Package ‘spatial’

July 20, 2023

Priority recommended
Version 7.3-17
Date 2023-07-20
Depends R (>= 3.0.0), graphics, stats, utils
Suggests MASS
Description Functions for kriging and point pattern analysis.
Title Functions for Kriging and Point Pattern Analysis
LazyLoad yes
ByteCompile yes
License GPL-2 | GPL-3
URL http://www.stats.ox.ac.uk/pub/MASS4/
NeedsCompilation yes
Author Brian Ripley [aut, cre, cph],
 Roger Bivand [ctb],
 William Venables [cph]
Maintainer Brian Ripley <ripley@stats.ox.ac.uk>
Repository CRAN
Date/Publication 2023-07-20 15:08:46 UTC

R topics documented:

anova.trls ... 2
correlogram ... 3
expcov ... 4
Kaver ... 5
Kenlv .. 6
Kfn .. 7
ppgetregion .. 8
ppinit .. 8
pplik ... 9
Compute analysis of variance tables for one or more fitted trend surface model objects; where anova.trls is called with multiple objects, it passes on the arguments to anovalist.trls.

Usage

S3 method for class 'trls'
anova(object, ...)
anovalist.trls(object, ...)

Arguments

object A fitted trend surface model object from surf.ls

... Further objects of the same kind

Value

anova.trls and anovalist.trls return objects corresponding to their printed tabular output.

References

See Also

surf.ls
correlogram

Examples

```r
library(stats)
data(topo, package="MASS")
topo0 <- surf.ls(0, topo)
topo1 <- surf.ls(1, topo)
topo2 <- surf.ls(2, topo)
topo3 <- surf.ls(3, topo)
topo4 <- surf.ls(4, topo)
anova(topo0, topo1, topo2, topo3, topo4)
summary(topo4)
```

Description

Compute spatial correlograms of spatial data or residuals.

Usage

```r
correlogram(krig, nint, plotit = TRUE, ...)
```

Arguments

- `krig` trend-surface or kriging object with columns `x`, `y`, and `z`
- `nint` number of bins used
- `plotit` logical for plotting
- `...` parameters for the plot

Details

Divides range of data into `nint` bins, and computes the covariance for pairs with separation in each bin, then divides by the variance. Returns results for bins with 6 or more pairs.

Value

- `x` and `y` coordinates of the correlogram, and `cnt`, the number of pairs averaged per bin.

Side Effects

Plots the correlogram if `plotit = TRUE`.

References

See Also

variogram

Examples

data(topo, package="MASS")
topo.kr <- surf.ls(2, topo)
correlogram(topo.kr, 25)
d <- seq(0, 7, 0.1)
lines(d, expcov(d, 0.7))

data(topo, package="MASS")
topo.kr <- surf.ls(2, topo)
correlogram(topo.kr, 25)
d <- seq(0, 7, 0.1)
lines(d, expcov(d, 0.7))

expcov Spatial Covariance Functions

Description

Spatial covariance functions for use with surf.gls.

Usage

expcov(r, d, alpha = 0, se = 1)
gaucov(r, d, alpha = 0, se = 1)
sphercov(r, d, alpha = 0, se = 1, D = 2)

Arguments

r vector of distances at which to evaluate the covariance
d range parameter
alpha proportion of nugget effect
se standard deviation at distance zero
D dimension of spheres.

Value

vector of covariance values.

References

See Also

surf.gls
Examples

data(topo, package="MASS")
 topo.kr <- surf.ls(2, topo)
 correlogram(topo.kr, 25)
 d <- seq(0, 7, 0.1)
 lines(d, expcov(d, 0.7))

Kaver

Average K-functions from Simulations

Description

Forms the average of a series of (usually simulated) K-functions.

Usage

Kaver(fs, nsim, ...)

Arguments

fs full scale for K-fn
nsim number of simulations
... arguments to simulate one point process object

Value

list with components x and y of the average K-fn on L-scale.

References

See Also

Kfn, Kenvl

Examples

towns <- ppinit("towns.dat")
 par(pty="s")
 plot(Kfn(towns, 40), type="b")
 plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)"
 for(i in 1:10) lines(Kfn(Psim(69), 10))
 lims <- Kenvl(10,100,Psim(69))
 lines(lims$x,lims$lower, lty=2, col="green")
 lines(lims$x,lims$upper, lty=2, col="green")
 lines(Kaver(10,25,Strauss(69,0.5,3.5)), col="red")
Kenvl
Compute Envelope and Average of Simulations of K-fns

Description
Computes envelope (upper and lower limits) and average of simulations of K-fns.

