Package ‘sparsepca’

October 14, 2022

Type Package
Title Sparse Principal Component Analysis (SPCA)
Version 0.1.2
Author N. Benjamin Erichson, Peng Zheng, and Sasha Aravkin
Maintainer N. Benjamin Erichson <erichson@uw.edu>
Description Sparse principal component analysis (SPCA) attempts to find sparse weight vectors (loadings), i.e., a weight vector with only a few ‘active’ (nonzero) values. This approach provides better interpretability for the principal components in high-dimensional data settings. This is, because the principal components are formed as a linear combination of only a few of the original variables. This package provides efficient routines to compute SPCA. Specifically, a variable projection solver is used to compute the sparse solution. In addition, a fast randomized accelerated SPCA routine and a robust SPCA routine is provided. Robust SPCA allows to capture grossly corrupted entries in the data. The methods are discussed in detail by N. Benjamin Erichson et al. (2018) <arXiv:1804.00341>.
License GPL (>= 3)
Encoding UTF-8
LazyData true
URL https://github.com/erichson/spca
BugReports https://github.com/erichson/spca/issues
Imports rsvd
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-04-11 08:17:42 UTC

R topics documented:

robspca ... 2
rspca ... 4
spca ... 7

Index 10
robspca

Robust Sparse Principal Component Analysis (robspca).

Description

Implementation of robust SPCA, using variable projection as an optimization strategy.

Usage

robspca(X, k = NULL, alpha = 1e-04, beta = 1e-04, gamma = 100,
center = TRUE, scale = FALSE, max_iter = 1000, tol = 1e-05,
verbose = TRUE)

Arguments

X array_like;
a real \((n,p)\) input matrix (or data frame) to be decomposed.
k integer;
specifies the target rank, i.e., the number of components to be computed.
alpha float;
Sparsity controlling parameter. Higher values lead to sparser components.
beta float;
Amount of ridge shrinkage to apply in order to improve conditioning.
gamma float;
Sparsity controlling parameter for the error matrix \(S\). Smaller values lead to a larger amount of noise removeal.
center bool;
logical value which indicates whether the variables should be shifted to be zero centered (TRUE by default).
scale bool;
logical value which indicates whether the variables should be scaled to have unit variance (FALSE by default).
max_iter integer;
maximum number of iterations to perform before exiting.
tol float;
stopping tolerance for the convergence criterion.
verbose bool;
logical value which indicates whether progress is printed.

Details

Sparse principal component analysis is a modern variant of PCA. Specifically, SPCA attempts to find sparse weight vectors (loadings), i.e., a weight vector with only a few ‘active’ (nonzero) values. This approach leads to an improved interpretability of the model, because the principal components
are formed as a linear combination of only a few of the original variables. Further, SPCA avoids overfitting in a high-dimensional data setting where the number of variables p is greater than the number of observations n.

Such a parsimonious model is obtained by introducing prior information like sparsity promoting regularizers. More concretely, given an (n, p) data matrix X, robust SPCA attempts to minimize the following objective function:

$$f(A, B) = \frac{1}{2}\|X - XBA^\top - S\|_F^2 + \psi(B) + \gamma\|S\|_1$$

where B is the sparse weight matrix (loadings) and A is an orthonormal matrix. ψ denotes a sparsity inducing regularizer such as the LASSO (ℓ_1 norm) or the elastic net (a combination of the ℓ_1 and ℓ_2 norm). The matrix S captures grossly corrupted outliers in the data.

The principal components Z are formed as

$$Z = XB$$

and the data can be approximately rotated back as

$$\tilde{X} = ZA^\top$$

The print and summary method can be used to present the results in a nice format.

Value

spca returns a list containing the following three components:

- **loadings**
 - array_like;
 - sparse loadings (weight) vector; (p, k) dimensional array.

- **transform**
 - array_like;
 - the approximated inverse transform; (p, k) dimensional array.

- **scores**
 - array_like;
 - the principal component scores; (n, k) dimensional array.

- **sparse**
 - array_like;
 - sparse matrix capturing outliers in the data; (n, p) dimensional array.

- **eigenvalues**
 - array_like;
 - the approximated eigenvalues; (k) dimensional array.

