Package ‘spatialnbda’

February 20, 2015

Type Package

Title Performs spatial NBDA in a Bayesian context

Version 1.0

Date 2014-09-16

Author Glenna Nightingale

Maintainer Glenna Nightingale <glenna.evans@gmail.com>

Description Network based diffusion analysis (NBDA) allows inference on
the asocial and social transmission of information. This may involve
the social transmission of a particular behaviour such as tool use, for example.
For the NBDA, the key parameters estimated are the social effect and baseline rate
parameters. The baseline rate parameter gives the rate at which the behaviour
is first performed (or acquired) asocially amongst the individuals in a given population.
The social effect parameter quantifies the effect of the social associations amongst
the individuals on the rate at which each individual first performs or displays
the behaviour. Spatial NBDA involves incorporating spatial information in the analysis.
This is done by incorporating social networks derived from
spatial point patterns (of the home bases of the individuals under study). In addition,
a spatial covariate such as vegetation cover, or slope may be included in the modelling
process.

LazyData true

Depends SocialNetworks(>= 1.1), mvtnorm(>= 0.9)

License GPL

NeedsCompilation no

Repository CRAN

Date/Publication 2014-09-19 00:49:05

R topics documented:

FormatData .. 2
idarray ... 3
Ids .. 3
mcmc .. 3
FormatData

Formats the data for NBDA

Description

Formats the data for NBDA

Usage

FormatData(a, b, c, d, e, f, g, h, networkdata)

Arguments

- **a**: diffusion times
- **b**: social network
- **c**: unique id for individual at that particular event
- **d**: group number
- **e**: diffusion number
- **f**: event number
- **g**: alternative social network
- **h**: spatial covariate
- **networkdata**: list of social networks
idarray

Individual id’s for RJMCMC Example 1.

Description

These data consist of unique id’s for individuals recorded in ten diffusions.

Ids

This dataset contains the unique id for each individual in each group. This is part of the data example to demonstrate modelling NBDA with random effects.

Description

The ids are the unique id for each individual that was observed to first solve a task or demonstrate a new behaviour.

Usage

data(Ids)

mcmc

Performs spatial NBDA in a Bayesian context

Description

The model considered is the full model which contains two parameters: the baseline rate parameter, and the social parameter. The hazard function used therefore contains two basic components: lambda0, the baseline rate parameter and the social parameter, s’. The hazard function for individual i at time t is expressed as: lambda(t) = lambda0 + (s’Sum Aij_j)* z_j(t). In the hazard function, Sum Aij_j represents the sum of the interactions of individuals j on individual i. The term z_j(t) =1, if individual j has previously displayed the behaviour under study by time t, and zero
otherwise. The example provided describes the analysis of the times shown in the figure above:

![Figure showing analysis of times](image)

Usage

```r
mcmc(formatteddata, its, pilot_tuner1, pilot_tuner2, start1, start2)
```

Arguments

- `formatteddata`: data formatted using the function `FormatData`
- `its`: number of iterations
- `pilot_tuner1`: tuning parameter for the social effect
- `pilot_tuner2`: tuning parameter for the asocial effect
- `start1`: start value for the social parameter
- `start2`: start value for the asocial parameter

Examples

```r
# library(calibrate)
# loading the x and y spatial coordinates to construct the spatially derived
# social network

data(Xx)
data(Yy)

X <- cbind(Xx, Yy)
```
```r
# Loading the times and ids to plot the diffusion times and run nbda

data(Times)
data(ids)
numdiff = 10

plot_colors = colors(c(12, 28, 31, 32, 34, 37, 41, 47, 59, 62, 146, 176, 258, 117, 154, 625, 563, 376, 113, 556))

for(i in 1:numdiff){
  a = (i-1) * (len)
  b = a + (len)
  startindex = a + 1
  endindex = b
  plot(Times[startindex:endindex,1], c(1:len), type="o", lwd=4, col=plot_colors[i], ylab="Solver index", main="", xlab="Time(s)", yaxt='n', ylim=c(0,len), xlim=range(Times))
  textxy(c(1:len), Times[startindex:endindex,1], ids[startindex:endindex,1], cex = .8, col="red")
par(new=TRUE)
}
par(new=TRUE)
plot( Times[1:len,1], c(1:len), type="o", lwd=4, col=plot_colors[1], ylab="", main="", xlab="", ylim=c(0,len), xlim=range(Times))

Diffusions = rep(1,len)
for(i in 2:numdiff){
  addon = rep(i,len)
  Diffusions = c(Diffusions, addon)
}

Groups = rep(1,length(Times[,1]))
Events = c(1:length(Times[,1]))
space = rep(1,length(Times[,1]))
spatialnetwork = 1*spatialnetwork
```

shape = FormatData(Times[,1],spatialnetwork,Ids[,1],Groups,Diffusions,Events,spatialnetwork)

running nbda to obtain posterior estimates of the social and
baseline rate parameters
#ptm <- proc.time()
#mcmc(shape,10000,0.05,0.05,-3,-5)
#proc.time() - ptm

mcmcre

Performs NBDA with individual level random effects

Description

The incorporation of random effects accounts for heterogeneity contributed by individual aptitudes
of the individuals concerned. The baseline rate is then scaled by the random effects.

