Package ‘spatialTIME’

June 4, 2024

Title Spatial Analysis of Vectra Immunoflourescent Data

Version 1.3.4-5

Description Visualization and analysis of Vectra Immunoflourescent data. Options for calculating both the univariate and bivariate Ripley's K are included. Calculations are performed using a permutation-based approach presented by Wilson et al. <doi:10.1101/2021.04.27.21256104>.

License MIT + file LICENSE

Imports magrittr, dplyr, tidyr, ggplot2, scales, grDevices, purrr, spatstat.univar, spatstat.geom, spatstat.explore, RColorBrewer, furrr, future, tidyselect, crayon, pbmcapply, dixon, tibble, stringr

Suggests knitr, devtools, rmarkdown, testthat (>= 3.0.0), gridExtra, pheatmap

VignetteBuilder knitr

URL https://github.com/FridleyLab/spatialTIME

BugReports https://github.com/FridleyLab/spatialTIME/issues

NeedsCompilation no

Config/testthat/edition 3

RoxygenNote 7.2.3

Depends R (>= 2.10)

LazyData true

Encoding UTF-8

Author Jordan Creed [aut], Ram Thapa [aut], Christopher Wilson [aut], Alex Soupir [aut], Oscar Ospina [aut], Julia Wrobel [aut], Brooke Fridley [cph], Fridley Lab [cre]
bi_NN_G

Bivariate Nearest Neighbor G(r)

Description

Bivariate Nearest Neighbor G(r)

Usage

bi_NN_G(
 mif,
 mnames,
 r_range = 0:100,
 num_permutations = 50,
 edge_correction = "rs",
 keep_perm_dis = FALSE,
 workers = 1,
 overwrite = FALSE,
 xloc = NULL,
 yloc = NULL
)

Maintainer Fridley Lab <fridley.lab@moffitt.org>
Repository CRAN
Date/Publication 2024-06-04 15:30:11 UTC

Index 24
Arguments

mif
- object of class ‘mif’ created by function ‘create_mif()’

mnames
- character vector of column names within the spatial files, indicating whether a cell row is positive for a phenotype

r_range
- numeric vector of radii around marker positive cells which to use for G(r)

num_permutations
- integer number of permutations to use for estimating core specific complete spatial randomness (CSR)

edge_correction
- character vector of edge correction methods to use: "rs", "km" or "han"

keep_perm_dis
- boolean for whether to summarise permutations to a single value or maintain each permutations result

workers
- integer number for the number of CPU cores to use in parallel to calculate all samples/markers

overwrite
- boolean whether to overwrite previous run of NN G(r) or increment "RUN" and maintain previous measurements

xloc, yloc
- the x and y location columns in the spatial files that indicate the center of the respective cells

Value

object of class ‘mif’ containing a new slot under ‘derived’ got nearest neighbor distances

Examples

```r
x <- spatialTIME::create_mif(clinical_data = spatialTIME::example_clinical %>%
dplyr::mutate(deidentified_id = as.character(deidentified_id)),
sample_data = spatialTIME::example_summary %>%
dplyr::mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = spatialTIME::example_spatial[1:2],
patient_id = "deidentified_id",
sample_id = "deidentified_sample")

mnames_good <- c("CD3..Opal.570..Positive","CD8..Opal.520..Positive",
"FOXP3..Opal.620..Positive","PDL1..Opal.540..Positive",
"PD1..Opal.650..Positive","CD3..CD8.","CD3..FOXP3.")

# Not run:
x2 = bi_NN_G(mif = x, mnames = mnames_good[1:2],
r_range = 0:100, num_permutations = 10,
edge_correction = "rs", keep_perm_dis = FALSE,
workers = 1, overwrite = TRUE)

## End(Not run)
```
bi_pair_correlation
Bivariate Pair Correlation Function