- **center, scale**
 - array_like;
 - the centering and scaling used.

Author(s)

N. Benjamin Erichson, Peng Zheng, and Sasha Aravkin
References

See Also

rspca, spca

Examples

Create artificial data
m <- 10000
V1 <- rnorm(m, 0, 290)
V2 <- rnorm(m, 0, 300)
V3 <- -0.1*V1 + 0.1*V2 + rnorm(m,0,100)
X <- cbind(V1,V1,V1,V1, V2,V2,V2,V2, V3,V3)
X <- X + matrix(rnorm(length(X),0,1), ncol = ncol(X), nrow = nrow(X))

Compute SPCA
out <- robspca(X, k=3, alpha=1e-3, beta=1e-5, gamma=5, center = TRUE, scale = FALSE, verbose=0)
print(out)
summary(out)

rspca

Randomized Sparse Principal Component Analysis (rspca).

Description

Randomized accelerated implementation of SPCA, using variable projection as an optimization strategy.

Usage

rspca(X, k = NULL, alpha = 1e-04, beta = 1e-04, center = TRUE, scale = FALSE, max_iter = 1000, tol = 1e-05, o = 20, q = 2, verbose = TRUE)

Arguments

X
array_like;
a real \((n, p)\) input matrix (or data frame) to be decomposed.

k
integer;
specifies the target rank, i.e., the number of components to be computed.
alpha float;
Sparsity controlling parameter. Higher values lead to sparser components.

beta float;
Amount of ridge shrinkage to apply in order to improve conditioning.

center bool;
logical value which indicates whether the variables should be shifted to be zero centered (TRUE by default).

scale bool;
logical value which indicates whether the variables should be scaled to have unit variance (FALSE by default).

max_iter integer;
maximum number of iterations to perform before exiting.

tol float;
stopping tolerance for the convergence criterion.
o integer;
oversampling parameter (default $o = 20$).

q integer;
number of additional power iterations (default $q = 2$).

verbose bool;
logical value which indicates whether progress is printed.

Details

Sparse principal component analysis is a modern variant of PCA. Specifically, SPCA attempts to find sparse weight vectors (loadings), i.e., a weight vector with only a few 'active' (nonzero) values. This approach leads to an improved interpretability of the model, because the principal components are formed as a linear combination of only a few of the original variables. Further, SPCA avoids overfitting in a high-dimensional data setting where the number of variables p is greater than the number of observations n.

Such a parsimonious model is obtained by introducing prior information like sparsity promoting regularizers. More concretely, given an (n, p) data matrix X, SPCA attempts to minimize the following objective function:

$$f(A, B) = \frac{1}{2} \|X - XBA^\top\|_F^2 + \psi(B)$$

where B is the sparse weight (loadings) matrix and A is an orthonormal matrix. ψ denotes a sparsity inducing regularizer such as the LASSO (ℓ_1 norm) or the elastic net (a combination of the ℓ_1 and ℓ_2 norm). The principal components Z are formed as

$$Z = XB$$

and the data can be approximately rotated back as

$$\tilde{X} = ZA^\top$$

The print and summary method can be used to present the results in a nice format.
Value

spca returns a list containing the following three components:

loadings array_like;
sparse loadings (weight) vector; \((p, k)\) dimensional array.

transform array_like;
the approximated inverse transform; \((p, k)\) dimensional array.

scores array_like;
the principal component scores; \((n, k)\) dimensional array.

eigenvalues array_like;
the approximated eigenvalues; \((k)\) dimensional array.

center, scale array_like;
the centering and scaling used.

Note

This implementation uses randomized methods for linear algebra to speedup the computations. \(o\) is an oversampling parameter to improve the approximation. A value of at least 10 is recommended, and \(o = 20\) is set by default.

The parameter \(q\) specifies the number of power (subspace) iterations to reduce the approximation error. The power scheme is recommended, if the singular values decay slowly. In practice, 2 or 3 iterations achieve good results, however, computing power iterations increases the computational costs. The power scheme is set to \(q = 2\) by default.

If \(k > (\min(n, p)/4)\), a the deterministic spca algorithm might be faster.

