Package ‘spamtree’

October 14, 2022

Type Package
Title Spatial Multivariate Trees
Version 0.2.2
Date 2021-12-07
Author Michele Peruzzi
Maintainer Michele Peruzzi <michele.peruzzi@duke.edu>

Description Fits multivariate Bayesian spatial regression models for large datasets using Spatial Multivariate Trees (SpamTrees).
 The methods in this package are detailed in Peruzzi and Dunson (2020) <arXiv:2012.00943>. Funded by ERC grant 856506 and NIH grant R01ES028804.

License GPL-3
Imports Rcpp (>= 1.0.3), FNN, dplyr, magrittr, rlang, tibble
LinkingTo Rcpp, RcppArmadillo
Suggests knitr, rmarkdown, abind, ggplot2
VignetteBuilder knitr

NeedsCompilation yes
Repository CRAN
Date/Publication 2021-12-07 06:40:01 UTC

R topics documented:

CrossCovarianceAG10 .. 2
spamtree ... 4

Index 9
CrossCovarianceAG10

Multivariate non-separable cross-covariance function on latent domain of variables.

Description

This function implements the cross-covariance function used in Peruzzi and Dunson (2021), which is derived from eq. 7 in Apanasovich and Genton (2010).

Usage

CrossCovarianceAG10(coords1, mv1, coords2, mv2,
 ai1, ai2, phi_i, thetamv, Dmat)

Arguments

coords1 matrix with spatial coordinates
mv1 integer vector with variable IDs. The length must match the number of rows in coords1
coords2 matrix with spatial coordinates
mv2 integer vector with variable IDs. The length must match the number of rows in coords2
ai1 \(q \)-dimensional vector
ai2 \(q \)-dimensional vector
phi_i \(q \)-dimensional vector
thetamv for bivariate data \(q = 2 \), this is a scalar. For \(q > 2 \), this is a vector with elements \(\alpha, \beta, \phi \).
Dmat symmetric matrix of dimension \((q,q) \) with zeroes on the diagonal and whose \((i,j) \) element is \(\delta_{i,j} \).

Details

Suppose we have \(q \) variables. For \(h > 0 \) and \(\Delta > 0 \) define:

\[
C(h, \Delta) = \frac{\exp\{-\phi \| h \|/ \exp\{\beta \log(1 + \alpha \Delta)/2\}\}}{\exp\{\beta \log(1 + \alpha \Delta)\}}
\]

and for \(j = 1, \ldots, q \), define \(C_j(h) = \exp\{-\phi_j \| h \|\} \).

Then the cross-covariance between the \(i \)th margin of a \(q \)-variate process \(w(\cdot) \) at spatial location \(s \) and the \(j \)th margin at location \(s' \) is built as follows. For \(i = j \) as

\[
\text{Cov}(w(s, \xi_i), w(s', \xi_j)) = \sigma_{i1}^2 C(h, 0) + \sigma_{i2}^2 C_i(h),
\]

whereas if \(i \neq j \) it is defined as

\[
\text{Cov}(w(s, \xi_i), w(s', \xi_j)) = \sigma_{i1} \sigma_{j2} C(h, \delta_{ij}),
\]

where \(\xi_i \) and \(\xi_j \) are the latent locations of margin \(i \) and \(j \) in the domain of variables and \(\delta_{ij} = \| \xi_i - \xi_j \| \) is their distance in such domain.
Value

The cross-covariance matrix for all pairwise locations.

Author(s)

Michele Peruzzi <michele.peruzzi@duke.edu>

References

Examples

```r
library(magrittr)
library(dplyr)
library(spamtree)

SS <- 10
xlocs <- seq(0.0, 1, length.out=SS)
coords <- expand.grid(xlocs, xlocs)
c1 <- coords %>% mutate(mv_id=1)
c2 <- coords %>% mutate(mv_id=2)

coords <- bind_rows(c1, c2)
coords_q <- coords %>% dplyr::select(-mv_id)
cx <- coords_q %>% as.matrix()
mv_id <- coords$mv_id

ai1 <- c(1, 1.5)
ai2 <- c(.1, .51)
phi_i <- c(1, 2)
theta_mv <- 5

q <- 2
Dmat <- matrix(0, q, q)
Dmat[2, 1] <- 1
Dmat[upper.tri(Dmat)] <- Dmat[lower.tri(Dmat)]

CC <- CrossCovarianceAG10(cx, mv_id, cx, mv_id, ai1, ai2, phi_i, theta_mv, Dmat)
```
Bayesian Spatial Multivariate Tree GP Regression

Description

Bayesian linear multivariate spatial regression using SpamTrees.