Usage

mcmcre(formatteddata, its, pilot_tuner1, pilot_tuner2, start1, start2)

Arguments

formatteddata Formatted data using the function FormatData
its Number of iterations
pilot_tuner1 Tuner for the social parameter
pilot_tuner2 Tuner for the asocial parameter
start1 Start value for the social parameter
start2 Start value for the asocial parameter

Value

The output is a list that contains: (i) The simulated values for each parameter (ii) The posterior
summaries each random effect parameter, (iii) The posterior summaries for the social and asocial
parameters Trace plots for the social and asocial parameters are provided together with a density
and acf plot for the social parameter.

Examples

library(calibrate)
loading the x and y spatial coordinates to construct the spatially derived
#social network
data(Xx)
data(Yy)

X <- cbind(Xx, Yy)
plot(X[,1], X[,2], pch=16, cex=1, xlim=c(0,1), ylim=c(0,1), xlab="x", ylab="y", main="", cex.axis=2, cex.lab=2)

areas = calculate.areas(X[,1], X[,2], rep(0.2, length(X[,1])), 1000)
spatialareas = areas
len = length(X[,1])

spatialnetwork = matrix(0, nrow=len, ncol=len)
for(i in 1:len){
 for(j in i:len){
 template = spatialareas[i][j]
 spatialnetwork[i, j] = spatialnetwork[j, i] = template
 # spatialareas[i][j] = NULL
 }
}

loading the times and ids to plot the diffusion times and run nbda

data(Times)
data(Ids)
numdiff = 10
plot_colors = colors()[c(12, 28, 31, 32, 34, 37, 41, 47, 59, 62, 146, 176, 258, 117, 154, 625, 563, 376, 113, 556)]

for(i in 1:numdiff){
a = (i-1) * (len)
b = a + (len)
startindex = a + 1
endindex = b
plot(Times[startindex:endindex, 1], c(1:len), type="o", lwd=4, col=plot_colors[i], ylab="Solver index", main="", xlab="Time(s)", yaxt='n', ylim=c(0,1), xlim=range(Times))
textxy(c(1:len), Times[startindex:endindex, 1], Ids[startindex:endindex, 1], cex = .8, col="red")
par(new=TRUE)
}
par(new=TRUE)
plot(Times[1:len, 1], c(1:len), type="o", lwd=4, col=plot_colors[1], ylab="", main="", xlab="", ylim=c(0,1), xlim=range(Times))

Diffusions = rep(1, len)
for(i in 2:numdiff){
 addon = rep(i, len)
 Diffusions = c(Diffusions, addon)
}
Groups = rep(1, length(Times[, 1]))
nullmcmc

The spatial NBDA null model is considered for this analysis. The baseline rate parameter is estimated.

Description

The model considered contains only one parameter: the baseline rate parameter, and represents the rate at which the behaviour under consideration is acquired.

Usage

nullmcmc(formatteddata, its, pilot_tuner, start)

Arguments

formatteddata: Formatted data using the FormatData function.
its: Number of iterations.
pilot_tuner: Tuning parameter.
start: Start value.
Description

This dataset provides the unique id of each individual nest in the order of the first observation of the behaviour under consideration. This is for the spatial NBDA example with an environmental covariate.

Usage

data(papernests)

Format

A data frame with 70 observations.

Nests a numeric vector

Examples

data(papernests)

Description

This dataset provides the diffusion times for the dataset used for spatial NBDA example with an environmental covariate. The values represent the times at which the behaviour under consideration was first observed at a given nest.

Usage

data(papertimes)

Format

A data frame with 70 observations.

Times a numeric vector

Examples

data(papertimes)
maybe str(papertimes) ; plot(papertimes) ...
rjmcmc

Model discrimination in a Bayesian context for spatial NBDA.

Description

An RJMCMC algorithm is used to achieve model discrimination between the null model which contains only the baseline rate parameter and the full model which contains both the baseline rate and social parameters.