Author(s)

N. Benjamin Erichson, Peng Zheng, and Sasha Aravkin

References

See Also

spca, robspca
Examples

Create artifical data
m <- 10000
V1 <- rnorm(m, 0, 290)
V2 <- rnorm(m, 0, 300)
V3 <- -0.1*V1 + 0.1*V2 + rnorm(m,0,100)
X <- cbind(V1,V1,V1,V1, V2,V2,V2,V2, V3,V3)
X <- X + matrix(rnorm(length(X),0,1), ncol = ncol(X), nrow = nrow(X))

Compute SPCA
out <- rspca(X, k=3, alpha=1e-3, beta=1e-3, center = TRUE, scale = FALSE, verbose=0)
print(out)
summary(out)

spca

Sparse Principal Component Analysis (spca).

Description

Implementation of SPCA, using variable projection as an optimization strategy.

Usage

spca(X, k = NULL, alpha = 1e-04, beta = 1e-04, center = TRUE, scale = FALSE, max_iter = 1000, tol = 1e-05, verbose = TRUE)

Arguments

X array_like;
 a real \((n, p)\) input matrix (or data frame) to be decomposed.

k integer;
 specifies the target rank, i.e., the number of components to be computed.

alpha float;
 Sparsity controlling parameter. Higher values lead to sparser components.

beta float;
 Amount of ridge shrinkage to apply in order to improve conditioning.

center bool;
 logical value which indicates whether the variables should be shifted to be zero
 centered (TRUE by default).

scale bool;
 logical value which indicates whether the variables should be scaled to have unit
 variance (FALSE by default).
max_iter integer;
maximum number of iterations to perform before exiting.

tol float;
stopping tolerance for the convergence criterion.

verbose bool;
logical value which indicates whether progress is printed.

Details

Sparse principal component analysis is a modern variant of PCA. Specifically, SPCA attempts to find sparse weight vectors (loadings), i.e., a weight vector with only a few ‘active’ (nonzero) values. This approach leads to an improved interpretability of the model, because the principal components are formed as a linear combination of only a few of the original variables. Further, SPCA avoids overfitting in a high-dimensional data setting where the number of variables p is greater than the number of observations n.

Such a parsimonious model is obtained by introducing prior information like sparsity promoting regularizers. More concretely, given an (n, p) data matrix X, SPCA attempts to minimize the following objective function:

$$f(A, B) = \frac{1}{2} \| X - XBA^\top \|_F^2 + \psi(B)$$

where B is the sparse weight (loadings) matrix and A is an orthonormal matrix. ψ denotes a sparsity inducing regularizer such as the LASSO (ℓ_1 norm) or the elastic net (a combination of the ℓ_1 and ℓ_2 norm). The principal components Z are formed as

$$Z = XB$$

and the data can be approximately rotated back as

$$\hat{X} = ZA^\top$$

The print and summary method can be used to present the results in a nice format.

Value

spca returns a list containing the following three components:

loadings array_like;
sparse loadings (weight) vector; (p, k) dimensional array.

transform array_like;
the approximated inverse transform; (p, k) dimensional array.

scores array_like;
the principal component scores; (n, k) dimensional array.

eigenvalues array_like;
the approximated eigenvalues; (k) dimensional array.

center, scale array_like;
the centering and scaling used.
Author(s)

N. Benjamin Erichson, Peng Zheng, and Sasha Aravkin

References

See Also

rspca, robspca

Examples

Create artificial data
m <- 10000
V1 <- rnorm(m, 0, 290)
V2 <- rnorm(m, 0, 300)
V3 <- -0.1*V1 + 0.1*V2 + rnorm(m,0,100)
X <- cbind(V1,V1,V1,V1, V2,V2,V2,V2, V3,V3)
X <- X + matrix(rnorm(length(X),0,1), ncol = ncol(X), nrow = nrow(X))

Compute SPCA
out <- spca(X, k=3, alpha=1e-3, beta=1e-3, center = TRUE, scale = FALSE, verbose=0)
print(out)
summary(out)
Index

robspca, 2, 6, 9
rspca, 4, 4, 9
spca, 4, 6, 7