- DT_example
DT = DT[with(DT, order(Env)), ]
head(DT)
```

Univariate homogeneous variance models

```r
## Compound simmetry (CS) model
ans1 <- mmer(Yield ~ Env,
              random = ~ Name + Env:Name,
              rcov = ~ units,
              data = DT)
summary(ans1)
```

```r
ans2 <- mmec(Yield ~ Env,
              random = ~ Name + Env:Name,
              rcov = ~ units,
              data = DT)
summary(ans2)
```

Univariate heterogeneous variance models

```r
## Compound simmetry (CS) + Diagonal (DIAG) model
ans3 <- mmer(Yield ~ Env,
              random = ~ Name + vsr(dsr(Env), Name),
              rcov = ~ vsr(dsr(Env), units),
              data = DT)
summary(ans3)
```

```r
ans4 <- mmec(Yield ~ Env,
              random = ~ Name + vsc(dsc(Env), isc(Name)),
              rcov = ~ vsc(dsc(Env), isc(units)),
              data = DT)
summary(ans4)
```
Additive relationship matrix

Description

Calculates the realized additive relationship matrix. Currently is the C++ implementation of Endelman and Jannink (2012) and van Raden (2008).

Usage

A.mat(X,endelman=TRUE,min.MAF=0,return.imputed=FALSE)

Arguments

- **X**: Matrix \((n \times m)\) of unphased genotypes for \(n\) lines and \(m\) biallelic markers, coded as \{-1,0,1\}. Fractional (imputed) and missing values (NA) are allowed.
- **endelman**: Set endelman=TRUE to use the method from Endelman and Jannink (2012) (without the shrinkage, for that method look at the rrBLUP package). If FALSE, regular vanRaden is used.
- **min.MAF**: Minimum minor allele frequency. The A matrix is not sensitive to rare alleles, so by default only monomorphic markers are removed.
- **return.imputed**: When TRUE, the imputed marker matrix is returned.

Details

For endelman method: At high marker density, the relationship matrix is estimated as \(A = WW'/c\), where \(W_{ik} = X_{ik} + 1 - 2p_k\) and \(p_k\) is the frequency of the 1 allele at marker \(k\). By using a normalization constant of \(c = \sum_k p_k(1-p_k)\), the mean of the diagonal elements is \(1 + f\) (Endelman and Jannink 2012).

For vanraden method: the marker matrix is centered by subtracting column means \(M = X - ms\) where \(ms\) is the column means. Then \(A = MM'/c\), where \(c = \sum_k d_k/k\), the mean value of the diagonal values of the \(MM'\) portion.

Value

If return.imputed = FALSE, the \(n \times n\) additive relationship matrix is returned.

If return.imputed = TRUE, the function returns a list containing

- \$A\ the A matrix
- \$X\ the imputed marker matrix

References

Description

‘add.diallel.vars’ adds 4 columns to the provided diallel dataset. Specifically, the user provides a dataset with indicator variables for who is the male and female parent and the function returns the same dataset with 4 new dummy variables to allow the model fit of diallel models.

Usage

add.diallel.vars(df, par1="Par1", par2="Par2", sep.cross="-")

Arguments

df a dataset with the two indicator variables for who is the male and female parent.
par1 the name of the column indicating who is the first parent (e.g. male).
par2 the name of the column indicating who is the second parent (e.g. female).
sep.cross the character that should be used when creating the column for cross.id. A simple paste of the columns par1 and par2.
Value

A new data set with the following 4 new dummy variables to allow the fit of complex diallel models:
returns a 0 if is a self and a 1 for a cross.

\textbf{is.cross} returns a 0 if is a cross and a 1 is a self.
\textbf{cross.type} returns a -1 for a direct cross, a 0 for a self and a 1 for a reciprocal cross.
\textbf{cross.id} returns a column psting the par1 and par2 columns.

Author(s)

Giovanny Covarrubias-Pazaran

References

See Also

The core functions of the package \texttt{mer}, the \texttt{overlay} function and the \texttt{DT_mohring} example.

Examples

```r
# For CRAN time limitations most lines in the examples are silenced with one '#' mark,
# remove them and run the examples

data(DT_mohring)
DT <- DT_mohring
head(DT)
DT2 <- add.diallel.vars(DT,par1="Par1", par2="Par2")
head(DT2)
## see ?DT_mohring for an example on how to use the data to fit diallel models.
```

\texttt{adiag1}

\textit{Binds arrays corner-to-corner}

Description

Array generalization of blockdiag()

Usage

\texttt{adiag1(... , pad=as.integer(0), do.dimnames=TRUE)}
Arguments

... Arrays to be binded together
pad Value to pad array with; note default keeps integer status of arrays
do.dimnames Boolean, with default TRUE meaning to return dimnames if possible. Set to FALSE if performance is an issue

Details

Binds any number of arrays together, corner-to-corner. Because the function is associative provided pad is of length 1, this page discusses the two array case.

If \(x = \text{adiag1}(a, b) \) and \(\text{dim}(a) = c(a_1, \ldots, a_d), \text{dim}(b) = c(b_1, \ldots, b_d) \); then \(\text{all}(\text{dim}(x) = \text{dim}(a) + \text{dim}(b)) \) and \(x[1:a_1, \ldots, 1:a_d] = a \) and \(x[(a_1+1):(a_1+b_1), \ldots, (a_d+1):(a_d+b_d)] = b \).

Dimnames are preserved, if both arrays have non-null dimnames, and do.dimnames is TRUE.

Argument pad is usually a length-one vector, but any vector is acceptable; standard recycling is used. Be aware that the output array (of dimension \(\text{dim}(a) + \text{dim}(b) \)) is filled with (copies of) pad before \(a \) and \(b \) are copied. This can be confusing.

Value

Returns an array of dimensions \(\text{dim}(a) + \text{dim}(b) \) as described above.

Note

In \(\text{adiag1}(a, b) \), if \(a \) is a length-one vector, it is coerced to an array of dimensions \(\text{rep}(1, \text{length}(\text{dim}(b))) \); likewise \(b \). If both \(a \) and \(b \) are length-one vectors, return \(\text{diag}(c(a, b)) \).

If \(a \) and \(b \) are arrays, function \(\text{adiag1()} \) requires \(\text{length}(\text{dim}(a)) = \text{length}(\text{dim}(b)) \) (the function does not guess which dimensions have been dropped; see examples section). In particular, note that vectors are not coerced except if of length one.

\(\text{adiag1()} \) is used when padding magic hypercubes in the context of evaluating subarray sums.

Author(s)

Peter Wolf with some additions by Robin Hankin

See Also

\(\text{mmer} \) – the core function of the package

Examples

\[
\begin{align*}
a & \leftarrow \text{array}(1, c(2, 2)) \\
b & \leftarrow \text{array}(-1, c(2, 2)) \\
\text{adiag1}(a, b)
\end{align*}
\]

dropped dimensions can count:

\[
\begin{align*}
b2 & \leftarrow b1 \leftarrow b \\
\text{dim}(a) & \leftarrow c(2, 1, 2)
\end{align*}
\]
```r
dim(b1) <- c(2,2,1)
dim(b2) <- c(1,2,2)
dim(adiag1(a,b1))
dim(adiag1(a,b2))

## dimnames are preserved if not null:

a <- matrix(1,2,2,dimnames=list(col=c("red","blue"),size=c("big","small")))
b <- 8
dim(b) <- c(1,1)
dimnames(b) <- list(col=c("green"),size=c("tiny"))
adiag1(a,b)  # dimnames preserved
adiag1(a,8)  # dimnames lost because second argument has none.

## non scalar values for pad can be confusing:
q <- matrix(0,3,3)
adiag1(q,q,pad=1:4)

## following example should make the pattern clear:
adiag1(q,q,pad=1:36)

# Now, a use for arrays with dimensions of zero extent:
z <- array(dim=c(0,3))
colnames(z) <- c("foo","bar","baz")

adiag1(a,z)  # Observe how this has
             # added no (ie zero) rows to "a" but
             # three extra columns filled with the pad value

adiag1(a,t(z))
adiag1(z,t(z))  # just the pad value
```

AI

Average Information Algorithm

Description

Univariate version of the average information (AI) algorithm.

Usage

```r
AI(X=NULL,Z=NULL, Zind=NULL, Ai=NULL,y=NULL,S=NULL, H=NULL,
nIte=80, tolParConvLL=1e-4, tolParConvNorm=.05, tolParInv=1e-6, theta=NULL,
thetaC=NULL, thetaF=NULL, addScaleParam=NULL,
weightInfEMv=NULL, weightInfMat=NULL)
```
Arguments

- **X**
 - an incidence matrix for fixed effects.
- **Z**
 - Z is a list of lists each element contains the Z matrices required for the covariance structure specified for a random effect.
- **Zind**
 - vector specifying to which random effect each Z matrix belongs to.
- **Ai**
 - is a list with the inverses of the relationship matrix for each random effect.
- **y**
 - is the response variable
- **S**
 - is the list of residual matrices.
- **H**
 - is the matrix of weights. This will be squared via the cholesky decomposition and apply to the residual matrices.
- **nIters**
 - number of REML iterations.
- **tolParConvLL**
 - rule for stopping the optimization problem, difference in log-likelihood between the current and past iteration.
- **tolParConvNorm**
 - rule for stopping the optimization problem, difference in norms.
- **tolParInv**
 - value to add to the diagonals of a matrix that cannot be inverted because is not positive-definite.
- **theta**
 - is the initial values for the vc (matrices should be symmetric).
- **thetaC**
 - is the constraints for vc: 1 positive, 2 unconstrained, 3 fixed.
- **thetaF**
 - is the dataframe indicating the fixed constraints as x times another vc, rows indicate the variance components, columns the scale parameters (other VC plus additional ones preferred).
- **addScaleParam**
 - any additional scale parameter to be included when applying constraints in thetaF.
- **weightInfEMv**
 - is the vector to be put in a diagonal matrix (a list with as many matrices as iterations) representing the weight assigned to the EM information matrix.
- **weightInfMat**
 - is a vector of weights to the information matrix for the operation delta = I- * dLu/dLx # unstructured models may require less weight to the information matrix.

Details

This algorithm is based on Jensen, Madsen and Thompson (1997)

Value

If all parameters are correctly indicated the program will return a list with the following information:

- **res**
 - a list of different outputs

References

See Also

The core functions of the package `mmem`

Examples

```r
### For CRAN time limitations most lines in the examples are silenced with one '#' mark, remove them and run the examples

data("DT_example")
DT <- DT_example
K <- A_example
#### look at the data and fit the model
head(DT)
zz <- with(DT, vsr(dsr(Env), Name))
Z <- c(list(model.matrix(~Name-1, data=DT)), zz$Z)
Zind <- c(1,2,2,2)
A <- list(diag(41), diag(41)) # rep(list(diag(41)),4)
Ai <- lapply(A, function(x){solve(x)})
theta <- list(
  matrix(10,1,1),
  diag(10,3,3),
  diag(10,3,3)
); theta
thetaC <- list(
  matrix(1,1,1),
  diag(1,3,3),
  diag(1,3,3)
); thetaC
X <- model.matrix(~Env, data=DT)
y <- as.matrix(DT$Yield)
DTx <- DT; DTx$units <- as.factor(1:nrow(DTx))
ss <- with(DTx, vsr(dsr(Env), units))
S <- ss$Z
H <- diag(length(y))
addScaleParam <- 0
nn <- unlist(lapply(thetaC, function(x){length(which(x > 0))}))
```
nn2 <- sum(nn[1:max(Zind)])
ff <- diag(nn2)
thetaF <- cbind(ff,matrix(0,nn2,1))

apply the function
weightInfMat=rep(1,40); # weights for the information matrix
weightInfEMv=c(seq(.9,.1,-.1),rep(0,36)); # weights for the EM information matrix

expr = res3<-AI(X=X,Z=Z, Zind=Zind,
Ai=Ai,y=y,
S=S,
H=H,
nIters=20, tolParConvLL=1e-5,
tolParConvNorm=0.05,
tolParInv=1e-6,theta=theta,
thetaC=thetaC,thetaF=thetaF,
addScaleParam=addScaleParam, weightInfEMv = weightInfEMv,
weightInfMat = weightInfMat
)
compare results
res3$monitor

anova.mmecc

anova form a GLMM fitted with mmecc

Description

anova method for class "mmecc".

Usage

```
## S3 method for class 'mmecc'
anova(object, object2=NULL, ...)
```

Arguments

- **object**: an object of class "mmecc"
- **object2**: an object of class "mmecc", if NULL the program will provide regular sum of squares results.
- **...**: Further arguments to be passed

Value

vector of anova
Description

anova method for class "mmer".

Usage

```r
## S3 method for class 'mmer'
anova(object, object2=NULL, type=1, ...)
```

Arguments

- `object`: an object of class "mmer"
- `object2`: an object of class "mmer", if NULL the program will provide regular sum of squares results.
- `type`: anova type, I or II
- `...`: Further arguments to be passed

Value

vector of anova

Author(s)

Giovanny Covarrubias

See Also

`anova`, `mmer`
AR1

.autocorrelation matrix of order 1.

Description

Creates an autocorrelation matrix of order one with parameters specified.

Usage

AR1(x, rho=0.25)

Arguments

x vector of the variable to define the factor levels for the AR1 covariance structure.

rho rho value for the matrix.

Details

Specially useful for constructing covariance structures for rows and ranges to capture better the spatial variation trends in the field. The rho value is assumed fixed and values of the variance component will be optimized through REML.

Value

If everything is defined correctly the function returns:

$nn the correlation matrix

References

See Also

The core function of the package mmer

Examples

x <- 1:4
R1 <- AR1(x, rho=.25)
image(R1)
Description

Creates an ARMA matrix of order one with parameters specified.

Usage

ARMA(x, rho=0.25, lambda=0.25)

Arguments

x vector of the variable to define the factor levels for the ARMA covariance structure.
rho rho value for the matrix.
lambda dimensions of the square matrix.

Details

Specially useful for constructing covariance structures for rows and ranges to capture better the spatial variation trends in the field. The rho value is assumed fixed and values of the variance component will be optimized through REML.

Value

If everything is defined correctly the function returns:

$nn the correlation matrix

References

See Also

The core function of the package mmer

Examples

x <- 1:4
R1 <- ARMA(x, rho=0.25, lambda=0.2)
image(R1)
Description

`atc` creates a diagonal covariance structure for specific levels of the random effect to be used with the `mmec` solver.

Usage

```r
atc(x, levs, thetaC, theta)
```

Arguments

- **x**: vector of observations for the random effect.
- **levs**: levels of the random effect to use for building the incidence matrices.
- **thetaC**: an optional matrix for constraints in the variance components.
- **theta**: an optional matrix for initial values of the variance components.

Value

- `$res`: a list with the provided vector and the variance covariance structure expected.

Author(s)

Giovanny Covarrubias-Pazaran

References

See Also

The function `vsc` to know how to use `atc` in the `mmec` solver.

Examples

```r
x <- as.factor(c(1:5,1:5,1:5));x
atc(x, c("1","2"))
```
atcg1234

Letter to number converter

Description

This function was designed to help users to transform their data in letter format to numeric format. Details in the format are not complex, just a dataframe with markers in columns and individuals in rows. Only markers, NO extra columns of plant names etc (names of plants can be stored as rownames). The function expects a matrix of only polymorphic markers, please make sure you clean your data before using this function. The apply function can help you identify and separate monomorphic from polymorphic markers.

Usage

atcg1234(data, ploidy=2, format="ATCG", maf=0, multi=TRUE, silent=FALSE, by.allele=FALSE, imp=TRUE, ref.alleles=NULL)

Arguments

data
a dataframe with markers in columns and individuals in rows. Preferable the rownames are the ID of the plants so you don’t lose track of what is what.

ploidy
a numeric value indicating the ploidy level of the specie. The default is 2 which means diploid.

format
one of the two possible values allowed by the program "ATCG", which means your calls are in base-pair-letter code, i.e. "AT" in a diploid call, "AATT" tetraploid etc (just example). Therefore possible codes can be "A", "T", "C", "G", "-" (deletion), "+" (insertion). Alternatively "AB" format can be used as well. Commonly this depends from the genotyping technologies used, such as GBS or microarrays. In addition, we have enabled also the use of single-letter code used by Cornell, i.e. A=AA, C=CC, T=TT, G=GG, R=AG, Y=CT, S=CG, W=AT, K=GT, M=AC. In the case of GBS code please make sure that you set the N codes to regular NAs handled by R. The "ATCG" format also works for the bi-allelic marker codes from join map such as "lm", "ll","nn","np","hh","hk","kk"

maf
minor allele frequency used to filter the SNP markers, the default is zero which means all markers are returned in numeric format.

multi
a TRUE/FALSE statement indicating if the function should get rid of the markers with more than 2 alleles. If FALSE, which indicates that if markers with multiple alleles are found, the alternate and reference alleles will be the first 2 alleles found. This could be risky since some alleles will be masked, i.e. AA AG AT would take only A and G as reference and alternate alleles, converting to numeric format 2 1 1, giving the same effect to AG and AT which could be a wrong assumption. The default is TRUE, removes markers with more than two alleles.

silent
a TRUE/FALSE value indicating if a progress bar should be drawn for each step of the conversion. The default is silent=FALSE, which means that we want progress bar to be drawn.
by.allele a TRUE/FALSE value indicating if the program should transform the data in a zero/one matrix of presence/absence per allele. For example, a marker with 3 alleles A,T,C in a diploid organism will yield 6 possible configurations; AA, AT, AC, TT, TC, CC. Therefore, the program would create 3 columns for this marker indicating the presence/absence of each allele for each genotype.

imp a TRUE/FALSE value indicating if the function should impute the missing data using the median for each marker. If FALSE, then the program will not impute.

ref.alleles a matrix with reference alleles to be used for the conversion. The matrix should have as many columns as markers with reference alleles and with 2 rows, being the first row the alternate allele (Alt) and the second row the reference allele (Ref). Rownames should be "Alt" and "Ref" respectively. If not provided the program will decide the reference allele.

Value

$data a new dataframe of markers in numeric format with markers in columns and individuals in rows.

Author(s)

Giovanny Covarrubias-Pazaran

See Also

The core function of the package mmer

Examples

data(DT_polyploid)
genotypes <- GT_polyploid
genotypes[1:5,1:5] # look the original format

convert markers to numeric format polyploid potatoes
numo <- atcg1234(data=genotypes, ploidy=4)
numo$M[1:5,1:5]

convert markers to numeric format diploid rice lines
single letter code for inbred lines from GBS pipeline
A=AA, T=TT, C=CC, G=GG
data(DT_rice)
X <- GT_rice; X[1:5,1:5]; dim(X)
numo2 <- atcg1234(data=X, ploidy=2)
numo2$M[1:5,1:5]
Description

atr creates a diagonal covariance structure for specific levels of the random effect to be used with the \texttt{mmer} solver.

Usage

\begin{verbatim}
 atr(x, levs)
\end{verbatim}

Arguments

- \texttt{x} vector of observations for the random effect.
- \texttt{levs} levels of the random effect to use for building the incidence matrices.

Value

\begin{verbatim}
 res a list with the provided vector and the variance covariance structure expected.
\end{verbatim}

Author(s)

Giovanny Covarrubias-Pazaran

References

See Also

The function \texttt{vsr} to know how to use \texttt{atr} in the \texttt{mmer} solver.

Examples

\begin{verbatim}
 x <- as.factor(c(1:5,1:5,1:5));x
 atr(x)
 atr(x, c("1","2"))
\end{verbatim}
bathy.colors

Generate a sequence of colors for plotting bathymetric data.

Description

bathy.colors(n) generates a sequence of n colors along a linear scale from light grey to pure blue.

Usage

bathy.colors(n, alpha = 1)

Arguments

n The number of colors to return.
alpha Alpha values to be passed to rgb().

Value

A vector of blue scale colors.

Examples

{
 # Plot a colorbar using bathy.colors
 image(matrix(seq(100), 100), col=bathy.colors(100))
}

bbasis

Function for creating B-spline basis functions (Eilers & Marx, 2010)

Description

Construct a B-spline basis of degree deg with ndx-1 equally-spaced internal knots (ndx segments) on range [x1.xr]. Code copied from Eilers & Marx 2010, WIR: Comp Stat 2, 637-653.

Usage

bbasis(x, x1, xr, ndx, deg)

Arguments

x A vector. Data values for spline.
x1 A numeric value. Lower bound for data (lower external knot).
xr A numeric value. Upper bound for data (upper external knot).
ndx A numeric value. Number of divisions for x range (equal to number of segments = number of internal knots + 1)
deg A numeric value. Degree of the polynomial spline.
bivariateRun

Details
Not yet amended to coerce values that should be zero to zero!

Value
A matrix with columns holding the P-spline for each value of x. Matrix has ndx+deg columns and length(x) rows.

Usage
bivariateRun(model, n.core)

Arguments
model a model fitted with the mmer function with argument return.param=TRUE.
n.core number of cores to use in the mclapply function to parallelize the models to be run to avoid increase in computational time. Please keep in mind that this is only available in Linux and macOS systems. Please check the details in the mclapply documentation of the parallel package.

Value
$sigmas the list with the variance covariance parameters for all traits together.
$signascor the list with the correlation for the variance components for all traits together.
$model the results from the bivariate models.

Author(s)
Giovanny Covarrubias-Pazaran

References

Description
Sometimes multi-trait models can present many singularities making the model hard to estimate with many traits. One of the most effective strategies is to estimate all possible variance and covariances splitting in multiple bivariate models. This function takes a model that has t traits and splits the model in as many bivariate models as needed to estimate all the variance and covariances to provide the initial values for the model with all traits.
build.HMM

Build a hybrid marker matrix using parental genotypes from inbred individuals

See Also

The core function of the package `mmer`

Examples

```r
# ####=========================================####
# ####=========================================####
# #### EXAMPLE 1
# #### simple example with univariate models
# ####=========================================####
# ####=========================================####
data("DT_cpdata")
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
# #### create the variance-covariance matrix
A <- A.mat(GT)
# #### look at the data and fit the model
head(DT)
# ans.m <- mmer(cbind(Yield,color,FruitAver, Firmness)-1,
# random=- vsr(id, Gt=A, Gtc=unsm(4))
# + vsr(Rowf,Gtc=diag(4))
# + vsr(Colf,Gtc=diag(4)), na.method.Y="include",
# rcov=- vsr(units,Gtc=unsm(4)), return.param = TRUE,
# data=DT)
#
# # define the number of cores (number of bivariate models) as (nt*(nt-1))/2
# nt=4
# (nt*(nt-1))/2
# res <- bivariateRun(ans.m,n.core = 6)
# # now use the variance components to fit a join model
# mm <- transformConstraints(ans.m[[8]],3)
# # ans.m.final <- mmer(cbind(Yield,color,FruitAver, Firmness)-1,
# # random=- vsr(id, Gt=A, Gtc=unsm(4))
# # + vsr(Rowf,Gtc=diag(4))
# # + vsr(Colf,Gtc=diag(4)), na.method.Y="include",
# # rcov=- vsr(units,Gtc=unsm(4)),
# # init = res$sigmas_scaled, constraints = mm,
# # data=DT, iters=1)
# #
# summary(ans.m.final)
```
Description

Uses the 2 marker matrices from both sets of inbred or partially inbred parents and creates all possible combinations unless the user specifies which hybrid genotypes to build (custom.hyb argument). It returns the additive and dominance marker matrices (-1,0,1; homo,het,homo in additive and 0,1,0; homo,het,homo for dominance).

Usage

build.HMM(M1,M2, custom.hyb=NULL, return.combos.only=FALSE)

Arguments

M1
Matrix \((n \times m)\) of unphased genotypes for \(n\) inbreds and \(m\) biallelic markers, coded as \{-1,0,1\}. Fractional (imputed) and missing values (NA) are not allowed.

M2
Matrix \((n \times m)\) of unphased genotypes for \(n\) inbreds and \(m\) biallelic markers, coded as \{-1,0,1\}. Fractional (imputed) and missing values (NA) are not allowed.

custom.hyb
A data frame with columns 'Var1' 'Var2', 'hybrid' which specifies which hybrids should be built using the M1 and M2 matrices provided.

return.combos.only
A TRUE/FALSE statement inicating if the function should skip building the genotype matrix for hybrids and only return the data frame with all possible combinations to be build. In case the user wants to subset the hybrids before building the marker matrix.

Details

It returns the marker matrix for hybrids coded as additive (-1,0,1; homo,het,homo) and dominance (0,1,0; homo,het,homo). This function is deviced for building marker matrices for hybrids coming from inbreds. If the parents are close to inbred >F5 you can try deleting the heterozygote calls (0's) and imputing those cells with the most common genotype (1 or -1). The expectation is that for mostly inbred individuals this may not change drastically the result but will make the results more interpretable. For non-inbred parents (F1 to F3) the cross of an F1 x F1 has many possibilities and is not the intention of this function to build genotypes for heterzygote x heterozygote crosses.

Value

It returns the marker matrix for hybrids coded as additive (-1,0,1; homo,het,homo) and dominance (0,1,0; homo,het,homo).

$HMM.add marker matrix for hybrids coded as additive (-1,0,1; homo,het,homo)

$HMM.dom marker matrix for hybrids coded as dominance (0,1,0; homo,het,homo)

$data.used the data frame used to build the hybrid genotypes
References

See Also

mmer – the core function of the package

Examples

```r
### use Technow data as example

data(DT_technow)
DT <- DT_technow
Md <- (Md_technow * 2) - 1
Mf <- (Mf_technow * 2) - 1

## first get all possible hybrids
res1 <- build.HMM(Md, Mf, return.combos.only = TRUE)
head(res1$data.used)

## build the marker matrix for the first 50 hybrids
res2 <- build.HMM(Md, Mf, custom.hyb = res1$data.used[1:50,,]
res2$HMM.add[1:5,1:5]
res2$HMM.dom[1:5,1:5]

## now you can use the A.mat(), D.mat() and E.mat() functions
# M <- res2$HMM.add
# A <- A.mat(M)
# D <- D.mat(M)
```

Description

coef method for class "mmec".
Usage
S3 method for class 'mmec'
coef(object, ...)

Arguments
 object an object of class "mmec"
 ... Further arguments to be passed

Value
 vector of coef

Author(s)
 Giovanny Covarrubias

See Also
 coef, mmec

Description
 coef method for class "mmer".

Usage
S3 method for class 'mmer'
coef(object, ...)

Arguments
 object an object of class "mmer"
 ... Further arguments to be passed

Value
 vector of coef

Author(s)
 Giovanny Covarrubias

See Also
 coef, mmer
Compound symmetry matrix

Description
Creates a compound symmetry matrix with parameters specified.

Usage
CS(x, rho=0.25)

Arguments
x vector of the variable to define the factor levels for the ARMA covariance structure.
rho rho value for the matrix.

Details
Specially useful for constructing covariance structures for rows and ranges to capture better the spatial variation trends in the field. The rho value is assumed fixed and values of the variance component will be optimized through REML.

Value
If everything is defined correctly the function returns:

$nn the correlation matrix

References

See Also
The core function of the package mmem

Examples
x <- 1:4
R1 <- CS(x, rho=.25)
image(R1)
csc creates a customized covariance structure for specific levels of the random effect to be used with the \textit{mmec} solver.

\textbf{Usage}

\texttt{csc(x, mm, thetaC, theta)}

\textbf{Arguments}

- \texttt{x} vector of observations for the random effect.
- \texttt{mm} customized variance-covariance structure for the levels of the random effect.
- \texttt{thetaC} an optional matrix for constraints in the variance components.
- \texttt{theta} an optional matrix for initial values of the variance components.

\textbf{Value}

- \texttt{res} a list with the provided vector and the variance covariance structure expected for the levels of the random effect.

\textbf{Author(s)}

Giovanny Covarrubias-Pazaran

\textbf{References}

\textbf{See Also}

The function \texttt{vsc} to know how to use \texttt{csc} in the \texttt{mmec} solver.

\textbf{Examples}

\begin{verbatim}
 x <- as.factor(c(1:5,1:5,1:5));x
csc(x,matrix(1,5,5))
\end{verbatim}
Description

csr creates a customized covariance structure for specific levels of the random effect to be used with the mmer solver.

Usage

csr(x, mm)

Arguments

x vector of observations for the random effect.

mm customized variance-covariance structure for the levels of the random effect.

Value

res a list with the provided vector and the variance covariance structure expected for the levels of the random effect.

Author(s)

Giovanny Covarrubias-Pazaran

References

See Also

The function vsr to know how to use csr in the mmer solver.

Examples

x <- as.factor(c(1:5,1:5,1:5));x
csr(x,matrix(1,5,5))
D.mat

Dominance relationship matrix

Description

C++ implementation of the dominance matrix. Calculates the realized dominance relationship matrix. Can help to increase the prediction accuracy when 2 conditions are met; 1) The trait has intermediate to high heritability, 2) The population contains a big number of individuals that are half or full sibs (HS & FS).

Usage

