Package ‘sparseDFM’

March 23, 2023

Title Estimate Dynamic Factor Models with Sparse Loadings
Version 1.0

License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.2.3
Imports Rcpp (>= 1.0.9), Matrix, ggplot2
LinkingTo Rcpp, RcppArmadillo
Suggests knitr, rmarkdown, gridExtra
VignetteBuilder knitr
Depends R (>= 3.3.0)
LazyData true
NeedsCompilation yes
Author Luke Mosley [aut], Tak-Shing Chan [aut], Alex Gibberd [aut, cre]
Maintainer Alex Gibberd <a.gibberd@lancaster.ac.uk>
Repository CRAN
Date/Publication 2023-03-23 19:40:02 UTC
UK Trade in Goods (Exports) Dataset

Description
A full dataset used for nowcasting UK trade in goods (Exports) including the 9 export target series and 436 monthly indicator series.

Usage
exports

Format
exports:
A data frame with 226 observations and 445 variables:
- **columns**: Export target series (9) and monthly indicators (436).
- **rows**: Monthly values from Jan 2004 to Oct 2022. ...

Source
https://www.ons.gov.uk/

Examples

```r
# load exports data
data = exports
```
fillNA

Interpolation of missing data

Description
Internal missing data is filled in using a cubic spline. Start and end of sample missing data is filled in using the median of the series and then smoothed with an MA(3) process.

Usage
fillNA(X)

Arguments
X n x p numeric matrix of stationary and standardized time series

Value
X n x p numeric matrix with missing data interpolated
idx.na n x p logical matrix with TRUE if missing and FALSE otherwise.

inflation

UK Inflation Dataset

Description
A subset of quarterly CPI Index data from the ONS Inflation data (Q4 2022 release).
A subset of quarterly CPI Index data from the ONS Inflation data (Q4 2022 release).

Usage

inflation

inflation

Format

inflation:
A data frame with 135 observations and 36 variables:
columns Different classes of inflation index
rows Quarterly values of the relevant CPI index, benchmarked to 2015=100 ...

inflation:
A data frame with 135 observations and 36 variables:
columns Different classes of inflation index
rows Quarterly values of the relevant CPI index, benchmarked to 2015=100 ...
Source

https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindices
https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindices

Examples

```r
data = inflation # load inflation data
data = inflation
```

kalmanMultivariate
Classic Multivariate KFS Equations

Description

Implementation of the classic multivariate Kalman filter and smoother equations of Shumway and Stoffer (1982).

Usage

```r
kalmanMultivariate(X, a0_0, P0_0, A, Lambda, Sig_e, Sig_u)
```

Arguments

- `X`
 n x p, numeric matrix of (stationary) time series
- `a0_0`
 k x 1, initial state mean vector
- `P0_0`
 k x k, initial state covariance matrix
- `A`
 k x k, state transition matrix
- `Lambda`
 p x k, measurement matrix
- `Sig_e`
 p x p, measurement equation residuals covariance matrix (diagonal)
- `Sig_u`
 k x k, state equation residuals covariance matrix

Details

For full details of the classic multivariate KFS approach, please refer to Mosley et al. (2023). Note that `n` is the number of observations, `p` is the number of time series, and `k` is the number of states.

Value

- `logl`
 log-likelihood of the innovations from the Kalman filter
- `at_t`
 k x n, filtered state mean vectors
- `Pt_t`
 k x k x n, filtered state covariance matrices
- `at_n`
 k x n, smoothed state mean vectors
- `Pt_n`
 k x k x n, smoothed state covariance matrices
- `Pt_tlag_n`
 k x k x n, smoothed state covariance with lag
kalmanUnivariate

References

Description

Univariate treatment (sequential processing) of the multivariate Kalman filter and smoother equations for fast implementation. Refer to Koopman and Durbin (2000).