Usage

rjmcmc(formatteddata, its, pilot_tuner1, pilot_tuner2, start1, start2, start3, p1, p2)

Arguments

- formatteddata: Formatted data using the FormatData function.
- its: Number of iterations
- pilot_tuner1: Tuner for proposal distribution for the social parameter.
- pilot_tuner2: Tuner for the proposal distribution for the baseline rate parameter.
- start1: Start value for the social parameter
- start2: Start value for the baseline rate parameter
- start3: Start model
- p1: Uniform prior variance tuner for the baseline rate
- p2: Uniform prior variance tuner for the social parameter

Details

It is important to check that the chains have mixed which using this function. A rough way would be to view the trace plots printed.

Value

The output is a table with the number of iterations for which the Markov chain spent in each visited model.

Examples

#Example 1
data(timearray)
data(idarray)
data(socialx)
data(socialy)

Times = timearray[,1]
Ids = idarray[,1]
lenh = length(Times)
Groups = rep(1, length(Times))
Events = c(1:length(Times))

socialites = matrix(1, nrow=lenh, ncol=lenh)
x = socialx
y = socialy

plot(x[1], y[1], xlab="x", ylab="y", cex=2, pch=16, main="Point pattern of nest positions")

areas = calculate.areas(x[1], y[1], rep(0.2, lenh), 1000)
spatialareas = areas
len = length(x[1])
Diffusions = rep(1, len)
for(i in 2:len){
 addon = rep(i, len)
 Diffusions = c(Diffusions, addon)
}

spatialnetwork = matrix(0, nrow=len, ncol=len)
for(i in 1:len){
 for(j in i:len){
 template = spatialareas[i][j]
 spatialnetwork[i, j] = spatialnetwork[j, i] = template
 # spatialareas[i] = NULL
 }
}

shape = FormatData(Times, spatialnetwork, IDs, Groups, Diffusions, Events, spatialnetwork)

ptm <- proc.time()
mcmc(shape, 10000, 0.05, 0.05, -3, -5)
proc.time() - ptm

ptm <- proc.time()
rjmcmc(shape, 10000, 5, 1, -3, -3, 1, 10, 10)
proc.time() - ptm

Example 2
data(papertimes)
data(papernests)
data(x)
data(y)
z = array(0, c(length(x[,1]), 1))
setting up array for storing spatial covariate information
for(i in 1:70){ # simulating spatial covariate information
 xx = x[,1][i]
 yy = y[,1][i]
 z[i] = (3*xx + 14*yy) * exp(2 * (.4*xx - 1))
}

Times = papertimes[,1]
Ids = paperests[,1]
Diffusions = rep(1,length(Times))
Groups = rep(1,length(Times))
Events = c(1:length(Times))
socialites = matrix(1,nrow=70,ncol=70)

plot(x[,1],y[,1],xlab="x",ylab="y",cex=2,pch=16,main="Point pattern of nest positions")

areas = calculate.areas(x[,1],y[,1],rep(0.05,70),1000)
spatialareas = areas
len = length(x[,1])

spatialnetwork = matrix(0,nrow=len,ncol=len)
for(i in 1:len){
 for(j in i:len){
 template = spatialareas[i][j]
 spatialnetwork[i,j] = spatialnetwork[j,i] = template
 #spatialareas[i]=NULL
 }
}

shape = FormatData(Times,spatialnetwork,Ids,Groups,Diffusions,Events,spatialnetwork,z)

#ptm <- proc.time()
#mcmc(shape,10000,5,1,-5,-6)
#proc.time() - ptm

#ptm <- proc.time()
#nullmcmc(shape,10000,1,-5)
#proc.time() - ptm

#ptm <- proc.time()
#rjmc(shape,10000,5,1,0,0,2,5,5)
#proc.time() - ptm
Performs spatial network based diffusion analysis in a Bayesian context. This analysis includes values of an environmental covariate in the modelling process. The figure below depicts a point pattern formed by nest/home-range locations superimposed over a plot of the environmental covariate expressed as an image. This type of data can be analysed by this function (given the accompanying diffusion times and id’s). The example dataset is analysed using this function (in addition to mcmc).

Usage

```r
smcmc(formatteddata, its, pilot_tuner1, pilot_tuner2, pilot_tuner3, start1, start2, start3)
```

Arguments

- `formatteddata`: Formatted data using the function FormatData
- `its`: Number of iterations
pilot_tuner1 pilot tuner for the social parameter
pilot_tuner2 pilot tuner for the baseline parameter
pilot_tuner3 pilot tuner for the spatial/environmental parameter
start1 start value for the social parameter
start2 start value for the baseline rate parameter
start3 start value for the spatial/environmental parameter

Value

The output is a list that contains: (i) The posterior simulated values for each parameter, and (ii) The posterior summaries for each parameter Trace plots for the social and asocial parameters are provided together with a density and acf plot for the social parameter.