```R
D.mat(X,nishio=TRUE,min.MAF=0,return.imputed=FALSE)
```

Arguments

- `X` : Matrix (n x m) of unphased genotypes for n lines and m biallelic markers, coded as {-1,0,1}. Fractional (imputed) and missing values (NA) are allowed.

- `min.MAF` : Minimum minor allele frequency. The D matrix is not sensitive to rare alleles, so by default only monomorphic markers are removed.

- `return.imputed` : When TRUE, the imputed marker matrix is returned.

Details

The additive marker coefficients will be used to compute dominance coefficients as: Xd = 1-abs(X) for diploids.

For nishio method: the marker matrix is centered by subtracting column means $M = Xd − ms$ where ms is the column means. Then $A = MM'/c$, where $c = 2 \sum_k p_k(1 − p_k)$.

For su method: the marker matrix is normalized by subtracting row means $M = Xd − 2pq$ where 2pq is the product of allele frequencies times 2. Then $A = MM'/c$, where $c = 2 \sum_k 2pq_k(1 − 2pq_k)$.

Value

If return.imputed = FALSE, the $n \times n$ additive relationship matrix is returned.

If return.imputed = TRUE, the function returns a list containing

- `D` the D matrix
- `$imputed$` the imputed marker matrix
References

See Also

The core functions of the package `mmer`

Examples

```r
###---------------------------------------###
### EXAMPLE 1
###---------------------------------------###
###random population of 200 lines with 1000 markers
X <- matrix(rep(0,200*1000),200,1000)
for (i in 1:200) {
  X[i,] <- sample(c(-1,0,0,1), size=1000, replace=TRUE)
}
D <- D.mat(X)
```

dfToMatrix

data frame to matrix

Description

This function takes a matrix that is in data frame format and transforms it into a matrix. Other packages that allows you to obtain an additive relationship matrix from a pedigree is the `pedigreemm` package.

Usage

```r
dfToMatrix(x, row="Row", column="Column",
          value="Ainverse", returnInverse=FALSE,
          bend=1e-6)
```
dfToMatrix

Arguments

- **x**: ginv element, output from the Ainverse function.
- **row**: name of the column in x that indicates the row in the original relationship matrix.
- **column**: name of the column in x that indicates the column in the original relationship matrix.
- **value**: name of the column in x that indicates the value for a given row and column in the original relationship matrix.
- **returnInverse**: a TRUE/FALSE value indicating if the inverse of the x matrix should be computed once the data frame x is converted into a matrix.
- **bend**: a numeric value to add to the diagonal matrix in case matrix is singular for inversion.

Value

- **K**: pedigree transformed in a relationship matrix.
- **Kinv**: inverse of the pedigree transformed in a relationship matrix.

Author(s)

Giovanny Covarrubias-Pazaran

References

See Also

The core functions of the package mmer

Examples

```r
library(Matrix)
m <- matrix(1:9,3,3)
m <- tcrossprod(m)
mdf <- as.data.frame(as.table(m))
mdf
dfToMatrix(mdf, row = "Var1", column = "Var2", value = "Freq", returnInverse=FALSE )
```
dsc

diagonal covariance structure

Description

`dsc` creates a diagonal covariance structure for the levels of the random effect to be used with the `mmec` solver.

Usage

```r
dsc(x, thetaC=NULL, theta=NULL)
```

Arguments

- `x`: vector of observations for the random effect.
- `thetaC`: an optional matrix for constraints in the variance components.
- `theta`: an optional matrix for initial values of the variance components.

Value

- `$res`: a list with the provided vector and the variance covariance structure expected for the levels of the random effect.

Author(s)

Giovanny Covarrubias-Pazaran

References

See Also

See the function `vsc` to know how to use `dsc` in the `mmec` solver.

Examples

```r
x <- as.factor(c(1:5,1:5,1:5));x
dsc(x)
```
\textbf{dsr} \quad \textit{diagonal covariance structure}

\textbf{Description}

dsr creates a diagonal covariance structure for the levels of the random effect to be used with the \texttt{mmer} solver.

\textbf{Usage}

dsr(x)

\textbf{Arguments}

\texttt{x} \quad \text{vector of observations for the random effect.}

\textbf{Value}

\texttt{res} a list with the provided vector and the variance covariance structure expected for the levels of the random effect.

\textbf{Author(s)}

Giovanny Covarrubias-Pazaran

\textbf{References}

\textbf{See Also}

See the function \texttt{vsr} to know how to use \texttt{dsr} in the \texttt{mmer} solver.

\textbf{Examples}

\begin{verbatim}
x <- as.factor(c(1:5,1:5,1:5));x
dsr(x)
\end{verbatim}
Description

This dataset contains phenotypic data for one trait evaluated in the experimental design known as augmented design. This model allows to obtain BLUPs for genotypes that are unreplicated by dividing the field in blocks and replicating 'check genotypes' in the blocks and unreplicated genotypes randomly within the blocks. The presence of check genotypes (usually cultivars) allows the adjustment of unreplicated genotypes.

Usage

data("DT_augment")

Format

The format is: chr "DT_augment"

Source

This data was generated by a potato study.

References

See Also

The core functions of the package mmer and mmec

Examples

```r
# ####### AUGMENTED DESIGN EXAMPLE
# data(DT_augment)
# DT <- DT_augment
# fit the mixed model and check summary
# mix1 <- mmer(TSW ~ Check.Gen, 
# random = ~ Block + Genotype:Check, 
# data=DT)
# summary(mix1)$varcomp
# mix2 <- mmec(TSW ~ Check.Gen,
```
DT_btdata

Blue Tit Data for a Quantitative Genetic Experiment

Description

A data frame with 828 rows and 7 columns, with variables tarsus length (tarsus) and colour (back) measured on 828 individuals (animal). The mother of each is also recorded (dam) together with the foster nest (fosternest) in which the chicks were reared. The date on which the first egg in each nest hatched (hatchdate) is recorded together with the sex (sex) of the individuals.

Usage

data("DT_btdata")

Format

The format is: chr "DT_btdata"

References

See Also

The core functions of the package mmer, mmec

Examples

For CRAN time limitations most lines in the example are silenced with one '#' mark, # remove them and run the examples
EXAMPLE 1
simple example
data(DT_btdata)
DT <- DT_btdata
head(DT)
DT_cornhybrids

Corn crosses and markers

Description

This dataset contains phenotypic data for plant height and grain yield for 100 out of 400 possible hybrids originated from 40 inbred lines belonging to 2 heterotic groups, 20 lines in each, 1600 rows exist for the 400 possible hybrids evaluated in 4 locations but only 100 crosses have phenotypic information. The purpose of this data is to show how to predict the other 300 crosses.

The data contains 3 elements. The first is the phenotypic data and the parent information for each cross evaluated in the 4 locations. 1200 rows should have missing data but the 100 crosses performed were chosen to be able to estimate the GCA and SCA effects of everything.

The second element of the data set is the phenotypic data and other relevant information for the 40.

The third element is the genomic relationship matrix for the 40 inbred lines originated from 511 SNP markers and calculated using the A.mat function.

Usage

data("DT_cornhybrids")
Format

The format is: chr "DT_cornhybrids"

Source

This data was generated by a corn study.

References

See Also

The core functions of the package mmer and mmec

Examples

```r
# For CRAN time limitations most lines in the examples are silenced with one '#' mark, remove them and run the examples using command + shift + C | OR | control + shift + C
#
# data(DT_cornhybrids)
# DT <- DT_cornhybrids
# DTi <- DTi_cornhybrids
# GT <- GT_cornhybrids
# hybrid2 <- DT # extract cross data
# A <- GT
# K1 <- A[levels(hybrid2$GCA1), levels(hybrid2$GCA1)]; dim(K1)
# K2 <- A[levels(hybrid2$GCA2), levels(hybrid2$GCA2)]; dim(K2)
# S <- kronecker(K1, K2); dim(S)
# rownames(S) <- colnames(S) <- levels(hybrid2$SCA)
#
# ans <- mmer(Yield ~ Location,
#             random = ~ vsr(GCA1, Gu=K1) + vsr(GCA2, Gu=K2),
#             rcov=~units,
#             data=hybrid2)
# summary(ans)$varcomp
#
# mmec uses the inverse of the relationship matrix
# K1i <- as(solve(K1 + diag(1e-4,ncol(K1),ncol(K1))), Class="dgCMatrix")
# K2i <- as(solve(K2 + diag(1e-4,ncol(K2),ncol(K2))), Class="dgCMatrix")
# Si <- as(solve(S + diag(1e-4,ncol(S),ncol(S))), Class="dgCMatrix")
# ans2 <- mmec(Yield ~ Location,
#              random = ~ vsc(isc(GCA1), Gu=K1i) + vsc(isc(GCA2), Gu=K2i),
#              rcov=~units,
#              data=hybrid2)
# summary(ans2)$varcomp
```
DT_cpdata

Genotypic and Phenotypic data for a CP population

Description

A CP population or F1 cross is the designation for a cross between 2 highly heterozygote individuals; i.e. humans, fruit crops, breeding populations in recurrent selection.

This dataset contains phenotypic data for 363 siblings for an F1 cross. These are averages over 2 environments evaluated for 4 traits; color, yield, fruit average weight, and firmness. The columns in the CPgeno file are the markers whereas the rows are the individuals. The CPpheno data frame contains the measurements for the 363 siblings, and as mentioned before are averages over 2 environments.

Usage

data("DT_cpdata")

Format

The format is: chr "DT_cpdata"

Source

This data was simulated for fruit breeding applications.

References

See Also

The core functions of the package mmer and mmec

Examples

#========---
For CRAN time limitations most lines in the # examples are silenced with one '#' mark,
remove them and run the examples using # command + shift + C [OR] control + shift + C
#========--
data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
create the variance-covariance matrix
A <- A.mat(GT) # additive relationship matrix
look at the data and fit the model
head(DT)
mix1 <- mmer(Yield~1,
random=~vsr(id,Gu=A)
+ Rowf + Colf,
rcov=~units,
data=DT)
summary(mix1)$varcomp
#
mmec uses the inverse of the relationship matrix
Ai <- as(solve(A + diag(1e-4,ncol(A),ncol(A))), Class="dgCMatrix")
mix2 <- mmec(Yield~1,
random=~vsc(isc(id),Gu=Ai)
+ Rowf + Colf,
rcov=~units,
data=DT)
summary(mix2)$varcomp
#
####====================####
multivariate model
2 traits
####====================####
be patient take some time
ans.m <- mmer(cbind(Yield,color)~1,
random=~ vsr(id, Gu=A)
+ vsr(Rowf,Gtc=diag(2))
+ vsr(Colf,Gtc=diag(2)),
rcov=~ vsr(units),
data=DT)
cov2cor(ans.m$sigma$`u:id`)

DT_example

Broad sense heritability calculation.

Description

This dataset contains phenotypic data for 41 potato lines evaluated in 3 environments in an RCBD design. The phenotypic trait is tuber quality and we show how to obtain an estimate of DT_example for the trait.

Usage

data("DT_example")
Format
The format is: chr "DT_example"

Source
This data was generated by a potato study.

References

See Also
The core functions of the package mmer and mmec

Examples

```r
####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####
#### EXAMPLES
#### Different models with sommer
####=========================================####
data(DT_example)
DT <- DT_example
A <- A_example
head(DT)

####=========================================####
#### Univariate homogeneous variance models ####
####=========================================####
## Compound simmetry (CS) model
ans1 <- mmer(Yield~Env,
              random= ~ Name + Env:Name,
              rcov= ~ units,
              data=DT)
summary(ans1)$varcomp

ans1b <- mmec(Yield~Env,
              random= ~ Name + Env:Name,
              rcov= ~ units,
              data=DT)
summary(ans1b)$varcomp

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
```
Univariate heterogeneous variance models

Compound symmetry (CS) + Diagonal (DIAG) model

```r
ans2 <- mmer(Yield~Env,
    random= ~Name + vsr(dsr(Env),Name),
    rcov= ~ vsr(dsr(Env),units),
    data=DT)
summary(ans2)
```

Multivariate Compound symmetry (CS) model

```r
DT$EnvName <- paste(DT$Env,DT$Name)
ans4 <- mmer(cbind(Yield, Weight) ~ Env,
    random= ~ vsr(Name) + vsr(EnvName),
    rcov= ~ vsr(units),
    data=DT)
summary(ans4)
```

Multivariate homogeneous variance models

Augmented designs (2 examples)

Incomplete block designs (1 example)

Split plot design (2 examples)

Latin square designs (1 example)

North Carolina designs I, II and III

How to fit each is shown at the Examples section. This may help you get introduced to experimental designs relevant to plant breeding. Good luck.

Format

Different based on the design.

DT_expdesigns

Data for different experimental designs

Description

The following data is a list containing data frames for different type of experimental designs relevant in plant breeding:

1) Augmented designs (2 examples)
2) Incomplete block designs (1 example)
3) Split plot design (2 examples)
4) Latin square designs (1 example)
5) North Carolina designs I, II and III

How to fit each is shown at the Examples section. This may help you get introduced to experimental designs relevant to plant breeding. Good luck.
Source

Datasets and more detail about them can be found in the agricolae package. Here we just show the datasets and how to analyze them using the sommer package.

References

Examples

```r
# #### =================================== ####
# #### ===== Augmented Block Design 1 ==== ####
# #### =================================== ####
# data(DT_expdesigns)
# DT <- DT_expdesigns
# names(DT)
# data1 <- DT$au1
# head(data1)
# ## response variable: "yield"
# ## check indicator: "entryc" ("nc" for all unreplicated, but personal.name for checks)
# ## blocking factor: "block"
# ## treatments, personal names for replicated and non-replicated: "trt"
# ## check no check indicator: "new"
# mix1 <- mmer(yield~entryc,
# random=~block+trt,
# rcov=~units, tolpar = 1e-6,
# data=data1)
# summary(mix1)$varcomp
#
# mix1b <- mmec(yield~entryc,
# random=~block+trt,
# rcov=~units, tolParConv = 1e-6,
# data=data1)
# summary(mix1b)$varcomp
```

DT_fulldiallel

Full diallel data for corn hybrids

Description

This dataset contains phenotypic data for 36 winter bean hybrids, coming from a full diallel design and evaluated for 9 traits. The column male and female origin columns are included as well.

Usage

`data("DT_fulldiallel")`
Format

The format is: chr "DT_fulldiallel"

Source

This data was generated by a winter bean study and originally included in the agridat package.

References

See Also

The core functions of the package mmer and mmec

Examples

```r
### For CRAN time limitations most lines in the examples are silenced with one '#' mark, remove them and run the examples
### data(DT_fulldiallel)
DT <- DT_fulldiallel
head(DT)
mix <- mmer(stems~1, random=~female+male, data=DT)
summary(mix)

mixb <- mmec(stems~1, random=~female+male, data=DT)
summary(mixb)$varcomp

### Multivariate model example
### data(DT_fulldiallel)
DT <- DT_fulldiallel
head(DT)
mix <- mmer(cbind(stems,pods,seeds)~1, random=~vsr(female) + vsr(male), rcov=~vsr(units), data=DT)
summary(mix)

### genetic variance covariance
cov2cor(mix$sigma$'u:female')
cov2cor(mix$sigma$'u:male')
cov2cor(mix$sigma$'u:units')
```
DT_gryphon

Gryphon data from the Journal of Animal Ecology

Description

This is a dataset that was included in the Journal of animal ecology by Wilson et al. (2010; see references) to help users understand how to use mixed models with animal datasets with pedigree data.

The dataset contains 3 elements:

- **gryphon**: variables indicating the animal, the mother of the animal, sex of the animal, and two quantitative traits named 'BWT' and 'TARSUS'.
- **pedi**: dataset with 2 columns indicating the sire and the dam of the animals contained in the gryphon dataset.
- **A**: additive relationship matrix formed using the 'getA()' function used over the pedi dataframe.

Usage

```r
data("DT_gryphon")
```

Format

The format is: chr "DT_gryphon"

Source

This data comes from the Journal of Animal Ecology. Please, if using this data cite Wilson et al. publication. If using our mixed model solver please cite Covarrubias’ publication.

References

See Also

The core functions of the package **mmemr** and **mmec**
Examples

```r
# data(DT_gryphon)
# DT <- DT_gryphon
# A <- A_gryphon
# P <- P_gryphon
# look at the data
# head(DT)
# fit the model with no fixed effects (intercept only)
# mix1 <- mmer(BWT~1,
# random=-vsr(ANIMAL,Gu=A),
# rcov=-units,
# data=DT)
# summary(mix1)$varcomp
#
# mmec uses the inverse of the relationship matrix
# Ai <- as(solve(A + diag(1e-4,ncol(A),ncol(A))), Class="dgCMatrix")
# mix1b <- mmec(BWT~1,
# random=-vsc(isc(ANIMAL),Gu=Ai),
# rcov=-units, tolParConv = 1e-5,
# data=DT)
# summary(mix1b)$varcomp
#
# fit the multivariate model with no fixed effects (intercept only)
# mix2 <- mmer(cbind(BWT,TARSUS)~1,
# random=-vsr(ANIMAL,Gu=A),
# rcov=-vsr(units),
# na.method.Y = "include2",
# data=DT)
# summary(mix2)
# cov2cor(mix2$sigma$`u:ANIMAL`)  # covariance
# cov2cor(mix2$sigma$`u:units`)  # covariance
```

DT_h2

Broad sense heritability calculation.

Description

This dataset contains phenotypic data for 41 potato lines evaluated in 5 locations across 3 years in an RCBD design. The phenotypic trait is tuber quality and we show how to obtain an estimate of DT_h2 for the trait.
Usage

data("DT_h2")

Format

The format is: chr "DT_h2"

Source

This data was generated by a potato study.

References

See Also

The core functions of the package `mmer` and `mmec`

Examples

```r
####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####
data(DT_h2)
DT <- DT_h2
head(DT)

####=========================================####
#### fit the mixed model (very heavy model)
####=========================================####
# ans1 <- mmer(y~Env,
#   random=~vsr(dsr(Env),Name) + vsr(dsr(Env),Block),
#   rcov=~vsr(dsr(Env),units),
#   data=DT)
# summary(ans1)$varcomp
#
# DT=DT[with(DT, order(Env)), ]
# ans1b <- mmec(y~Env,
#   random=~vsc(dsc(Env),isc(Name)) + vsc(dsc(Env),isc(Block)),
#   rcov=~vsc(dsc(Env),isc(units)),
#   data=DT)
# summary(ans1b)$varcomp
```
DT_halfdiallel half diallel data for corn hybrids

Description

This dataset contains phenotypic data for 21 corn hybrids, with 2 technical repetitions, coming from a half diallel design and evaluated for sugar content. The column geno indicates the hybrid and male and female origin columns are included as well.

Usage

data("DT_halfdiallel")

Format

The format is: chr "DT_halfdiallel"

Source

This data was generated by a corn study.

References

See Also

The core functions of the package mmer and mmec

Examples

####===####
For CRAN time limitations most lines in the
examples are silenced with one '#' mark,
remove them and run the examples
####===####

data("DT_halfdiallel")
DT <- DT_halfdiallel
head(DT)
DT$femalef <- as.factor(DT$female)
DT$malef <- as.factor(DT$male)
DT$genof <- as.factor(DT$geno)

A <- diag(7); colnames(A) <- rownames(A) <- 1:7;A # if you want to provide a covariance matrix
model using overlay
modh <- mmer(sugar~1,
DT_ige

Data to fit indirect genetic effects.

Description

This dataset contains phenotypic data for 98 individuals where they are measured with the purpose of identifying the effect of the neighbour in a focal individual.

Usage

data("DT_ige")

Format

The format is: chr "DT_ige"

Source

This data was masked from a shared study.

References

See Also

The core functions of the package mmer and mmec.
Examples

For CRAN time limitations most lines in the
examples are silenced with one '# mark,
remove them and run the examples

EXAMPLES
Different models with sommer
####===####

```r
data(DT_ige)
DT <- DT_ige
Af <- A_ige
An <- A_ige
### Direct genetic effects model
# modDGE <- mmer(trait ~ block,  
#     random = ~ focal,           
#     rcov = ~ units,             
#     data = DT)  
# summary(modDGE)$varcomp
#
### Indirect genetic effects model without covariance between DGE and IGE
# modDGE <- mmer(trait ~ block,  
#     random = ~focal + neighbour, 
#     rcov = ~ units,               
#     data = DT)  
# summary(modDGE)$varcomp
#
### Indirect genetic effects model with covariance between DGE and IGE
# modIGE <- mmer(trait ~ block,  
#     random = ~ gsvr(focal, neighbour),  
#     rcov = ~ units, iters=4,  
#     data = DT)  
# summary(modIGE)$varcomp
#
### Indirect genetic effects model with covariance between DGE and IGE using relationship matrices
# modIGEb <- mmer(trait ~ block,  
#     random = ~ gsvr(focal, neighbour, Gu=list(Af,An)), 
#     rcov = ~ units,               
#     data = DT)  
# summary(modIGEb)$varcomp
```

Description

A data frame with 4 columns; SUBJECT, X, Xf and Y to show how to use the Legendre polynomials in the mmer function using a numeric variable X and a response variable Y.
Usage

data("DT_legendre")

Format

The format is: chr "DT_legendre"

Source

This data was simulated for fruit breeding applications.

References

See Also

The core functions of the package mmer

Examples

you need to install the orthopolynom library to do random regression models
library(orthopolynom)
data(DT_legendre)
DT <- DT_legendre
mRR2<--mmer(Y~ 1 + Xf
, random=- vsr(usr(X,1)),SUBJECT)
, rcov=-vsr(units)
, data=DT)
summary(mRR2)$varcomp
#
mRR2b<-mmec(Y~ 1 + Xf
, random=- vsc(usc(X,1)),isc(SUBJECT))
, rcov=-vsc(isc(units))
, data=DT)
summary(mRR2b)$varcomp

For CRAN time limitations most lines in the
examples are silenced with one '#' mark,
remove them and run the examples using
command + shift + C |OR| control + shift + C
#==

data("DT_legendre")

Format

The format is: chr "DT_legendre"

Source

This data was simulated for fruit breeding applications.
Full diallel data for corn hybrids

Description

This dataset contains phenotypic data for 36 winter bean hybrids, coming from a full diallel design and evaluated for 9 traits. The column male and female origin columns are included as well.

Usage

```r
data("DT_mohring")
```

Format

The format is: `chr "DT_mohring"

Source

This data was generated by a winter bean study and originally included in the agridat package.

References

See Also

The core functions of the package `mmr` and `mmec`

Examples

```r
# For CRAN time limitations most lines in the
# examples are silenced with one '#' mark,
# remove them and run the examples
# data(DT_mohring)
# DT <- DT_mohring
# head(DT)
# DT2 <- add.diallel.vars(DT,par1="Par1", par2="Par2")
# head(DT2)
# GRIFFING MODEL 2 with reciprocal effects
# mod1h <- mmer(Ftime ~ 1, data=DT2,
# random = ~ Block
# GCA male & female overlayed
# + overlay(Par1, Par2)
# SCA effects (includes cross and selfs)
```
+ cross.id
SCAR reciprocal effects (if zero there's no reciprocal effects)
+ cross.id:cross.type)
summary(mod1h)$varcomp
#
mod1hb <- mmec(Ftime ~ 1, data=DT2,
random = ~ Block
GCA male & female overlayed
+ vsc(isc(overlay(Par1, Par2)))
SCA effects (includes cross and selfs)
+ cross.id
SCAR reciprocal effects (if zero there's no reciprocal effects)
+ vsc(dsc(cross.type), isc(cross.id)))
summary(mod1hb)$varcomp
#
VarComp VarCompSE Zratio
Block.Ftime-Ftime 0.00000 9.32181 0.000000
overlay(Par1, Par2).Ftime-Ftime 1276.73089 750.17269 1.701916
cross.id.Ftime-Ftime 1110.99090 330.16921 3.364914
cross.id:cross.type.Ftime-Ftime 66.02295 49.26876 1.340057
units.Ftime-Ftime 418.47949 74.56442 5.612321
#
GRIFFING MODEL 2, no reciprocal effects
mod1h <- mmer(Ftime ~ Block + is.cross, data=DT2,
random = ~
GCA for all (female and male)
overlay(Par1, Par2)
GCA (only for hybrids)
+ overlay(Par1, Par2):is.cross
SCA (hybrids only)
+ cross.id:is.cross)
summary(mod1h)$varcomp
#
VarComp VarCompSE Zratio
overlay(Par1, Par2).Ftime-Ftime 2304.1781 1261.63193 1.826347
overlay(Par1, Par2):is.cross.Ftime-Ftime 613.6040 402.74347 1.523560
cross.id:is.cross.Ftime-Ftime 340.7030 148.56225 2.293335
units.Ftime-Ftime 501.6275 74.36075 6.745864
#
GRIFFING MODEL 3, no reciprocal effects
mod1h <- mmer(Ftime ~ Block + is.cross, data=DT2,
random = ~
GCAC (only for hybrids)
overlay(Par1, Par2):is.cross
male GCA (only for inbreds)
+ Par1:is.self
SCA (for hybrids only)
+ cross.id:is.cross)
summary(mod1h)$varcomp
#
VarComp VarCompSE Zratio
overlay(Par1, Par2):is.cross.Ftime-Ftime 927.7895 537.91218 1.724797
Par1:is.self.Ftime-Ftime 9960.9247 5456.58188 1.825488
cross.id:is.cross.Ftime-Ftime 341.4567 148.53667 2.298884
units.Ftime-Ftime 498.5974 73.92066 6.745835
DT_polyploid

##
GRIFFING MODEL 2, with reciprocal effects
In Mohring: mixed model 3 reduced
mod1h <- mmer(Ftime ~ Block + is.cross, data=DT2,
random = ~
GCAC (for hybrids only)
overlay(Par1, Par2):is.cross
male GCA (for selfs only)
+ Par1:is.self
SCA (for hybrids only)
+ cross.id:is.cross
SCAR reciprocal effects
+ cross.id:cross.type)
summary(mod1h)$varcomp
VarComp VarCompSE Zratio
overlay(Par1, Par2):is.cross.Ftime-Ftime 927.78742 537.89981 1.724833
Par1:is.self.Ftime-Ftime 10001.78854 5456.47578 1.833013
cross.id:is.cross.Ftime-Ftime 361.89712 148.54264 2.436318
cross.id:cross.type.Ftime-Ftime 66.43695 49.24492 1.349113
units.Ftime-Ftime 416.82960 74.27202 5.612203
##
GRIFFING MODEL 3, with RGCA + RSCA
In Mohring: mixed model 3
mod1h <- mmer(Ftime ~ Block + is.cross, data=DT2,
random = ~
GCAC (for hybrids only)
overlay(Par1, Par2):is.cross
RGCA: exclude selfs (to identify reciprocal effects)
+ overlay(Par1, Par2):cross.type
male GCA (for selfs only)
+ Par1:is.self
SCA (for hybrids only)
+ cross.id:is.cross
SCAR: exclude selfs (if zero there's no reciprocal effects)
+ cross.id:cross.type)
summary(mod1h)$varcomp
VarComp VarCompSE Zratio
overlay(Par1, Par2):is.cross.Ftime-Ftime 927.7843 537.88164 1.7248857
Par1:is.self.Ftime-Ftime 10001.7570 5456.30125 1.8330654
cross.id:is.cross.Ftime-Ftime 361.8958 148.53670 2.4364068
cross.id:cross.type.Ftime-Ftime 17.9799 19.92428 0.9024114
units.Ftime-Ftime 416.82960 74.27202 5.612203

DT_polyploid

Genotypic and Phenotypic data for a potato polyploid population
DT_polyploid

Description
This dataset contains phenotypic data for 18 traits measured in 187 individuals from a potato diversity panel. In addition contains genotypic data for 221 individuals genotyped with 3522 SNP markers. Please if using this data for your own research make sure you cite Rosyara’s (2015) publication (see References).

Usage
data("DT_polyploid")

Format
The format is: chr "DT_polyploid"

Source
This data was extracted from Rosyara (2016).

References
If using this data for your own research please cite:

See Also
The core functions of the package mmer

Examples