Description

Bivariate Pair Correlation Function

Usage

```r
bi_pair_correlation(
  mif, 
  mnames, 
  r_range = NULL, 
  num_permutations = 100, 
  edge_correction = "translation", 
  keep_permutation_distribution = FALSE, 
  workers = 1, 
  overwrite = FALSE, 
  xloc = NULL, 
  yloc = NULL, 
  ...
)
```

Arguments

- `mif` object of class ‘mif’
- `mnames` character vector or dataframe with 2 columns containing markers/marker combinations to run
- `r_range` numeric vector radii to measure
- `num_permutations` integer for the number of permutations to run
- `edge_correction` character string for which edge correction to implement for Ripley’s K
- `keep_permutation_distribution` integer for number of cores to use when calculating
- `workers` boolean whether to summarise the permutations or keep all
- `overwrite` boolean for whether to overwrite existing bivariate pair correlation results
- `xloc` x location column in spatial files
- `yloc` y location column in spatial files
- `...` other variables to pass to ‘[spatstat.explore::pcfcross]’

Value

‘mif’ object with the bivariate_pair_correlation slot filled
Description

Bivariate Ripley’s K function within spatialTIME, ‘bi_ripleys_k‘ is a function that takes in a ‘mIF’ object, along with some parameters like marker names of interest and range of radii in which to assess bivariate clustering or colocalization. In 1.3.3.3 we have introduced the ability to forgo the need for permutations with the implementation of the exact CSR estimate. This is both faster and being the exact CSR, produces an exact degree of clustering in the spatial files.

Due to the availability of whole slide images (WSI), there’s a possibility users will be running bivariate Ripley’s K on samples that have millions of cells. When doing this, keep in mind that a nearest neighbor matrix with *n* cell is *n* by *n* in size and therefore easily consumers high performance compute levels of RAM. To combat this, we have implemented a tiling method that performs counts for small chunks of the distance matrix at a time before finally calculating the bivariate Ripley’s K value on the total counts. When doing this there are now 2 important parameters to keep in mind. The ‘big’ parameter is the size of the tile to use. We have found 1000 to be a good number that allows for high number of cores while maintaining low RAM usage. The other important parameter when working with WSI is nlarge which is the fall over for switching to no edge correction. The spatstat.explore::Kest univariate Ripley’s K uses a default of 3000 but we have defaulted to 1000 to keep compute minimized as edge correction uses large amounts of RAM over ‘none’.

Usage

```r
bi_ripleys_k(
  mif,
  mnames,
  r_range = 0:100,
  edge_correction = "translation",
  num_permutations = 50,
  permute = FALSE,
  keep_permutation_distribution = FALSE,
  overwrite = TRUE,
  workers = 6,
  xloc = NULL,
  yloc = NULL,
  force = FALSE
)
```

Arguments

- **mif**
 - mIF object with spatial data frames, clinical, and per-sample summary information
- **mnames**
 - vector of column names for phenotypes or data frame of marker combinations
- **r_range**
 - vector range of radii to calculate co-localization *K*
bi_ripleys_k_WSI

Description

Bivariate Ripley’s K function within spatialTIME, ‘bi_ripleys_k‘ is a function that takes in a ‘mIF‘ object, along with some parameters like marker names of interest and range of radii in which to assess bivariate clustering or colocalization. In 1.3.3.3 we have introduced the ability to forgo the need for permutations with the implementation of the exact CSR estimate. This is both faster and being the exact CSR, produces an exact degree of clustering in the spatial files.

Due to the availability of whole slide images (WSI), there’s a possibility users will be running bivariate Ripley’s K on samples that have millions of cells. When doing this, keep in mind that a
nearest neighbor matrix with n cell is $n \times n$ in size and therefore easily consumers high performance compute levels of RAM. To combat this, we have implemented a tiling method that performs counts for small chunks of the distance matrix at a time before finally calculating the bivariate Ripley’s K value on the total counts. When doing this there are now 2 import parameters to keep in mind. The ‘big’ parameter is the size of the tile to use. We have found 1000 to be a good number that allows for high number of cores while maintaining low RAM usage. The other important parameter when working with WSI is nlarge which is the fall over for switching to no edge correction. The spatstat.explore::Kest univariate Ripley’s K uses a default of 3000 but we have defaulted to 1000 to keep compute minimized as edge correction uses large amounts of RAM over ‘none’.