Usage

```r
Kenvl(fs, nsim, ...)  
```

Arguments
- **fs**: full scale for K-fn
- **nsim**: number of simulations
- **...**: arguments to produce one simulation

Value
A list with components:
- **x**: distances
- **lower**: min of K-fns
- **upper**: max of K-fns
- **aver**: average of K-fns

References

See Also
- `Kfn`, `Kaver`

Examples
```r
  towns <- ppinit("towns.dat")  
  par(pty="s")  
  plot(Kfn(towns, 40), type="b")  
  plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")  
  for(i in 1:10) lines(Kfn(Psim(69), 10))  
  lims <- Kenvl(10,100,Psim(69))  
  lines(lims$x,lims$lower, lty=2, col="green")  
  lines(lims$x,lims$upper, lty=2, col="green")  
  lines(Kaver(10,25,Strauss(69,0.5,3.5)), col="red")
```
Kfn

Compute K-fn of a Point Pattern

Description

Actually computes \(L = \sqrt{K/\pi} \).

Usage

\[
\text{Kfn}(\text{pp}, \text{fs}, k=100)
\]

Arguments

- **pp**: a list such as a pp object, including components \(x \) and \(y \)
- **fs**: full scale of the plot
- **k**: number of regularly spaced distances in \((0, \text{fs})\)

Details

relies on the domain \(D \) having been set by \text{ppinit} or \text{ppregion}.

Value

A list with components

- **x**: vector of distances
- **y**: vector of L-fn values
- **k**: number of distances returned – may be less than \(k \) if \(\text{fs} \) is too large
- **dmin**: minimum distance between pair of points
- **lm**: maximum deviation from \(L(t) = t \)

References

See Also

\text{ppinit}, \text{ppregion}, \text{Kaver}, \text{Kenvl}

Examples

```r
towns <- \text{ppinit}("towns.dat")
par(pty="s")
plot(\text{Kfn}(\text{towns}, 10), \text{type}="s", xlab="distance", ylab="L(t)")
```
ppgetregion

Get Domain for Spatial Point Pattern Analyses

Description

Retrieves the rectangular domain \((xl, xu) \times (yl, yu)\) from the underlying C code.

Usage

ppgetregion()

Value

A vector of length four with names c("xl", "xu", "yl", "yu").

References

See Also

ppregion

ppinit

Read a Point Process Object from a File

Description

Read a file in standard format and create a point process object.

Usage

ppinit(file)

Arguments

file string giving file name

Details

The file should contain
the number of points
a header (ignored)
xl xu yl yu scale
x y (repeated n times)
pplik

Value

class "pp" object with components x, y, xl, xu, yl, yu

Side Effects

Calls `ppregion` to set the domain.

References

See Also

`ppregion`

Examples

towns <- ppinit("towns.dat")
par(pty="s")
plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)"

Description

Pseudo-likelihood estimation of a Strauss spatial point process.

Usage

`pplik(pp, R, ng=50, trace=FALSE)`

Arguments

- **pp**: a pp object
- **R**: the fixed parameter R
- **ng**: use a ng x ng grid with border R in the domain for numerical integration.
- **trace**: logical? Should function evaluations be printed?

Value

estimate for c in the interval [0, 1].

References

See Also

Strauss

Examples

```r
pines <- ppinit("pines.dat")
pplik(pines, 0.7)
```

ppregion

Set Domain for Spatial Point Pattern Analyses

Description

Sets the rectangular domain \((x_l, x_u) \times (y_l, y_u)\).

Usage

```r
ppregion(xl = 0, xu = 1, yl = 0, yu = 1)
```

Arguments

- `xl` Either `xl` or a list containing components `xl`, `xu`, `yl`, `yu` (such as a point-process object)
- `xu, yl, yu` other limits of the rectangle if given separately.

Value

none

Side Effects

initializes variables in the C subroutines.

References

See Also

`ppinit`, `ppgetregion`
predict.trls

Predict method for trend surface fits

Description

Predicted values based on trend surface model object

Usage

S3 method for class 'trls'
predict(object, x, y, ...)

Arguments

- **object**: Fitted trend surface model object returned by `surf.ls`
- **x**: Vector of prediction location eastings (x coordinates)
- **y**: Vector of prediction location northings (y coordinates)
- **...**: further arguments passed to or from other methods.

Value

`predict.trls` produces a vector of predictions corresponding to the prediction locations. To display the output with `image` or `contour`, use `trmat` or convert the returned vector to matrix form.

References

See Also

- `surf.ls`
- `trmat`

Examples

data(topo, package="MASS")
topo2 <- surf.ls(2, topo)
topo4 <- surf.ls(4, topo)
x <- c(1.78, 2.21)
y <- c(6.15, 6.15)
z2 <- predict(topo2, x, y)
z4 <- predict(topo4, x, y)
cat("2nd order predictions:", z2, "4th order predictions:", z4)
Evaluate Kriging Surface over a Grid

Description

Evaluate Kriging surface over a grid.