```r
# For CRAN time limitations most lines in the examples are silenced with one '#' mark,
# remove them and run the examples using command + shift + C |OR| control + shift + C
#==================================================================
data(DT_polyploid)
# DT <- DT_polyploid
# GT <- GT_polyploid
# MP <- MP_polyploid
# #=================================================================
# # convert markers to numeric format
# #=================================================================
# numo <- atcg1234(data=GT, ploidy=4);
# numo$M[1:5,1:5];
```
numo$ref.allele[,1:5]
#
===
get the markers and phenotypes for such inds
===
marks <- numo$M[common,]; marks[1:5,1:5]
DT2 <- DT[match(common,DT$Name),];
DT2 <- as.data.frame(DT2)
DT2[1:5,
#
===
Additive relationship matrix, specify ploidy
##
A <- A.mat(marks)
D <- D.mat(marks)
##
run as mixed model
##
ans <- mmer(tuber_shape~1,
random=~vsr(Name, Gu=A),
data=DT2)
summary(ans)$varcomp
#
Ai <- as(solve(A + diag(1e-4,ncol(A),ncol(A))), Class="dgCMatrix")
ansb <- mmec(tuber_shape~1,
random=~vsc(isc(Name), Gu=Ai),
data=DT2)
summary(ansb)$varcomp
#
DT_rice

DT_rice

Rice lines dataset

Description

Information from a collection of 413 rice lines. The DT_rice data set is from Rice Diversity Org. Program. The lines are genotyped with 36,901 SNP markers and phenotyped for more than 30 traits. This data set was included in the package to play with it. If using it for your research make sure you cite the original publication from Zhao et al.(2011).

Usage

```r
data(DT_rice)
```
Format

RicePheno contains the phenotypes RiceGeno contains genotypes letter code RiceGenoN contains the genotypes in numerical code using atcg1234 converter function

Source

References

See Also

The core functions of the package mmer

Examples

For CRAN time limitations most lines in the examples are silenced with one '#' mark, remove them and run the examples using command + shift + C |OR| control + shift + C

```r
data(DT_rice)
# DT <- DT_rice
# GT <- GT_rice
# GTn <- GTn_rice
# head(DT)
# M <- atcg1234(GT)
# A <- A.mat(M$M)
# mix <- mmer(Protein.content~1,
# random = ~vsr(geno, Gu=A) + geno,
# rcov=~units,
# data=DT)
# summary(mix)$varcomp
#
# Ai <- as(solve(A + diag(1e-6,ncol(A),ncol(A))), Class="dgCMatrix")
# mixb <- mmec(Protein.content~1,
# random = ~vsc(isc(geno), Gu=Ai) + geno,
# rcov=~units,
# data=DT)
# summary(mixb)$varcomp
```
DT_sleepstudy

Reaction times in a sleep deprivation study

Description

The average reaction time per day for subjects in a sleep deprivation study. On day 0 the subjects had their normal amount of sleep. Starting that night they were restricted to 3 hours of sleep per night. The observations represent the average reaction time on a series of tests given each day to each subject. Data from sleepstudy to see how lme4 models can be translated in sommer.

Usage

data("DT_sleepstudy")

Format

The format is: chr "DT_sleepstudy"

Source

These data are from the study described in Belenky et al. (2003), for the sleep deprived group and for the first 10 days of the study, up to the recovery period.

References

See Also

The core functions of the package mmer

Examples

```r
### For CRAN time limitations most lines in the examples are silenced with one '#' mark,
### remove them and run the examples
#
# library(lme4)
data(DT_sleepstudy)
DT <- DT_sleepstudy
head(DT)
```

```r
```

```r
```
DT_technow

Genotypic and Phenotypic data from single cross hybrids (Technow et al., 2014)

Description

This dataset contains phenotypic data for 2 traits measured in 1254 single cross hybrids coming from the cross of Flint x Dent heterotic groups. In addition contains the genotypic data (35,478
markers) for each of the 123 Dent lines and 86 Flint lines. The purpose of this data is to demonstrate the prediction of unrealized crosses (9324 unrealized crosses, 1254 evaluated, total 10578 single crosses). We have added the additive relationship matrix (A) but can be easily obtained using the A.mat function on the marker data. Please if using this data for your own research cite Technow et al. (2014) publication (see References).

Usage

data("DT_technow")

Format

The format is: chr "DT_technow"

Source

This data was extracted from Technow et al. (2014).

References

If using this data for your own research please cite:

See Also

The core functions of the package mmer

Examples

```r
####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '!' mark,
#### remove them and run the examples using
#### command + shift + C |OR| control + shift + C
####=========================================####
data(DT_technow)
DT <- DT_technow
Md <- Md_technow
Mf <- Mf_technow
# Md <- (Md*2) - 1
# Mf <- (Mf*2) - 1
# Ad <- A.mat(Md)
# Af <- A.mat(Mf)
# ============================================#
# ============================================#
# ans2 <- mmer(GY~1,
#              random=~vsr(dent,Gu=Ad) + vsr(flint,Gu=Af),
#              rcov=-units,
```
data=DT)
summary(ans2)$varcomp
#
Adi <- as(solve(Ad + diag(1e-4, ncol(Ad), ncol(Ad))), Class="dgCMatrix")
Afi <- as(solve(Af + diag(1e-4, ncol(Af), ncol(Af))), Class="dgCMatrix")
ans2b <- mmec(GY~1,
random=vsc(isc(dent), Gu=Adi) + vsc(isc(flint), Gu=Afi),
rcov=units,
data=DT)
summary(ans2b)$varcomp
###########################
multivariate overlayed model
###########################
M <- rbind(Md, Mf)
A <- A.mat(M)
ans3 <- mmer(cbind(GY, GM)~1,
random=vsr(overlay(dent, flint), Gu=A),
rcov=vsr(units, Gtc=diag(2)),
data=DT)
summary(ans3)
cov2cor(ans3$sigma[[1]])

DT_wheat

Description

Information from a collection of 599 historical CIMMYT wheat lines. The wheat data set is from CIMMYT’s Global Wheat Program. Historically, this program has conducted numerous international trials across a wide variety of wheat-producing environments. The environments represented in these trials were grouped into four basic target sets of environments comprising four main agroclimatic regions previously defined and widely used by CIMMYT’s Global Wheat Breeding Program. The phenotypic trait considered here was the average grain yield (GY) of the 599 wheat lines evaluated in each of these four mega-environments.

A pedigree tracing back many generations was available, and the Browse application of the International Crop Information System (ICIS), as described in (McLaren et al. 2000, 2005) was used for deriving the relationship matrix A among the 599 lines; it accounts for selection and inbreeding.

Wheat lines were recently genotyped using 1447 Diversity Array Technology (DArT) generated by Triticarte Pty. Ltd. (Canberra, Australia; http://www.triticarte.com.au). The DArT markers may take on two values, denoted by their presence or absence. Markers with a minor allele frequency lower than 0.05 were removed, and missing genotypes were imputed with samples from the marginal distribution of marker genotypes, that is, $x_{ij} = \text{Bernoulli}(\hat{p}_j)$, where \hat{p}_j is the estimated allele frequency computed from the non-missing genotypes. The number of DArT MMs after edition was 1279.

Usage

data(DT_wheat)
Format

Matrix Y contains the average grain yield, column 1: Grain yield for environment 1 and so on.

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.

References

See Also

The core functions of the package mmer

Examples

```r
###==================================================================================================
### For CRAN time limitations most lines in the examples are silenced with one '#' mark,
### remove them and run the examples using command + shift + C [OR] control + shift + C
###==================================================================================================

# data(DT_wheat)
# DT <- DT_wheat
# GT <- GT_wheat
# DT <- as.data.frame(DT); colnames(DT) <- paste0("x",1:4); DT$line <- rownames(DT);
# rownames(GT) <- DT$line
# K <- A.mat(GT) # additive relationship matrix
# K[1:4,1:4]
# ###==================================================================================================
# ###==================================================================================================
# ### using formula based 'mmer'
# ###==================================================================================================
# ###==================================================================================================
# head(DT)
# #### univariate
# mix0 <- mmer(x1~1,
# random = ~vsr(line,Gu=K),
# rcov=-units,
# data=DT)
```
DT_yatesoats

Yield of oats in a split-block experiment

Description

The yield of oats from a split-plot field trial using three varieties and four levels of manurial treatment. The experiment was laid out in 6 blocks of 3 main plots, each split into 4 sub-plots. The varieties were applied to the main plots and the manurial (nitrogen) treatments to the sub-plots.

Format

- **block**: block factor with 6 levels
- **nitro**: nitrogen treatment in hundredweight per acre
- **Variety**: genotype factor, 3 levels
- **yield**: yield in 1/4 lbs per sub-plot, each 1/80 acre.
- **row**: row location
- **column**: column location

Source

References

Examples

```r
### ========================== ###
data(DT_yatesoats)
DT <- DT_yatesoats
head(DT)
# m3 <- mmer(fixed=Y ~ V + N + V:N,
```
E.mat

Epistatic relationship matrix

Description

Calculates the realized epistatic relationship matrix of second order (additive x additive, additive x dominance, or dominance x dominance) using hadamard products with the C++ Armadillo library.

Usage

E.mat(X,endelman=TRUE,nishio=TRUE,type="A#A",min.MAF=0.02)

Arguments

X Matrix \((n \times m)\) of unphased genotypes for \(n\) lines and \(m\) biallelic markers, coded as \([-1,0,1]\). Fractional (imputed) and missing values (NA) are allowed.

endelman Set endelman=TRUE to use the estimation procedure for the A matrix (see Details in the A.mat help page).

nishio If TRUE Nishio ans Satoh. (2014), otherwise Su et al. (2012) (see Details in the D.mat help page).

type An argument specifying the type of epistatic relationship matrix desired. The default is the second order epistasis (additive x additive) type="A#A". Other options are additive x dominant (type="A#D"), or dominant by dominant (type="D#D").

min.MAF Minimum minor allele frequency. The A matrix is not sensitive to rare alleles, so by default only monomorphic markers are removed.

Details

It is computed as the Hadamard product of the epistatic relationship matrix; \(E=A#A, E=A#D, E=D#D\).

Value

The epistatic relationship matrix is returned.
References

See Also

The core functions of the package mmer

Examples

```r
###=========================================###
###random population of 200 lines with 1000 markers###
###=========================================###
X <- matrix(rep(0,200*1000),200,1000)
for (i in 1:200) {
  X[i,] <- sample(c(-1,0,0,1), size=1000, replace=TRUE)
}
E <- E.mat(X, type="A#A")
# if heterozygote markers are present can be used "A#D" or "D#D"
```

EM

Expectation Maximization Algorithm

Description

Univariate version of the expectation maximization (EM) algorithm.

Usage

```r
EM(y,X=NULL,ZETA=NULL,R=NULL,iters=30,draw=TRUE,silent=FALSE,
constraint=TRUE, init=NULL, forced=NULL, tolpar = 1e-04,
tolparinv = 1e-06)
```

Arguments

- `y`: a numeric vector for the response variable
- `X`: an incidence matrix for fixed effects.
ZETA an incidence matrix for random effects. This NEEDS TO BE PROVIDED AS A LIST STRUCTURE. For example Z=list(list(Z=Z1, K=K1), list(Z=Z2, K=K2), list(Z=Z3, K=K3)) makes a 2 level list for 3 random effects. The general idea is that each random effect with or without its variance-covariance structure is a list, i.e. list(Z=Z1, K=K1) where Z is the incidence matrix and K the var-cov matrix. When moving to more than one random effect we need to make several lists that need to be inside another list. What we call a 2-level list, i.e. list(Z=Z1, K=K1) and list(Z=Z2, K=K2) would need to be put in the form; list(list(Z=Z1, K=K1),list(Z=Z1, K=K1)), which as can be seen, is a list of lists (2-level list).

R a list of matrices for residuals, i.e. for longitudinal data. if not passed is assumed an identity matrix.

draw a TRUE/FALSE value indicating if a plot of updated values for the variance components and the likelihood should be drawn or not. The default is TRUE. COMPUTATION TIME IS SMALLER IF YOU DON’T PLOT SETTING draw=FALSE

silent a TRUE/FALSE value indicating if the function should draw the progress bar or iterations performed while working or should not be displayed.

iters a scalar value indicating how many iterations have to be performed if the EM is performed. There is no rule of tumb for the number of iterations. The default value is 100 iterations or EM steps.

constraint a TRUE/FALSE value indicating if the program should use the boundary constraint when one or more variance component is close to the zero boundary. The default is TRUE but needs to be used carefully. It works ideally when few variance components are close to the boundary but when there are too many variance components close to zero we highly recommend setting this parameter to FALSE since is more likely to get the right value of the variance components in this way.

init vector of initial values for the variance components. By default this is NULL and variance components are estimated by the method selected, but in case the user want to provide initial values this argument is functional.

forced a vector of numeric values for variance components including error if the user wants to force the values of the variance components. On the meantime only works for forcing all of them and not a subset of them. The default is NULL, meaning that variance components will be estimated by REML/ML.

tolpar tolerance parameter for convergence in the models.

tolparinv tolerance parameter for matrix inversion in the models.

Details

This algorithm is based on Searle (1993) and Bernanrdo (2010). This handles models of the form:

\[y = Xb + Zu + e \]

\[b \sim \text{N} [\hat{b}, 0] \] \hspace{1cm} zero variance because is a fixed term

\[u \sim \text{N} [0, K*\sigma(u)] \] \hspace{1cm} where: \(K*\sigma(u) = G \)

\[e \sim \text{N} [0, I*\sigma(e)] \] \hspace{1cm} where: \(I*\sigma(e) = R \)
\[y \sim \text{N}(Xb, \text{var}(Zu+e)) \] where:
\[\text{var}(y) = \text{var}(Zu+e) = ZGZ+R = V \] which is the phenotypic variance.

The function allows the user to specify the incidence matrices with their respective variance-covariance matrix in a 2 level list structure. For example imagine a mixed model with the following design:

\[\text{fixed} = \text{only intercept} \rightarrow b \sim \text{N}(\hat{b}, 0) \]
\[\text{random} = \text{GCA1} + \text{GCA2} + \text{SCA} \rightarrow u \sim \text{N}(0, G) \]

where \(G \) is:

\[
\begin{bmatrix}
K*\text{sigma(gca1)} & 0 & 0 \\
0 & S*\text{sigma(gca2)} & 0 \\
0 & 0 & W*\text{sigma(sca)}
\end{bmatrix}
\]

The function is based on using initial values for variance components, i.e.:

\[\text{var(e)} \gets 100 \quad \text{var(u1)} \gets 100 \quad \text{var(u2)} \gets 100 \quad \text{var(u3)} \gets 100 \]

and estimates the lambda(vx) values in the mixed model equations (MME) developed by Henderson (1975), i.e. consider the 3 random effects stated above, the MME are:

\[
\begin{bmatrix}
X'*R*X & X'*R*Z1 & X'*R*Z2 & X'*R*Z3 \\
Z1'*R*X & Z1'*R*Z1+K1*v1 & Z1'*R*Z2 & Z1'*R*Z3 \\
Z2'*R*X & Z2'*R*Z1 & Z2'*R*Z2+K2*v2 & Z2'*R*Z3 \\
Z3'*R*X & Z3'*R*Z1 & Z3'*R*Z2 & Z3'*R*Z3+K3*v3
\end{bmatrix}
\]

\[
\| \begin{bmatrix}
X'Ry \\
Z1'Ry \\
Z2'Ry \\
Z3'Ry
\end{bmatrix}
\]

\[
\| \begin{bmatrix}
\text{C.inv} \\
\text{RHS}
\end{bmatrix}
\]

where "*" is a matrix product, \(R \) is the inverse of the var-cov matrix for the errors, \(Z1, Z2, Z3 \) are incidence matrices for random effects, \(X \) is the incidence matrix for fixed effects, \(K1,K2,K3 \) are the var-cov matrices for random effects and \(v1,v2,v3 \) are the estimates of variance components.

The algorithm can be summarized in the next steps: 1) provide initial values for the variance components 2) estimate the coefficient matrix from MME known as "C" 3) solve the mixed equations as \(\text{theta} = \text{RHS} \times \text{C.inv} \) 4) obtain new estimates of fixed (b's) and random effects (u's) called theta 5) update values for variance components according to formulas 6) steps are repeated for a number of iterations specified by the user, ideally is enough when no more variations in the estimates is found, in several problems that could take thousands of iterations, whereas in other 10 iterations could be enough.
Value
If all parameters are correctly indicated the program will return a list with the following information:

$\texttt{var.com}$ a vector with the values of the variance components estimated

$\texttt{V.inv}$ a matrix with the inverse of the phenotypic variance $V = ZGZ+R$, V^{-1}

$\texttt{u.hat}$ a vector with BLUPs for random effects

$\texttt{Var.u.hat}$ a vector with variances for BLUPs

$\texttt{PEV.u.hat}$ a vector with predicted error variance for BLUPs

$\texttt{beta.hat}$ a vector for BLUEs of fixed effects

$\texttt{Var.beta.hat}$ a vector with variances for BLUEs

\texttt{X} incidence matrix for fixed effects

\texttt{Z} incidence matrix for random effects, if not passed is assumed to be a diagonal matrix

\texttt{K} the var-cov matrix for the random effect fitted in Z

References

See Also
The core functions of the package \texttt{mmer}

Examples

```r
## Import phenotypic data on inbred performance
## Full data
# data("DT_cornhybrids")
# hybrid2 <- DT_cornhybrids # extract cross data
# A <- GT_cornhybrids # extract the var-cov K
# # breathing values with 3 variance components
# # y <- hybrid2$Yield
# X1 <- model.matrix(~ Location, data = hybrid2);dim(X1)
# Z1 <- model.matrix(~ GCA1 -1, data = hybrid2);dim(Z1)
```
Z2 <- model.matrix(~ GCA2 -1, data = hybrid2);dim(Z2)
Z3 <- model.matrix(~ SCA -1, data = hybrid2);dim(Z3)
#
K1 <- A[levels(hybrid2$GCA1), levels(hybrid2$GCA1)]; dim(K1)
K2 <- A[levels(hybrid2$GCA2), levels(hybrid2$GCA2)]; dim(K2)
Realized IBS relationships for cross (as the Kronecker product of K1 and K2)
S <- kronecker(K1, K2); dim(S)
rownames(S) <- colnames(S) <- levels(hybrid2$SCA)
ETA <- list(list(Z=Z1, K=K1), list(Z=Z2, K=K2), list(Z=Z3, K=S))
ans <- EM(y=y, ZETA=ETA, iters=50)
compare with NR method
mix1 <- mmer(Yield~1, random=~vs(GCA1,Gu=K1)+vs(GCA2,Gu=K2), data=hybrid2)
summary(mix1)$varcomp
#

fcm

fixed effect constraint indication matrix

Description

fcm creates a matrix with the correct number of columns to specify a constraint in the fixed effects using the Gtc argument of the `vsr` function.

Usage

```r
fcm(x, reps=NULL)
```

Arguments

- **x** vector of 1’s and 0’s corresponding to the traits for which this fixed effect should be fitted. For example, for a trivariate model if the fixed effect "x" wants to be fitted only for trait 1 and 2 but not for the 3rd trait then you would use `fcm(c(1,1,0))` in the Gtc argument of the `vsr()` function.
- **reps** integer specifying the number of times the matrix should be repeated in a list format to provide easily the constraints in complex models that use the `ds()`, `us()` or `cs()` structures.

Value

- **$res** a matrix or a list of matrices with the constraints to be provided in the Gtc argument of the `vsr` function.
fitted.mmec

Author(s)

Giovanny Covarrubias-Pazaran

References

See Also

The function `vsr` to know how to use `fcm` in the `mmer` solver.

Examples

```r
fcm(c(1,1,0))
fcm(c(0,1,1))
fcm(c(1,1,1))
fcm(c(1,1,1),2)
```

```r
# ## model with Env estimated for both traits
# data(DT_example)
# DT <- DT_example
# A <- A_example
# ans4 <- mmer(cbind(Yield, Weight) ~ Env,
# random= ~ vsr(Name) + vsr(Env:Name),
# rcov= ~ vsr(units),
# data=DT)
# summary(ans4)$betas
# ## model with Env only estimated for Yield
# ans4b <- mmer(cbind(Yield, Weight) ~ vsr(Env, Gtc=fcm(c(1,0))),
# random= ~ vsr(Name) + vsr(Env:Name),
# rcov= ~ vsr(units),
# data=DT)
# summary(ans4b)$betas
```

fitted.mmec

fitted form a LMM fitted with mmec

Description

fitted method for class "mmec".

Usage

```r
## S3 method for class 'mmec'
fitted(object, ...)
```
Arguments

object an object of class "mmer"
... Further arguments to be passed to the mmer function

Value

vector of fitted values of the form y.hat = Xb + Zu including all terms of the model.

Author(s)

Giovanny Covarrubias

See Also

fitted, mmer

Examples

data(DT_cpdata)
DT <- DT.cpdata
GT <- GT.cpdata
MP <- MP.cpdata
create the variance-covariance matrix
A <- A.mat(GT) # additive relationship matrix
look at the data and fit the model
head(DT)
mix1 <- mmer(Yield~1,
random=~vsr(id,Gu=A)
+ Rowf + Colf + spl2Da(Row,Col),
rcov=~units,
data=DT)
#
ff=fitted(mix1)
#
colfunc <- colorRampPalette(c("steelblue4","springgreen","yellow"))
lattice::wireframe(~Row.fitted~Row*Col, data=ff$dataWithFitted,
aspect=c(61/87,0.4), drape=TRUE,# col.regions = colfunc,
light.source=c(10,0,10))
lattice::levelplot(~Row.fitted~Row*Col, data=ff$dataWithFitted, col.regions = colfunc)

fitted.mmer fitted form a LMM fitted with mmer

Description

fitted method for class "mmer".
Usage

S3 method for class 'mmer'

fitted(object, ...)

Arguments

object

an object of class "mmer"

...

Further arguments to be passed to the mmer function

Value

vector of fitted values of the form \(y.hat = Xb + Zu \) including all terms of the model.

Author(s)

Giovanny Covarrubias

See Also

fitted, mmer

Examples

data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
create the variance-covariance matrix
A <- A.mat(GT) # additive relationship matrix
look at the data and fit the model
head(DT)
mix1 <- mmer(Yield~1,
random=-vsr(id,Gu=A)
+ Rowf + Colf + spl2Da(Row,Col),
rcov=-units,
data=DT)
ff=fitted(mix1)
#
colfunc <- colorRampPalette(c("steelblue4","springgreen","yellow"))
lattice::wireframe('u:Row.fitted'-Row*Col, data=ff$dataWithFitted,
aspect=c(61/87,0.4), drape=TRUE,# col.regions = colfunc,
light.source=c(10,0,10))
lattice::levelplot('u:Row.fitted'-Row*Col, data=ff$dataWithFitted, col.regions = colfunc)
Description

fixm creates a square matrix with 3’s in the diagonals and off-diagonals to quickly specify a fixed constraint in the Gtc argument of the vsr function.

Usage

fixm(x, reps=NULL)

Arguments

x integer specifying the number of traits to be fitted for a given random effect.
reps integer specifying the number of times the matrix should be repeated in a list format to provide easily the constraints in complex models that use the ds(), us() or cs() structures.

Value

$res a matrix or a list of matrices with the constraints to be provided in the Gtc argument of the vsr function.

Author(s)

Giovanny Covarrubias-Pazaran

References

See Also

The function vsr to know how to use fixm in the mmer solver.

Examples

fixm(4)
fixm(4,2)
gvsr function to build general variance-covariance structures for combination of random effects to be fitted in the mmer solver.

Usage

gvsr(..., Gu=NULL, Guc=NULL, Gti=NULL, Gtc=NULL, form=NULL)

Arguments

... names of the random effects (variables in the dataset) to be used to create a general variance structure. For example, for 2 random effects (variables); mom and progeny, a model specified as:

gvsr(mom, progeny)

will create a variance structure of the form:

| sigma2.m sigma.pm |
| sigma.pm sigma2.p |

where not only variance components for each random effect will be estimated but also the covariance component between the 2 random effects is estimated. The user can also provide a numeric vector or matrix to be considered the design matrix for the ith random effect. More than two random effects can be provided.

Gu list of matrices with the known variance-covariance values for the levels of the different random effects provided in the "..." argument (i.e. relationship matrix among individuals or any other known covariance matrix). If NULL, then an identity matrix is assumed. For example, a model with 2 random effects with covariance structure should be provided as:

gvsr(mom, progeny, Gu=list(Am,Ap))

where Am and Ap are the relationship matrices for the random effects for mom and progeny respectively.

Guc matrix with the constraints for the u random effects. This is used to specify which variance and covariance parameters between the 1 to 1 combinations of random effects should be estimated. For example, for 2 random effects the expected variance-covariance matrix expected to be estimated (when the default Guc=NULL) is an unstructured model:

| sigma2.m sigma.pm |
| sigma.pm sigma2.p |

but the user can constrain which parameters should be estimated. Providing:

Guc=diag(2) would fit:

| sigma2.m ...0... |
| ...0... sigma2.p |
Gti matrix with dimensions \(t \times t \) (\(t \) equal to number of traits) with initial values of the variance-covariance components for the random effect specified in the \(... \) argument. If the value is NULL the program will provide the initial values.

Gtc matrix with dimensions \(t \times t \) (\(t \) equal to number of traits) of constraints for the variance-covariance components for the random effect specified in the \(... \) argument according to the following rules:

0: not to be estimated
1: estimated and constrained to be positive (i.e. variance component)
2: estimated and unconstrained (can be negative or positive, i.e. covariance component)
3: not to be estimated but fixed (value has to be provided in the Gti argument)

In the multi-response scenario if the user doesn’t specify this argument the default is to build an unstructured matrix (using the \(\text{unsm}() \) function). This argument needs to be used wisely since some covariance among responses may not make sense. Useful functions to specify constraints are; \(\text{diag}() \), \(\text{unsm}() \), \(\text{fixm}() \).

form an additional structure to specify a kronecker product on top of the general covariance structure defined in the \(... \) argument.

Value

\(\text{Sres} \) a list with all neccessary elements (incidence matrices, known var-cov structures, unknown covariance structures to be estimated and constraints) to be used in the \(\text{mm} \)er solver.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2018) Software update: Moving the R package sommer to multivariate mixed models for genome-assisted prediction. doi: https://doi.org/10.1101/354639

See Also

The core function of the package: \(\text{mm} \)er

Examples

data(DT_ige)
DT <- DT_ige
Af <- A_ige
An <- A_ige
Direct genetic effects model
modDGE <- \(\text{mm} \)er(trait ~ block,
random = ~ focal,
rcov = ~ units,

data = DT)
summary(modDGE)$varcomp
#
Indirect genetic effects model without covariance between DGE and IGE
modDGE <- mmer(trait ~ block,
random = ~focal + neighbour,
rcov = ~ units,
data = DT)
summary(modDGE)$varcomp
#
Indirect genetic effects model with covariance between DGE and IGE
modIGE <- mmer(trait ~ block,
random = ~ gvsr(focal, neighbour),
rcov = ~ units, iters=4,
data = DT)
summary(modIGE)$varcomp
#
Indirect genetic effects model with covariance between DGE and IGE using relationship matrices
modIGEb <- mmer(trait ~ block,
random = ~ gvsr(focal, neighbour, Gu=list(Af,An)),
rcov = ~ units,
data = DT)
summary(modIGEb)$varcomp

GWAS

Genome wide association study analysis

Description

Fits a multivariate/univariate linear mixed model GWAS by likelihood methods (REML), see the Details section below. It uses the `mmer` function and its core coded in C++ using the Armadillo library to optimize dense matrix operations common in the direct-inversion algorithms. After the model fit extracts the inverse of the phenotypic variance matrix to perform the association test for the \(p \) markers. Please check the Details section (Model enabled) if you have any issue with making the function run.

The package also provides functions to estimate additive (\(A,\text{mat} \)), dominance (\(D,\text{mat} \)), epistatic (\(E,\text{mat} \)) and single step (\(H,\text{mat} \)) relationship matrices to model known covariances among genotypes typical in plant and animal breeding problems. Other functions to build known covariance structures among levels of random effects are autoregressive (AR1), compound symmetry (CS) and autoregressive moving average (ARMA) where the user needs to fix the correlation value for such models (this is different to estimating unknown covariance structures). Additionally, overlayed models can be implemented as well (overlay function). Spatial modeling can be done through the two dimensional splines (\(\text{spl2Da} \) and \(\text{spl2Db} \)). Random regression models can also be fitted through the (leg) function (orthopolynom package installation is needed for using the leg function).

The sommer package is updated on CRAN every 3-months due to CRAN policies but you can find the latest source at https://github.com/covaruber/sommer . This can be easily installed typing the following in the R console:

```r
# install.packages("covaruber/sommer")
```
library(devtools)
install_github("covaruber/sommer")

This is recommended since bugs fixes will be immediately available in the GitHub source. For tutorials on how to perform different analysis with sommer please look at the vignettes by typing in the terminal:

vignette("v1.sommer.quick.start")
vignette("v2.sommer.changes.and.faqs")
vignette("v3.sommer.qg")
vignette("v4.sommer.gxe")

or visit https://covaruber.github.io

Usage

GWAS(fixed, random, rcov, data, weights, W,
 nIters=20, tolParConvLL = 1e-03, tolParInv = 1e-06,
 init=NULL, constraints=NULL, method="NR",
 getPEV=TRUE, naMethodX="exclude",
 naMethodY="exclude", returnParam=FALSE,
 dateWarning=TRUE, date.warning=TRUE, verbose=FALSE,
 stepWeight=NULL, emWeight=NULL,
 M=NULL, gTerm=NULL, n.PC = 0, min.MAF = 0.05,
 P3D = TRUE)

Arguments

fixed A formula specifying the response variable(s) and fixed effects, i.e:
 response ~ covariate for univariate models
cbind(response.i,response.j) ~ covariate for multivariate models
The fcm() function can be used to constrain fixed effects in multi-response models.

random a formula specifying the name of the random effects, i.e. random= ~ genotype + year.
Useful functions can be used to fit heterogeneous variances and other special models (see 'Special Functions' in the Details section for more information):
vsr(...) is the main function to specify variance models and special structures for random effects. On the ... argument you provide the unknown variance-covariance structures (i.e. usr, dsr, atr) and the random effect where such covariance structure will be used (the random effect of interest). Gu is used to provide known covariance matrices among the levels of the random effect, Gt initial values and Gtc for constraints. Auxiliar functions for building the variance models are:
** dsr(x), usr(x), csr(x) and atr(x,levs) can be used to specify unknown diagonal, unstructured and customized unstructured and diagonal covariance structures to be estimated by REML.
** unsm(x), fixm(x) and diag(x) can be used to build easily matrices to specify constraints in the Gtc argument of the vsr() function.**

** overlay(), spl2Da(), spl2Db(), and leg() functions can be used to specify overlaid of design matrices of random effects, two dimensional spline and random regression models within the vsr() function.**

rcov

a formula specifying the name of the error term, i.e. rcov= ~ units.

The functions that can be used to fit heterogeneous residual variances are the same used on the random term but the random effect is always "units", i.e. rcov= ~vsr(dsr(Location), units)

data

a data frame containing the variables specified in the formulas for response, fixed, and random effects.

weights

name of the covariate for weights. To be used for the product $R = Wsi \times R \times Wsi$, where \times is the matrix product, Wsi is the square root of the inverse of W and R is the residual matrix.

W

Alternatively, instead of providing a vector of weights the user can specify an entire W matrix (e.g., when covariances exist). To be used first to produce $Wsi = \text{solve}(\text{chol}(W))$, and then calculate $R = Wsi \times R \times Wsi.t()$, where \times is the matrix product, and R is the residual matrix. Only one of the arguments weights or W should be used. If both are indicated W will be given the preference.

nIters

Maximum number of iterations allowed. Default value is 15.

tolParConvLL

Convergence criteria.

tolParInv

tolerance parameter for matrix inverse used when singularities are encountered.

init

initial values for the variance components. By default this is NULL and variance components are estimated by the method selected, but in case the user want to provide initial values for ALL var-cov components this argument is functional. It has to be provided as a list or an array, where each list element is one variance component and if multitrait model is pursued each element of the list is a matrix of variance covariance components among traits. Initial values can also be provided in the Gt argument of the vsr function. Is highly encouraged to use the Gt and Gtc arguments of the vsr function instead of this argument.

constraints

when initial values are provided these have to be accompanied by their constraints. See the vsr function for more details on the constraints. Is highly encouraged to use the Gt and Gtc arguments of the vsr function instead of this argument.

method

this refers to the method or algorithm to be used for estimating variance components. Direct-inversion Newton-Raphson NR and Average Information AI (Tunnicliffe 1989; Gilmour et al. 1995; Lee et al. 2015), and EMMA efficient mixed model association (Kang et al. 2008).

getPEV

a TRUE/FALSE value indicating if the program should return the predicted error variance and variance for random effects. This option is provided since this can take a long time for certain models where $p > n$ by a big extent.

naMethodX

one of the two possible values; "include" or "exclude". If "include" is selected then the function will impute the X matrices for fixed effects with the median value. If "exclude" is selected it will get rid of all rows with missing values for the X (fixed) covariates. The default is "exclude". The "include" option should be used carefully.
naMethod

one of the three possible values; "include", "include2" or "exclude". If "include" is selected then the function will impute the response variables with the median value. The difference between "include" and "include2" is only available in the multitrait models when the imputation can happen for the entire matrix of responses or only for complete cases ("include2"). If "exclude" is selected it will get rid of rows in responses where missing values are present for the estimation of variance components. The default is "exclude".

returnParam

a TRUE/FALSE value to indicate if the program should return the parameters used for modeling without fitting the model.

dateWarning

a TRUE/FALSE value to indicate if the program should warn you when is time to update the sommer package.

verbose

a TRUE/FALSE value to indicate if the program should return the progress of the iterative algorithm.

stepWeight

A vector of values (of length equal to the number of iterations) indicating the weight used to multiply the update (delta) for variance components at each iteration. If NULL the 1st iteration will be multiplied by 0.5, the 2nd by 0.7, and the rest by 0.9. This argument can help to avoid that variance components go outside the parameter space in the initial iterations which doesn’t happen very often with the NR method but it can be detected by looking at the behavior of the likelihood. In that case you may want to give a smaller weight to the initial 8-10 iterations.

emWeight

A vector of values (of length equal to the number of iterations) indicating with values between 0 and 1 the weight assigned to the EM information matrix. And the values 1 - emWeight will be applied to the NR/AI information matrix to produce a joint information matrix. If NULL weights for EM information matrix are zero and 1 for the NR/AI information matrix.

M

The marker matrix containing the marker scores for each level of the random effect selected in the gTerm argument, coded as -1,0,1 = aa,Aa,AA, levels (i.e. individuals) in rows and markers in columns. No additional columns should be provided, is a purely numerical matrix.

gTerm

a character vector indicating the random effect linked to the marker matrix M (i.e. the genetic term) in the model. The random effect selected should have the same number of levels than the number of rows of M. When fitting only one random effect you will need to add the letters ‘u:’ to the name of the random effect given the behavior of the naming rules of the solver when having a single random effect.

n.PC

Number of principal components to include as fixed effects. Default is 0 (equals K model).

min.MAF

Specifies the minimum minor allele frequency (MAF). If a marker has a MAF less than min.MAF, it is assigned a zero score.

P3D

When P3D=TRUE, variance components are estimated by REML only once, without any markers in the model. When P3D=FALSE, variance components are estimated by REML for each marker separately.
Details

Citation

Type `citation("sommer")` to know how to cite the sommer package in your publications.

Models Enabled

For details about the models enabled and more information about the covariance structures please check the help page of the package (`sommer`). In general the GWAS model implemented in sommer to obtain marker effect is a generalized linear model of the form:

\[b = (X'V^{-1}X)X'V^{-1}y \]

with \(X = ZM_i \)

where: \(b \) is the marker effect (dimensions 1 x nt) \(y \) is the response variable (univariate or multivariate) (dimensions 1 x nt) \(V^{-1} \) is the inverse of the phenotypic variance matrix (dimensions nt x nt) \(Z \) is the incidence matrix for the random effect selected (`gTerm` argument) to perform the GWAS (dimensions nt x ut) \(M_i \) is the ith column of the marker matrix (M argument) (dimensions u x m)

for t traits, n observations, m markers and u levels of the random effect. Depending if P3D is TRUE or FALSE the \(V^{-1} \) matrix will be calculated once and used for all marker tests (P3D=TRUE) or estimated through REML for each marker (P3D=FALSE).

Special Functions

- `vsr(atr(x,levels),y)`

 can be used to specify heterogeneous variance for the "y" factor covariate at specific levels of the factor covariate "x", i.e. `random=~vsr(at(Location,c("A","B")),ID)` fits a variance component for ID at levels A and B of the factor covariate Location.

- `vsr(dsr(x),y)`

 can be used to specify a diagonal covariance structure for the "y" covariate for all levels of the factor covariate "x", i.e. `random=~vsr(dsr(Location,ID))` fits a variance component for ID at all levels of the factor covariate Location.

- `vsr(usr(x),y)`

 can be used to specify an unstructured covariance structure for the "y" covariate for all levels of the factor covariate "x", i.e. `random=~vsr(usr(Location),ID)` fits variance and covariance components for ID at all levels of the factor covariate Location.

- `vsr(overlay(...,rlist=NULL,prefix=NULL))`

 can be used to specify overlay of design matrices between consecutive random effects specified, i.e. `random=~overlay(male,female)` overlays (overlaps) the incidence matrices for the male and female random effects to obtain a single variance component for both effects. The ‘rlist’ argument is a list with each element being a numeric value that multiplies the incidence matrix to be overlayed. See `overlay` for details. Can be combined with `vsr()`.

- `spl2Da(x.coord, y.coord, at.var, at.levels)`

 can be used to fit a 2-dimensional spline (i.e. spatial modeling) using coordinates `x.coord` and `y.coord` (in numeric class) assuming a single variance component. The 2D spline can be fitted at specific levels using the at and at.levels arguments. For example `random=~spl2Da(x.coord=Row,y.coord=Range,at.var=1)`.

- `spl2Db(x.coord, y.coord, at.var, at.levels)`

Would you like to continue reading more or do you need help with something else?
can be used to fit a 2-dimensional spline (i.e. spatial modeling) using coordinates `x.coord` and `y.coord` (in numeric class) assuming multiple variance components. The 2D spline can be fitted at specific levels using the `at` and `at.levels` arguments. For example `random=~spl2Db(x.coord=Row,y.coord=Range,at.var=FIELD)`.

For a short tutorial on how to use this special functions you can look at the vignettes by typing in the terminal:

```r
vignette('sommer.start')
```

Bug report and contact

If you have any technical questions or suggestions please post it in https://stackoverflow.com or https://stats.stackexchange.com.

If you have any bug report please go to https://github.com/covaruber/sommer or send me an email to address it asap.

Example Datasets

The package has been equipped with several datasets to learn how to use the sommer package:

* `DT_halfdiallel` and `DT_fulldiallel` datasets have examples to fit half and full diallel designs.
* `DT_h2` to calculate heritability
* `DT_cornhybrids` and `DT_technow` datasets to perform genomic prediction in hybrid single crosses
* `DT_wheat` dataset to do genomic prediction in single crosses in species displaying only additive effects.
* `DT_cpdata` dataset to fit genomic prediction models within a biparental population coming from 2 highly heterozygous parents including additive, dominance and epistatic effects.
* `DT_polyploid` to fit genomic prediction and GWAS analysis in polyploids.
* `DT_gryphon` data contains an example of an animal model including pedigree information.
* `DT_btdata` dataset contains an animal (birds) model.

Additional Functions

Other functions such as `summary`, `fitted`, `ranef` (notice here is ranef not ranef), `anova`, `variogram`, `residuals`, `coef` and `plot` applicable to typical linear models can also be applied to models fitted using the GWAS-type of functions.

Additional functions for genetic analysis have been included such as build a genotypic hybrid marker matrix (`build.HMM`), plot of genetic maps (`map.plot`), creation of manhattan plots (`manhattan`). If you need to use pedigree you need to convert your pedigree into a relationship matrix (i.e. use the `getA` function from the pedigreemm package).

Useful functions for analyzing field trials are included such as the `spl2Da` and `spl2Db`.

Value

If all parameters are correctly indicated the program will return a list with the following information:

- `Vi`: the inverse of the phenotypic variance matrix \(V^{-1} = (ZGZ + R)^{-1} \)
- `sigma`: a list with the values of the variance-covariance components with one list element for each random effect.
- `sigma_scaled`: a list with the values of the scaled variance-covariance components with one list element for each random effect.
sigmaSE: the Hessian matrix containing the variance-covariance for the variance components. SE’s can be obtained taking the square root of the diagonal values of the Hessian.

Beta: a data frame for trait BLUEs (fixed effects).

VarBeta: a variance-covariance matrix for trait BLUEs

U: a list (one element for each random effect) with a data frame for trait BLUPs.

VarU: a list (one element for each random effect) with the variance-covariance matrix for trait BLUPs.

PevU: a list (one element for each random effect) with the predicted error variance matrix for trait BLUPs.

fitted: Fitted values y.hat=XB

residuals: Residual values e = Y - XB

AIC: Akaike information criterion

BIC: Bayesian information criterion

convergence: a TRUE/FALSE statement indicating if the model converged.

monitor: The values of log-likelihood and variance-covariance components across iterations during the REML estimation.

scores: A dataframe with as many columns as markers analyzed and 5 rows containing the following:

beta: marker effects.

score: marker scores (-log_10p) for the traits.

Fstat: F-statistic associated to the test.

R2: R2 value for each marker.

R2s: R2 value for each marker scaled.

method: The method for estimation of variance components specified by the user.

constraints: constraints used in the mixed models for the random effects.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G. 2018. Software update: Moving the R package sommer to multivariate mixed models for genome-assisted prediction. doi: https://doi.org/10.1101/354639

Examples

```r
### For CRAN time limitations most lines in the examples are silenced with one '#' mark, remove them and run the examples using command + shift + C |OR| control + shift + C

### potato example

# data(DT_polyploid)
# DT <- DT_polyploid
# GT <- GT_polyploid
# MP <- MP_polyploid
# # convert markers to numeric format
# numo <- atcg1234(data=GT, ploidy=4);
# numo$M[1:5,1:5];
# numo$ref.allele[,1:5]

# # common <- intersect(DT$Name,rownames(numo$M))
# # get the markers and phenotypes for such inds
```
#
marks <- numo$M[common,]; marks[1:5,1:5]
DT2 <- DT[match(common,DT$Name),];
DT2 <- as.data.frame(DT2)
DT2[1:5,]
#
#
Additive relationship matrix, specify ploidy
#
A <- A.mat(marks)
#
run it as GWAS model
#
ans2 <- GWAS(tuber_shape~1,
random=~vrs(Name,Gu=A),
rcol=units,
gTerm = "u:Name",
M=marks, data=DT2)
plot(ans2$scores[,1])

H.mat

Combined relationship matrix H

Description

Given a matrix A and a matrix G returns a H matrix with the C++ Armadillo library.

Usage

```r
H.mat(A, G, tau = 1, omega = 1, tolparinv=1e-6)
```

Arguments

- **A**: Additive relationship matrix based on pedigree.
- **G**: Additive relationship matrix based on marker data.
- **tau**: As described by Martini et al. (2018).
- **omega**: As described by Martini et al. (2018).
- **tolparinv**: Tolerance parameter for matrix inverse used when singularities are encountered in the estimation procedure.

Details

See references

Value

H Matrix with the relationship between the individuals based on pedigree and corrected by molecular information
References

See Also

The core functions of the package mmer

Examples

```r
### Random population of 200 lines with 1000 markers
###
M <- matrix(rep(0,200*1000),200,1000)
for (i in 1:200) {
  M[i,] <- sample(c(-1,0,0,1), size=1000, replace=TRUE)
}
rownames(M) <- 1:nrow(M)
v <- sample(1:nrow(M),100)
M2 <- M[v,]
A <- A.mat(M) # assume this is a pedigree-based matrix for the sake of example
G <- A.mat(M2)
H <- H.mat(A,G)
# colfunc <- colorRampPalette(c("steelblue4","springgreen","yellow"))
# hv <- heatmap(H[1:15,1:15], col = colfunc(100),Colv = "Rowv")
```

imputev
Imputing a numeric or character vector

Description

This function is a very simple function to impute a numeric or character vector with the mean or median value of the vector.

Usage

```r
imputev(x, method="median")
```

Arguments

- **x**: a numeric or character vector.
- **method**: the method to choose between mean or median.
isc

Value

x a numeric or character vector imputed with the method selected.

Author(s)

Giovanny Covarrubias-Pazaran

References

See Also

The core function of the package `mmec`

Examples

```r
# generate your mickey mouse -log10(p-values)
set.seed(1253)
x <- rnorm(100)
x[sample(1:100,10)] <- NA
imputev(x)
```

isc

identity covariance structure

Description

isc creates a diagonal covariance structure for the levels of the random effect to be used with the `mmec` solver.

Usage

```r
isc(x, thetaC=NULL, theta=NULL)
```

Arguments

- `x` vector of observations for the random effect.
- `thetaC` an optional matrix for constraints in the variance components.
- `theta` an optional matrix for initial values of the variance components.

Value

res a list with the provided vector and the variance covariance structure expected for the levels of the random effect.
References

See Also

See the function `vsc` to know how to use `isc` in the `mmec` solver.

Examples

```r
x <- as.factor(c(1:5, 1:5, 1:5)); x
isc(x)
```

Description

`jet.colors(n)` generates a sequence of `n` colors from dark blue to cyan to yellow to dark red. It is similar to the default color schemes in Python’s matplotlib or MATLAB.

Usage

```r
jet.colors(n, alpha = 1)
```

Arguments

- `n` The number of colors to return.
- `alpha` The transparency value of the colors. See `?rgb` for details.

Value

A vector of colors along the jet color ramp.

See Also

The core function of the package `mmec`.

Examples

```r
{
  # Plot a colorbar with jet.colors
  image(matrix(seq(100), 100), col=jet.colors(100))
}
```
Description

This function calculates the LD decay based on a marker matrix and a map with distances between markers in cM or base pairs.

Usage

LD.decay(markers,map,silent=FALSE,unlinked=FALSE,gamma=0.95)

Arguments

- markers: a numeric matrix of markers (columns) by individuals (rows) in -1, 0, 1 format.
- map: a data frame with 3 columns "Locus" (name of markers), "LG" (linkage group or chromosome), and "Position" (in cM or base pairs).
- silent: a TRUE/FALSE value statement indicating if the program should or should not display the progress bar. silent=TRUE means that will not be displayed.
- unlinked: a TRUE/FALSE value statement indicating if the program should or should not calculate the alpha(see next argument) percentile of interchromosomal LD.
- gamma: a percentile value for LD breakage to be used in the calculation of interchromosomal LD extent.

Value

- $resp: a list with 3 elements; "by.LG", "all.LG", "LDM". The first element (by.LG) is a list with as many elements as chromosomes where each contains a matrix with 3 columns, the distance, the r2 value, and the p-value associated to the chi-square test for disequilibrium. The second element (all.LG) has a big matrix with distance, r2 values and p-values, for each point from all chromosomes in a single data.frame. The third element (LDM) is the matrix of linkage disequilibrium between pairs of markers.

 If unlinked is selected the program should return the gamma percentile interchromosomal LD (r2) for each chromosome and average.

References

See Also

The core functions of the package mmer and mmec.
Examples

For CRAN time limitations most lines in the examples are silenced with one '#' mark.

command + shift + C [OR] control + shift + C

Getting the marker matrix

```r
data(DT_cpdata)
CPgeno <- GT_cpdata; CPgeno[1:5,1:5]
```

Getting the map

```r
mapCP <- MP_cpdata; head(mapCP)
```

Names of the map

```r
names(mapCP) <- c("Locus","Position","LG")
```

With example purposes, we only do 3 chromosomes

```r
mapCP <- mapCP[which(mapCP$LG <= 3),]
```

Running the function

```r
# res <- LD.decay(CPgeno, mapCP)
# names(res)
```

Subset only markers with significant LD

```r
# res$all.LG <- res$all.LG[which(res$all.LG$p < .001),]
```

Plotting the LD decay

```r
# with(res$all.LG, plot(r2~d,col=transp("cadetblue"),
# xlab="Distance in cM")
# )

# axis(1, at=seq(0,55,5), labels=seq(0,55,5))
# axis(2, at=seq(0,1,.1), labels=seq(0,1,.1), las=1)
```

If you want to add the loess regression lines

```r
# mod <- loess(r2 ~ d, data=res$all.LG)
# par(new=T)
# lilo <- predict(mod, data.frame(d=1:55))
# plot(lilo, bty="n", xaxt="n", yaxt="n", col="green",
# type="l", ylim=c(0,1),ylab="",xlab="",lwd=2)
```

Description

Legendre polynomials of order ‘n’ are created given a vector ‘x’ and normalized to lay between values u and v.
Usage

\[\text{leg}(x, n=1, u=-1, v=1, \text{intercept}=\text{TRUE}, \text{intercept1}=\text{FALSE}) \]

Arguments

- **x**: numeric vector to be used for the polynomial.
- **n**: order of the Legendre polynomials.
- **u**: lower bound for the polynomial.
- **v**: upper bound for the polynomial.
- **intercept**: a TRUE/FALSE value indicating if the intercept should be included.
- **intercept1**: a TRUE/FALSE value indicating if the intercept should have value 1 (is multiplied by \(\sqrt{2} \)).

Value

- **$S3** an Legendre polynomial matrix of order \(n \).

Author(s)

Giovanny Covarrubias-Pazaran

References

See Also

The core functions of the package `mmer`

Examples

```r
x <- sort(rep(1:3,100))
# you need to install the orthopolynom library
# leg(x, n=1)
# leg(x, n=2)

# see dataset data(DT_legendre) for a random regression modeling example
```
list2usmat

Description

list2usmat creates an unstructured square matrix taking a vector or list to fill the diagonal and upper triangular with the values provided.

Usage

list2usmat(sigmaL)

Arguments

sigmaL vector or list of values to put on the matrix.

Value

res a matrix with the values provided.

Author(s)

Giovanny Covarrubias-Pazaran

References

See Also

The function \texttt{vssr} to know how to use \texttt{list2usmat} in the \texttt{mmer} solver.

Examples

list2usmat(as.list(1:3))
list2usmat(as.list(1:10))
Creating a manhattan plot

Description
This function was designed to create a manhattan plot using a data frame with columns "Chrom" (Chromosome), "Position" and "p.val" (significance for the test).

Usage
manhattan(map, col=NULL, fdr.level=0.05, show.fdr=TRUE, PVCN=NULL, ylim=NULL, ...)

Arguments

- map: the data frame with 3 columns with names; "Chrom" (Chromosome), "Position" and "p.val" (significance for the test).
- col: colors preferred by the user to be used in the manhattan plot. The default is NULL which will use the red-blue palette.
- fdr.level: false discovery rate to be drawn in the plot.
- show.fdr: a TRUE/FALSE value indicating if the FDR value should be shown in the manhattan plot or not. By default is TRUE meaning that will be displayed.
- PVCN: In case the user wants to provide the name of the column that should be treated as the "p.val" column expected by the program in the 'map' argument.
- ylim: the y axis limits for the manhattan plot if the user wants to customize it. By default the plot will reflect the minimum and maximum values found.
- ...: additional arguments to be passed to the plot function such as pch, cex, etc.

Value
If all parameters are correctly indicated the program will return:

$plot.data: a manhattan plot

Author(s)
Giovanny Covarrubias-Pazaran

References

See Also
The core functions of the package mmer
Examples

#random population of 200 lines with 1000 markers
M <- matrix(rep(0,200*1000),1000,200)
for (i in 1:200) {
 M[,i] <- ifelse(runif(1000)<0.5,-1,1)
}
colnames(M) <- 1:200
set.seed(1234)
pp <- abs(rnorm(500,0,3));pp[23:34] <- abs(rnorm(12,0,20))
geno <- data.frame(Locus=paste("m",1:500, sep="."),Chrom=sort(rep(c(1:5),100)),
 Position=rep(seq(1,100,1),5),
 p.val=pp, check.names=FALSE)
geno$Locus <- as.character(geno$Locus)
look at the data, 5LGs, 100 markers in each
-log(p.val) value for simulated trait
head(geno)
tail(geno)
manhattan(geno)

map.plot

Creating a genetic map plot

Description

This function was designed to create a genetic map plot using a data frame indicating the Linkage Group (LG), Position and marker names (Locus).

Usage

map.plot(data, trait = NULL, trait.scale = "same",
 col.chr = NULL, col.trait = NULL, type = "hist", cex = 0.4,
 lwd = 1, cex.axis = 0.4, cex.trait=0.8, jump = 5)

Arguments

data the data frame with 3 columns with names; Locus, LG and Position

trait if something wants to be plotted next the linkage groups the user must indicate the name of the column containing the values to be ploted, i.e. p-values, LOD scores, X2 segregation distortion values, etc.

trait.scale is trait is not NULL, this is a character value indicating if the y axis limits for the trait plotted next to the chromosomes should be the same or different for each linkage group. The default value is "same", which means that the same y axis limit is conserved across linkage groups. For giving an individual y axis limit for each linkage group write "diff".

col.chr a vector with color names for the chromosomes. If NULL they will be drawn in gray-black scale.
col.trait a vector with color names for the dots, lines or histogram for the trait plotted next to the LG’s

type a character value indicating if the trait should be plotted as scatterplot ‘dot’, histogram ‘hist’, line ‘line’ next to the chromosomes.

cex the cex value determining the size of the cM position labels in the LGs

lwd the width of the lines in the plot

cex.axis the cex value for sizing the labels of LGs and traits plotted (top labels)

cex.trait the cex value for sizing the dots or lines of the trait plotted

jump a scalar value indicating how often should be drawn a number next to the LG indicating the position. The default is 5 which means every 5 cM a label will be drawn, i.e. 0,5,10,15,... cM.

Value

If all parameters are correctly indicated the program will return:

$plot.data a plot with the LGs and the information used to create a plot

Author(s)

Giovanny Covarrubias-Pazaran

References

See Also

The core functions of the package mmer

Examples

#random population of 200 lines with 1000 markers
M <- matrix(rep(0,200*1000),1000,200)
for (i in 1:200) {
 M[,i] <- ifelse(runif(1000)<0.5,-1,1)
}
colnames(M) <- 1:200
set.seed(1234)
geno <- data.frame(Locus=paste("m",1:500, sep=".",LG=sort(rep(c(1:5),100)),
 Position=rep(seq(1,100,1),5),
 X2=rnorm(500,10,4), check.names=FALSE)
geno$Locus <- as.character(geno$Locus)
look at the data, 5LGs, 100 markers in each
X2 value for segregation distortion simulated
head(geno)
tail(geno)
table(geno$LG) # 5 LGs, 100 marks
MEMMA

Multivariate Efficient Mixed Model Association Algorithm

Description

This function is used internally in the function mmer when multiple responses are selected for a single variance component other than the error. It uses the efficient mixed model association (MEMMA) algorithm.

Usage

MEMMA(Y, X=NULL, ZETA=NULL, tolpar = 1e-06, tolparinv = 1e-06, check.model=TRUE, silent=TRUE)

Arguments

Y a numeric vector for the response variable
X an incidence matrix for fixed effects.
ZETA an incidence matrix for random effects. This NEEDS TO BE PROVIDED AS A LIST STRUCTURE. For example Z=list(list(Z=Z1, K=K1), list(Z=Z2, K=K2), list(Z=Z3, K=K3)) makes a 2 level list for 3 random effects. The general idea is that each random effect with or without its variance-covariance structure is a list, i.e. list(Z=Z1, K=K1) where Z is the incidence matrix and K the var-cov matrix. When moving to more than one random effect we need to make several lists that need to be inside another list. What we call a 2-level list, i.e. list(Z=Z1, K=K1) and list(Z=Z2, K=K2) would need to be put in the form; list(list(Z=Z1, K=K1),list(Z=Z1, K=K1)), which as can be seen, is a list of lists (2-level list).
tolpar tolerance parameter for convergence
tolparinv tolerance parameter for matrix inverse
check.model a TRUE/FALSE value indicating if list structure provided by the user is correct to fix it. The default is TRUE but is turned off to FALSE within the mmer function which would imply a double check.
silent a TRUE/FALSE value indicating if the function should draw the progress bar or iterations performed while working or should not be displayed.
Details

The likelihood function optimized in this algorithm is:

\[
\log L = (n - p) \times \log(\text{sum}(\eta^2/\lambda + \delta)) + \text{sum}(\log(\lambda + \delta))
\]

where: \(n-p\) refers to the degrees of freedom \(\lambda\) are the eigenvalues mentioned by Kang et al. (2008) \(\delta\) is the REML estimator of the ridge parameter

The algorithm can be summarized in the next steps:

1) provide initial value for the ridge parameter
2) estimate \(S = I - X(X'X)^{-1}X'\)
3) obtain the phenotypic variance \(V = ZKZ' + \text{delta.prov}I\)
4) perform an eigen decomposition of \(SVS\)
5) create "\(\lambda\)" as the eigenvalues of \(SVS\) and "\(U\)" as the eigenvectors
6) estimate \(\eta = U'y\)
7) optimize the likelihood shown above providing "\(\eta\)", "\(\lambda\)"s" and optimize with respect to "\(\delta\)" which is the ridge parameter and contains \(V_e/V_u\)

Value

If all parameters are correctly indicated the program will return a list with the following information:

- \$Vu a scalar value for the variance component estimated
- \$Ve a scalar value for the error variance estimated
- \$V.inv a matrix with the inverse of the phenotypic variance \(V = ZGZ + R, V^{-1}\)
- \$u.hat a vector with BLUPs for random effects
- \$Var.u.hat a vector with variances for BLUPs
- \$PEV.u.hat a vector with predicted error variance for BLUPs
- \$beta.hat a vector for BLUEs of fixed effects
- \$Var.beta.hat a vector with variances for BLUEs
- \$X incidence matrix for fixed effects, if not passed is assumed to only include the intercept
- \$Z incidence matrix for random effects, if not passed is assumed to be a diagonal matrix
- \$K the var-cov matrix for the random effect fitted in \(Z\)
- \$ll the log-likelihood value for obtained when optimizing the likelihood function when using ML or REML
References

See Also

The core functions of the package mmer

Examples