Usage

```r
bi_ripleys_k_WSI(
    mif,
    mnames,
    r_range = 0:100,
    edge_correction = "translation",
    num_permutations = 50,
    permute = FALSE,
    keep_permutation_distribution = FALSE,
    overwrite = TRUE,
    workers = 6,
    big = 1000,
    nlarge = 1000,
    xloc = NULL,
    yloc = NULL
)
```

Arguments

- **mif** mIF object with spatial data frames, clinical, and per-sample summary information
- **mnames** vector of column names for phenotypes or data frame of marker combinations
- **r_range** vector range of radii to calculate co-localization *K*
- **edge_correction** character edge_correction method, one of "translation", or none"
- **num_permutations** integer number of permutations to estimate CSR
- **permute** whether or not to use permutations to estimate CSR (TRUE) or to calculate exact CSR (FALSE)
- **keep_permutation_distribution** boolean as to whether to summarise permutations to mean
- **overwrite** boolean as to whether to replace existing bivariate_Count if exists
- **workers** integer number of CPU workers to use
- **big** integer used as the threshold for subsetting large samples, default is 1000 either *i* or *j*
Compute metrics

Calculate Count Based Measures and NN Measures of Spatial Clustering for IF data

Description

This function calculates count based Measures (Ripley’s K, Besag L, and Marcon’s M) of IF data to characterize correlation of spatial point process. For nearest neighbor calculations of a given cell type, this function computes proportion of cells that have nearest neighbor less than r for the observed and permuted point processes.

Usage

```r
compute_metrics(
  mif,
  mnames,
  r_range = seq(0, 100, 50),
  num_permutations = 50,
  ...)  
```
edge_correction = c("translation"),
method = c("K"),
k_trans = "none",
keep_perm_dis = FALSE,
workers = 1,
overwrite = FALSE,
xloc = NULL,
yloc = NULL,
exhaustive = T
)

Arguments

mif
An MIF object

mnames
Character vector of marker names to estimate degree of spatial clustering.

r_range
Numeric vector of potential r values this range must include 0.

num_permutations
Numeric value indicating the number of permutations used. Default is 50.

data.frame

Arguments

edge_correction
Character vector indicating the type of edge correction to use. Options for count based include "translation" or "isotropic" and for nearest neighbor Options include "rs" or "hans".

method
Character vector indicating which count based measure (K, BiK, G, BiG) used to estimate the degree of spatial clustering. Description of the methods can be found in Details section.

k_trans
Character value of the transformation to apply to count based metrics (none, M, or L)

keep_perm_dis
Logical value determining whether or not to keep the full distribution of permuted K or G values

workers
Integer value for the number of workers to spawn

overwrite
Logical value determining if you want the results to replace the current output (TRUE) or be to be appended (FALSE).

xloc
a string corresponding to the x coordinates. If null the average of XMin and XMax will be used

yloc
a string corresponding to the y coordinates. If null the average of YMin and YMax will be used

exhaustive
whether or not to compute all combinations of markers

Value

Returns a data.frame

Theoretical CSR
Expected value assuming complete spatial randomness

Permuted CSR
Average observed K, L, or M for the permuted point process

Observed
Observed value for the observed point process
create_mif

Description

Creates an MIF object for use in spatialIF functions

Usage

```r
create_mif(
  clinical_data,
  sample_data,
  spatial_list = NULL,
  patient_id = "patient_id",
  sample_id = "image_tag"
)
```
Arguments

- **clinical_data**
 A data frame containing patient level data with one row per participant.

- **sample_data**
 A data frame containing sample level data with one row per sample. Should at a minimum contain a 2 columns: one for sample names and one for the corresponding patient name.

