Package ‘spatial’

August 30, 2015

Priority recommended
Version 7.3-11
Date 2015-08-29
Depends R (>= 3.0.0), graphics, stats, utils
Suggests MASS
Description Functions for kriging and point pattern analysis.
Title Functions for Kriging and Point Pattern Analysis
LazyLoad yes
ByteCompile yes
License GPL-2 | GPL-3
URL http://www.stats.ox.ac.uk/pub/MASS4/
NeedsCompilation yes
Author Brian Ripley [aut, cre, cph],
 Roger Bivand [ctb],
 William Venables [cph]
Maintainer Brian Ripley <ripley@stats.ox.ac.uk>
Repository CRAN
Date/Publication 2015-08-30 08:59:41

R topics documented:

 anova.trls .. 2
 correlogram .. 3
 expcov ... 4
 Kaver ... 5
 Kenvl ... 6
 Kfn .. 7
 ppgetregion .. 8
 ppinit ... 8
 pplik ... 9
Compute analysis of variance tables for one or more fitted trend surface model objects; where `anova.trls` is called with multiple objects, it passes on the arguments to `anovalist.trls`.

Usage

```r
## S3 method for class 'trls'
anova(object, ...)
```

Arguments

- `object` A fitted trend surface model object from `surf.ls`
- `...` Further objects of the same kind

Value

`anova.trls` and `anovalist.trls` return objects corresponding to their printed tabular output.

References

See Also

`surf.ls`
correlogram

Examples

```r
library(stats)
data(topo, package="MASS")
topo0 <- surf.ls(0, topo)
topo1 <- surf.ls(1, topo)
topo2 <- surf.ls(2, topo)
topo3 <- surf.ls(3, topo)
topo4 <- surf.ls(4, topo)
anova(topo0, topo1, topo2, topo3, topo4)
summary(topo4)
```

correlogram

Compute Spatial Correlograms

Description

Compute spatial correlograms of spatial data or residuals.

Usage

```r
correlogram(krig, nint, plotit = TRUE, ...)
```

Arguments

- `krig`: trend-surface or kriging object with columns `x`, `y`, and `z`
- `nint`: number of bins used
- `plotit`: logical for plotting
- `...`: parameters for the plot

Details

Divides range of data into `nint` bins, and computes the covariance for pairs with separation in each bin, then divides by the variance. Returns results for bins with 6 or more pairs.

Value

`x` and `y` coordinates of the correlogram, and `cnt`, the number of pairs averaged per bin.

Side Effects

Plots the correlogram if `plotit = TRUE`.

References

Description

Spatial covariance functions for use with \texttt{surf.gls}.

Usage

\begin{verbatim}
 expcov(r, d, alpha = 0, se = 1)
 gauccov(r, d, alpha = 0, se = 1)
 sphercov(r, d, alpha = 0, se = 1, D = 2)
\end{verbatim}

Arguments

- \textit{r} vector of distances at which to evaluate the covariance
- \textit{d} range parameter
- \textit{alpha} proportion of nugget effect
- \textit{se} standard deviation at distance zero
- \textit{D} dimension of spheres.

Value

vector of covariance values.

References

See Also

\texttt{surf.gls}
Kaver

Average K-functions from Simulations

Description

Forms the average of a series of (usually simulated) K-functions.

Usage

\[
\text{Kaver}(fs, \text{nsim}, \ldots)
\]

Arguments

- `fs`: full scale for K-fn
- `nsim`: number of simulations
- `...`: arguments to simulate one point process object

Value

list with components `x` and `y` of the average K-fn on L-scale.

References

See Also

`kfn`, `kenvl`

Examples

```r
towns <- ppinit("towns.dat")
par(pty="s")
plot(Kfn(towns, 40), type="b")
plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")
for(i in 1:10) lines(Kfn(Psim(69), 10))
lims <- Kenvl(10,100,Psim(69))
lines(lims$x,lims$lower, lty=2, col="green")
lines(lims$x,lims$upper, lty=2, col="green")
lines(Kaver(10,25,Strauss(69,0.5,3.5)), col="red")
```
kenvl

Compute Envelope and Average of Simulations of K-fns

Description

Computes envelope (upper and lower limits) and average of simulations of K-fns

Usage

kenvl(fs, nsim, ...)