```r
### For CRAN time limitations most lines in the examples are silenced with one '#' mark,
### remove them and run the examples

# data(CPdata)
# DT <- DT_cpdata
# GT <- GT_cpdata
# MP <- MP_cpdata
# ### look at the data
# head(DT)
# GT[1:5,1:5]
# ## fit a model including additive and dominance effects
# Y <- DT[,c("color","Yield")]
# Za <- diag(dim(Y)[1])
# A <- A.mat(GT) # additive relationship matrix
# #### ADDITIVE MODEL ####
# ETA.A <- list(add=list(Z=Za,K=A))
# ans.A <- MEMMA(Y=Y, ZETA=ETA.A)
# ans.A$var.comp
```

Description

The mmecc function uses the Henderson mixed model equations and the Average Information algorithm coded in C++ using the Armadillo library to optimize matrix operations common in problems with sparse data (e.g., genotype by environment models). This algorithm is intended to be used for problems of the type \(r > c \) (more records in the data than coefficients to estimate). For problems with of the type \(c > r \) (more coefficients to estimate than records available), the direct inversion algorithms are faster and we recommend to shift to the use of the mmer function.
mmec(fixed, random, rcov, data, W, nIters=20, tolParConvLL = 1e-03, tolParConvNorm = 1e-04, tolParInv = 1e-06, naMethodX="exclude", naMethodY="exclude", returnParam=FALSE, dateWarning=TRUE, verbose=TRUE,addScaleParam=NULL, stepWeight=NULL, emWeight=NULL)

Arguments

fixed A formula specifying the response variable(s) and fixed effects, i.e: response ~ covariate

random A formula specifying the name of the random effects, i.e. random= ~ genotype + year.

Useful functions can be used to fit heterogeneous variances and other special models (see 'Special Functions' in the Details section for more information):

vsc(..., Gu) is the main function to specify variance models and special structures for random effects. On the ... argument you provide the unknown variance-covariance structures (i.e. usc,dsc,at,csc) and the random effect where such covariance structure will be used (the random effect of interest). Gu is used to provide known covariance matrices among the levels of the random effect. Auxiliary functions for building the variance models are:

** dsc(x), usc(x), csc(x), isc(x), and atr(x,levs) can be used to specify unknown diagonal, unstructured and customized unstructured and diagonal covariance structures to be estimated by REML.**

** unsm(x), fixm(x) and diag(x) can be used to build easily matrices to specify constraints in the Gtc argument of the vsc() function.**

** overlay(), spl2Dc(), and leg() functions can be used to specify overlayed of design matrices of random effects, two dimensional spline and random regression models within the vsc() function.**

rcov A formula specifying the name of the error term, i.e. rcov= ~ units.

Special heterogeneous and special variance models and constraints for the residual part are the same used on the random term but the name of the random effect is always "units" which can be thought as a column with as many levels as rows in the data, i.e. rcov= ~vsc(dsc(covariate),isc(units))

When fitting structures at the level of residuals please make sure that your data is sorted based on the factors defining the structure. For example, for rcov= ~vsc(dsc(xx),isc(units)) sort the dataset by the variable xx.

data A data frame containing the variables specified in the formulas for response, fixed, and random effects.

W Alternatively, instead of providing a vector of weights the user can specify an entire W matrix (e.g., when covariances exist). To be used first to produce Wis = solve(chol(W)), and then calculate R = Wsi*R*Wsi.t(), where * is the matrix product, and R is the residual matrix. Only one of the arguments weights or W should be used. If both are indicated W will be given the preference.

nIters Maximum number of iterations allowed.
tolParConvLL: Convergence criteria based in the change of log-likelihood between iteration i and $i-1$.

tolParConvNorm: Convergence criteria based in the norm proposed by Jensen, Madsen and Thompson (1997):

$$e_1 = \| \text{InfMatInv.diag()} / \sqrt{N} \times dL_u \|$$

where \text{InfMatInv.diag()} is the diagonal of the inverse of the information matrix, N is the total number of variance components, and dL_u is the vector of first derivatives.

tolParInv: Tolerance parameter for matrix inverse used when singularities are encountered in the estimation procedure.

naMethodX: One of the two possible values; "include" or "exclude". If "include" is selected then the function will impute the X matrices for fixed effects with the median value. If "exclude" is selected it will get rid of all rows with missing values for the X (fixed) covariates. The default is "exclude". The "include" option should be used carefully.

naMethodY: One of the three possible values; "include", "include2" or "exclude" (default) to treat the observations in response variable to be used in the estimation of variance components. The first option "include" will impute the response variables for all rows with the median value, whereas "include2" imputes the responses only for rows where there is observation(s) for at least one of the responses (only available in the multi-response models). If "exclude" is selected (default) it will get rid of rows in response(s) where missing values are present for at least one of the responses.

returnParam: A TRUE/FALSE value to indicate if the program should return the parameters to be used for fitting the model instead of fitting the model.

dateWarning: A TRUE/FALSE value to indicate if the program should warn you when is time to update the sommer package.

verbose: A TRUE/FALSE value to indicate if the program should return the progress of the iterative algorithm.

addScaleParam: additional scale parameters for the thetaF matrix.

stepWeight: A vector of values (of length equal to the number of iterations) indicating the weight used to multiply the update (delta) for variance components at each iteration. If NULL the 1st iteration will be multiplied by 0.5, the 2nd by 0.7, and the rest by 0.9. This argument can help to avoid that variance components go outside the parameter space in the initial iterations which happens very often with the AI method but it can be detected by looking at the behavior of the likelihood. In that case you may want to give a smaller weight.

emWeight: A vector of values (of length equal to the number of iterations) indicating with values between 0 and 1 the weight assigned to the EM information matrix. And the values 1 - emWeight will be applied to the AI information matrix to produce a joint information matrix. By default the function gives a weight to the EM algorithm of 1, 0.9, 0.8, 0.7, 0.6, 0.4, 0.2 to the first 7 iterations and the rest a value 0.04. You can modify this argument by providing a different vector with as many values as iterations.
Details

The use of this function requires a good understanding of mixed models. Please review the 'sommer.quick.start' vignette and pay attention to details like format of your random and fixed variables (e.g. character and factor variables have different properties when returning BLUEs or BLUPs, please see the 'sommer.changes.and.faqs' vignette).

For tutorials on how to perform different analysis with sommer please look at the vignettes by typing in the terminal:

vignette("v1.sommer.quick.start")
vignette("v2.sommer.changes.and.faqs")
vignette("v3.sommer.qg")
vignette("v4.sommer.gxe")

Citation

Type citation("sommer") to know how to cite the sommer package in your publications.

Special variance structures

\texttt{vsc(atc(x,levels),isc(y))}

can be used to specify heterogeneous variance for the "y" covariate at specific levels of the covariate "x", i.e. \texttt{random=-vsc(at(Location,c("A","B")),isc(ID))} fits a variance component for ID at levels A and B of the covariate Location.

\texttt{vsc(dsc(x),isc(y))}

can be used to specify a diagonal covariance structure for the "y" covariate for all levels of the covariate "x", i.e. \texttt{random=-vsc(dsc(Location),isc(ID))} fits a variance component for ID at all levels of the covariate Location.

\texttt{vsc(usc(x),isc(y))}

can be used to specify an unstructured covariance structure for the "y" covariate for all levels of the covariate "x", i.e. \texttt{random=-vsc(usc(Location),isc(ID))} fits variance and covariance components for ID at all levels of the covariate Location.

\texttt{vsc(isc(overlay(...,rlist=NULL,prefix=NULL)))}

can be used to specify overlay of design matrices between consecutive random effects specified, i.e. \texttt{random=-vsc(overlay(male,female))} overlays (overlaps) the incidence matrices for the male and female random effects to obtain a single variance component for both effects. The ‘rlist’ argument is a list with each element being a numeric value that multiplies the incidence matrix to be overlayed. See \texttt{overlay} for details. Can be combined with \texttt{vsc()}.

\texttt{vsc(leg(x,n),isc(y))}

can be used to fit a random regression model using a numerical variable \texttt{x} that marks the trajectory for the random effect \texttt{y}. The \texttt{leg} function can be combined with the special functions \texttt{dsc}, \texttt{usc} at and \texttt{csc}. For example \texttt{random=-vsc(leg(x,1),isc(y)) or random=-vsc(usc(leg(x,1)),isc(y)).}

\texttt{spl2Dc(x.coord, y.coord, at.var, at.levels)}

can be used to fit a 2-dimensional spline (i.e. spatial modeling) using coordinates \texttt{x.coord} and \texttt{y.coord} (in numeric class) assuming multiple variance components. The 2D spline can be fitted at specific levels using the \texttt{at.var} and \texttt{at.levels} arguments. For example \texttt{random=-spl2Dc(x.coord=Row,y.coord=Range,at.var=FIELD,at.levels=LANDCLASS)}.

S3 methods
S3 methods are available for some parameter extraction such as `fitted.mmec`, `residuals.mmec`, `summary.mmec`, `ranef.mmec`, `coef.mmec`, `anova.mmec`, `plot.mmec`, and `predict.mmec` to obtain adjusted means. In addition, the `vpredict` function (replacement of the `pin` function) can be used to estimate standard errors for linear combinations of variance components (i.e. ratios like h2).

Additional Functions

Additional functions for genetic analysis have been included such as relationship matrix building (`A.mat`, `D.mat`, `E.mat`, `H.mat`), build a genotypic hybrid marker matrix (`build.HMM`), plot of genetic maps (`map.plot`), and manhattan plots (`manhattan`). If you need to build a pedigree-based relationship matrix use the `getA` function from the pedigreemm package.

Bug report and contact

If you have any technical questions or suggestions please post it in https://stackoverflow.com or https://stats.stackexchange.com

If you have any bug report please go to https://github.com/covaruber/sommer or send me an email to address it asap, just make sure you have read the vignettes carefully before sending your question.

Example Datasets

The package has been equipped with several datasets to learn how to use the sommer package:

* **DT_halfdiallel**, **DT_fulldiallel** and **DT_mohring** datasets have examples to fit half and full diallel designs.
* **DT_h2** to calculate heritability
* **DT_cornhybrids** and **DT_technow** datasets to perform genomic prediction in hybrid single crosses
* **DT_wheat** dataset to do genomic prediction in single crosses in species displaying only additive effects.
* **DT_cpdata** dataset to fit genomic prediction models within a biparental population coming from 2 highly heterozygous parents including additive, dominance and epistatic effects.
* **DT_polyploid** to fit genomic prediction and GWAS analysis in polyploids.
* **DT_gryphon** data contains an example of an animal model including pedigree information.
* **DT_btdata** dataset contains an animal (birds) model.
* **DT_legendre** simulated dataset for random regression model.
* **DT_sleepstudy** dataset to know how to translate lme4 models to sommer models.
* **DT_ige** dataset to show how to fit indirect genetic effect models.

Models Enabled

For details about the models enabled and more information about the covariance structures please check the help page of the package (`sommer`).

Value

If all parameters are correctly indicated the program will return a list with the following information:

- **llik** the vector of log-likelihoods across iterations
- **M** the coefficient matrix extended by the response vector y
- **W** the column binded matrix $W = [X \ Z \ y]$
- **b** the vector of fixed effect.
u the vector of random effect.
Ci the inverse of the coefficient matrix.
avInf The matrix of second derivatives of the likelihood with respect to the i,j th variance-covariance component.
monitor The values of the variance-covariance components across iterations during the REML estimation.
constraints The vector of constraints.
AIC Akaike information criterion
BIC Bayesian information criterion
convergence a TRUE/FALSE statement indicating if the model converged.
partitions a list where each element contains a matrix indicating where each random effect starts and ends.
percDelta the matrix of percentage change in deltas.
normMonitor the matrix of the three norms calculated.
toBoundary the matrix of variance components that were forced to the boundary across iterations.

Author(s)

Giovanny Covarrubias-Pazaran with contributions of Christelle Fernandez Camacho

References

Examples

```r
### For CRAN time limitations most lines in the examples are silenced with one '#' mark,
### remove them and run the examples

### EXAMPLES
### Different models with sommer

data(DT_example)
```
DT <- DT_example
head(DT)

Univariate homogeneous variance models

Compound symmetry (CS) model
ans1 <- mmec(Yield~Env,
 random= ~ Name + Env:Name,
 rcov= ~ units,
 data=DT)
summary(ans1)

Univariate heterogeneous variance models

DT=DT[with(DT, order(Env)),]

Compound symmetry (CS) + Diagonal (DIAG) model
ans2 <- mmec(Yield~Env,
 random= ~Name + vsc(dsc(Env),isc(Name)),
 rcov= ~ vsc(dsc(Env),isc(units)),
 data=DT)
summary(ans2)

Univariate unstructured variance models

ans3 <- mmec(Yield~Env,
 random= ~ vsc(usc(Env),isc(Name)),
 rcov= ~ vsc(dsc(Env),isc(units)),
 data=DT)
summary(ans3)

mmer

mixed model equations for r records

Description

The mmer function uses the Direct-Inversion Newton-Raphson or Average Information coded in C++ using the Armadillo library to optimize dense matrix operations common in genomic selection models. These algorithms are **intended to be used for problems of the type c > r (more coefficients to estimate than records in the dataset) and/or dense matrices**. For problems with sparse data, or problems of the type r > c (more records in the dataset than coefficients to estimate), the MME-based algorithm in the mmec function is faster and we recommend to shift to use that function.
Usage

mmer(fixed, random, rcov, data, weights, W, nIters=20, tolParConvLL = 1e-03, tolParInv = 1e-06, init=NULL, constraints=NULL, method="NR", getPEV=TRUE, naMethodX="exclude", naMethodY="exclude", returnParam=FALSE, dateWarning=TRUE, date.warning=TRUE, verbose=TRUE, reshapeOutput=TRUE, stepWeight=NULL, emWeight=NULL)

Arguments

fixed A formula specifying the response variable(s) and fixed effects, i.e: response ~ covariate for univariate models cbind(response.i,response.j) ~ covariate for multivariate models The fcm() function can be used to constrain fixed effects in multi-response models.

random A formula specifying the name of the random effects, i.e. random= ~ genotype + year.
Useful functions can be used to fit heterogeneous variances and other special models (see 'Special Functions' in the Details section for more information): vsr(...,Gu,Gti,Gtc) is the main function to specify variance models and special structures for random effects. On the ... argument you provide the unknown variance-covariance structures (i.e. usr,dsr,atr,csr) and the random effect where such covariance structure will be used (the random effect of interest). Gu is used to provide known covariance matrices among the levels of the random effect, Gti initial values and Gtc for constraints. Auxiliar functions for building the variance models are:
** dsr(x), usr(x), csr(x) and atr(x,levs) can be used to specify unknown diagonal, unstructured and customized unstructured and diagonal covariance structures to be estimated by REML.
** unsm(x), fixm(x) and diag(x) can be used to build easily matrices to specify constraints in the Gtc argument of the vsr() function.
** overlay(), spl2Da(), spl2Db(), and leg() functions can be used to specify overlayed of design matrices of random effects, two dimensional spline and random regression models within the vsr() function.

gvsr(...,Gu,Guc,Gti,Gtc) is an alternative function to specify general variance structures between different random effects. An special case in the indirect genetic effect models. Is similar to the vsr function but in the ... argument the different random effects are provided.

rcov A formula specifying the name of the error term, i.e. rcov= ~ units.
Special heterogeneous and special variance models and constraints for the residual part are the same used on the random term but the name of the random effect is always "units" which can be thought as a column with as many levels as rows in the data, i.e. rcov= ~ vsr(dsr(covariate),units)

data A data frame containing the variables specified in the formulas for response, fixed, and random effects.
weights Name of the covariate for weights. To be used for the product \(R = Wsi^*R*Wsi \), where * is the matrix product, Wsi is the square root of the inverse of W and R is the residual matrix.

\(W \) Alternatively, instead of providing a vector of weights the user can specify an entire W matrix (e.g., when covariances exist). To be used first to produce Wsi = solve(chol(W)), and then calculate R = Wsi*R*Wsi.t(), where * is the matrix product, and R is the residual matrix. Only one of the arguments weights or W should be used. If both are indicated W will be given the preference.

nIters Maximum number of iterations allowed.

tolParConvLL Convergence criteria for the change in log-likelihood.

tolParInv Tolerance parameter for matrix inverse used when singularities are encountered in the estimation procedure.

init Initial values for the variance components. By default this is NULL and initial values for the variance components are provided by the algorithm, but in case the user want to provide initial values for ALL var-cov components this argument is functional. It has to be provided as a list, where each list element corresponds to one random effect (1x1 matrix) and if multitrait model is pursued each element of the list is a matrix of variance covariance components among traits for such random effect. Initial values can also be provided in the Gti argument of the vsr function. Is highly encouraged to use the Gti and Gic arguments of the vsr function instead of this argument, but these argument can be used to provide all initial values at once

constraints When initial values are provided these have to be accompanied by their constraints. See the vsr function for more details on the constraints. Is highly encouraged to use the Gti and Gic arguments of the vsr function instead of this argument but these argument can be used to provide all constraints at once.

method This refers to the method or algorithm to be used for estimating variance components. Direct-inversion Newton-Raphson NR and Average Information AI (Tunnicliffe 1989; Gilmour et al. 1995; Lee et al. 2015).

getPEV A TRUE/FALSE value indicating if the program should return the predicted error variance and variance for random effects. This option is provided since this can take a long time for certain models where p is > n by a big extent.

naMethodX One of the two possible values; "include" or "exclude". If "include" is selected then the function will impute the X matrices for fixed effects with the median value. If "exclude" is selected it will get rid of all rows with missing values for the X (fixed) covariates. The default is "exclude". The "include" option should be used carefully.

naMethodY One of the three possible values; "include", "include2" or "exclude" (default) to treat the observations in response variable to be used in the estimation of variance components. The first option "include" will impute the response variables for all rows with the median value, whereas "include2" imputes the responses only for rows where there is observation(s) for at least one of the responses (only available in the multi-response models). If "exclude" is selected (default) it will get rid of rows in response(s) where missing values are present for at least one of the responses.
returnParam A TRUE/FALSE value to indicate if the program should return the parameters to be used for fitting the model instead of fitting the model.

dateWarning A TRUE/FALSE value to indicate if the program should warn you when is time to update the sommer package.

date.warning A TRUE/FALSE value to indicate if the program should warn you when is time to update the sommer package. This argument will be removed soon, just left for backcompatibility.

verbose A TRUE/FALSE value to indicate if the program should return the progress of the iterative algorithm.

reshapeOutput A TRUE/FALSE value to indicate if the output should be reshaped to be easier to interpret for the user, some information is missing from the multivariate models for an easy interpretation.

stepWeight A vector of values (of length equal to the number of iterations) indicating the weight used to multiply the update (delta) for variance components at each iteration. If NULL the 1st iteration will be multiplied by 0.5, the 2nd by 0.7, and the rest by 0.9. This argument can help to avoid that variance components go outside the parameter space in the initial iterations which doesn’t happen very often with the NR method but it can be detected by looking at the behavior of the likelihood. In that case you may want to give a smaller weight to the initial 8-10 iterations.

emWeight A vector of values (of length equal to the number of iterations) indicating with values between 0 and 1 the weight assigned to the EM information matrix. And the values 1 - emWeight will be applied to the NR/AI information matrix to produce a joint information matrix.

Details

The use of this function requires a good understanding of mixed models. Please review the ‘sommer.quick.start’ vignette and pay attention to details like format of your random and fixed variables (e.g. character and factor variables have different properties when returning BLUES or BLUPs, please see the ‘sommer.changes.and.faqs’ vignette).

For tutorials on how to perform different analysis with sommer please look at the vignettes by typing in the terminal:

vignette("v1.sommer.quick.start")

vignette("v2.sommer.changes.and.faqs")

vignette("v3.sommer.qg")

vignette("v4.sommer.gxe")

Citation

Type citation("sommer") to know how to cite the sommer package in your publications.

Special variance structures

\texttt{vsr(atr(x,levels),y)}

can be used to specify heterogeneous variance for the "y" covariate at specific levels of the covariate "x", i.e. \texttt{random=~vsr(at(Location,c("A","B")),ID)} fits a variance component for ID at levels A and B of the covariate Location.
vsr\((\text{dsr}(x),y) \)
can be used to specify a diagonal covariance structure for the "y" covariate for all levels of the covariate "x", i.e. \(\text{random=}-\text{vsr} (\text{dsr}(\text{Location}), \text{ID}) \) fits a variance component for ID at all levels of the covariate Location.

vsr\((\text{usr}(x),y) \)
can be used to specify an unstructured covariance structure for the "y" covariate for all levels of the covariate "x", i.e. \(\text{random=}-\text{vsr} (\text{usr}(\text{Location}), \text{ID}) \) fits variance and covariance components for ID at all levels of the covariate Location.

vsr\((\text{overlay}(\ldots, \text{rlist=NULL}, \text{prefix=NULL})) \)
can be used to specify overlay of design matrices between consecutive random effects specified, i.e. \(\text{random=}-\text{vsr} (\text{overlay}(\text{male}, \text{female})) \) overlays (overlaps) the incidence matrices for the male and female random effects to obtain a single variance component for both effects. The 'rlist' argument is a list with each element being a numeric value that multiplies the incidence matrix to be overlayed. See **overlay** for details. Can be combined with vsr().

vsr\((\text{leg}(x,n),y) \)
can be used to fit a random regression model using a numerical variable \(x \) that marks the trajectory for the random effect \(y \). The leg function can be combined with the special functions \(\text{dsr}, \text{usr} \) at and \(\text{csr} \). For example \(\text{random=}-\text{vsr} (\text{leg}(x,1),y) \) or \(\text{random=}-\text{vsr} (\text{usr}(\text{leg}(x,1)),y) \).

vsr\((x, \text{Gtc=fcm(v)}) \)
can be used to constrain fixed effects in the multi-response mixed models. This is a vector that specifies if the fixed effect is to be estimated for such trait. For example \(\text{fixed=cbind(response.i, response.j)}=\text{vsr} (\text{Rowf, Gtc=fcm(c(1,0))}) \) means that the fixed effect Rowf should only be estimated for the first response and the second should only have the intercept.

gvr\((x,y) \)
can be used to fit variance and covariance parameters between two or more random effects. For example, indirect genetic effect models.

spl2Da\((x.\text{coord}, y.\text{coord}, \text{at.var}, \text{at.levels}) \)
can be used to fit a 2-dimensional spline (i.e. spatial modeling) using coordinates \(x.\text{coord} \) and \(y.\text{coord} \) (in numeric class) assuming a single variance component. The 2D spline can be fitted at specific levels using the \(\text{at.var} \) and \(\text{at.levels} \) arguments. For example \(\text{random=}-\text{spl2Da}(x.\text{coord}=\text{Row}, y.\text{coord}=\text{Range}, \text{at.var}, \text{at.levels}) \).

spl2Db\((x.\text{coord}, y.\text{coord}, \text{at.var}, \text{at.levels}) \)
can be used to fit a 2-dimensional spline (i.e. spatial modeling) using coordinates \(x.\text{coord} \) and \(y.\text{coord} \) (in numeric class) assuming multiple variance components. The 2D spline can be fitted at specific levels using the \(\text{at.var} \) and \(\text{at.levels} \) arguments. For example \(\text{random=}-\text{spl2Db}(x.\text{coord}=\text{Row}, y.\text{coord}=\text{Range}, \text{at.var}, \text{at.levels}) \).

S3 methods
S3 methods are available for some parameter extraction such as **fitted.mmer**, **residuals.mmer**, **summary.mmer**, **randef**, **coef.mmer**, **anova.mmer**, **plot.mmer**, and **predict.mmer** to obtain adjusted means. In addition, the **vpredict** function (replacement of the pin function) can be used to estimate standard errors for linear combinations of variance components (i.e. ratios like \(h^2 \)).

Additional Functions
Additional functions for genetic analysis have been included such as relationship matrix building (\(A.\text{mat}, D.\text{mat}, E.\text{mat}, H.\text{mat} \)), build a genotypic hybrid marker matrix (\(\text{build.HMM} \)), plot of genetic maps (\(\text{map.plot} \)), and manhattan plots (\(\text{manhattan} \)). If you need to build a pedigree-based relationship matrix use the getA function from the pedigreemm package.
Bug report and contact

If you have any technical questions or suggestions please post it in https://stackoverflow.com or https://stats.stackexchange.com

If you have any bug report please go to https://github.com/covaruber/sommer or send me an email to address it asap, just make sure you have read the vignettes carefully before sending your question.

Example Datasets

The package has been equipped with several datasets to learn how to use the sommer package:

- DT_halfdiallel, DT_fulldiallel and DT_mohring datasets have examples to fit half and full diallel designs.
- DT_h2 to calculate heritability
- DT_cornhybrids and DT_technow datasets to perform genomic prediction in hybrid single crosses
- DT_wheat dataset to do genomic prediction in single crosses in species displaying only additive effects.
- DT_cpdata dataset to fit genomic prediction models within a biparental population coming from 2 highly heterozygous parents including additive, dominance and epistatic effects.
- DT_polyplloid to fit genomic prediction and GWAS analysis in polyploids.
- DT_gryphon data contains an example of an animal model including pedigree information.
- DT_btdata dataset contains an animal (birds) model.
- DT_legendre simulated dataset for random regression model.
- DT_sleepstudy dataset to know how to translate lme4 models to sommer models.
- DT_ige dataset to show how to fit indirect genetic effect models.

Models Enabled

For details about the models enabled and more information about the covariance structures please check the help page of the package (sommer).

Value

If all parameters are correctly indicated the program will return a list with the following information:

- \(V^{-1} \) the inverse of the phenotypic variance matrix \(V^{-1} = (ZGZ+R)^{-1} \)
- \(P \) the projection matrix \(V^{-1} - [V^{-1}(X^TV^{-1}X)^{-1}V^{-1}] \)
- \(\sigma \) a list with the values of the variance-covariance components with one list element for each random effect.
- \(\sigma_{scaled} \) a list with the values of the scaled variance-covariance components with one list element for each random effect.
- \(\sigma_{SE} \) Hessian matrix containing the variance-covariance for the variance components. SE’s can be obtained taking the square root of the diagonal values of the Hessian.
- \(\beta \) a data frame for trait BLUEs (fixed effects).
- \(\text{VarBeta} \) a variance-covariance matrix for trait BLUEs
- \(U \) a list (one element for each random effect) with a data frame for trait BLUPs.
VarU a list (one element for each random effect) with the variance-covariance matrix for trait BLUPs.

PevU a list (one element for each random effect) with the predicted error variance matrix for trait BLUPs.

fitted Fitted values y.hat=XB

residuals Residual values e = Y - XB

AIC Akaike information criterion

BIC Bayesian information criterion

convergence a TRUE/FALSE statement indicating if the model converged.

monitor The values of log-likelihood and variance-covariance components across iterations during the REML estimation.

percChange The percent change of variance components across iterations. There should be one column less than the number of iterations. Calculated as percChange = ((x_i/x_i-1) - 1) * 100 where i is the ith iteration.

dL The vector of first derivatives of the likelihood with respect to the ith variance-covariance component.

dL2 The matrix of second derivatives of the likelihood with respect to the i,j th variance-covariance component.

method The method for estimation of variance components specified by the user.

call Formula for fixed, random and rcov used.

constraints contraints used in the mixed models for the random effects.

constraintsF contraints used in the mixed models for the fixed effects.

data The dataset used in the model after removing missing records for the response variable.

dataOriginal The original dataset used in the model.

terms The name of terms for responses, fixed, random and residual effects in the model.

termsN The number of effects associated to fixed, random and residual effects in the model.

sigmaVector a vectorized version of the sigma element (variance-covariance components) to match easily the standard errors of the var-cov components stored in the element sigmaSE.

reshapeOutput The value provided to the mmer function for the argument with the same name.

Author(s)

Giovanny Covarrubias-Pazaran
References

Covarrubias-Pazaran G. 2018. Software update: Moving the R package sommer to multivariate mixed models for genome-assisted prediction. doi: https://doi.org/10.1101/354639

Examples