- **spatial_list**
 A named list of data frames with the spatial data from each sample making up each individual data frame.

- **patient_id**
 A character string indicating the column name for patient id in sample and clinical data frames.

- **sample_id**
 A character string indicating the column name for sample id in the sample data frame.

Value

Returns a custom MIF

- **clinical**
 Data frame of clinical data

- **sample**
 Data frame of sample data

- **spatial**
 Named list of spatial data

- **derived**
 List of data derived using the MIF object

- **patient_id**
 The column name for sample id in the sample data frame with the clinical data

- **sample_id**
 The column name for sample id in the sample data frame to merge with the spatial data

Examples

```r
#Create mif object
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
    mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
    mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")
```

dixons_s

* Dixon's S Segregation Statistic *

Description

This function processes the spatial files in the mif object, requiring a column that distinguishes between different groups i.e. tumor and stroma.
Usage

dixons_s(
mif,
mnames,
um_permutations = 1000,
type = c("Z", "C"),
workers = 1,
overwrite = FALSE,
xloc = NULL,
yloc = NULL
)

Arguments

mif An MIF object
mnames vector of markers corresponding to spatial columns to check Dixon’s S between
num_permutations Numeric value indicating the number of permutations used. Default is 1000.
type a character string for the type that is wanted in the output which can be “Z” for
workers Integer value for the number of workers to spawn
overwrite Logical value determining if you want the results to replace the current output
xloc a string corresponding to the x coordinates. If null the average of XMin and
xloc a string corresponding to the y coordinates. If null the average of YMin and

Value

Returns a data frame for Z-statistic

From
To
Obs.Count
Exp.Count
S
Z
p-val.Z
p-val.Nobs
Marker
Classifier Labeled Column Counts

Image.Tag
example_clinical

Returns a data frame for C-statistic

Segregation
df
Chi-sq
P.asymp
P.rand
Marker
Classifier Labeled Column Counts

Examples

```r
#' #Create mif object
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
  mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
  mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")
```

example_clinical
Clinical variables of 229 patients

Description

A tibble with clinical characteristics for 229 patients

Usage

```
example_clinical
```

Format

A tibble with 229 rows and 6 variables

- **age** age at diagnosis
- **race** self-identified race
- **sex** patient biological sex
- **status** disease status
- **deidentified_sample** sample identifier
- **deidentified_id** patient identifier
example_spatial

Example list of 5 spatial TMA data

Description

A list containing 5 spatial data frames

Usage

```r
example_spatial
```

Format

A list of 5 data frames:

- TMA_\[3,B\].tiff
- TMA_\[6,F\].tiff
- TMA_\[7,B\].tiff
- TMA_\[9,K\].tiff
- TMA_\[8,U\].tiff

example_summary

Marker summaries of 229 samples

Description

A dataset containing summaries of 25 markers and 229 samples

Usage

```r
example_summary
```

Format

A tibble with 229 rows and 29 variables:

- `deidentified_id` patient-level id
- `deidentified_sample` sample-level id ...
interaction_variable Bivariate Interaction Variable

Description
Single-cell spatial-protein metric introduce by Steinhart et al in https://doi.org/10.1158/1541-7786.mcr-21-0411

Usage
interaction_variable(
 mif,
 mnames,
 r_range = NULL,
 num_permutations = 100,
 keep_permutation_distribution = FALSE,
 workers = 1,
 overwrite = FALSE,
 xloc = NULL,
 yloc = NULL
)

Arguments
mif object of class ‘mif’
mnames a character vector or table with 2 columns indicating the from-to markers to assess
r_range numeric vector of radii for which to calculate the interaction variable at
num_permutations integer for how many permutations to use to derive the interaction estimate under CSR
keep_permutation_distribution boolean for whether or not to keep all permutation results or average them
workers integer for the number of CPU cores to use for permutations, markers, and spatial samples
overwrite boolean for whether to overwrite existing interaction variable results
xloc column name in spatial files containing the x location - if left NULL will average columns XMin and XMax
yloc column name in spatial files containing the y location - if left NULL will average columns YMin and YMax

Value
object of class mif with the interaction variable derive slot filled
merge_mifs

Merge several MIF objects together

Description

This function merges MIF objects that were run separately so they can be used as a single MIF. MIF objects don’t *need* but *should* have the same column names in the summary file and clinical data file. The MIF objects **DO** need to have the same patient_id and sample_id.