Usage

```r
kalmanUnivariate(X, a0_0, P0_0, A, Lambda, Sig_e, Sig_u)
```

Arguments

- `X` n x p, numeric matrix of (stationary) time series
- `a0_0` k x 1, initial state mean vector
- `P0_0` k x k, initial state covariance matrix
- `A` k x k, state transition matrix
- `Lambda` p x k, measurement matrix
- `Sig_e` p x p, measurement equation residuals covariance matrix (diagonal)
- `Sig_u` k x k, state equation residuals covariance matrix

Details

For full details of the univariate filtering approach, please refer to Mosley et al. (2023). Note that `n` is the number of observations, `p` is the number of time series, and `k` is the number of states.

Value

- `logl` log-likelihood of the innovations from the Kalman filter
- `at_t` k x n, filtered state mean vectors
- `Pt_t` k x k x n, filtered state covariance matrices
- `at_n` k x n, smoothed state mean vectors
- `Pt_n` k x k x n, smoothed state covariance matrices
- `Pt_tlag_n` k x k x n, smoothed state covariance with lag

References

logspace

Description

Produce a vector of log10 space values

Usage

```r
logspace(x1, x2, n = 50)
```

Arguments

- `x1`: lower bound
- `x2`: upper bound
- `n`: length

Value

Vector of log10 spaced values of length n

missing_data_plot

Description

Plot the missing data in a data matrix/frame

Usage

```r
missing_data_plot(
  data,
  present.colour = "grey80",
  missing.colour = "grey20",
  use.names = TRUE
)
```
plot.sparseDFM

Arguments

- **data**: Numeric matrix or data frame with NA for missing values.
- **present.colour**: The colour for data that is present. Default is ‘grey80’.
- **missing.colour**: The colour for data that is missing. Default is ‘grey20’.
- **use.names**: Logical. Label the axis with data variables names. Default is TRUE. Set to FALSE to remove.

Value

A matrix plot showing where missing data is present.

plot.sparseDFM

sparseDFM Plot Outputs

Description

Make plots for the output of sparseDFM(). Options include:

- **factor**: plot factor estimate series on top of the original standardized stationary data
- **loading.heatmap**: make a heatmap of the loadings matrix
- **loading.lineplot**: make a lineplot of variable loadings for a given factor
- **loading.grouplineplot**: separate variable groups into colours for better visualisation
- **residual**: boxplot or scatterplot of residuals
- **lasso.bic**: BIC values for the LASSO tuning parameter
- **em.convergence**: log-likelihood convergence of EM iterations

Usage

```r
## S3 method for class 'sparseDFM'
plot(
  x,
  type = "factor",
  which.factors = 1:(dim(x$state$factors)[2]),
  scale.factors = TRUE,
  which.series = 1:(dim(x$params$Lambda)[1]),
  loading.factor = 1,
  series.col = "grey",
  factor.col = "black",
  factor.lwd = 2,
  factor.lab = NULL,
  use.series.names = FALSE,
  series.lab = NULL,
  series.labpos = NULL,
  colorkey = TRUE,
)```


```r
plot.sparseDFM

 col.regions = NULL,
 group.names = NULL,
 group.cols = NULL,
 group.legend = TRUE,
 residual.type = "boxplot",
 scatter.series = 1,
 min.bic.col = "red",
 alpha_index = "best",
 ...)

Arguments

x an object of class 'sparseDFM'.

type character. The type of plot: "factor", "loading.heatmap", "loading.lineplot", "loading.grouplineplot" or "residual". Default is "factor".

which.factors numeric vector of integers representing which factors should be plotted in "factor" and "loading.heatmap". Default is which.factors = 1:(dim(x$state$factors)[2]), plotting them all. Accepts a single integer if just one factor required.

scale.factors logical. Standardize the factor estimates when plotting in "factor". Default is TRUE.

which.series numeric vector of integers representing which series should be plotted in "loading.heatmap", "loading.lineplot", "loading.grouplineplot" and "residual". Default is which.series = 1:(dim(x$params$Lambda)[1]), plotting them all.