Author(s)

Glenna Nightingale

Examples

library(socialnetworks)
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (formatteddata, its, pilot_tuner1, pilot_tuner2, pilot_tuner3,
 start1, start2, start3)
{
 TimeD = formatteddata[[1]][, 7]
censored = formatteddata[[1]][, 6]
Aij = formatteddata[[1]][, 8]
NaiveD = formatteddata[[2]]
spatcov = formatteddata[[1]][, 9]
s0 = start1
baseline_rate = lambda0 = start2
environmental = beta0 = start3
acceptcounter = 0
Jumbo <- array(0, c(its, 3))
newparam <- array(0.5, 3)
CurrentParam <- array(0.5, 3)
updates <- function(CurrentParam, newparam) {
 pilot_tuner1)
 proposal = c(GU3, CurrentParam[2:3])
 num <- CpS(proposal)[[1]]
 den <- CpS(CurrentParam)[[1]]
 acc <- exp(num - den)
acceptr <- min(1, acc)
nextparam[1] <- ifelse((r <= acceptr), GU3, CurrentParam[1])
return(nextparam[1])
}
updatelambda <- function(CurrentParam, newparam) {
 proposal = c(CurrentParam[1], GU3, CurrentParam[3])
 num <- Cps(proposal)[[1]]
 den <- Cps(CurrentParam)[[1]]
 acc <- exp(num - den)
 acceptt <- min(1, acc)
 r <- runif(1)
 acceptcounter <- ifelse((r <= acceptt), 1, 0)
 list(newparam[2], acceptcounter)
}
updatecovariate <- function(CurrentParam, newparam) {
 proposal = c(CurrentParam[1:2], GU3)
 num <- Cps(proposal)[[1]]
 den <- Cps(CurrentParam)[[1]]
 acc <- exp(num - den)
 acceptr <- min(1, acc)
 r <- runif(1)
 return(newparam[3])
}
Cps = function(parameterproposal) {
 baseline = exp(parameterproposal[2])
 social_rate = exp(parameterproposal[1])
 spatialc = exp(parameterproposal[2])
 hazard = baseline * exp(spatialc) + (social_rate) * Aij
 uncensored = 1 - censored
 log_likelihood_u = sum(log(hazard * exp(-hazard * TimeD))) * uncensored + sum(-hazard * TimeD * NaiveD)
 log_likelihood_c = sum(-hazard * censored)
 log_likelihood = log_likelihood_u + log_likelihood_c
 lambdaprrior <- log(dunif(parameterproposal[2], -10, 10))
 sprior <- log(dunif(parameterproposal[1], -10, 10))
 sCprior <- log(dunif(parameterproposal[3], -10, 10))
 pzoid <- log_likelihood + lambdaprrior + sprior + sCprior
 pzoid
}
for (t in 1:its) {
}
burnin = its/10
par(mfrow = c(2, 2))
plot(Jumbo[burnin:its, 1], type = "l", col = "blue", ylab = "social effect",
 main = "Trace plot for social effect, s' ", lwd = 2)
plot(Jumbo[burnin:its, 2], type = "l", col = "red", ylab = "asocial effect",
 main = "Trace plot for asocial effect, lambda0' ", lwd = 2)
plot(Jumbo[burnin:its, 3], type = "l", col = "lightgoldenrod",
 ylab = "asocial effect", main = "Trace plot for spatial effect, beta0' ",
 lwd = 2)
params = c(mean(Jumbo[burnin:its, 1]), mean(Jumbo[burnin:its, 2]),
 mean(Jumbo[burnin:its, 3]))
creds = c(sd(Jumbo[burnin:its, 1]), sd(Jumbo[burnin:its, 2]),
 sd(Jumbo[burnin:its, 3]))
mcmcreresults = list(Jumbo, params, creds)
mcmcreresults
}

#---
Run spatial NBDA to estimate the social and asocial parameters
s and lambda.
The associations for the social network in this example are calculated
using an interaction function that assumes each individual has
an area of interaction or zone of influence.
#---

data(papertimes)
data(papernests)
data(x)
data(y)
z = array(0,c(length(x[,1]),1))# setting up array for storing spatial covariate information
for(i in 1:70){# simulating spatial covariate information
 xx = x[,1][i]
 yy = y[,1][i]
 z[i] = (3*xx + 14*yy) * exp(2 * (.4*xx - 1))}