Usage

prmat(obj, xl, xu, yl, yu, n)

Arguments

obj object returned by surf.gls
xl limits of the rectangle for grid
xu ditto
yl ditto
yu ditto
n use n x n grid within the rectangle

Value

list with components x, y and z suitable for contour and image.

References

See Also

surf.gls, trmat, semat

Examples

data(topo, package="MASS")
topo.kr <- surf.gls(2, expcov, topo, d=0.7)
prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
contour(prsurf, levels=seq(700, 925, 25))
Psim

Simulate Binomial Spatial Point Process

Description

Simulate Binomial spatial point process.

Usage

`Psim(n)`

Arguments

- `n` number of points

Details

relies on the region being set by `ppinit` or `ppregion`.

Value

list of vectors of x and y coordinates.

Side Effects

uses the random number generator.

References

See Also

`SSI`, `Strauss`

Examples

```r
towns <- ppinit("towns.dat")
par(pty="s")
plot(Kfn(towns, 10), type="s", xlab="distance", ylab="L(t)"
for(i in 1:10) lines(Kfn(Psim(69), 10))
```
Evaluate Kriging Standard Error of Prediction over a Grid

Description
Evaluate Kriging standard error of prediction over a grid.

Usage
semat(obj, xl, xu, yl, yu, n, se)

Arguments
- obj: object returned by surf.gls
- xl: limits of the rectangle for grid
- xu: ditto
- yl: ditto
- yu: ditto
- n: use n x n grid within the rectangle
- se: standard error at distance zero as a multiple of the supplied covariance. Otherwise estimated, and it assumed that a correlation function was supplied.

Value
list with components x, y and z suitable for contour and image.

References

See Also
surf.gls, trmat, prmat

Examples
```r
data(topo, package="MASS")
topo.kr <- surf.gls(2, expcov, topo, d=0.7)
prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
contour(prsurf, levels=seq(700, 925, 25))
esesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 30)
contour(sesurf, levels=c(22,25))
```
Description
Simulates SSI (sequential spatial inhibition) point process.

Usage
SSI(n, r)

Arguments
n number of points
r inhibition distance

Details
uses the region set by ppinit or ppregion.

Value
list of vectors of x and y coordinates

Side Effects
uses the random number generator.

Warnings
will never return if r is too large and it cannot place n points.

References

See Also
Psim, Strauss

Examples

towns <- ppinit("towns.dat")
par(pty = "s")
plot(Kfn(towns, 10), type = "b", xlab = "distance", ylab = "L(t)")
lines(Kaver(10, 25, SSI(69, 1.2)))
Strauss Simulates Strauss Spatial Point Process

Description

Simulates Strauss spatial point process.

Usage

Strauss(n, c=0, r)

Arguments

n number of points
c parameter c in [0, 1]. c = 0 corresponds to complete inhibition at distances up to r.
r inhibition distance

Details

Uses spatial birth-and-death process for 4n steps, or for 40n steps starting from a binomial pattern on the first call from an other function. Uses the region set by ppinit or ppreigion.

Value

list of vectors of x and y coordinates

Side Effects

uses the random number generator

References

See Also

Psim, SSI

Examples

towns <- ppinit("towns.dat")
par(pty="s")
plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")
lines(Kaver(10, 25, Strauss(69,0.5,3.5)))
surf.gls

Fits a Trend Surface by Generalized Least-squares

Description

Fits a trend surface by generalized least-squares.

Usage

```
surf.gls(np, covmod, x, y, z, nx = 1000, ...)
```

Arguments

- `np`: degree of polynomial surface
- `covmod`: function to evaluate covariance or correlation function
- `x`: x coordinates or a data frame with columns `x`, `y`, `z`
- `y`: y coordinates
- `z`: z coordinates. Will supersede `x$z`
- `nx`: Number of bins for table of the covariance. Increasing adds accuracy, and increases size of the object.
- `...`: parameters for `covmod`

Value

list with components

- `beta`: the coefficients
- `x`:
- `y`:
- `z`:

References

See Also

`trmat, surf.ls, prmat, semat, expcov, gaukov, sphercov`
Examples

```r
library(MASS) # for eqscplot
data(topo, package="MASS")
topo.kr <- surf.gls(2, expcov, topo, d=0.7)
trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE)

prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
contour(prsurf, levels = seq(700, 925, 25))

sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 30)
eqscplot(sesurf, type = "n")
contour(sesurf, levels = c(22, 25), add = TRUE)
```

surf.ls

Fits a Trend Surface by Least-squares

Description

Fits a trend surface by least-squares.