loading.factor integer. The factor to use in "loading.lineplot" and "loading.grouplineplot". Default is 1.

series.col character. The colour of the background series plotted in "factor". Default is series.col = "grey".

factor.col character. The colour of the factor estimate line in "factor". Default is factor.col = "black".

factor.lwd integer. The line width of the factor estimate line in "factor". Default is factor.lwd = 2.

factor.lab vector of characters to label each factor in "loading.heatmap". Default is NULL for standard labeling.

use.series.names logical. Set to TRUE if plot should display series names in the data matrix X. Default is FALSE for numbered series.

series.lab vector of characters to label each data series in "loading.heatmap". Default is NULL for standard labeling.

series.labpos numeric vector of integers representing which series are labeled by series.lab. Default is NULL for standard labeling.

colorekey logical. Display the colour key of the heatmap in "loading.heatmap". Default is TRUE.

col.regions vector of gradually varying colors for "loading.heatmap", see levelplot package. Default is NULL for standard colours.
```
predict.sparseDFM

Value
Plots for the output of sparseDFM().

predict.sparseDFM

Forecasting factor estimates and data series.

Description
Predict the next \( h \) steps ahead for the factor estimates and the data series. Given information up to time \( t \), a \( h \)-step ahead forecast is
\[
X_{t+h} = A^h A F_t + \Phi^h \epsilon_t,
\]
where \( \Phi = 0 \) for the IID idiosyncratic error case.

Usage

## S3 method for class 'sparseDFM'
predict(object, h = 1, standardize = FALSE, alpha_index = "best", ...)

## S3 method for class 'sparseDFM_forecast'
print(x, ...)

Arguments

- **object**: an object of class 'sparseDFM'.
- **h**: integer. The number of steps ahead to compute the forecast for. Default is \( h = 1 \).
- **standardize**: logical. Returns data series forecasts in the original data scale if set to FALSE. Default is FALSE.
- **alpha_index**: Choose which L1 penalty parameter to display the results for. Default is 'best'. Otherwise, input a number between 1:length(alpha_grid) that indicates the required alpha parameter.
- **...**: Further print arguments.
- **x**: an object of class 'sparseDFM_forecast' from predict.sparseDFM.
Value

$X_{\hat{}} \times h \times p$ matrix of data forecasts.
$F_{\hat{}} ^{\times} \times r$ matrix of factor forecasts.
$e_{\hat{}} ^{\times} \times p$ matrix of AR(1) idiosyncratic error forecasts if err = AR1 in sparseDFM.

h forecasts produced for h steps ahead.
err the type of idiosyncratic errors used in sparseDFM.
Prints out the h-step ahead forecast from predict.sparseDFM.

---

**raggedEdge**

**Generate a ragged edge structure for a data matrix**

---

**Description**

Generate a ragged edge structure for a data matrix

**Usage**

`raggedEdge(X, lags)`

**Arguments**

- **X** numeric data matrix
- **lags** vector of integers representing publication lag of each variable

**Value**

ragged edge version of X

**Examples**

```r
data = matrix(rnorm(100), ncol=10)
pub_lags = c(rep(2,5), rep(1,3), rep(0,2))
new_data = raggedEdge(data, pub_lags)
```
Description

Obtain the residuals or fitted values of the sparseDFM fit.

Usage

