Package ‘sparseMVN’

March 27, 2018

Type Package

Title Multivariate Normal Functions for Sparse Covariance and Precision Matrices

Version 0.2.1.1

Date 2018-03-26

Maintainer Michael Braun <braunm@smu.edu>

URL http://www.smu.edu/Cox/Departments/FacultyDirectory/BraunMichael

Description Computes multivariate normal (MVN) densities, and samples from MVN distributions, when the covariance or precision matrix is sparse.

License MPL (>= 2.0)

Depends R (>= 3.4.0)

Imports Matrix (>= 1.2.12), methods

Suggests mvtnorm (>= 1.0.6), plyr, knitr, testthat, dplyr (>= 0.5.0), scales, reshape2, trustOptim (>= 0.8.5), xtable (>= 1.8), ggplot2 (>= 2.2.1), tidyR (>= 0.6.1)

VignetteBuilder knitr

RoxygenNote 6.0.1

NeedsCompilation no

Author Michael Braun [aut, cre, cph]

Repository CRAN

Date/Publication 2018-03-26 23:02:38 UTC

R topics documented:

```
sparseMVN-package ........................................... 2
binary ....................................................... 2
rmvn.sparse ................................................ 3
```

Index 5
Description

MVN functions for sparse covariance and precision matrices.

Details

Computes multivariate normal (MVN) densities, and samples from MVN distributions, when either the covariance or precision matrix is stored as a sparse Matrix (a dsCMatrix object, as defined in the Matrix package. The user can provide the precision matrix directly, rather than convert it to a covariance via matrix inversion.

Binary choice example

Description

Functions for binary choice example in the vignette.

Usage

```r
binary.f(P, data, priors, order.row = FALSE)
binary.grad(P, data, priors, order.row = FALSE)
binary.hess(P, data, priors, order.row = FALSE)
binary.sim(N, k, T)
```

Arguments

- `P` Numeric vector of length \((N + 1)k\). First \(Nk\) elements are heterogeneous coefficients. The remaining \(k\) elements are population parameters.
- `data` Named list of data matrices Y and X, and choice count integer T
- `priors` Named list of matrices inv.Omega and inv.A.
- `order.row` Determines order of heterogeneous coefficients in parameter vector. If TRUE, heterogeneous coefficients are ordered by unit. If FALSE, they are ordered by covariate.
- `N` Number of heterogeneous units
- `k` Number of heterogeneous parameters
- `T` Observations per household
rmvn.sparse

Details
These functions are used by the heterogeneous binary choice example in the vignette. There are N heterogeneous units, each making T binary choices. The choice probabilities depend on k covariates. binary.sim simulates a dataset suitable for running the example.

Value
For binary.f, binary.df and binary.hess, the log posterior density, gradient and Hessian, respectively. The Hessian is a dgCMatrix object. binary.sim returns a list with simulated Y and X, and the input T.

Description
Efficient sampling and density calculation from a multivariate normal, when the covariance or precision matrix is sparse. These functions are designed for MVN samples of very large dimension.

Usage
rmvn.sparse(n, mu, CH, prec = TRUE)
dmvn.sparse(x, mu, CH, prec = TRUE, log = TRUE)

Arguments
n number of samples
mu mean (numeric vector)
CH An object of class dCHMsimpl or dCHMsuper that represents the Cholesky factorization of either the precision (default) or covariance matrix. See details.
prec If TRUE, CH is the Cholesky decomposition of the precision matrix. If false, it is the decomposition for the covariance matrix.
x numeric matrix, where each row is an MVN sample.
log If TRUE (default), returns the log density, else returns density.

Details
These functions uses sparse matrix operations to sample from, or compute the log density of, a multivariate normal distribution. The user must compute the Cholesky decomposition first, using the Cholesky function in the Matrix package. This function operates on a sparse symmetric matrix, and returns an object of class dCHMsimpl or dCHMsuper (this depends on the algorithm that was used for the decomposition). This object contains information about any fill-reducing permutations that were used to preserve sparsity. The rmvn.sparse and dmvn.sparse functions use this permutation information, even if pivoting was turned off.
Examples

```r
require(Matrix)

m <- 20
p <- 2
k <- 4

## build sample sparse covariance matrix
Q1 <- tril(kronecker(Matrix(seq(0.1, length=p*p), p, p), diag(m)))
Q2 <- cbind(Q1, Matrix(0, m*p, k))
Q3 <- rbind(Q2, cbind(Matrix(rnorm(k*m*p), k, m*p), Diagonal(k)))
V <- tcrossprod(Q3)
CH <- Cholesky(V)

x <- rmvn.sparse(10, rep(0, p*m+k), CH, FALSE)
y <- dmvn.sparse(x[1,], rep(0, p*m+k), CH, FALSE)
```
Index

*Topic package
 sparseMVN-package, 2

binary, 2

dmvn.sparse (rmvn.sparse), 3

rmvn.sparse, 3

sparseMVN (sparseMVN-package), 2
sparseMVN-package, 2