Usage

```r
merge_mifs(mifs = NULL, check.names = T)
```

Arguments

- `mifs`: A list of MIF objects to merge together
- `check.names`: whether to check names of spatial files and summary entries

Value

Returns a new MIF object list

- `clinical_data`: clinical information from all
- `sample`: cell level summary data from all
- `spatial`: contains all spatial files from all MIFs
- `derived`: appended derived variables
- `patient_id`: patient_id from the first MIF - this is why it is important to have the same patient_id for all MIFs
- `sample_id`: sample_id from the first MIF - also important for all MIFs to have the same sample_id

Examples

```r
# merge several MIF objects
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
  mutate(deidentified_id = as.character(deidentified_id)),
  sample_data = example_summary %>%
  mutate(deidentified_id = as.character(deidentified_id)),
  spatial_list = example_spatial,
  patient_id = "deidentified_id",
  sample_id = "deidentified_sample")
x <- merge_mifs(mifs = list(x, x), check.names = FALSE)
```
NN_G

Univariate Nearest Neighbor G(r)

Description
Univariate Nearest Neighbor G(r)

Usage
NN_G(
 mif,
 mnames,
 r_range = 0:100,
 num_permutations = 50,
 edge_correction = "rs",
 keep_perm_dis = FALSE,
 workers = 1,
 overwrite = FALSE,
 xloc = NULL,
 yloc = NULL
)

Arguments
- mif: object of class ‘mif’ created by function ‘create_mif()’
- mnames: character vector of column names within the spatial files, indicating whether a cell row is positive for a phenotype
- r_range: numeric vector of radii around marker positive cells which to use for G(r)
- num_permutations: integer number of permutations to use for estimating core specific complete spatial randomness (CSR)
- edge_correction: character vector of edge correction methods to use: "rs", "km" or "han"
- keep_perm_dis: boolean for whether to summarise permutations to a single value or maintain each permutations result
- workers: integer number for the number of CPU cores to use in parallel to calculate all samples/markers
- overwrite: boolean whether to overwrite previous run of NN G(r) or increment "RUN" and maintain previous measurements
- xloc, yloc: the x and y location columns in the spatial files that indicate the center of the respective cells

Value
object of class ‘mif’ containing a new slot under ‘derived’ got nearest neighbor distances
Examples

library(dplyr)
x <- spatialTIME::create_mif(clinical_data = spatialTIME::example_clinical %>%
dplyr::mutate(deidentified_id = as.character(deidentified_id)),
sample_data = spatialTIME::example_summary %>%
dplyr::mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = spatialTIME::example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")
mnames_good <- c("CD3..Opal.570..Positive","CD8..Opal.520..Positive",
"FOXP3..Opal.620..Positive","PDL1..Opal.540..Positive",
"PD1..Opal.650..Positive","CD3..CD8.","CD3..FOXP3.")
x2 = NN_G(mif = x, mnames = mnames_good[1:2],
r_range = 0:100, num_permutations = 10,
edge_correction = "rs", keep_perm_dis = FALSE,
workers = 1, overwrite = TRUE)

pair_correlation

Univariate Pair Correlation Function

Description

Implementation of the univariate pair correlation function from spatstat

Usage

pair_correlation(
mif,
mnames,
r_range = NULL,
num_permutations = 100,
edge_correction = "translation",
keep_permutation_distribution = FALSE,
workers = 1,
overwrite = FALSE,
xloc = NULL,
yloc = NULL,
...
)