```r
S3 method for class 'sparseDFM'
fitted(object, standardize = FALSE, alpha_index = "best", ...)
S3 method for class 'sparseDFM'
residuals(object, standardize = FALSE, alpha_index = "best", ...)
```

Arguments

- `object`: an object of class 'sparseDFM'.
- `standardize`: logical. The residuals and fitted values should be standardized. Default is `FALSE`, values returned in the original data `X` scale.
- `alpha_index`: Choose which L1 penalty parameter to display the results for. Default is 'best'. Otherwise, input a number between 1:length(alpha_grid) that indicates the required alpha parameter.
- `...`: Further residuals arguments.

Value

Residuals or fitted values of sparseDFM.

---

sparseDFM  

Estimate a Sparse Dynamic Factor Model

Description

Main function to allow estimation of a DFM or a sparse DFM (with sparse loadings) on stationary data that may have arbitrary patterns of missing data. We allow the user:

- an option for estimation method - "PCA", "2Stage", "EM" or "EM-sparse"
- an option for IID or AR1 idiosyncratic errors
- an option for Kalman Filter/Smother estimation using standard multivariate equations or fast univariate filtering equations
Usage

```
sparseDFM(
 X,
 r,
 q = 0,
 alphas = logspace(-2, 3, 100),
 alg = "EM-sparse",
 err = "IID",
 kalman = "univariate",
 store.parameters = FALSE,
 standardize = TRUE,
 max_iter = 100,
 threshold = 1e-04
)
```

Arguments

- **X**  
  n x p numeric data matrix or data frame of (stationary) time series.

- **r**  
  Integer. Number of factors.

- **q**  
  Integer. The first q series (columns of X) should not be made sparse. Default q = 0.

- **alphas**  
  Numeric vector or value of LASSO regularisation parameters. Default is alphas = logspace(-2,3,100).

- **alg**  
  Character. Option for estimation algorithm. Default is "EM-sparse". Options are:
  - "PCA" principle components analysis (PCA) for static factors seen in Stock and Watson (2002).
  - "2Stage" the two-stage framework of PCA plus Kalman filter/smoother seen in Giannone et al. (2008) and Doz et al.
  - "EM" the quasi-maximum likelihood approach using the EM algorithm to handle arbitrary patterns of missing data.
  - "EM-sparse" the novel sparse EM approach allowing LASSO regularisation on factor loadings seen in (cite our paper).

- **err**  
  Character. Option for idiosyncratic errors. Default is "IID". Options are:
  - "IID" errors are IID white noise.
  - "AR1" errors follow an AR(1) process.

- **kalman**  
  Character. Option for Kalman filter and smoother equations. Default is "univariate". Options are:
"multivariate" classic Kalman filter and smoother equations seen in Shumway and Stoffer (1982).
"univariate" univariate treatment (sequential processing) of the multivariate equations for fast Kalman filter and smoother seen in Koopman and Durbin (2000).

store.parameters
Logical. Store outputs for every alpha L1 penalty parameter. Default is FALSE.

standardize
Logical. Standardize the data before estimating the model. Default is TRUE.

max_iter
Integer. Maximum number of EM iterations. Default is 100.

threshold
Numeric. Tolerance on EM iterates. Default is 1e-4.

Details
For full details of the model please refer to Mosley et al. (2023).

Value
A list-of-lists-like S3 object of class 'sparseDFM' with the following elements:

data
A list containing information about the data with the following elements:

X
is the original $n \times p$ numeric data matrix of (stationary) time series.

standardize
is a logical value indicating whether the original data was standardized.

X.mean
is a p-dimensional numeric vector of column means of $X$.

X.sd
is a p-dimensional numeric vector of column standard deviations of $X$.

X.bal
is a $n \times p$ numeric data matrix of the original $X$ with missing data interpolated using fillNA().

eigen
is the eigen decomposition of $X.bal$.

fitted
is the $n \times p$ predicted data matrix using the estimated parameters: $\hat{\Lambda} \hat{F}$.

fitted.unscaled
is the $n \times p$ predicted data matrix using the estimated parameters: $\hat{\Lambda} \hat{F}$ that has been unscaled back to original data scale if

method
the estimation algorithm used (alg).

err
the type of idiosyncratic errors assumed. Either IID or AR1.

call
call object obtained from match.call().

params
A list containing the estimated parameters of the model with the following elements:
A the $r \times r$ factor transition matrix.

$\Phi$ the $p$-dimensional vector of AR(1) coefficients for the idiosyncratic errors.

$\Lambda$ the $p \times r$ loadings matrix.

$\Sigma_{u}$ the $r \times r$ factor transition error covariance matrix.

$\Sigma_{\epsilon}$ the $p$-dimensional vector of idiosyncratic error variances. As $\Sigma_{\epsilon}$ is assumed to be diagonal.

state A list containing the estimated states and state covariances with the following elements:

factors the $n \times r$ matrix of factor estimates.

errors the $n \times p$ matrix of AR(1) idiosyncratic error estimates. For err = AR1 only.

factors.cov the $r \times r \times n$ covariance matrices of the factor estimates.

errors.cov the $p \times p \times n$ covariance matrices of the AR(1) idiosyncratic error estimates. For err = AR1 only.

em A list containing information about the EM algorithm with the following elements:

converged a logical value indicating whether the EM algorithm converged.

alpha_grid a numerical vector containing the LASSO tuning parameters considered in BIC evaluation before stopping.

alpha_opt the optimal LASSO tuning parameter used.

bic a numerical vector containing BIC values for the corresponding LASSO tuning parameter in alpha_grid.

loglik the log-likelihood of the innovations from the Kalman filter in the final model.

num_iter number of iterations taken by the EM algorithm.

tol tolerance for EM convergence. Matches threshold in the input.

max_iter maximum number of iterations allowed for the EM algorithm. Matches max_iter in the input.

em_time time taken for EM convergence
alpha.output Parameter and state outputs for each L1-norm penalty parameter in alphas if store.parameters = TRUE.

References


Examples