```r
####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####

####=========================================####
#### EXAMPLES
#### Different models with sommer
####=========================================####

data(DT_example)
DT <- DT_example
head(DT)
```
Univariate homogeneous variance models

Compound symmetry (CS) model

```r
ans1 <- mmer(Yield~Env, 
    random= ~ Name + Env:Name, 
    rcov= ~ units, 
    data=DT)

summary(ans1)
```

Univariate heterogeneous variance models

Compound symmetry (CS) + Diagonal (DIAG) model

```r
ans2 <- mmer(Yield~Env, 
    random= ~Name + vsr(dsr(Env),Name), 
    rcov= ~ vsr(dsr(Env),units), 
    data=DT)

summary(ans2)
```

Univariate unstructured variance models

```r
ans3 <- mmer(Yield~Env, 
    random=~ vsr(usr(Env),Name), 
    rcov=~vsr(dsr(Env),units), 
    data=DT)

summary(ans3)
```

Multivariate homogeneous variance models

Multivariate Compound symmetry (CS) model

```r
DT$EnvName <- paste(DT$Env,DT$Name)

ans4 <- mmer(cbind(Yield, Weight) ~ Env, 
    random= ~ vsr(Name, Gtc = unsm(2)) + vsr(EnvName,Gtc = unsm(2)), 
    rcov= ~ vsr(units, Gtc = unsm(2)), 
    data=DT)

summary(ans4)
```

Multivariate heterogeneous variance models

Multivariate Compound symmetry (CS) + Diagonal (DIAG) model

```r
ans5 <- mmer(cbind(Yield, Weight) ~ Env, 
    random= ~ vsr(Name, Gtc = unsm(2)) + vsr(dsr(Env),Name, Gtc = unsm(2)), 
    rcov= ~ vsr(dsr(Env),units, Gtc = unsm(2)), 
    data=DT)

summary(ans5)
```
```r
# Multivariate unstructured variance models
#======================================================================

ans6 <- mmer(cbind(Yield, Weight) ~ Env,
             random= ~ vsr(usr(Env),Name, Gtc = unsm(2)),
             rcov= ~ vsr(dsr(Env),units, Gtc = unsm(2)),
             data=DT)

# summary(ans6)
#======================================================================

# EXAMPLE SET 2
# 2 variance components
# one random effect with variance covariance structure
#======================================================================

data("DT_cpdata")
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
head(DT)
GT[1:4,1:4]

# create the variance-covariance matrix
A <- A.mat(GT)

# look at the data and fit the model
mix1 <- mmer(Yield~1,
             random= ~ vsr(id, Gu=A) + Rowf,
             rcov= ~ units,
             data=DT)

# summary(mix1)$varcomp

# calculate heritability
vpredict(mix1, h1 ~ V1/(V1+V3) )

# multi trait example
mix2 <- mmer(cbind(Yield,color)~1,
             random = ~ vsr(id, Gu=A, Gtc = unsm(2)) + # unstructured at trait level
                       vsr(Rowf, Gtc=diag(2)) + # diagonal structure at trait level
                       vsr(Colf, Gtc=diag(2)), # diagonal structure at trait level
             rcov = ~ vsr(units, Gtc = unsm(2)), # unstructured at trait level
             data=DT)

# summary(mix2)
#======================================================================

# EXAMPLE SET 3
# comparison with lmer, install 'lme4'
# and run the code below
#=================================================================================

# lmer cannot use var-cov matrices so we will not
```
```r
# #### use them in this comparison example
#
# library(lme4)
# library(sommer)
# data("DT_cornhybrids")
# DT <- DT_cornhybrids
# DTi <- DTi_cornhybrids
# GT <- GT_cornhybrids
#
# fm1 <- lmer(Yield ~ Location + (1|GCA1) + (1|GCA2) + (1|SCA),
#             data=DT )
# out <- mmer(Yield ~ Location,
#             random = ~ GCA1 + GCA2 + SCA,
#             rcov = ~ units,
#             data=DT)
# summary(fm1)
# summary(out)
# ### same BLUPs for GCA1, GCA2, SCA than lme4
# plot(out$U$GCA1$Yield, ranef(fm1)$GCA1[,1])
# plot(out$U$GCA2$Yield, ranef(fm1)$GCA2[,1])
# vv=which(abs(out$U$SCA$Yield) > 0)
# plot(out$U$SCA$Yield[vv], ranef(fm1)$SCA[,1])
#
# ### a more complex model specifying which locations
# head(DT)
# out2 <- mmer(Yield ~ Location,
#             random = ~ vsr(atr(Location,c("3","4")),GCA2) +
#                        vsr(atr(Location,c("3","4")),SCA),
#             rcov = ~ vsr(dsr(Location),units),
#             data=DT)
# summary(out2)
```

overlay

Overlay Matrix

Description

'overlay' adds r times the design matrix for model term t to the existing design matrix. Specifically, if the model up to this point has p effects and t has a effects, the a columns of the design matrix for t are multiplied by the scalar r (default value 1.0). This can be used to force a correlation of 1 between two terms as in a diallel analysis.

Usage

`overlay(...)`, `rlist=NULL`, `prefix=NULL`, `sparse=FALSE`
Arguments

... as many vectors as desired to overlay.

rlist a list of scalar values indicating the times that each incidence matrix overlayed should be multiplied by. By default r=1.

prefix a character name to be added before the column names of the final overlay matrix. This may be useful if you have entries with names starting with numbers which programs such as asreml doesn’t like, or for posterior extraction of parameters, that way ‘grep’ing is easier.

sparse a TRUE/FALSE statement specifying if the matrices should be built as sparse or regular matrices.

Value

$S3 an incidence matrix with as many columns levels in the vectors provided to build the incidence matrix.

Author(s)

Giovanny Covarrubias-Pazaran

References

See Also

The core functions of the package mmer and a function for creating dummy variables for diallel models named add.diallel.vars.

Examples

```r
### For CRAN time limitations most lines in the examples are silenced with one '#' mark,
### remove them and run the examples

data("DT_halfdiallel")
DT <- DT_halfdiallel
head(DT)
DT$femalef <- as.factor(DT$female)
DT$malef <- as.factor(DT$male)
DT$genof <- as.factor(DT$geno)

with(DT, overlay(femalef, malef, sparse = TRUE))
with(DT, overlay(femalef, malef, sparse = FALSE))
```
Description

plot method for class "mmec".

Usage

S3 method for class 'mmec'
plot(x,stnd=TRUE, ...)

Arguments

x an object of class "mmec"
stnd argument for plotting the residuals to know if they should be standarized.
... Further arguments to be passed

Value

vector of plot

Author(s)

Giovanny Covarrubias <covarrubiasp@wisc.edu>

See Also

plot.mmem

Examples

data(DT_yatesoats)
DT <- DT_yatesoats
head(DT)
m3 <- mmec(fixed=Y ~ V + N + V:N,
 random = ~ B + B:MP,
 rcov=units,
 data = DT)
plot(m3)
Description

plot method for class "mmer".

Usage

S3 method for class 'mmer'
plot(x, stnd = TRUE, ...)

Arguments

x an object of class "mmer"
stnd argument for plotting the residuals to know if they should be standarized.
... Further arguments to be passed

Value

vector of plot

Author(s)

Giovanny Covarrubias <covarrubiasp@wisc.edu>

See Also

plot.mmer

Examples

data(DT_yatesoats)
DT <- DT_yatesoats
head(DT)
m3 <- mmer(fixed = Y ~ V + N + V:N,
 random = - B + B:MP,
 rcov = units,
 data = DT)
plot(m3)
pmonitor

plot the change of VC across iterations

Description

plot for monitoring.

Usage

pmonitor(object, ...)

Arguments

object model object of class "mmec"
... Further arguments to be passed to the plot function.

Value

vector of plot

Author(s)

Giovanny Covarrubias

See Also

plot, mmec

Examples

data(DT_yatesoats)
DT <- DT_yatesoats
head(DT)
m3 <- mmec(fixed=Y ~ V + N + V:N,
 random = - B + B:MP,
 rcov=~units,
 data = DT)
pmonitor(m3)
predict.mmemc

Predict form of a LMM fitted with mmemc

Description
predict method for class "mmec".

Usage
S3 method for class 'mmec'
predict(object, Dtable= NULL, D, ...)

Arguments
object a mixed model of class "mmec"
Dtable a table specifying the terms to be included or averaged.
An "ignored" term means that the model matrix part for that fixed or random
effect are not used in the BLUP and SE calculation.
An "averaged" term means that the model matrices for that fixed or random
effect is filled purely with the value 1/#levels for that term.
An "include" term means that the model matrices for that fixed or random
effect is filled with 1's for the positions where column names and row names match.
An "include and average" term means that the model matrices for that fixed or random
effect is filled with 1/#levels for the positions where column names and row names match.
D a character string specifying the variable used to extract levels for the rows of the
D matrix and its construction. Alternatively, the D matrix (of class dgCMatrix)
specifying the matrix to be used for the predictions directly.
...
Further arguments to be passed.

Details
This function allows to produce predictions specifying those variables that define the margins of
the hypertable to be predicted (argument classify). Predictions are obtained for each combination
of values of the specified variables that is present in the data set used to fit the model. See vignettes
for more details.

For predicted values the pertinent design matrices X and Z together with BLUEs (b) and BLUPs
(u) are multiplied and added together.
predicted.value = Xb + Zu.1 + ... + Zu.n

For computing standard errors for predictions the parts of the coefficient matrix:
C11 equal (X'ViX)-
C12 equal 0 - [(X'V-X)'V-GZ]
C22 equal PEV equal G - [Z'G[V- - (VX*tXVXVX)]G']
and are summarized as:

\[
\text{standard.errors} = \sqrt{\text{rowSums}(XC11'X') + \text{rowSums}(2*(XC12'Z')) + \text{rowSums}(ZC22'Z')}
\]

when both fixed and random effects are present in the inclusion set. If only fixed and random effects are included, only the respective terms from the SE for fixed or random effects are calculated.

Value

- **pvals**: the table of predictions according to the specified arguments.
- **hypertable**: the summary table specifying the ignored, include and average sets.
- **model**: the mixed model used within predict.
- **C11**: the inverse of the coefficient matrix corresponding to the fixed effects.
- **C12**: the inverse of the coefficient matrix corresponding to the covariance between fixed and random effects.
- **C22**: the inverse of the coefficient matrix corresponding to the random effects.
- **Xextended**: the model matrix for fixed effects used to compute BLUPs and SEs.
- **Zextended**: the model matrix for random effects used to compute BLUPs and SEs.

Author(s)

Giovanny Covarrubias

References

See Also

- `predict`, `mmec`

Examples

data(DT_yatesoats)
dT <- DT_yatesoats
m3 <- mmec(fixed=Y ~ V + N + V:N,
 random = ~ B + B:MP,
 rcov=~units,
 data = DT)

#################################
predict means for nitrogen
#################################
Dt <- m3$Dtable; Dt
first fixed effect just average
Dt[,"average"] = TRUE
second fixed effect include
predict.mmer

Predict form of a LMM fitted with mmer

Description

predict method for class "mmer".
S3 method for class 'mmer'

```r
predict(object, classify=NULL,
        hypertable=NULL,
        ...)  
```

Arguments

- **object**: a mixed model of class "mmer"
- **classify**: a character vector with the variables that define the margins of the multiway table to be aggregated.
- **hypertable**: an optional table to force the terms to be included, ignored and averaged with same format as the output hypertable of this function (see examples).
 An ignored term means that the model matrices for that fixed or random effect are not used in the BLUP and SE calculation.
 An averaged term means that the model matrices for that fixed or random effect is filled purely with the value 1/#levels.
 ... Further arguments to be passed to the model fit (i.e. iters, etc.).

Details

This function allows to produce predictions specifying those variables that define the margins of the hypertable to be predicted (argument classify). Predictions are obtained for each combination of values of the specified variables that is present in the data set used to fit the model. See vignettes for more details.

For predicted values the pertinent design matrices X and Z together with BLUEs (b) and BLUPs (u) are multiplied and added together.

predicted.value equal $Xb + Zu.1 + ... + Zu.n$

For computing standard errors for predictions the parts of the coefficient matrix:

- **C_{11}** equal $(X'V_iX)^{-1}$
- **C_{12}** equal $0 - (X'V - X)'V - GZ$
- **C_{22}** equal PEV equal $G - [Z'G[V - (VX*tXVXVX)]GZ']$

and are summarized as:

- **standard.errors** equal $\sqrt{\text{rowSums}(XC_{11}'X') + \text{rowSums}(2*(XC_{12}'Z')) + \text{rowSums}(ZC_{22}'Z')}}$

when both fixed and random effects are present in the inclusion set. If only fixed and random effects are included, only the respective terms from the SE for fixed or random effects are calculated.

Value

- **pvals**: the table of predictions according to the specified arguments.
- **hypertable**: the summary table specifying the ignored, include and average sets.
- **model**: the mixed model used within `predict`.
- **C_{11}**: the inverse of the coefficient matrix corresponding to the fixed effects.
predict.mmer

C12 the inverse of the coefficient matrix corresponding to the covariance between fixed and random effects.

C22 the inverse of the coefficient matrix corresponding to the random effects.

Xextended the model matrix for fixed effects used to compute BLUPs and SEs.

Zextended the model matrix for random effects used to compute BLUPs and SEs.

Author(s)
Giovanny Covarrubias

References

See Also
predict.mmer

Examples

data(DT_yatesoats)
DT <- DT_yatesoats

m3 <- mmer(fixed=Y ~ V + N + V:N,
 random = - B + B:MP,
 rcov=~units,
 data = DT)
summary(m3)$varcomp

p0 <- predict.mmer(object=m3, classify = "N")
p0$hypertable; p0$pvals

p0 <- predict.mmer(object=m3, classify = "V")
p0$hypertable; p0$pvals

p0 <- predict.mmer(object=m3, classify = "B")
p0$hypertable; p0$pvals

p0 <- predict.mmer(object=m3, classify = c("V","N"))
p0$hypertable; p0$pvals

##
Modify terms in the prediction
Ignore a term: it doesn't include the
model matrix in the BLUP and its SE
##

p0 <- predict.mmer(object=m3, classify = "N")
modify the prediction
randef <- p$hypertable; hypertable
ignore the B:MP random term
hypertable[6,c("ignored","include","average")]<-c(TRUE,FALSE,FALSE)
hypertable

p1 <- predict.mmer(object=m3, classify = "N", hypertable = hypertable)
p1$pvals

##
Modify terms in the prediction
Average a term: it fills the model matrix
for the term with 1/#levels affecting
the BLUP and its SE
##
p0 <- predict.mmer(object=m3, classify = "N")

modify the prediction
hypertable <- p0$hypertable; hypertable
average the V:N fixed term
hypertable[4,c("ignored","include","average")]<-c(FALSE,TRUE,TRUE)
hypertable

p1 <- predict.mmer(object=m3, classify = "N", hypertable = hypertable)
p1$pvals

randef | extracting random effects

Description
This function is extracts the random effects from a mixed model fitted by mmer.

Usage
randef(object)

Arguments
object | an mmer object

Value
Srndef | a list structure with the random effects or BLUPs.

Examples
randef(model)
residuals.mmer

Residuals form a GLMM fitted with mmer

Description
residuals method for class "mmer".

Usage

S3 method for class 'mmer'
residuals(object, ...)

Arguments

object an object of class "mmer"

... Further arguments to be passed

Value
vector of residuals of the form e = y - Xb - Zu, the so called conditional residuals.

Author(s)
Giovanny Covarrubias

See Also
residuals, mmer

residuals.mmer

Residuals form a GLMM fitted with mmer

Description
residuals method for class "mmer".

Usage

S3 method for class 'mmer'
residuals(object, ...)

Arguments

object an object of class "mmer"

... Further arguments to be passed
Value

vector of residuals of the form $e = y - Xb - Zu$, the so called conditional residuals.

Author(s)

Giovanny Covarrubias

See Also

residuals, mmer

simGECorMat

Create a GE correlation matrix for simulation purposes.

Description

Makes a simple correlation matrix based on the number of environments and megaenvironments desired.

Usage

```r
simGECorMat(nEnv, nMegaEnv, mu=0.7, v=0.2, mu2=0, v2=0.3)
```

Arguments

- `nEnv` Number of environments to simulate. Needs to be divisible by the `nMegaEnv` argument.
- `nMegaEnv` Number of megaenvironments to simulate.
- `mu` Mean value of the genetic correlation within megaenvironments.
- `v` Variance in the genetic correlation within megaenvironments.
- `mu2` Mean value of the genetic correlation between megaenvironments.
- `v2` Variance in the genetic correlation between megaenvironments.

Details

Simple simulation of a correlation matrix for environments and megaenvironments.

Value

- `G` the correlation matrix

References

See Also

`sommer` — the core function of the package

Examples

```r
simGECorMat(9,3)
```

spl2Da

Two-dimensional penalised tensor-product of marginal B-Spline basis.

Description

Auxiliary function used for modelling the spatial or environmental effect as a two-dimensional penalised tensor-product (isotropic approach) based on Lee et al. (2013) and Rodriguez-Alvarez et al. (2018). This is a modified wrapper of some portions of the SpATS package to build a single incidence matrix containing all the columns from tensor products of the x and y coordinates and it fits such matrix as a single random effect. Then the heterogeneous covariances structure capabilities of sommer can be used to enhance the model fit. You may be interested in reading and citing not only sommer but also Wageningen publications if using this 2D spline methodology.

Usage

```r
spl2Da(x.coord, y.coord, at.var = NULL, at.levels = NULL, type = "PSANOVA", nsegments = c(10, 10), penaltyord = c(2, 2), degree = c(3, 3), nestorder = c(1, 1))
```

Arguments

- `x.coord`: vector of coordinates on the x-axis direction (i.e. row) to use in the 2 dimensional spline.
- `y.coord`: vector of coordinates on the y-axis direction (i.e. range or column) to use in the 2 dimensional spline.
- `at.var`: vector of indication variable where heterogeneous variance is required (e.g., a different spl2D for each field).
- `at.levels`: character vector with the names of the leves for the at term that should be used, if missing all levels are used.
- `type`: one of the two methods "PSANOVA" or "SAP". See details below.
- `nsegments`: numerical vector of length 2 containing the number of segments for each marginal (strictly nsegments - 1 is the number of internal knots in the domain of the covariate). Atomic values are also valid, being recycled. Default set to 10.
- `penaltyord`: numerical vector of length 2 containing the penalty order for each marginal. Atomic values are also valid, being recycled. Default set to 2 (second order). Currently, only second order penalties are allowed.
degree: numerical vector of length 2 containing the order of the polynomial of the B-spline basis for each marginal. Atomic values are also valid, being recycled. Default set to 3 (cubic B-splines).

class: numerical vector of length 2 containing the divisor of the number of segments (nsegments) to be used for the construction of the nested B-spline basis for the smooth-by-smooth interaction component. In this case, the nested B-spline basis will be constructed assuming a total of nsegments/nestorder segments. Default set to 1, which implies that nested basis are not used. See SAP for more details.

Details

The following documentation is taken from the SpATS package. Please refer to this package and associated publications if you are interested in going deeper on this technique:

Within the P-spline framework, anisotropic low-rank tensor-product smoothers have become the general approach for modelling multidimensional surfaces (Eilers and Marx 2003; Wood 2006). In the original SpATS package, was proposed to model the spatial or environmental effect by means of the tensor-product of B-splines basis functions. In other words, was proposed to model the spatial trend as a smooth bivariate surface jointly defined over the spatial coordinates. Accordingly, the current function has been designed to allow the user to specify the spatial coordinates that the spatial trend is a function of. There is no restriction about how the spatial coordinates shall be specified: these can be the longitude and latitude of the position of the plot on the field or the column and row numbers. The only restriction is that the variables defining the spatial coordinates should be numeric (in contrast to factors).

As far as estimation is concerned, we have used in this package the equivalence between P-splines and linear mixed models (Currie and Durban, 2002). Under this approach, the smoothing parameters are expressed as the ratio between variance components. Moreover, the smooth components are decomposed in two parts: one which is not penalised (and treated as fixed) and one with is penalised (and treated as random). For the two-dimensional case, the mixed model representation leads also to a very interesting decomposition of the penalised part of the bivariate surface in three different components (Lee and Durban, 2011): (a) a component that contains the smooth main effect (smooth trend) along one of the covariates that the surface is a function of (as, e.g., the x-spatial coordinate or column position of the plot in the field), (b) a component that contains the smooth main effect (smooth trend) along the other covariate (i.e., the y-spatial coordinate or row position); and (c) a smooth interaction component (sum of the linear-by-smooth interaction components and the smooth-by-smooth interaction component).

The original implementation of SpATS assumes two different smoothing parameters, i.e., one for each covariate in the smooth component. Accordingly, the same smoothing parameters are used for both, the main effects and the smooth interaction. However, this approach can be extended to deal with the ANOVA-type decomposition presented in Lee and Durban (2011). In their approach, four different smoothing parameters are considered for the smooth surface, that are in concordance with the aforementioned decomposition: (a) two smoothing parameter, one for each of the main effects; and (b) two smoothing parameter for the smooth interaction component.

It should be noted that, the computational burden associated with the estimation of the two-dimensional tensor-product smoother might be prohibitive if the dimension of the marginal bases is large. In these cases, Lee et al. (2013) propose to reduce the computational cost by using nested bases. The
idea is to reduce the dimension of the marginal bases (and therefore the associated number of parameters to be estimated), but only for the smooth-by-smooth interaction component. As pointed out by the authors, this simplification can be justified by the fact that the main effects would in fact explain most of the structure (or spatial trend) presented in the data, and so a less rich representation of the smooth-by-smooth interaction component could be needed. In order to ensure that the reduced bivariate surface is in fact nested to the model including only the main effects, Lee et al. (2013) show that the number of segments used for the nested basis should be a divisor of the number of segments used in the original basis (nsegments argument). In the present function, the divisor of the number of segments is specified through the argument nestorder. For a more detailed review on this topic, see Lee (2010) and Lee et al. (2013). The "PSANOVA" approach represents an alternative method. In this case, the smooth bivariate surface (or spatial trend) is decomposed in five different components each of them depending on a single smoothing parameter (see Lee et al., 2013).

As mentioned at the beginning, the piece of documentation stated above was taken completely from the SpATS package in order to provide a deeper explanation. In practice, sommer uses some pieces of code from SpATS to build the design matrix containing all the columns from tensor products of the x and y coordinates and it fits such matrix as a single random effect. As a result the same variance component is assumed for the linear, linear by linear, linear by spline, and spline by spline interactions. This results in a less flexible approach than the one proposed by Rodriguez-Alvarez et al. (2018) but still makes a pretty good job to model the spatial variation. Use under your own risk.

References

See Also

mer, spl2Db

Examples

```r
## ============================ ##
## example to use spl2Da() ##
## ============================ ##
data(DT_cpdata)
# DT <- DT_cpdata
# GT <- GT_cpdata
# MP <- MP_cpdata
```
A <- A.mat(GT)
mix <- mmer(Yield~1,
random=svr(id, Gu=A) +
sver(Rowf) +
sver(Colf) +
spl2Da(Row,Col),
rcov=units,
data=DT)
summary(mix)$varcomp
============================
mimic 2 fields
============================
aa <- DT; bb <- DT
aa$FIELD <- "A", bb$FIELD <- "B"
set.seed(1234)
aa$Yield <- aa$Yield + rnorm(length(aa$Yield),0,4)
DT2 <- rbind(aa,bb)
head(DT2)
A <- A.mat(GT)
mix <- mmer(Yield~1,
random=svr(FIELD, id, Gu=A) +
sver(FIELD,Rowf) +
sver(FIELD,Colf) +
spl2Da(Row,Col,at.var=FIELD),
rcov=svr(FIELD,units),
data=DT2)

spl2Db

Two-dimensional penalised tensor-product of marginal B-Spline basis.

Description

Auxiliary function used for modelling the spatial or environmental effect as a two-dimensional penalised tensor-product (isotropic approach) based on Lee et al. (2013) and Rodriguez-Alvarez et al. (2018). spl2Db gets Tensor-Product P-Spline Mixed Model Incidence Matrices for use with sommer and its main function mmer. We thank Sue Welham for making the TPSbits package available to the community. If you’re using this function for your research please cite her TPSbits package :) this is mostly a wrapper of her tpsmmb function to enable the use in sommer.

Usage