Arguments

fs full scale for K-fn
nsim number of simulations
... arguments to produce one simulation

Value

list with components

x distances
lower min of K-fns
upper max of K-fns
aver average of K-fns

References

See Also

kfn, kaver

Examples

towns <- ppinit("towns.dat")
par(pty="s")
plot(kfn(towns, 40), type="b")
plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")
for(i in 1:10) lines(Kfn(Psim(69), 10))
lims <- kenvl(10,100,Psim(69))
lines(lims$x,lims$lower, lty=2, col="green")
lines(lims$x,lims$upper, lty=2, col="green")
lines(Kaver(10,25,Strauss(69,0.5,3.5)), col="red")
Kfn

Compute K-fn of a Point Pattern

Description

Actually computes \(L = \sqrt{\frac{K}{\pi}} \).

Usage

\(\text{kfn}(\text{pp}, \text{fs}, \text{k}=100) \)

Arguments

- **pp**: a list such as a pp object, including components \(x \) and \(y \)
- **fs**: full scale of the plot
- **k**: number of regularly spaced distances in \((0, \text{fs})\)

Details

relies on the domain \(D \) having been set by \text{ppinit} or \text{ppregion}.

Value

A list with components

- **x**: vector of distances
- **y**: vector of L-fn values
- **k**: number of distances returned – may be less than \(k \) if \(\text{fs} \) is too large
- **dmin**: minimum distance between pair of points
- **lm**: maximum deviation from \(L(t) = t \)

References

See Also

\text{ppinit, ppregion, Kaver, Kenvl}

Examples

```r
towns <- \text{ppinit}(\text{"towns.dat"})
\text{par(pty="s")}
\text{plot(kfn(towns, 10), type="s", xlab="distance", ylab="L(t)")}
```
ppgetregion

Get Domain for Spatial Point Pattern Analyses

Description

Retrieves the rectangular domain $(x_l, x_u) \times (y_l, y_u)$ from the underlying C code.

Usage

ppgetregion()

Value

A vector of length four with names c("xl", "xu", "yl", "yu").

References

See Also

ppregion

ppinit

Read a Point Process Object from a File

Description

Read a file in standard format and create a point process object.

Usage

ppinit(file)

Arguments

file string giving file name

Details

The file should contain
the number of points
a header (ignored)
x_l x_u y_l y_u scale
x y (repeated n times)
pplik

Value

class "pp" object with components x, y, xl, xu, yl, yu

Side Effects

Calls ppregion to set the domain.

References

See Also

ppregion

Examples

towns <- ppinit("towns.dat")
par(pty="s")
plot(kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")

pplik

Pseudo-likelihood Estimation of a Strauss Spatial Point Process

Description

Pseudo-likelihood estimation of a Strauss spatial point process.

Usage

pplik(pp, R, ng=50, trace=FALSE)

Arguments

pp a pp object
R the fixed parameter R
ng use a ng x ng grid with border R in the domain for numerical integration.
trace logical? Should function evaluations be printed?

Value

estimate for c in the interval [0, 1].

References

ppregion

See Also

Strauss

Examples

```r
pines <- ppinit("pines.dat")
pplik(pines, 0.7)
```

ppregion

Set Domain for Spatial Point Pattern Analyses

Description

Sets the rectangular domain \((x_1, x_u) \times (y_1, y_u)\).

Usage

```
ppregion(xl = 0, xu = 1, yl = 0, yu = 1)
```

Arguments

- `xl` Either `xl` or a list containing components `x1`, `xu`, `y1`, `yu` (such as a point-process object)
- `xu`
- `y1`
- `yu`

Value

`none`

Side Effects

initializes variables in the C subroutines.

References

See Also

`ppinit`, `ppgetregion`
predict.trls

Predict method for trend surface fits

Description

Predicted values based on trend surface model object

Usage

S3 method for class 'trls'
predict(object, x, y, ...)

Arguments

- **object**: Fitted trend surface model object returned by `surf.ls`
- **x**: Vector of prediction location eastings (x coordinates)
- **y**: Vector of prediction location northings (y coordinates)
- **...**: further arguments passed to or from other methods.

Value

`predict.trls` produces a vector of predictions corresponding to the prediction locations. To display the output with `image` or `contour`, use `trmat` or convert the returned vector to matrix form.