```r
load inflation data set
data = inflation

reduce the size for these examples - full data found in vignette
data = data[1:60,]

make stationary by taking first differences
new_data = transformData(data, rep(2,ncol(data)))

tune for the number of factors to use
tuneFactors(new_data, type = 2)

fit a PCA using 3 PC's
fit.pca <- sparseDFM(new_data, r = 3, alg = 'PCA')

fit a DFM using the two-stage approach
fit.2stage <- sparseDFM(new_data, r = 3, alg = '2Stage')

fit a DFM using EM algorithm with 3 factors
fit.dfm <- sparseDFM(new_data, r = 3, alg = 'EM')

fit a Sparse DFM with 3 factors
fit.sdfm <- sparseDFM(new_data, r = 3, alg = 'EM-sparse')

observe the factor loadings of the sparse DFM
plot(fit.sdfm, type = 'loading.heatmap')
```
# observe the factors
plot(fit.sdfm, type = 'factor')

# observe the residuals
plot(fit.sdfm, type = 'residual')

# observe the LASSO parameter selected and BIC values
plot(fit.sdfm, type = 'lasso.bic')

# predict 3 steps ahead
predict(fit.sdfm, h = 3)

summary.sparseDFM

## S3 method for class 'sparseDFM'
print(x, ...)

## S3 method for class 'sparseDFM'
summary(object, ...)

### Arguments

- **x**
  - an object of class 'sparseDFM'

- **...**
  - Further summary arguments.

- **object**
  - an object of class 'sparseDFM'

### Value

Information on the model fitted.

Summary information on estimation details.
**transformData**  
*Transform data to make it stationary*

**Description**
Methods to transform the data to make it stationary. Input a $n \times p$ numeric data matrix and what transform is required for each data series. Returns a $n \times p$ matrix of the transformed data.

**Usage**