```r
spl2Db(x.coord,y.coord,at.var=NULL,at.levels=NULL,nsegments = c(10,10),
degree = c(3,3), penaltyord = c(2,2), nestorder = c(1,1),
minbound=NULL, maxbound=NULL, method="Lee", what="bits")
```

Arguments

- `x.coord` vector of coordinates on the x-axis direction (i.e. row) to use in the 2 dimensional spline.
y.coord vector of coordinates on the y-axis direction (i.e. range or column) to use in the 2 dimensional spline.

at.var vector of indication variable where heterogeneous variance is required (e.g., a different spl2D for each field).

at.levels character vector with the names of the levels for the at term that should be used, if missing all levels are used.

nsegments numerical vector of length 2 containing the number of segments for each marginal (strictly nsegments - 1 is the number of internal knots in the domain of the covariate). Atomic values are also valid, being recycled. Default set to 10.

degree numerical vector of length 2 containing the order of the polynomial of the B-spline basis for each marginal. Atomic values are also valid, being recycled. Default set to 3 (cubic B-splines).

penaltyord numerical vector of length 2 containing the penalty order for each marginal. Atomic values are also valid, being recycled. Default set to 2 (second order). Currently, only second order penalties are allowed.

nestorder numerical vector of length 2 containing the divisor of the number of segments (nsegments) to be used for the construction of the nested B-spline basis for the smooth-by-smooth interaction component. In this case, the nested B-spline basis will be constructed assuming a total of nsegments/nestorder segments. Default set to 1, which implies that nested basis are not used. See SAP for more details.

minbound A list of length 2. The lower bound to be used for column and row dimensions respectively; default calculated as the minimum value for each dimension.

maxbound A list of length 2. The upper bound to be used for column and row dimensions respectively; default calculated as the maximum value for each dimension.

method A string. Method for forming the penalty; default="Lee" ie the penalty from Lee, Durban & Eilers (2013, CSDA 61, 22-37). The alternative method is "Wood" ie the method from Wood et al (2012, Stat Comp 23, 341-360). This option is a research tool and requires further investigation.

what one of two values; 'base' or 'bits' to return:
base = matrix for columns cbind(TP.col,TP.row,TP.C.n,TP.R.n,TP.CR.n). To be used in the fixed part.
bias = matrices for the tensor products. To be used in the random part.

Details

The following documentation is taken from the SpATS package. Please refer to this package and associated publications if you are interested in going deeper on this technique:

Within the P-spline framework, anisotropic low-rank tensor-product smoothers have become the general approach for modelling multidimensional surfaces (Eilers and Marx 2003; Wood 2006). In the original SpATS package, was proposed to model the spatial or environmental effect by means of the tensor-product of B-splines basis functions. In other words, was proposed to model the spatial trend as a smooth bivariate surface jointly defined over the the spatial coordinates. Accordingly, the current function has been designed to allow the user to specify the spatial coordinates that the spatial trend is a function of. There is no restriction about how the spatial coordinates shall be specified:
these can be the longitude and latitude of the position of the plot on the field or the column and row numbers. The only restriction is that the variables defining the spatial coordinates should be numeric (in contrast to factors).

As far as estimation is concerned, we have used in this package the equivalence between P-splines and linear mixed models (Currie and Durban, 2002). Under this approach, the smoothing parameters are expressed as the ratio between variance components. Moreover, the smooth components are decomposed into two parts: one which is not penalised (and treated as fixed) and one with is penalised (and treated as random). For the two-dimensional case, the mixed model representation leads also to a very interesting decomposition of the penalised part of the bivariate surface in three different components (Lee and Durban, 2011): (a) a component that contains the smooth main effect (smooth trend) along one of the covariates that the surface is a function of (e.g., the x-spatial coordinate or column position of the plot in the field), (b) a component that contains the smooth main effect (smooth trend) along the other covariate (i.e., the y-spatial coordinate or row position); and (c) a smooth interaction component (sum of the linear-by-smooth interaction components and the smooth-by-smooth interaction component).

The default implementation assumes two different smoothing parameters, i.e., one for each covariate in the smooth component. Accordingly, the same smoothing parameters are used for both, the main effects and the smooth interaction. However, this approach can be extended to deal with the ANOVA-type decomposition presented in Lee and Durban (2011). In their approach, four different smoothing parameters are considered for the smooth surface, that are in concordance with the aforementioned decomposition: (a) two smoothing parameter, one for each of the main effects; and (b) two smoothing parameter for the smooth interaction component.

It should be noted that, the computational burden associated with the estimation of the two-dimensional tensor-product smoother might be prohibitive if the dimension of the marginal bases is large. In these cases, Lee et al. (2013) propose to reduce the computational cost by using nested bases. The idea is to reduce the dimension of the marginal bases (and therefore the associated number of parameters to be estimated), but only for the smooth-by-smooth interaction component. As pointed out by the authors, this simplification can be justified by the fact that the main effects would in fact explain most of the structure (or spatial trend) presented in the data, and so a less rich representation of the smooth-by-smooth interaction component could be needed. In order to ensure that the reduced bivariate surface is in fact nested to the model including only the main effects, Lee et al. (2013) show that the number of segments used for the nested basis should be a divisor of the number of segments used in the original basis (nsegments argument). In the present function, the divisor of the number of segments is specified through the argument nestorder. For a more detailed review on this topic, see Lee (2010) and Lee et al. (2013). The "PSANOVA" approach represents an alternative method. In this case, the smooth bivariate surface (or spatial trend) is decomposed in five different components each of them depending on a single smoothing parameter (see Lee et al., 2013).

Value

List of length 7 elements:

1. data = the input data frame augmented with structures required to fit tensor product splines in asreml-R. This data frame can be used to fit the TPS model.

 Added columns:
 • TP.col, TP.row = column and row coordinates
 • TP.CxR = combined index for use with smooth x smooth term
• TP. C. n for n=1:diff.c = X parts of column spline for use in random model (where diff.c is the order of column differencing)
• TP. R. n for n=1:diff.r = X parts of row spline for use in random model (where diff.r is the order of row differencing)
• TP. CR. n for n=1:(diff.c*diff.r) = interaction between the two X parts for use in fixed model. The first variate is a constant term which should be omitted from the model when the constant (1) is present. If all elements are included in the model then the constant term should be omitted, eg. y ~ -1 + TP. CR. 1 + TP. CR. 2 + TP. CR. 3 + TP. CR. 4 + other terms...
• when asreml="grp" or "sepgrp", the spline basis functions are also added into the data frame. Column numbers for each term are given in the grp list structure.

2. fR = Xr1:Zc
3. fC = Xr2:Zc
4. fR.C = Zr:Xc1
5. R.fC = Zr:Xc2
6. fR.fC = Zc:Zr
7. all = Xr1:Zc | Xr2:Zc | Zr:Xc1 | Zr:Xc2 | Zc:Zr

References

See Also

mmer, spl2Da

Examples

```r
# example to use spl2Db()
```

```
## ============================ ##
data(DT_cpdata)
# DT <- DT_cpdata
# GT <- GT_cpdata
# MP <- MP_cpdata
```
A <- A.mat(GT)
mix <- mmer(Yield~1,
 random=vsr(id, Gu=A) +
 vsr(Rowf) +
 vsr(Colf) +
 spl2Db(Row,Col),
 rcov=~units,
 data=DT)
summary(mix)$varcomp
============================
mimic 2 fields
============================
aa <- DT; bb <- DT
aa$FIELD <- "A"; bb$FIELD <- "B"
set.seed(1234)
aa$Yield <- aa$Yield + rnorm(length(aa$Yield),0,4)
DT2 <- rbind(aa,bb)
head(DT2)
A <- A.mat(GT)
mix <- mmer(Yield~1,
 random=vsr(dsr(FIELD),id, Gu=A) +
 vsr(dsr(FIELD),Rowf) +
 vsr(dsr(FIELD),Colf) +
 spl2Db(Row,Col,at.var=FIELD),
 rcov=vsr(dsr(FIELD),units),
 data=DT2)

t2Dc

Two-dimensional penalised tensor-product of marginal B-Spline basis.

Description

Auxiliary function used for modelling the spatial or environmental effect as a two-dimensional penalised tensor-product (isotropic approach) based on Lee et al. (2013) and Rodriguez-Alvarez et al. (2018). This is a modified wrapper of some portions of the SpATS package to build a single incidence matrix containing all the columns from tensor products of the x and y coordinates and it fits such matrix as a single random effect. Then the heterogeneous covariances structure capabilities of sommec can be used to enhance the model fit. You may be interested in reading and citing not only sommec but also Wageningen publications if using this 2D spline methodology.

Usage

spl2Dc(x.coord, y.coord, at.var=NULL, at.levels=NULL, type="PSANOVA",
 nsegments = c(10,10), penaltyord = c(2,2), degree = c(3,3),
 nestorder = c(1,1), thetaC=NULL, theta=NULL)

Arguments

x.coord vector of coordinates on the x-axis direction (i.e. row) to use in the 2 dimensional spline.
y.coord
vector of coordinates on the y-axis direction (i.e. range or column) to use in the 2 dimensional spline.

at.var
vector of indication variable where heterogeneous variance is required (e.g., a different spl2D for each field).

at.levels
character vector with the names of the leves for the at term that should be used, if missing all levels are used.

type
one of the two methods "PSANOVA" or "SAP". See details below.

nsegments
numerical vector of length 2 containing the number of segments for each marginal (strictly nsegments - 1 is the number of internal knots in the domain of the co-variate). Atomic values are also valid, being recycled. Default set to 10.

penaltyord
numerical vector of length 2 containing the penalty order for each marginal. Atomic values are also valid, being recycled. Default set to 2 (second order). Currently, only second order penalties are allowed.

degree
numerical vector of length 2 containing the order of the polynomial of the B-spline basis for each marginal. Atomic values are also valid, being recycled. Default set to 3 (cubic B-splines).

nestorder
numerical vector of length 2 containing the divisor of the number of segments (nsegments) to be used for the construction of the nested B-spline basis for the smooth-by-smooth interaction component. In this case, the nested B-spline basis will be constructed assuming a total of nsegments/nestorder segments. Default set to 1, which implies that nested basis are not used. See SAP for more details.

thetaC
an optional matrix for constraints in the variance components.

theta
an optional matrix for initial values of the variance components.

Details
The following documentation is taken from the SpATS package. Please refer to this package and associated publications if you are interested in going deeper on this technique:

Within the P-spline framework, anisotropic low-rank tensor-product smoothers have become the general approach for modelling multidimensional surfaces (Eilers and Marx 2003; Wood 2006). In the original SpATS package, was proposed to model the spatial or environmental effect by means of the tensor-product of B-splines basis functions. In other words, was proposed to model the spatial trend as a smooth bivariate surface jointly defined over the the spatial coordinates. Accordingly, the current function has been designed to allow the user to specify the spatial coordinates that the spatial trend is a function of. There is no restriction about how the spatial coordinates shall be specified: these can be the longitude and latitude of the position of the plot on the field or the column and row numbers. The only restriction is that the variables defining the spatial coordinates should be numeric (in contrast to factors).

As far as estimation is concerned, we have used in this package the equivalence between P-splines and linear mixed models (Currie and Durban, 2002). Under this approach, the smoothing parameters are expressed as the ratio between variance components. Moreover, the smooth components are decomposed in two parts: one which is not penalised (and treated as fixed) and one with is penalised (and treated as random). For the two-dimensional case, the mixed model representation leads also to a very interesting decomposition of the penalised part of the bivariate surface in three
different components (Lee and Durban, 2011): (a) a component that contains the smooth main effect (smooth trend) along one of the covariates that the surface is a function of (as, e.g., the x-spatial coordinate or column position of the plot in the field), (b) a component that contains the smooth main effect (smooth trend) along the other covariate (i.e., the y-spatial coordinate or row position); and (c) a smooth interaction component (sum of the linear-by-smooth interaction components and the smooth-by-smooth interaction component).

The original implementation of SpATS assumes two different smoothing parameters, i.e., one for each covariate in the smooth component. Accordingly, the same smoothing parameters are used for both, the main effects and the smooth interaction. However, this approach can be extended to deal with the ANOVA-type decomposition presented in Lee and Durban (2011). In their approach, four different smoothing parameters are considered for the smooth surface, that are in concordance with the aforementioned decomposition: (a) two smoothing parameter, one for each of the main effects; and (b) two smoothing parameter for the smooth interaction component.

It should be noted that, the computational burden associated with the estimation of the two-dimensional tensor-product smoother might be prohibitive if the dimension of the marginal bases is large. In these cases, Lee et al. (2013) propose to reduce the computational cost by using nested bases. The idea is to reduce the dimension of the marginal bases (and therefore the associated number of parameters to be estimated), but only for the smooth-by-smooth interaction component. As pointed out by the authors, this simplification can be justified by the fact that the main effects would in fact explain most of the structure (or spatial trend) presented in the data, and so a less rich representation of the smooth-by-smooth interaction component could be needed. In order to ensure that the reduced bivariate surface is in fact nested to the model including only the main effects, Lee et al. (2013) show that the number of segments used for the nested basis should be a divisor of the number of segments used in the original basis (nsegments argument). In the present function, the divisor of the number of segments is specified through the argument nestorder. For a more detailed review on this topic, see Lee (2010) and Lee et al. (2013). The "PSANOVA" approach represents an alternative method. In this case, the smooth bivariate surface (or spatial trend) is decomposed in five different components each of them depending on a single smoothing parameter (see Lee et al., 2013).

As mentioned at the beginning, the piece of documentation stated above was taken completely from the SpATS package in order to provide a deeper explanation. In practice, sommec uses some pieces of code from SpATS to build the design matrix containing all the columns from tensor products of the x and y coordinates and it fits such matrix as a single random effect. This results in a less flexible approach than the one proposed by Rodriguez-Alvarez et al. (2018) but still makes a pretty good job to model the spatial variation. Use under your own risk.

References

See Also

mme, spl2Db

Examples

```
## example to use spl2Dc()
##
# data(DT_cpdata)
# DT <- DT_cpdata
# GT <- GT_cpdata
# MP <- MP_cpdata
# A <- A.mat(GT)
# Ai <- as(solve(A + diag(1e-4,ncol(A),ncol(A))), Class="dgCMatrix")
# mix <- mme(Yield ~ 1,
# random = vsc(isc(id), Gu=Ai) +
# Rowf + Colf +
# spl2Dc(Row, Col),
# rcov = ~ units,
# data = DT)
# summary(mix)$varcomp

## mimic 2 fields
##
# aa <- DT; bb <- DT
# aa$FIELD <- "A"; bb$FIELD <- "B"
# set.seed(1234)
# aa$Yield <- aa$Yield + rnorm(length(aa$Yield), 0, 4)
# DT2 <- rbind(aa, bb)
# head(DT2)
# mix <- mme(Yield ~ 1,
# random = vsc(dsc(FIELD), isc(id), Gu=Ai) +
# vsc(dsc(FIELD), isc(Rowf)) +
# vsc(dsc(FIELD), isc(Colf)) +
# spl2Dc(Row, Col, at.var = FIELD),
# rcov = ~ vsc(dsc(FIELD), isc(units)),
# data = DT2)
```

spl2Dmats

Get Tensor Product Spline Mixed Model Incidence Matrices
Description

spl2Dmats gets Tensor-Product P-Spline Mixed Model Incidence Matrices for use with sommer and its main function mmer. We thank Sue Welham for making the TPSbits package available to the community. If you’re using this function for your research please cite her TPSbits package :) this is mostly a wrapper of her tpsmmb function to enable the use in sommer.

Usage

```r
spl2Dmats(
  x.coord.name,  # A string. Gives the name of data element holding column locations.
  y.coord.name,  # A string. Gives the name of data element holding row locations.
  data,          # A dataframe. Holds the dataset to be used for fitting.
  at.name,       # name of a variable defining if the 2D spline matrices should be created at different units (e.g., at different environments).
  at.levels,     # a vector of names indicating which levels of the at.name variable should be used for fitting the 2D spline function.
  nsegments=NULL,  # A list of length 2. Number of segments to split column and row ranges into, respectively (= number of internal knots + 1). If only one number is specified, that value is used in both dimensions. If not specified, (number of unique values - 1) is used in each dimension; for a grid layout (equal spacing) this gives a knot at each data value.
  minbound=NULL,  # A list of length 2. The lower bound to be used for column and row dimensions respectively; default calculated as the minimum value for each dimension.
  maxbound=NULL,  # A list of length 2. The upper bound to be used for column and row dimensions respectively; default calculated as the maximum value for each dimension.
  degree = c(3, 3),  # A list of length 2. The degree of polynomial spline to be used for column and row dimensions respectively; default=3.
  penaltyord = c(2,2),  # A list of length 2. The order of differencing for column and row dimensions, respectively; default=2.
  nestorder = c(1,1),
  method = "Lee"
)
```

Arguments

- `x.coord.name` A string. Gives the name of data element holding column locations.
- `y.coord.name` A string. Gives the name of data element holding row locations.
- `data` A dataframe. Holds the dataset to be used for fitting.
- `at.name` name of a variable defining if the 2D spline matrices should be created at different units (e.g., at different environments).
- `at.levels` a vector of names indicating which levels of the `at.name` variable should be used for fitting the 2D spline function.
- `nsegments` A list of length 2. Number of segments to split column and row ranges into, respectively (= number of internal knots + 1). If only one number is specified, that value is used in both dimensions. If not specified, (number of unique values - 1) is used in each dimension; for a grid layout (equal spacing) this gives a knot at each data value.
- `minbound` A list of length 2. The lower bound to be used for column and row dimensions respectively; default calculated as the minimum value for each dimension.
- `maxbound` A list of length 2. The upper bound to be used for column and row dimensions respectively; default calculated as the maximum value for each dimension.
- `degree` A list of length 2. The degree of polynomial spline to be used for column and row dimensions respectively; default=3.
- `penaltyord` A list of length 2. The order of differencing for column and row dimensions, respectively; default=2.
nestorder A list of length 2. The order of nesting for column and row dimensions, respectively; default=1 (no nesting). A value of 2 generates a spline with half the number of segments in that dimension, etc. The number of segments in each direction must be a multiple of the order of nesting.

method A string. Method for forming the penalty; default="Lee" ie the penalty from Lee, Durban & Eilers (2013, CSDA 61, 22-37). The alternative method is "Wood" ie. the method from Wood et al (2012, Stat Comp 23, 341-360). This option is a research tool and requires further investigation.

Value

List of length 7 elements:

1. data = the input data frame augmented with structures required to fit tensor product splines in asreml-R. This data frame can be used to fit the TPS model. Added columns:
 - TP.col, TP.row = column and row coordinates
 - TP.CxR = combined index for use with smooth x smooth term
 - TP.C.n for n=1:diff.c = X parts of column spline for use in random model (where diff.c is the order of column differencing)
 - TP.R.n for n=1:diff.r = X parts of row spline for use in random model (where diff.r is the order of row differencing)
 - TP.CR.n for n=1:(diff.c*diff.r) = interaction between the two X parts for use in fixed model. The first variate is a constant term which should be omitted from the model when the constant (1) is present. If all elements are included in the model then the constant term should be omitted, eg. y ~ -1 + TP.CR.1 + TP.CR.2 + TP.CR.3 + TP.CR.4 + other terms...
 - when asreml="grp" or "sepgrp", the spline basis functions are also added into the data frame. Column numbers for each term are given in the grp list structure.

2. fR = Xr1:Zc
3. fC = Xr2:Zc
4. fR.C = Zr:Xc1
5. R.fC = Zr:Xc2
6. fR.fC = Zc:Zr
7. all = Xr1:Zc | Xr2:Zc | Zr:Xc1 | Zr:Xc2 | Zc:Zr

Examples

data("DT_cpdata")
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
create the variance-covariance matrix
A <- A.mat(GT) # additive relationship matrix
M <- spl2Dmats(x.coord.name = "Col", y.coord.name = "Row", data=DT, nseg =c(14,21))
head(M$data)
m1g <- mmer(Yield ~ 1 + TP.CR.2 + TP.CR.3 + TP.CR.4,
random = Rowf + Colf + vsr(M$fC) + vsr(M$fR) +
vsr(M$fC.R) + vsr(M$fC.R) + vsr(M$fR) +
vsr(id, Gu = A),
data = M$data, tolpar = 1e-6,
iters = 30)
#
summary(m1g)$varcomp

summary.mmec object summary form a GLMM fitted with mmec

Description
summary method for class "mmec".

Usage
S3 method for class 'mmec'
summary(object, ...)

Arguments
object an object of class "mmec"
...
 Further arguments to be passed

Value
vector of summary

Author(s)
Giovanny Covarrubias-Pazaran

See Also
summary, mmec
summary.mmer

summary form a GLMM fitted with mmer

Description

summary method for class "mmer".

Usage

S3 method for class 'mmer'
summary(object, ...)

Arguments

object an object of class "mmer"

... Further arguments to be passed

Value

vector of summary

Author(s)

Giovanny Covarrubias-Pazaran

See Also

summary, mmer

tpsmmbwrapper

Get Tensor Product Spline Mixed Model Incidence Matrices

Description

tpsmmbwrapper is a wrapper of tpsmmb function from the TPSbits package to avoid version dependencies but if you're using this function for your research please cite the TPSbits package. This function is internally used by the spl2Dmatrices function to get Tensor-Product P-Spline Mixed Model Bits (design matrices) for use with sommer and its main function mmer.
Usage

```r
tpsmbwrapper(
  columncoordinates, 
  rowcoordinates, 
  data, 
  nsegments=NULL, 
  minbound=NULL, 
  maxbound=NULL, 
  degree = c(3, 3), 
  penaltyord = c(2, 2), 
  nestorder = c(1, 1), 
  asreml = "mbf", 
  eigenvalues = "include", 
  method = "Lee", 
  stub = NULL
)
```

Arguments

- `columncoordinates`: A string. Gives the name of data element holding column locations.
- `rowcoordinates`: A string. Gives the name of data element holding row locations.
- `data`: A dataframe. Holds the dataset to be used for fitting.
- `nsegments`: A list of length 2. Number of segments to split column and row ranges into, respectively (= number of internal knots + 1). If only one number is specified, that value is used in both dimensions. If not specified, (number of unique values - 1) is used in each dimension; for a grid layout (equal spacing) this gives a knot at each data value.
- `minbound`: A list of length 2. The lower bound to be used for column and row dimensions respectively; default calculated as the minimum value for each dimension.
- `maxbound`: A list of length 2. The upper bound to be used for column and row dimensions respectively; default calculated as the maximum value for each dimension.
- `degree`: A list of length 2. The degree of polynomial spline to be used for column and row dimensions respectively; default=3.
- `penaltyord`: A list of length 2. The order of differencing for column and row dimensions, respectively; default=2.
- `nestorder`: A list of length 2. The order of nesting for column and row dimensions, respectively; default=1 (no nesting). A value of 2 generates a spline with half the number of segments in that dimension, etc. The number of segments in each direction must be a multiple of the order of nesting.
- `asreml`: A string. Indicates the types of structures to be generated for use in asreml models; default "mbf". The appropriate eigenvalue scaling is included within the Z matrices unless setting `scaling="none"` is used, and then the scaling factors are supplied separately in the returned object.
 - `asreml="mbf"` indicates the function should put the spline design matrices into structures for use with "mbf";
• `asreml="grp"` indicates the function should add the composite spline design matrices (e.g. for second-order differencing, matrices `Xr1:Zc, Xr2:Zc, Zr:Xc1, Zr:Xc2` and `Zc:Zr`) into the data frame and provide a group list structure for each term;

• `asreml="sepgrp"` indicates the function should generate the individual X and Z spline design matrices separately (i.e. `Xc, Xr, Zc` and `Zr`), plus the smooth x smooth interaction term as a whole (i.e. `Zc:Zr`), and provide a group list structure for each term.

• `asreml="own"` indicates the function should generate the composite matrix \((Xr:Zc | Zr:Xc | Zc:Zr)\) as a single set of columns.

eigenvalues A string. Indicates whether eigenvalues should be included within the Z design matrices `eigenvalues="include"`, or whether this scaling should be omitted (`eigenvalues="omit"`); default `eigenvalues="include"`. If the eigenvalue scaling is omitted from the Z design matrices, then it should instead be included in the model as a variance structure to obtain the correct TPSpline model.

method A string. Method for forming the penalty; default="Lee" i.e the penalty from Lee, Durban & Eilers (2013, CSDA 61, 22-37). The alternative method is "Wood" i.e. the method from Wood et al (2012, Stat Comp 23, 341-360). This option is a research tool and requires further investigation.

stub A string. Stub to be attached to names in the `mbf` list to avoid over-writing structures and general confusion.

Value

List of length 7, 8 or 9 (according to the `asreml` and `eigenvalues` parameter settings).

1. **data** = the input data frame augmented with structures required to fit tensor product splines in `asreml-R`. This data frame can be used to fit the TPS model.
 Added columns:
 • `TP.col, TP.row` = column and row coordinates
 • `TP.CxR` = combined index for use with smooth x smooth term
 • `TP.C.n` for `n=1:diff.c` = X parts of column spline for use in random model (where `diff.c` is the order of column differencing)
 • `TP.R.n` for `n=1:diff.r` = X parts of row spline for use in random model (where `diff.r` is the order of row differencing)
 • `TP.CR.n` for `n=1:(diff.C*diff.r)` = interaction between the two X parts for use in fixed model. The first variate is a constant term which should be omitted from the model when the constant (1) is present. If all elements are included in the model then the constant term should be omitted, e.g. `y ~ -1 + TP.CR.1 + TP.CR.2 + TP.CR.3 + TP.CR.4 + other terms...`
 • when `asreml="grp"` or "sepgrp", the spline basis functions are also added into the data frame. Column numbers for each term are given in the `grp` list structure.

2. **mbflist** = list that can be used in call to `asreml` (so long as Z matrix data frames extracted with right names, e.g. `BcZ<stub>.df`)

3. **BcZ.df** = `mbf` data frame mapping onto smooth part of column spline, last column (labelled `TP.col`) gives column index
4. BrZ.df = mbf data frame mapping onto smooth part of row spline, last column (labelled TP.row) gives row index
5. BcrZ.df = mbf data frame mapping onto smooth x smooth term, last column (labelled TP.CxR) maps onto col x row combined index
6. dim = list structure, holding dimension values relating to the model:
 (a) "diff.c" = order of differencing used in column dimension
 (b) "nbc" = number of random basis functions in column dimension
 (c) "nbcn" = number of nested random basis functions in column dimension used in smooth x smooth term
 (d) "diff.r" = order of differencing used in column dimension
 (e) "nbr" = number of random basis functions in column dimension
 (f) "nbrn" = number of nested random basis functions in column dimension used in smooth x smooth term
7. trace = list of trace values for ZGZ' for the random TPspline terms, where Z is the design matrix and G is the known diagonal variance matrix derived from eigenvalues. This can be used to rescale the spline design matrix (or equivalently variance components).
8. grp = list structure, only added for settings asreml="grp", asreml="sepgrp" or asreml="own". For asreml="grp", provides column indexes for each of the 5 random components of the 2D splines. For asreml="sepgrp", provides column indexes for each of the X and Z component matrices for the 1D splines, plus the composite smooth x smooth interaction term. For asreml="own", provides column indexes for the composite random model. Dimensions of the components can be derived from the values in the dim item. The Z terms are scaled by the associated eigenvalues when eigenvalues="include", but not when eigenvalues="omit".
9. eigen = list structure, only added for option setting eigenvalues="omit". Holds the diagonal elements of the inverse variance matrix for the terms Xc:Zr (called diagr), Zc:Xr (called diagc) and Zc:Zr (called diagcr).

transformConstraints

Description
transformConstraints takes a list of matrices with constraints and transforms all the non-zero values to the value desired. The purpose of this function is to make easy the transformation of initial constraints to a fixed-constraint list to be provided to a mixed model fitted with the mmer function.

Usage
transformConstraints(list0,value=1)

Arguments
list0 a list of matrices with constraints according to the rules specified in the vsr function (0: not to be estimated, 1: positive, 2: unconstrained, 3: fixed).
value value to be used to replace all the non-zero values in the constraint matrices.
Value

res a list with the modified constraint matrices.

Author(s)

Giovanny Covarrubias-Pazaran

References

See Also

The function vsr to know how to use transformConstraints in the mmem solver.

Examples

(a <- list(unsm(4), diag(4)))
transformConstraints(a, value=3)

transp

Creating color with transparency

Description

This function takes a color and returns the same with a certain alpha grade transparency.

Usage

transp(col, alpha=0.5)

Arguments

col Color to be used for transparency
alpha Grade of transparency desired

Details

No major details.

Value

If arguments are correctly specified the function returns:

res A new color with certain grade of transparency
unsm

References

See Also
The core functions of the package mmer

Examples
transp("red", alpha=0.5)

unsm unstructured indication matrix

Description
unsm creates a square matrix with ones in the diagonals and 2's in the off-diagonals to quickly
specify an unstructured constraint in the Gtc argument of the vsr function.

Usage
unsm(x, reps=NULL)

Arguments
 x integer specifying the number of traits to be fitted for a given random effect.
 reps integer specifying the number of times the matrix should be repeated in a list
 format to provide easily the constraints in complex models that use the ds(), us() or cs() structures.

Value
 $res a matrix or a list of matrices with the constraints to be provided in the Gtc argument of the
 vsr function.

Author(s)
 Giovanny Covarrubias-Pazaran

References
 Covarrubias-Pazaran G (2016) Genome assisted prediction of quantititative traits using the R package

See Also
The function vsr to know how to use unsm in the mmer solver.
Examples

unsm(3)
unsm(3,2)

usc

unstructured covariance structure

Description

usc creates an unstructured covariance structure for specific levels of the random effect to be used with the mmec solver.

Usage

usc(x, thetaC, theta)

Arguments

x vector of observations for the random effect.
thetaC an optional matrix for constraints in the variance components.
theta an optional matrix for initial values of the variance components.

Value

$res a list with the provided vector and the variance covariance structure expected for the levels of the random effect.

Author(s)

Giovanny Covarrubias-Pazaran

References

See Also

The function vsc to know how to use usc in the mmec solver.

Examples

x <- as.factor(c(1:5,1:5,1:5));x
usc(x)
usr

| unstructured covariance structure |

Description

usr creates an unstructured covariance structure for specific levels of the random effect to be used with the **mmer** solver.

Usage