References

See Also

- `surf.ls`
- `trmat`

Examples

```r
data(topo, package="MASS")
topo2 <- surf.ls(2, topo)
topo4 <- surf.ls(4, topo)
x <- c(1.78, 2.21)
y <- c(6.15, 6.15)
z2 <- predict(topo2, x, y)
z4 <- predict(topo4, x, y)
cat("2nd order predictions:", z2, "\n4th order predictions:", z4, "\n")```
prmat

Evaluate Kriging Surface over a Grid

Description

Evaluate Kriging surface over a grid.

Usage

prmat(obj, xl, xu, yl, yu, n)

Arguments

obj object returned by surf.gls
xl limits of the rectangle for grid
xu
yl
yu
n use n x n grid within the rectangle

Value

list with components x, y and z suitable for contour and image.

References


See Also

surf.gls, trmat, semat

Examples

data(topo, package="MASS")
topo.kr <- surf.gls(2, expcov, topo, d=0.7)
prsrf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
contour(prsurf, levels=seq(700, 925, 25))
**Psim**  

*Simulate Binomial Spatial Point Process*

**Description**

Simulate Binomial spatial point process.

**Usage**

`Psim(n)`

**Arguments**

- `n` number of points

**Details**

relies on the region being set by `ppinit` or `pregion`.

**Value**

list of vectors of `x` and `y` coordinates.

**Side Effects**

uses the random number generator.

**References**


**See Also**

`SSI`, `Strauss`

**Examples**

```r
towns <- ppinit("towns.dat")
par(pty="s")
plot(Kfn(towns, 10), type="s", xlab="distance", ylab="L(t)")
for(i in 1:10) lines(Kfn(Psim(69), 10))
```
Evaluate Kriging Standard Error of Prediction over a Grid

Description

Evaluate Kriging standard error of prediction over a grid.

Usage

semat(obj, xl, xu, yl, yu, n, se)

Arguments

obj object returned by surf.gls
xl limits of the rectangle for grid
xu
yl
yu
n use n x n grid within the rectangle
se standard error at distance zero as a multiple of the supplied covariance. Otherwise estimated, and it assumed that a correlation function was supplied.

Value

list with components x, y and z suitable for contour and image.

References


See Also

surf.gls, trmat, prmat

Examples

data(topo, package="MASS")
topo.kr <- surf.gls(2, expcov, topo, d=0.7)
prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
contour(prsurf, levels=seq(700, 925, 25))

sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 30)
contour(sesurf, levels=c(22,25))
Description

Simulates SSI (sequential spatial inhibition) point process.

Usage

SSI(n, r)

Arguments

n  number of points
r  inhibition distance

Details

uses the region set by ppinit or ppregion.

Value

list of vectors of x and y coordinates

Side Effects

uses the random number generator.

Warnings

will never return if r is too large and it cannot place n points.

References


See Also

Psim, Strauss

Examples

towns <- ppinit("towns.dat")
par(pty = "s")
plot(Kfn(towns, 10), type = "b", xlab = "distance", ylab = "L(t)")
lines(Kaver(10, 25, SSI(69, 1.2)))
Simulates Strauss Spatial Point Process

Description

Simulates Strauss spatial point process.

Usage

Strauss(n, c=0, r)

Arguments

- `n`: number of points
- `c`: parameter $c$ in $[0, 1]$. $c = 0$ corresponds to complete inhibition at distances up to $r$.
- `r`: inhibition distance

Details

Uses spatial birth-and-death process for $4n$ steps, or for $40n$ steps starting from a binomial pattern on the first call from an other function. Uses the region set by `ppinit` or `ppregion`.

Value

list of vectors of $x$ and $y$ coordinates

Side Effects

uses the random number generator

References


See Also

`Psim`, `SSI`

Examples

towns <- ppinit("towns.dat")
par(pty="s")
plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")
lines(Kaver(10, 25, Strauss(69,0.5,3.5)))
**surf.gls**

*Fits a Trend Surface by Generalized Least-squares*

**Description**

Fits a trend surface by generalized least-squares.

**Usage**

```r
surf.gls(np, covmod, x, y, z, nx = 1000, ...)
```

**Arguments**

- `np`: degree of polynomial surface
- `covmod`: function to evaluate covariance or correlation function
- `x`: x coordinates or a data frame with columns x, y, z
- `y`: y coordinates
- `z`: z coordinates. Will supersede x\$z
- `nx`: Number of bins for table of the covariance. Increasing adds accuracy, and increases size of the object.
- `...`: parameters for `covmod`

**Value**

list with components

- `beta`: the coefficients
- `x`
- `y`
- `z`: and others for internal use only.

**References**


**See Also**

- `trmat`, `surf.gs`, `prmat`, `semat`, `expcov`, `gau cov`, `sphercov`
Examples

```r
library(MASS) # for eqscplot
data(topo, package=“MASS”)
topo.kr <- surf.gls(Z, expcov, topo, d=0.7)
trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, type = “n”)
contour(trsurf, add = TRUE)

prs Surf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
contour(prsurf, levels=seq(700, 925, 25))
seSurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 30)
eqscplot(5esurf, type = “n”)
contour(sesurf, levels = c(22, 25), add = TRUE)
```