Arguments

mif
object of class ‘mif’
mnames
character vector of marker names
r_range
numeric vector including 0. If ignored, ‘spatstat’ will decide range
num_permutations
integer indicating how many permutations to run to determine CSR estimate

edge_correction
character string of edge correction to apply to Ripley’s K estimation

keep_permutation_distribution
boolean for whether to keep the permutations or not

workers
integer for number of threads to use when calculating metrics

overwrite
boolean whether to overwrite existing results in the univariate_pair_correlation slot

xloc
column name of single x value

yloc
column name of single y value

... other parameters to provide ‘spatstat::pcf’

The Pair Correlation Function uses the derivative of Ripley’s K so it does take slightly longer to calculate
‘xloc’ and ‘yloc’, if NULL, will be calculated from columns ‘XMax’, ‘XMin’, ‘YMax’, and ‘YMin’.

Value
mif object with with the univariate_pair_correlation derived slot filled or appended to

plot_immunoflo Generate plot of TMA point process

Description
This function generates plot of point process in rectangular or circular window.

Usage

```
plot_immunoflo(
  mif,
  plot_title,
  mnames,
  mcolors = NULL,
  cell_type = NULL,
  filename = NULL,
  path = NULL,
  xloc = NULL,
  yloc = NULL
)
```
Arguments

- **mif**: MIF object created using `create_MIF()`.
- **plot_title**: Character string or vector of character strings of variable name(s) to serve as plot title(s).
- **mnames**: Character vector containing marker names.
- **mcolors**: Character vector of color names to display markers in the plot.
- **cell_type**: Character vector of cell type.
- **filename**: Character string of file name to store plots. Plots are generated as single .pdf file.
- **path**: Different path than file name or to use in conjunction with filename???
- **xloc, yloc**: Columns in the spatial files containing the x and y locations of cells. Default is 'NULL' which will result in 'xloc' and 'yloc' being calculated from 'XMin'/YMin' and 'XMax'/YMax'.

Value

mif object and the ggplot objects can be viewed form the derived slot of the mif object

Examples

```r
#Create mif object
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
  mutate(deidentified_id = as.character(deidentified_id)),
  sample_data = example_summary %>%
  mutate(deidentified_id = as.character(deidentified_id)),
  spatial_list = example_spatial,
  patient_id = "deidentified_id",
  sample_id = "deidentified_sample")
mnames_good <- c("CD3..Opal.570..Positive","CD8..Opal.520..Positive",
  "FOXP3..Opal.620..Positive","PDL1..Opal.540..Positive",
  "PD1..Opal.650..Positive","CD3..CD8.","CD3..FOXP3.")

x <- plot_immunoflo(x, plot_title = "deidentified_sample", mnames = mnames_good,
cell_type = "Classifier.Label")
x[['derived']][['spatial_plots']][[4]]
```

rpleys_k
Calculate Ripley's K
Description

ripleys_k() calculates the empirical Ripley’s K measurement for the cell types specified by mnames in the mIF object. This is very useful when exploring the spatial clustering of single cell types on TMA cores or ROI spots following processing with a program such as HALO for cell phenotyping.

In the ‘ripleys_k’ function, there is the ability to perform permutations in order to assess whether the clustering of a cell type is significant, or the ability to derive the exact CSR and forgo permutations for much faster sample processing. Permutations can be helpful if the significance of clustering was not to be identified - run 1000 permutations and if observed is outside 95-percentile then significant clustering. We, however, recommend using the exact CSR estimate due to speed.

Some things to be aware of when computing the exact Ripley’s K estimate, if your spatial file is greater than the ‘big’ size, the edge correction will be converted to ‘none’ in order to save on resources and compute time. Due to the introduction of Whole Slide Imaging (WSI), this can easily be well over 1,000,000 cells, and calculating edge correction for these spatial files will not succeed when attempting to force an edge correction on it.