Usage

```r
surf.ls(np, x, y, z)
```

Arguments

- `np`: degree of polynomial surface
- `x`: x coordinates or a data frame with columns `x`, `y`, `z`
- `y`: y coordinates
- `z`: z coordinates. Will supersede `x$z`

Value

list with components

- `beta`: the coefficients
- `x`
- `y`
- `z` and others for internal use only.

References

See Also

trmat.surf.gls

Examples

library(MASS) # for eqscplot
data(topo, package="MASS")
topo.kr <- surf.ls(2, topo)
trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE)
points(topo)
eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE)
plot(topo.kr, add = TRUE)
title(xlab= "Circle radius proportional to Cook's influence statistic")

trls.influence Regression diagnostics for trend surfaces

Description

This function provides the basic quantities which are used in forming a variety of diagnostics for checking the quality of regression fits for trend surfaces calculated by surf.ls.

Usage

trls.influence(object)

S3 method for class 'trls'
plot(x, border = "red", col = NA, pch = 4, cex = 0.6,
 add = FALSE, div = 8, ...)

Arguments

object, x Fitted trend surface model from surf.ls
div scaling factor for influence circle radii in plot.trls
add add influence plot to existing graphics if TRUE
border, col, pch, cex, ... additional graphical parameters

Value

trls.influence returns a list with components:

r raw residuals as given by residuals.trls
hii diagonal elements of the Hat matrix
stresid standardised residuals
Di Cook's statistic
References

See Also
surf.ls, influence.measures, plot.lm

Examples
library(MASS) # for eqscplot
data(topo, package = "MASS")
topo2 <- surf.ls(2, topo)
infl.topo2 <- trls.influence(topo2)
(cand <- as.data.frame(infl.topo2)[abs(infl.topo2$stresid) > 1.5,])
cand.xy <- topo[as.integer(rownames(cand)), c("x", "y")]
trsurf <- trmat(topo2, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE, col = "grey")
plot(topo2, add = TRUE, div = 3)
points(cand.xy, pch = 16, col = "orange")
text(cand.xy, labels = rownames(cand.xy), pos = 4, offset = 0.5)

trmat

Evaluate Trend Surface over a Grid

Description
Evaluate trend surface over a grid.

Usage
trmat(obj, x1, xu, y1, yu, n)

Arguments

obj object returned by surf.ls or surf.gls
x1 limits of the rectangle for grid
xu ditto
y1 ditto
yu ditto
n use n x n grid within the rectangle

Value
list with components x, y and z suitable for contour and image.
variogram

References

See Also

surf.ls, surf.gls

Examples

data(topo, package="MASS")
topo.kr <- surf.ls(2, topo)
trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)

variogram Compute Spatial Variogram

Description

Compute spatial (semi-)variogram of spatial data or residuals.

Usage

variogram(krig, nint, plotit = TRUE, ...)

Arguments

krig trend-surface or kriging object with columns x, y, and z
nint number of bins used
plotit logical for plotting
... parameters for the plot

Details

Divides range of data into nint bins, and computes the average squared difference for pairs with separation in each bin. Returns results for bins with 6 or more pairs.

Value

x and y coordinates of the variogram and cnt, the number of pairs averaged per bin.

Side Effects

Plots the variogram if plotit = TRUE
References

See Also

correlogram

Examples

data(topo, package="MASS")
topo.kr <- surf.ls(2, topo)
variogram(topo.kr, 25)
Index

* spatial
 anova.trls, 2
 correlogram, 3
 expcov, 4
 Kaver, 5
 Kenvl, 6
 Kfn, 7
 ppgetregion, 8
 ppinit, 7
 pplik, 9
 ppregion, 7–9
 predict.trls, 11
 prmat, 12, 14, 17
 Psim, 13, 15, 16
 semat, 12, 14, 17
 spher cov, 17
 spher cov (expcov), 4
 SSI, 13, 15, 16
 Strauss, 10, 13, 15, 16
 surf.gls, 4, 12, 14, 17, 19, 21
 surf.ls, 2, 11, 17, 18, 20, 21
 trls.influence, 19
 trmat, 11, 12, 14, 17, 19, 20
 variogram, 4, 21

anova.trls, 2
anovalist.trls (anova.trls), 2
correlogram, 3, 22
expcov, 4, 17
gaucov, 17
spher cov (expcov), 4
influence.measures, 20
Kaver, 5, 6, 7
Kenvl, 5, 6, 7
Kfn, 5, 6, 7
plot.lm, 20
plot.trls (trls.influence), 19