Usage

spamtree(y, x, coords,
 mv_id = rep(1, length(y)),
 cell_size = 25,
 K = rep(2, ncol(coords)),
 start_level = 0,
 tree_depth = Inf,
 last_not_reference = TRUE,
 limited_tree = FALSE,
 cherrypick_same_margin = TRUE,
 cherrypick_group_locations = TRUE,
 mvbias = 0,
 mcmc = list(keep = 1000, burn = 0, thin = 1),
 num_threads = 4,
 verbose = FALSE,
 settings = list(adapting = TRUE, mcmcsd = 0.01,
 debug = FALSE, printall = FALSE),
 prior = list(set_unif_bounds = NULL,
 btmlim = NULL, toplim = NULL, vlim = NULL),
 starting = list(beta = NULL, tausq = NULL, theta = NULL, w = NULL),
 debug = list(sample_beta = TRUE, sample_tausq = TRUE,
 sample_theta = TRUE, sample_w = TRUE,
 sample_predicts = TRUE)
)

Arguments

y vector of outcomes of size \(n \). Correspondingly, \(y[i] \) is the observation of outcome \(mvd [i] \) at location \(\text{coords}[i,j] \) and with covariates \(x[i,j] \). This means that if the number of outcomes is \(q > 1 \) then these are all stacked in a vector, and their integer ID is stored in \(mvd \).

x matrix of covariates with dimension \((n,p) \).

coords matrix of coordinates with dimension \((n,2) \).

mv_id integer vector of outcome IDs of size \(n \) with values in \{1, ..., q\}.

cell_size integer number of knots for each node in the treed DAG. Defaults to 25. This is a target number and some nodes may include more or less locations. Here, knots can only be chosen among observed locations.
integer vector of dimension 2 indicating the number of intervals for axis-parallel recursive partitioning. Each tree level will thus have prod(K) times as many partitions as the previous. Defaults to c(2, 2), leading to a recursive quadtree.

start_level integer indicating the root level. Example: start_level=0 means there is 1 root node. start_level=1 means there are prod(K) root nodes.

tree_depth integer indicating the number of branching steps in the tree. Defaults to Inf meaning that observed locations will be placed on tree nodes as much as possible.

last_not_reference bool indicating whether to treat the last level of the tree as a reference set. The default value TRUE is recommended when tree_depth=Inf or whenever only a very small number of observed locations remain at the last level.

limited_tree bool determining whether to use a recursive tree. If TRUE, each non-root node has 1 parent and prod(K) children. Otherwise, each node at level L (where root nodes have L = 0) has L parents.

cherrypick_same_margin bool used only for multivariate outcomes. This determines how to assign parents to leaf nodes. In a SpamTree, outcome j at a new spatial location is assigned the same parent of its nearest neighbor. If cherrypick_same_margin=TRUE then the nearest neighbor is searched within the subset of locations for which outcome j was observed. Otherwise, the nearest neighbor is searched within all locations at which any outcome was observed. If outcomes are aligned (all observed at the same locations) and cherrypick_group_locations=TRUE, then this setting has minimal or no effect.

cherrypick_group_locations bool used in multivariate settings to determine whether the allocation of knots to tree nodes should treat the q outcomes at location s ∈ D as either (1) a q dimensional vector observed at 1 location, or (2) one observed outcome at each of q locations (i.e. same spatial location but different outcome index).

mvbias parameter used in settings of multivariate misalignment in which one or more outcomes are observed at a number of locations that is much smaller than others. m.bias can be used to disproportionately place the more sparsely observed outcomes near root nodes. This is justified by Prop. 1 in Peruzzi and Dunson (2021).

mcmc list for setting up MCMC. mcmc$keep is the number of MCMC samples to be saved, mcmc$burn is the number of iterations for burn-in, mcmc$thin is the thinning level for the chain. The total number of iterations that will be run is burn + thin*keep.

num_threads integer number of OpenMP threads to use within MCMC. Ineffective if source is compiled without OpenMP support.

verbose level of verbosity. All messages are suppressed if verbose=FALSE (default). It is useful to set verbose=TRUE for data of medium size or long MCMC chains.

settings list with additional settings. settings$adapting determines whether to use Robust Adaptive Metropolis algorithm of Vihola (2012). settings$mcmc_sd is the initial standard deviation for the MCMC proposals before adaptation. settings$debug prints some debug messages. settings$printall determines whether to print to console at each iteration.
prior setup for prior on θ, which currently only allows to specify the support of independent uniform distributions. See examples. (subject to change).

starting list with starting values for all unknowns. Compatibility checks with prior are minimal and incompatible values may result in crashes.

debug list with debug settings. Can be used to turn off parts of MCMC.