```
transformData(X, stationary_transform)
```

**Arguments**
- `X`  
  $n \times p$ numeric data matrix
- `stationary_transform`  
  p-dimensional vector filled with numbers from \{1, 2, 3, 4, 5, 6, 7\} representing:
  
  1. no change
  2. first difference $X_{i,t} - X_{i,t-1}$
  3. second difference $(X_{i,t} - X_{i,t-1}) - (X_{i,t-1} - X_{i,t-2})$
  4. log first difference $\log(X_{i,t}) - \log(X_{i,t-1})$
  5. log second difference $(\log(X_{i,t}) - \log(X_{i,t-1})) - (\log(X_{i,t-1}) - \log(X_{i,t-2}))$
  6. growth rate $(X_{i,t} - X_{i,t-1})/X_{i,t-1}$
  7. log growth rate $(\log(X_{i,t}) - \log(X_{i,t-1}))/\log(X_{i,t-1})$

**Value**
Transformed stationary version of $X$.

---

**tuneFactors**  
*Tune for the number of factors to use*

**Description**
Uses Bai and Ng (2002) information criteria approach. Missing data is interpolated using the `fillNA` function.
tuneFactors

Usage

tuneFactors(
  X,
  type = 2,
  standardize = TRUE,
  r.max = min(15, ncol(X) - 1),
  plot = TRUE
)

Arguments

X n x p numeric data matrix or data frame of (stationary) time series.

type Character. Option for which information criteria to use. Default is 2.

standardize Logical. Standardize the data before estimating the model. Default is TRUE.

r.max Integer. Maximum number of factors to search for. Default is min(15,ncol(X)-1).

plot Logical. Make a plot showing the IC value for each of the number of factors considered. Default is TRUE.

Details

To calculate the number of factors to use in the model, the information criteria approach of Bai and Ng (2002) is used. This can be done before sparseDFM is fitted to the data to determine r. Bai and Ng (2002) consider 3 types of information criteria with different penalties of the form:

\[ IC_1(r) = \log \left( \sum_{i=1}^{p} \sum_{t=1}^{n} \frac{E[\hat{\epsilon}_{i,t}^2]}{np} \right) + r \frac{n+p}{np} \log \left( \frac{np}{n+p} \right) \]

\[ IC_2(r) = \log \left( \sum_{i=1}^{p} \sum_{t=1}^{n} \frac{E[\hat{\epsilon}_{i,t}^2]}{np} \right) + r \frac{n+p}{np} \log \left( \min\{n,p\} \right) \]

\[ IC_3(r) = \log \left( \sum_{i=1}^{p} \sum_{t=1}^{n} \frac{E[\hat{\epsilon}_{i,t}^2]}{np} \right) + r \frac{\log \left( \min\{n,p\} \right)}{\min\{n,p\}} \]

The sum of squared residuals for r factors \( V_r(\hat{F}, \hat{\Lambda}) = \sum_{i=1}^{p} \sum_{t=1}^{n} E[\hat{\epsilon}_{i,t}^2] / np \) with \( \hat{\epsilon}_{i,t} = X_{t,i} - \hat{F}_t \hat{\Lambda}_i \), is found using PCA on the standardized data set \( X \). The estimated factors \( \hat{F} \) corresponding to the principle components and the estimated loadings \( \hat{\Lambda} \) corresponding to the eigenvectors. Should the data contain missing values, then the missing data is interpolated using fillNA.

The number of factors to use will correspond to \( \arg\min_r IC_i(r) \) for \( i = 1, 2 \) or 3. Type 2 is the highest when working in finite samples and therefore is set to default.

Value

The number of factors to use according to Bai and Ng (2002) information criteria.

References

Index

* datasets
  - exports, 2
  - inflation, 3

exports, 2

fillNA, 3
fitted.sparseDFM (residuals.sparseDFM),
  11

inflation, 3

kalmanMultivariate, 4
kalmanUnivariate, 5

logspace, 6

missing_data_plot, 6

plot.sparseDFM, 7
predict.sparseDFM, 9
print.sparseDFM (summary.sparseDFM), 16
print.sparseDFM_forecast (predict.sparseDFM), 9

raggedEdge, 10
resid.sparseDFM (residuals.sparseDFM),
  11
residuals.sparseDFM, 11

sparseDFM, 11
summary.sparseDFM, 16

transformData, 17
tuneFactors, 17