```r
usr(x)
```

Arguments

- `x` vector of observations for the random effect.

Value

- `$res` a list with the provided vector and the variance covariance structure expected for the levels of the random effect.

Author(s)

Giovanny Covarrubias-Pazaran

References

See Also

The function **vsr** to know how to use **usr** in the **mmer** solver.

Examples

```r
x <- as.factor(c(1:5,1:5,1:5));x
usr(x)
```
vpredict form of a LMM fitted with mmer

Description

vpredict method for class "mmer".

Post-analysis procedure to calculate linear combinations of variance components. Its intended use is when the variance components are either simple variances or are variances and covariances in an unstructured matrix. The functions covered are linear combinations of the variance components (for example, phenotypic variance), a ratio of two components (for example, heritabilities) and the correlation based on three components (for example, genetic correlation).

The calculations are based on the estimated variance parameters and their variance matrix as represented by the inverse of the Fisher or Average information matrix. Note that this matrix has zero values for fixed variance parameters including those near the parameter space boundary.

The transform is specified with a formula. On the left side of the formula is a name for the transformation. On the right side of the formula is a transformation specified with shortcut names like 'V1', 'V2', etc. The easiest way to identify these shortcut names is to use 'summary(object)$varcomp'. The rows of this object can referred to with shortcuts 'V1', 'V2', etc. See the example below.

Usage

vpredict(object, transform)

S3 method for class 'mmer'
vpredict(object, transform)

Arguments

- **object**: a model fitted with the mmer function.
- **transform**: a formula to calculate the function.

Details

The delta method (e.g., Lynch and Walsh 1998, Appendix 1; Ver Hoef 2012) uses a Taylor series expansion to approximate the moments of a function of parameters. Here, a second-order Taylor series expansion is implemented to approximate the standard error for a function of (co)variance parameters. Partial first derivatives of the function are calculated by algorithmic differentiation with deriv.

Though vpredict can calculate standard errors for non-linear functions of (co)variance parameters from a fitted mmer model, it is limited to non-linear functions constructed by mathematical operations such as the arithmetic operators +, -, *, / and ^, and single-variable functions such as exp and log. See deriv for more information.
Value

dd the parameter and its standard error.

Author(s)

Giovanny Covarrubias

References

See Also

vpredict, mmer

Examples

EXAMPLE 1
simple example with univariate models
```r
# data(DT_cpdata)
# DT <- DT_cpdata
# GT <- GT_cpdata
# MP <- MP_cpdata
# #### create the variance-covariance matrix
# A <- A.mat(GT)
# #### look at the data and fit the model
# head(DT)
# mix1 <- mmer(Yield~1,
# random=~vsr(id,Gu=A),
# data=DT)
# summary(mix1)$varcomp
# #### run the vpredict function
# vpredict(mix1, h2 ~ V1 / ( V1 + V2 )
#
# #### EXAMPLE 2
#### simple example with multivariate models
```
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
create the variance-covariance matrix
A <- A.mat(GT)
look at the data and fit the model
head(DT)
mix2 <- nmer(cbind(Yield, color) ~ 1,
random = ~ vsr(id, Gu = A, Gt = unsm(2)),
rcov = ~ vsr(units, Gt = unsm(2)),
data = DT)
summary(mix2)$varcomp
genetic correlation
vpredict(mix2, gen.cor ~ V2 / sqrt(V1 * V3))
#
EXAMPLE 3
more complex multivariate model
data(DT_btdata)
DT <- DT_btdata
mix3 <- nmer(cbind(tarsus, back) ~ sex,
random = ~ vsr(dam, Gtc = unsm(2)) + vsr(fosternest, Gtc = diag(2)),
rcov = ~ vsr(units, Gtc = unsm(2)),
data = DT)
summary(mix3)$varcomp
calculate the genetic correlation
vpredict(mix3, gen.cor ~ V2 / sqrt(V1 * V3))
#
EXAMPLE 4
going back to simple examples
data(DT_btdata)
DT <- DT_btdata
mix4 <- nmer(tarsus ~ sex, random = ~ dam + fosternest,
data = DT)
summary(mix4)$varcomp
calculate the ratio and its SE
vpredict(mix4, dam.prop ~ V1 / (V1 + V2 + V3))
Description

vs is the main function to build the variance-covariance structure for the random effects to be fitted in the mmer solver.

Usage

vs(..., Gu=NULL, Gti=NULL, Gtc=NULL, reorderGu=TRUE, buildGu=TRUE)

Arguments

... variance structure to be specified following the logic desired in the internal kronecker product. For example, if user wants to define a diagonal variance structure for the random effect 'genotypes'(g) with respect to a random effect 'environments'(e), this is:

\[\text{var}(g) = G.e \odot I.g \]

being \(G.e \) a matrix containing the variance covariance components for g (genotypes) in each level of e (environments), \(I.g \) is the covariance among levels of g (genotypes; i.e. relationship matrix), and \(\odot \) is the kronecker product. This would be specified in the mmer solver as:

\[\text{random} = \sim \text{vs}(\text{dsr(e)}, g) \]

One strength of sommer is the ability to specify very complex structures with as many kronecker products as desired. For example:

\[\text{var}(g) = G.e \odot G.f \odot G.h \odot I.g \]

is equivalent to

\[\text{random} = \sim \text{vs}(e, f, h, g) \]

where different covariance structures can be applied to the levels of e, f, h (i.e. \textit{dsr}, \textit{usr}, \textit{csr}, \textit{atr} or a combination of these). For more examples please see the vignettes 'sommer.start' available in the package.

Gu matrix with the known variance-covariance values for the levels of the u.th random effect (i.e. relationship matrix among individuals or any other known covariance matrix). If NULL, then an identity matrix is assumed. The Gu matrix can have more levels than the ones present in the random effect linked to it but not the other way around. Otherwise, an error message of missing level in Gu will be returned.

Gti matrix with dimensions t x t (t equal to number of traits) with initial values of the variance-covariance components for the random effect specified in the ... argument. If NULL the program will provide the initial values. The values need to be scaled, see Details section.

Gtc matrix with dimensions t x t (t equal to number of traits) of constraints for the variance-covariance components for the random effect specified in the ... argument according to the following rules:

0: not to be estimated
1: estimated and constrained to be positive (i.e. variance component)
2: estimated and unconstrained (can be negative or positive, i.e. covariance component)
3: not to be estimated but fixed (value has to be provided in the Gti argument)
In the multi-response scenario if the user doesn’t specify this argument the default is to build an unstructured matrix (using the \texttt{unsm}() function). This argument needs to be used wisely since some covariance among responses may not make sense. Useful functions to specify constraints are: \texttt{diag}(), \texttt{unsm}(), \texttt{fixm}().

reorderGu

A TRUE/FALSE statement if the Gu matrix should be reordered based on the names of the design matrix of the random effect or passed with the custom order of the user. This may be important when fitting covariance components in a customized fashion. Only for advanced users.

buildGu

A TRUE/FALSE statement to indicate if the Gu matrix should be built in R when the value for the argument \texttt{Gu=NULL}. Repeat, only when the value for the argument \texttt{Gu} is equal to \texttt{NULL}. In some cases when the incidence matrix is wide (e.g. rrBLUP models) the covariance structure is a huge \(p \times p \) matrix that can be avoided when performing matrix operations. By setting this argument to \texttt{FALSE} it allows to skip forming this covariance matrix.

Details

When providing initial values in the \texttt{Gti} argument the user has to provide scaled variance component values. The user can provide values from a previous model by accessing the \texttt{sigma_scaled} output from an \texttt{mmer} model or if an specific value is desired the user can obtain the scaled value as:

\[
m = \frac{x}{\text{var}(y)}
\]

where \(x \) is the desired initial value and \(y \) is the response variable. You can find an example in the \texttt{DT_cpdata} dataset.

Value

\texttt{res} a list with all necessary elements (incidence matrices, known var-cov structures, unknown covariance structures to be estimated and constraints) to be used in the \texttt{mmer} solver.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2018) Software update: Moving the R package \texttt{sommer} to multivariate mixed models for genome-assisted prediction. doi: https://doi.org/10.1101/354639

See Also

The core function of the package: \texttt{mmer}

Examples

```r
# Please use the function \texttt{vsr()} for \texttt{mmer()} and \texttt{vsc()} for \texttt{mmec}.
```
vsc

variance structure specification

Description

vsc is the main function to build the variance-covariance structure for the random effects to be fitted in the mmec solver.

Usage

vsc(..., Gu=NULL, buildGu=TRUE, meN=1, meTheta=NULL, meThetaC=NULL, sp=FALSE)

Arguments

... variance structure to be specified following the logic desired in the internal kronecker product. For example, if user wants to define a diagonal variance structure for the random effect 'genotypes'(g) with respect to a random effect 'environments'(e), this is:

\[
\text{var}(g) = G.e @ I.g
\]

being \(G.e\) a matrix containing the variance covariance components for \(g\) (genotypes) in each level of \(e\) (environments), \(I.g\) is the covariance among levels of \(g\) (genotypes; i.e. relationship matrix), and @ is the kronecker product. This would be specified in the mmec solver as:

random=~vsc(dsc(e),g)

One strength of sommer is the ability to specify very complex structures with as many kronecker products as desired. For example:

\[
\text{var}(g) = G.e @ G.f @ G.h @ I.g
\]

is equivalent to

random=~vsc(e,f,h,g)

where different covariance structures can be applied to the levels of \(e, f, h\) (i.e. dsc, usc, csc, atr or a combination of these). For more examples please see the vignettes 'sommer.start' available in the package.

Gu matrix with the known variance-covariance values for the levels of the u.th random effect (i.e. relationship matrix among individuals or any other known covariance matrix). If NULL, then an identity matrix is assumed. The Gu matrix can have more levels than the ones present in the random effect linked to it but not the other way around. Otherwise, an error message of missing level in Gu will be returned.

buildGu a TRUE/FALSE statement to indicate if the Gu matrix should be built in R when the value for the argument Gu=NULL. Repeat, only when when the value for the argument Gu is equal to NULL. In some cases when the incidence matrix is wide (e.g. rrBLUP models) the covariance structure is a huge \(p \times p\) matrix that can be avoided when performing matrix operations. By setting this argument to FALSE it allows to skip forming this covariance matrix.
meN number of main effects in the variance structure. Is always counted from last to first.
meTheta variance covariance matrix between the main effects desired.
meThetaC constraints for the variance covariance matrix between the main effects desired.
sp a TRUE/FALSE statement to indicate if the VC from this structure should be multiplied by the scale parameter added in the mmer function through the addScaleParam argument.

Details...

Value

res a list with all neccessary elements (incidence matrices, known var-cov structures, unknown covariance structures to be estimated and constraints) to be used in the mmec solver.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2018) Software update: Moving the R package sommer to multivariate mixed models for genome-assisted prediction. doi: https://doi.org/10.1101/354639

See Also

The core function of the package: mmec

Examples

data(DT_example)
DT <- DT_example
DT <- DT[with(DT, order(Env)),]
A <- A_example

x <- as.character(unique(DT$Name))
DT <- droplevels(DT[which(!is.na(match(DT$Name, x[1:5]))),])
============================
example to without structure
============================
isc(DT$Name)
mix <- mmec(Yield~Env,
 random=~ vsc(isc(Name)),
 rcov=~ units,
 nIters=3,
vsr

data=DT)

example to without structure but
using covariance among levels in the
random effect Name
##
Ai <- as(solve(A + diag(1e-4,ncol(A),ncol(A))), Class="dgCMatrix")
mix <- mmec(Yield~Env,
random= ~ vsc(isc(Name), Gu=Ai),
r cov= ~ units,
nIters=3,
data=DT)

summary(mix)$varcomp

example to use dsc() structure (DIAGONAL)
##
dsc(DT$Year)
mix <- mmec(Yield~Env,
random= ~ vsc(dsc(Year),isc(Name)),
r cov= ~ vsc(dsc(Year),isc(units)),
nIters=3,
data=DT)

summary(mix)$varcomp

example to use atc() structure (level-specific)
##
unique(DT$Year)
mix <- mmec(Yield~Env,
random= ~ vsc(atc(Year,c("2011","2012")),isc(Name)),
r cov= ~ vsc(dsc(Year),isc(units)),
data=DT)

example to use usc() structure (UNSTRUCTURED)
##
usc(DT$Year)
mix <- mmec(Yield~Env,
random= ~ vsc(usc(Year),isc(Name)),
r cov= ~ vsc(dsc(Year),isc(units)),
nIters = 3,
data=DT)

vsr

variance structure specification

Description

vsr is the main function to build the variance-covariance structure for the random effects to be fitted in the mmec solver.
Usage

vsr(..., Gu=NULL, Gti=NULL, Gtc=NULL, reorderGu=TRUE, buildGu=TRUE)

Arguments

... variance structure to be specified following the logic desired in the internal kronecker product. For example, if user wants to define a diagonal variance structure for the random effect 'genotypes' (g) with respect to a random effect 'environments' (e), this is:

\[
\text{var}(g) = G.e \otimes I.g
\]

being \(G.e \) a matrix containing the variance covariance components for g (genotypes) in each level of e (environments), \(I.g \) is the covariance among levels of g (genotypes; i.e. relationship matrix), and \(\otimes \) is the kronecker product. This would be specified in the mmer solver as:

\[
\text{random} = \sim \text{vsr}(\text{dsr}(e), g)
\]

One strength of sommer is the ability to specify very complex structures with as many kronecker products as desired. For example:

\[
\text{var}(g) = G.e \otimes G.f \otimes G.h \otimes I.g
\]

is equivalent to

\[
\text{random} = \sim \text{vsr}(e, f, h, g)
\]

where different covariance structures can be applied to the levels of e, f, h (i.e. \text{dsr}, \text{usr}, \text{csr}, \text{atr} or a combination of these). For more examples please see the vignettes 'sommer.start' available in the package.

Gu matrix with the known variance-covariance values for the levels of the u.th random effect (i.e. relationship matrix among individuals or any other known covariance matrix). If NULL, then an identity matrix is assumed. The Gu matrix can have more levels than the ones present in the random effect linked to it but not the other way around. Otherwise, an error message of missing level in Gu will be returned.

Gti matrix with dimensions t x t (t equal to number of traits) with initial values of the variance-covariance components for the random effect specified in the ... argument. If NULL the program will provide the initial values. The values need to be scaled, see Details section.

Gtc matrix with dimensions t x t (t equal to number of traits) of constraints for the variance-covariance components for the random effect specified in the ... argument according to the following rules:

0: not to be estimated
1: estimated and constrained to be positive (i.e. variance component)
2: estimated and unconstrained (can be negative or positive, i.e. covariance component)
3: not to be estimated but fixed (value has to be provided in the Gti argument)

In the multi-response scenario if the user doesn’t specify this argument the default is to build an unstructured matrix (using the \text{unsm()} function). This argument needs to be used wisely since some covariance among responses may not make sense. Useful functions to specify constraints are: \text{diag()}, \text{unsm()}, \text{fixm}().
reorderGu
a TRUE/FALSE statement if the Gu matrix should be reordered based on the names of the design matrix of the random effect or passed with the custom order of the user. This may be important when fitting covariance components in a customized fashion. Only for advanced users.

buildGu
a TRUE/FALSE statement to indicate if the Gu matrix should be built in R when the value for the argument Gu=NULL. Repeat, only when when the value for the argument Gu is equal to NULL. In some cases when the incidence matrix is wide (e.g. rrBLUP models) the covariance structure is a huge p x p matrix that can be avoided when performing matrix operations. By setting this argument to FALSE it allows to skip forming this covariance matrix.

Details

When providing initial values in the Gti argument the user has to provide scaled variance component values. The user can provide values from a previous model by accessing the sigma_scaled output from an mmmer model or if an specific value is desired the user can obtain the scaled value as:

\[m = \frac{x}{\text{var}(y)} \]

where \(x \) is the desired initial value and \(y \) is the response variable. You can find an example in the DT_cpdata dataset.

Value

- **$res** a list with all necessary elements (incidence matrices, known var-cov structures, unknown covariance structures to be estimated and constraints) to be used in the mmer solver.

Author(s)
Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2018) Software update: Moving the R package sommer to multivariate mixed models for genome-assisted prediction. doi: https://doi.org/10.1101/354639

See Also
The core function of the package: mmer

Examples

data(DT_example)
DT <- DT_example
A <- A_example

```r
## =============== ##
## example to without structure
```
```r
## example to without structure but
## using covariance among levels in the
## random effect Name
## ============================ ##
dsr(DT$Year)
mix <- mmer(Yield~Env,
    random= ~ vsr(Name),
    rcov= vsr(units),
    data=DT)
## ============================ ##
```

```r
## example to use dsr() structure (DIAGONAL)
## ============================ ##
dsr(DT$Year)
mix <- mmer(Yield~Env,
    random= ~ vsr(dsr(Year),Name),
    rcov= vsr(dsr(Year),units),
    data=DT)
## ============================ ##
```

```r
## example to use atr() structure (level-specific)
## ============================ ##
unique(DT$Year)
mix <- mmer(Yield~Env,
    random= ~ vsr(atr(Year,c("2011","2012")),Name),
    rcov= vsr(dsr(Year),units),
    data=DT)
## ============================ ##
```

```r
## example to use usr() structure (UNSTRUCTURED)
## ============================ ##
usr(DT$Year)
mix <- mmer(Yield~Env,
    random= ~ vsr(usr(Year),Name),
    rcov= vsr(dsr(Year),units),
    data=DT)
## ============================ ##
```

```r
## example to use csr() structure (CUSTOMIZED)
## ============================ ##
unique(DT$Year)
mm <- matrix(1,3,3); mm[1,3] <- mm[3,1] <- 0; mm #don't estimate cov 2011-2013
mix <- mmer(Yield~Env,
    random= ~ vsr(csr(Year,mm),Name),
    rcov= vsr(dsr(Year),units),
```
wald.test

wald.test

Wald Test for Model Coefficients

Description

Computes a Wald χ^2 test for 1 or more coefficients, given their variance-covariance matrix.
Usage

```r
wald.test(Sigma, b, Terms = NULL, L = NULL, H0 = NULL,
          df = NULL, verbose = FALSE)
# S3 method for class 'wald.test'
print(x, digits = 2, ...)
```

Arguments

- `Sigma` A var-cov matrix, usually extracted from one of the fitting functions (e.g., `lm`, `glm`, ...).
- `b` A vector of coefficients with var-cov matrix `Sigma`. These coefficients are usually extracted from one of the fitting functions available in R (e.g., `lm`, `glm`, ...).
- `Terms` An optional integer vector specifying which coefficients should be jointly tested, using a Wald χ^2 or F test. Its elements correspond to the columns or rows of the var-cov matrix given in `Sigma`. Default is NULL.
- `L` An optional matrix conformable to `b`, such as its product with `b` i.e., `L %*% b` gives the linear combinations of the coefficients to be tested. Default is NULL.
- `H0` A numeric vector giving the null hypothesis for the test. It must be as long as `Terms` or must have the same number of columns as `L`. Default to 0 for all the coefficients to be tested.
- `df` A numeric vector giving the degrees of freedom to be used in an F test, i.e. the degrees of freedom of the residuals of the model from which `b` and `Sigma` were fitted. Default to NULL, for no F test. See the section Details for more information.
- `verbose` A logical scalar controlling the amount of output information. The default is FALSE, providing minimum output.
- `x` Object of class “wald.test”
- `digits` Number of decimal places for displaying test results. Default to 2.
- `...` Additional arguments to `print`.

Details

The key assumption is that the coefficients asymptotically follow a (multivariate) normal distribution with mean = model coefficients and variance = their var-cov matrix.

One (and only one) of `Terms` or `L` must be given. When `L` is given, it must have the same number of columns as the length of `b`, and the same number of rows as the number of linear combinations of coefficients. When `df` is given, the χ^2 Wald statistic is divided by $m = \text{length}(\text{Terms})$ or $\text{nrow}(L))$. Under the null hypothesis $H0$, this new statistic follows an $F(m, df)$ distribution.

Value

An object of class `wald.test`, printed with `print.wald.test`.
References

Examples

data(DT_yatesoats)
DT <- DT_yatesoats

m3 <- mmer(fixed=Y ~ V + N + V:N-1,
 random = ~ B + B:MP,
 rcov=units,
 data = DT)

wald.test(b = m3$Beta$Estimate, Sigma = m3$VarBeta, Terms = 2)

LL <- matrix(0,nrow=1, ncol=12)
LL[1,2] <- 1
LL[1,3] <- -1
LL

wald.test(b = m3$Beta$Estimate, Sigma = m3$VarBeta, L=LL)
Index

* **R package**
 * sommer-package, 4
* **array**
 * adiag1, 12
* **datasets**
 * DT_augment, 39
 * DT.btdata, 40
 * DT.cornhybrids, 41
 * DT.cpdata, 43
 * DT_example, 44
 * DT_fulldiallel, 47
 * DT_gryphon, 49
 * DT_h2, 50
 * DT_halfdiallel, 52
 * DT_ige, 53
 * DT_legendre, 54
 * DT_mohring, 56
 * DT_polyploid, 58
 * DT_rice, 60
 * DT_sleepstudy, 62
 * DT_technow, 63
 * DT_wheat, 65

* **models**
 * anova.mmec, 17
 * anova.mmmer, 18
 * coef.mmec, 29
 * coef.mmmer, 30
 * fitted.mmec, 74
 * fitted.mmmer, 75
 * plot.mmec, 119
 * plot.mmmer, 120
 * pmonitor, 121
 * predict.mmec, 122
 * predict.mmmer, 124
 * residuals.mmec, 128
 * residuals.mmmer, 128
 * summary.mmec, 143
 * summary.mmmer, 144
 * vpredict, 152

 A.mat, 4, 10, 80, 105, 111
 A_example (DT_example), 44
 A_gryphon (DT_gryphon), 49
 A_ige (DT_ige), 53
 Ad_technow (DT_technow), 63
 add.diallel.vars, 11, 118
 adiag1, 12
 Af_technow (DT_technow), 63
 AI, 14
 anova, 18, 85
 anova.mmec, 5, 17, 105
 anova.mmmer, 5, 18, 111
 AR1, 19, 80
 ARMA, 20, 80
 atc, 21, 104
 atcgl1234, 4, 22
 atr, 24, 81, 84, 102, 108, 110, 155, 157, 160
 bathy.colors, 25
 bbasis, 25
 bivariateRun, 26
 build.HMM, 4, 27, 85, 105, 111
 coef, 30, 85
 coef.mmec, 5, 29, 105
 coef.mmmer, 5, 30, 111
 CS, 31, 80
 csc, 32, 102, 157
 csr, 33, 81, 108, 155, 160
 D.mat, 4, 34, 80, 105, 111
 deriv, 152
 dftToMatrix, 35
 diag, 79, 82, 102, 108, 156, 160
 dsc, 37, 102, 104, 157
 dsr, 38, 81, 84, 108, 111, 155, 160
 DT_augment, 39
 DT_btdata, 5, 40, 85, 105, 112
 DT_cornhybrids, 5, 41, 85, 105, 112
 DT_cpdata, 5, 43, 85, 105, 112, 156, 161
INDEX

DT_example, 44
DT_expdesigns, 46
DT_fulldiallel, 5, 47, 85, 105, 112
DT_gryphon, 5, 49, 85, 105, 112
DT_h2, 5, 50, 85, 105, 112
DT_halfdiallel, 5, 52, 85, 105, 112
DT_ige, 53, 105, 112
DT_legendre, 5, 54, 105, 112
DT_mhoring, 5, 12, 56, 105, 112
DT_polyplold, 5, 58, 85, 105, 112
DT_rice, 60
DT_sleepstudy, 5, 62, 105, 112
DT_technow, 5, 63, 85, 105, 112
DT_yatesoats, 67
DT_i_cornhybrids (DT_cornhybrids), 41

E.mat, 4, 68, 80, 105, 111
EM, 69

fcm, 73, 81, 108, 111
fitted, 75, 76, 85
fitted.mmer, 4, 74, 105
fitted.mmec, 4, 75, 111
fixm, 77, 79, 82, 102, 108, 156, 160

GT_cornhybrids (DT_cornhybrids), 41
GT_cpdata (DT_cpdata), 43
GT_polyplold (DT_polyplold), 58
GT_rice (DT_rice), 60
GT_wheat (DT_wheat), 65
GTn_rice (DT_rice), 60
gvsr, 78, 108, 111
GWAS, 6, 7, 80

H.mat, 4, 80, 88, 105, 111
imputev, 89
isc, 90, 102

jet.colors, 91

LD.decay, 92
leg, 80, 82, 93, 102, 104, 108, 111
list2usmat, 95

manhattan, 4, 85, 96, 105, 111
map.plot, 4, 83, 97, 105, 111
mclapply, 26
Md_technow (DT_technow), 63

MEMMA, 99
Mf_technow (DT_technow), 63
mmer, 4–6, 11–13, 16, 18–20, 23, 24, 27,
29–31, 33, 35, 36, 38–40, 42, 43, 45,
48, 49, 51–53, 55, 56, 59, 61, 62, 64,
66, 72, 74, 76–80, 89–92, 94–96,
98, 99, 101, 107, 118, 120, 126, 129,
130, 132, 136, 144, 148, 149, 151,
153, 155, 156, 159, 161

MP_cpdata (DT_cpdata), 43
MP_polyplold (DT_polyplold), 58
overlay, 12, 80, 82, 84, 102, 104, 108, 111,
117
P_gryphon (DT_gryphon), 49
plot, 85, 119–121
plot.mmer, 5, 105, 119
plot.mmec, 5, 111, 120
pmonitor, 121
predict, 123, 126
predict.mmer, 4, 105, 122
predict.mmec, 4, 111, 124
print.mmer (summary.mmer), 143
print.mmec (summary.mmec), 144
print.summary.mmer (summary.mmer), 144
print.wald.test (wald.test), 163

randef, 85, 105, 111, 127
residuals, 85, 128, 129
residuals.mmer, 4, 105, 128
residuals.mmec, 4, 111, 128

simGECorMat, 129
sommer, 47, 84, 105, 112
sommer (sommer-package), 4
sommer-package, 4
sp12Da, 5, 80, 82, 84, 108, 111, 130, 136
sp12Db, 5, 80, 82, 84, 108, 111, 132, 133, 140
sp12Dc, 5, 102, 104, 137
sp12Dmats, 140
summary, 85, 143, 144
summary.mmec, 4, 105, 143
summary.mmer, 4, 111, 144
tpsmmbwrapper, 144
transformConstraints, 147
transp, 148

unsm, 79, 82, 102, 108, 149, 156, 160
usc, 102, 104, 150, 157
usr, 81, 84, 108, 111, 151, 155, 160

variogram, 85
vpredict, 4, 105, 111, 152, 153
vs, 154
vsc, 21, 32, 37, 91, 102, 104, 150, 157
vsr, 6, 24, 33, 38, 73, 74, 77, 81, 82, 84, 95,
 108–111, 148, 149, 151, 159

wald.test, 163