Details

This implements the following model (in stacked vector form):

$$y = X\beta + w + \epsilon,$$

where y is a n-dimensional vector of outcomes, X is a matrix of covariates of dimension (n, p) associated to coefficients β, w is a n-dimensional vector storing the realization of a spatial multivariate Gaussian tree $w(\cdot) \sim SpamTree_G(0, C_\theta)$ where G is a treed directed acyclic graph, and where $C_\theta(s, s')$ is a matrix-valued non-separable cross-covariance function on latent dimensions (see Peruzzi and Dunson (2021), equation 18, and CrossCovarianceAG10) where θ is a vector of unknown parameters. SpamTrees Gaussian processes are a scalable alternative to a spatial multivariate GP. Conditional independence across domain locations is assumed to be determined by the treed graph G, whose sparsity enables more efficient computations for the Gibbs sampler computed with this function. The graph architecture can be customized using inputs of the spamtree function. The example below computes SpamTrees on univariate data. A vignette exists with bivariate misaligned spatial data.

Value

- coords reordered spatial coordinates
- coordsinfo reordered spatial coordinates plus partitioning information.
- mv_id reordered outcome IDs.
- w_mcmc posterior sample of the spatial random effect. This is a list of length mcmcthin whose elements are n-dimensional vectors of multivariate spatial random effects whose q margins are listed in mv_id as output here.
- yhat_mcmc posterior predictive sample. This is a list of length mcmcthin whose elements are n-dimensional vectors of predictions whose q margins are listed in mv_id as output here.
- beta_mcmc array of size $c(p, \text{mcmc$\text{keep}$, q)}$ with posterior samples of the regression coefficients on each outcome. Example: beta_mcmc[2,,1] is the posterior sample for the second regressor on the first outcome.
- tauq_mcmc matrix with posterior samples of the q nuggets, one for each outcome.
- theta_mcmc matrix with posterior samples of the cross-covariance parameters. These include the latent distance between outcomes which may be poorly identifiable.
- mcmc_time elapsed clock time for MCMC.

Author(s)

Michele Peruzzi <michele.peruzzi@duke.edu>,
David B. Dunson <dunson@duke.edu>
References

Examples

```r
# toy example with tiny dataset and short MCMC
# on a univariate outcome

library(magrittr)
library(dplyr)
library(ggplot2)
library(spamtree)

set.seed(2021)

SS <- 15
n <- SS^2 # total n. locations, including missing ones

cords <- data.frame(Var1=runif(n), Var2=runif(n)) %>% as.matrix()

# generate data

sigmasq <- 2.3
phi <- 6
tausq <- .1
B <- c(-1,.5,1)

CC <- sigmasq * exp(-phi * as.matrix(dist(coords)))
LC <- t(chol(CC))
w <- LC %*% rnorm(n)
p <- length(B)
X <- rnorm(n * p) %>% matrix(ncol=p)
y <- X %*% B + w + tausq^.5 * rnorm(n)

set_missing <- rbinom(n, 1, 0.1)
simdata <- data.frame(coords,
                      y_full = y,
                      w_latent = w) %>%
                      mutate(y_observed = ifelse(set_missing==1, NA, y_full))

# MCMC setup

mcmc_keep <- 300
mcmc_burn <- 300
mcmc_thin <- 1

ybar <- mean(y, na.rm=TRUE)
```
fit spamtree with defaults
spamtree_done <- spamtree(y - ybar, X, coords,
 mcmc = list(keep=mcmc_keep, burn=mcmc_burn, thin=mcmc_thin),
 num_threads = 1)

predictions
y_out <- spamtree_done$yhat_mcmc %>%
 abind::abind(along=3) %>% \[(,1,)] %>%
 add(ybar) %>% apply(1, mean)

w_out <- spamtree_done$w_mcmc %>%
 abind::abind(along=3) %>% \[(,1,)] %>%
 apply(1, mean)

outdf <- spamtree_done$coordsinfo %>%
 cbind(data.frame(w_spamtree = w_out,
 y_spamtree = y_out)) %>%
 left_join(simdata)

plot predictions
pred_plot <- outdf %>%
 ggplot(aes(Var1, Var2, color=y_spamtree)) +
 geom_point() +
 scale_color_viridis_c()

plot latent process
latent_plot <- outdf %>%
 ggplot(aes(Var1, Var2, color=w_spamtree)) +
 geom_point() +
 scale_color_viridis_c()

estimation of regression coefficients
plot(density(spamtree_done$beta_mcmc[1,1]))
abline(v=8[1], col="red")
Index

CrossCovarianceAG10, 2, 6

spamtree, 4