Usage

ripleys_k(
 mif,
 mnames,
 r_range = seq(0, 100, 1),
 num_permutations = 50,
 edge_correction = "translation",
 method = "K",
 permute = FALSE,
 keep_permutation_distribution = FALSE,
 workers = 1,
 overwrite = FALSE,
 xloc = NULL,
 yloc = NULL,
 big = 10000
)

Arguments

mif object of class ‘mif’ created with ‘create_mif’
mnames cell phenotype markers to calculate Ripley’s K for
r_range radius range (including 0)
num_permutations number of permutations to use to estimate CSR. If ‘keep_perm_dis’ is set to FALSE, this will be ignored
edge_correction edge correction method to pass to ‘Kest’. can take one of "translation", "isotropic", "none", or "border"
method not used currently
permute whether to use CSR estimate or use permutations to determine CSR
keep_permutation_distribution

whether to find mean of permutation distribution or each permutation calculation

workers

number of cores to use for calculations

overwrite

whether to overwrite the ‘univariate_Count’ slot within ‘mif$derived’

xloc

the location of the center of cells. If left ‘NULL’, ‘XMin’, ‘XMax’, ‘YMin’, and ‘YMax’ must be present.

yloc

the location of the center of cells. If left ‘NULL’, ‘XMin’, ‘XMax’, ‘YMin’, and ‘YMax’ must be present.

big

the number of cells at which to flip from an edge correction method other than 'none' to 'none' due to size

Value

object of class ‘mif’

Examples

```r
x <- spatialTIME::create_mif(clinical_data = spatialTIME::example_clinical %>%
dplyr::mutate(deidentified_id = as.character(deidentified_id)),
sample_data = spatialTIME::example_summary %>%
dplyr::mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = spatialTIME::example.spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")
mnames = x$spatial[[1]] %>%
colnames() %>%
grep("Pos|CD", ., value = TRUE) %>%
grep("Cyto|Nucle", ., value = TRUE, invert = TRUE)
x2 = ripleys_k(mif = x,
mnames = mnames[1],
r_range = seq(0, 100, 1),
um_permutations = 100,
edge_correction = "translation",
method = "K",
permute = FALSE,
keep_permutation_distribution = FALSE,
workers = 1,
overwrite = TRUE)
```

subset_mif

Subset mif object on cellular level

Description

This function allows to subset the mif object into compartments. For instance a mif object includes all cells and the desired analysis is based on only the tumor or stroma compartment then this function will subset the spatial list to just the cells in the desired compartment.
subset_mif

Usage

subset_mif(mif, classifier, level, markers)

Arguments

mif An MIF object
classifier Column name for spatial dataframe to subset
level Determines which level of the classifier to keep.
markers vector of

Value

mif object where the spatial list only as the cell that are the specified level.

Examples

```r
# Create mif object
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
  mutate(deidentified_id = as.character(deidentified_id)),
  sample_data = example_summary %>%
  mutate(deidentified_id = as.character(deidentified_id)),
  spatial_list = example_spatial,
  patient_id = "deidentified_id",
  sample_id = "deidentified_sample")

markers = c("CD3..Opal.570..Positive","CD8..Opal.520..Positive",
"FOXP3..Opal.620..Positive","PDL1..Opal.540..Positive",
"PD1..Opal.650..Positive","CD3..CD8.","CD3..FOXP3.")

mif_tumor = subset_mif(mif = x, classifier = 'Classifier.Label',
  level = 'Tumor', markers = markers)
```
Index

* datasets
 example_clinical, 13
 example.spatial, 14
 example_summary, 14

 bi_NN_G, 2
 bi_pair_correlation, 4
 bi_ripleys_k, 5
 bi_ripleys_k_WSI, 6

 compute_metrics, 8
 create.mif, 10

 dixons_s, 11

 example_clinical, 13
 example_spatial, 14
 example_summary, 14

 interaction_variable, 15

 merge.mifs, 16

 NN_G, 17

 pair_correlation, 18
 plot.immunoflo, 19

 ripleys_k, 20

 subset.mif, 22