```
surf.ls Fits a Trend Surface by Least-squares
```

Description

Fits a trend surface by least-squares.

Usage

`surf.ls(np, x, y, z)`

Arguments

- `np`  
  degree of polynomial surface
- `x`  
  x coordinates or a data frame with columns `x`, `y`, `z`
- `y`  
  y coordinates
- `z`  
  z coordinates. Will supersede `x$z`

Value

list with components

- `beta`  
  the coefficients
- `x`  
- `y`  
- `z`  
  and others for internal use only.

References

See Also

trmat, surfNgls

Examples

library(MASS)  # for eqscplot
data(topo, package="MASS")
topo.kr <- surf.ls(2, topo)
trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE)
points(topo)
eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE)
plot(topo.kr, add = TRUE)
title(xlab = "Circle radius proportional to Cook’s influence statistic")

trls.influence  

Regression diagnostics for trend surfaces

Description

This function provides the basic quantities which are used in forming a variety of diagnostics for checking the quality of regression fits for trend surfaces calculated by surf.ls.

Usage

trls.influence(object)

## S3 method for class ‘trls’
plot(x, border = "red", col = NA, pch = 4, cex = 0.6,
    add = FALSE, div = 8, ...)

Arguments

object, x  Fitted trend surface model from surf.ls
div  scaling factor for influence circle radii in plot.trls
add  add influence plot to existing graphics if TRUE
border, col, pch, cex, ...
    additional graphical parameters

Value

trls.influence returns a list with components:

r  raw residuals as given by residuals.trls
hii  diagonal elements of the Hat matrix
stresid  standardised residuals
DI  Cook’s statistic
References


See Also

surf.ls, influence.measures, plot.lm

Examples

library(MASS)  # for eqscplot
data(topo, package = "MASS")
topo2 <- surf.ls(2, topo)
infl.topo2 <- trls.influence(topo2)
(cand <- as.data.frame(infl.topo2)[abs(infl.topo2$stresid) > 1.5, ])
cand.xy <- topo[as.integer(rownames(cand)), c("x", "y")]
trsurf <- trmat(topo2, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE, col = "grey")
plot(topo2, add = TRUE, div = 3)
points(cand.xy, pch = 16, col = "orange")
text(cand.xy, labels = rownames(cand.xy), pos = 4, offset = 0.5)

trmat

Evaluate Trend Surface over a Grid

Description

Evaluate trend surface over a grid.

Usage

trmat(obj, xl, xu, yl, yu, n)

Arguments

obj object returned by surf.ls or surf.gls
xl limits of the rectangle for grid
xu
yl
yu
n use n x n grid within the rectangle

Value

list with components x, y and z suitable for contour and image.
variogram

References


See Also

surf.ls, surf.gls

Examples

data(topo, package="MASS")
topo.kr <- surf.ls(2, topo)
trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)

---

**variogram**

Compute Spatial Variogram

Description

Compute spatial (semi-)variogram of spatial data or residuals.

Usage

`variogram(krig, nint, plotit = TRUE, ...)`

Arguments

- `krig`: trend-surface or kriging object with columns `x`, `y`, and `z`
- `nint`: number of bins used
- `plotit`: logical for plotting
- `...`: parameters for the plot

Details

Divides range of data into `nint` bins, and computes the average squared difference for pairs with separation in each bin. Returns results for bins with 6 or more pairs.

Value

- `x` and `y` coordinates of the variogram and `cnt`, the number of pairs averaged per bin.

Side Effects

Plots the variogram if `plotit = TRUE`
References


See Also

correlogram

Examples

data(topo, package="MASS")
topo.kr <- surf.ls(2, topo)
variogram(topo.kr, 25)
Index

*Topic spatial
  anova.trls, 2
  correlogram, 3
  expcov, 4
  Kaver, 5
  Kenvl, 6
  Kfn, 7
  ppgetregion, 8
  ppinit, 8
  pplik, 9
  ppregion, 10
  predict.trls, 11
  prmat, 12
  Psim, 13
  SSI, 15
  Strauss, 16
  surf.gls, 17
  surf.ls, 18
  trls.influence, 19
  trmat, 20
  variogram, 21

  anova.trls, 2
  anovalist.trls (anova.trls), 2

  correlogram, 3, 22

  expcov, 4, 17

  gaukov, 17
  gaukov (expcov), 4

  influence.measures, 20

  Kaver, 5, 6, 7
  Kenvl, 5, 6, 7
  Kfn, 5, 6, 7

  plot.lm, 20
  plot.trls (trls.influence), 19