Times = papertimes[,1]
Ids = papernests[,1]
Diffusions = rep(1,length(Times))
Groups = rep(1,length(Times))
Events = c(1:length(Times))
socialites = matrix(1,nrow=70,ncol=70)

plot(x[,1],y[,1],xlab="x",ylab="y",cex=2,pch=16,main="Point pattern of nest positions")
areas = calculate.areas(x[,1],y[,1],rep(0.05,70),1000)
spatialareas = areas
len = length(x[,1])

spatialnetwork = matrix(0,nrow=len,ncol=len)
for(i in 1:len){
 for(j in i:len){
 template = spatialareas[i][j]
 spatialnetwork[i,j] = spatialnetwork[j,i] = template
 #spatialareas[i]=NUL
 }
}

shape = FormatData(Times,spatialnetwork,Ids,Groups,Diffusions,Events,spatialnetwork,z)
ptm <- proc.time()
smcmc(shape,10000,5,1,1,-5,-6,-5)
proc.time() - ptm

x coordinates for RJMCMC Example 1.

Description

These coordinates are combined with the y coordinates to form a spatial point pattern.

y coordinates for RJMCMC Example 1

Description

These coordinates are combined with the x coordinates to form a spatial point pattern.
spatialnbda

Performs spatial NBDA in a Bayesian context.

Description

Network based diffusion analysis (NBDA) is conducted using a spatially derived social network. The modelling process may also include an environmental covariate such as vegetation cover or slope.

Details

Package: spatba
Type: Package
Version: 1.0
Date: 2014-09-16
License: GPL

Author(s)

Maintainer: Glenna Nightingale <glenna.evans@gmail.com>

References

Examples

#library(SocialNetworks)

#---------------------------------
calculating associations
#---------------------------------
For a regular spatial point pattern with interaction radius = 0.06
using an interaction function that uses pairwise Euclidean distances.

```r
x = c(0.1023117, 0.1119260, 0.1625276, 0.3594291, 0.4220571, 0.4606205, 0.5927459, 0.6847543, 0.7065195, 0.7760657, 0.9827536)
y = c(0.2525266, 0.3346728, 0.5275355, 0.2447207, 0.2765606, 0.4999600, 0.5928410, 0.8356211, 0.2506116, 0.8994760, 0.1432255)
plot(x,y)
irset = c(rep(0.06,11))
calculateassociations(x,y,irset)
```

For a clustered spatial point pattern with interaction radius=0.05
using an interaction function that uses pairwise Euclidean distances.

```r
x =
c(0.77302412, 0.82946034, 0.65776305, 0.62294479, 0.58577335, 0.39332654, 0.3683684, 0.40518735, 0.53956642, 0.56596859, 0.62802969, 0.10380876, 0.71058751, 0.65943692, 0.88056259, 0.90567566, 0.91166684, 0.89489341, 0.92668619, 0.01544599, 0.30499431, 0.28249059, 0.30733518, 0.73165075, 0.17712420, 0.80869511, 0.77351717, 0.75588022, 0.79445346, 0.73134413, 0.62448310, 0.60180882, 0.66741081, 0.45884352, 0.45282315, 0.45614636, 0.45270694, 0.44764728, 0.53259346)
y =
c(0.943378357, 0.933698623, 0.123641160, 0.146773076, 0.135097659, 0.978760171, 0.981407654, 0.937111187, 0.080617391, 0.114438404, 0.061834776, 0.370322731, 0.036576942, 0.003974257, 0.830356964, 0.837171526, 0.884801445, 0.797794654, 0.844312417, 0.969982888, 0.672246284, 0.69211852, 0.671098280, 0.999097233, 0.003736065, 0.255322335, 0.282689074, 0.310793806, 0.229047375, 0.266413304, 0.324984514, 0.279652338, 0.287134518, 0.331962948, 0.365469720, 0.343868765, 0.378876999, 0.331915785, 0.368805652)
plot(x,y)
irset = c(rep(0.05,length(x)))
calculateassociations(x,y,irset)
```

For a random spatial point pattern with interaction radius=0.05
using an interaction function that uses pairwise Euclidean distances.

```r
x =
c(0.74906296, 0.38309725, 0.98627509, 0.02242039, 0.54703348, 0.59173730, 0.82340399, 0.18718650, 0.49200511, 0.86098261, 0.24848640, 0.15843825, 0.72875205)
y =
c(0.73521480, 0.01661629, 0.51564570, 0.61856835, 0.28815448, 0.29431260, 0.35507188, 0.18940107, 0.98721494, 0.98129752, 0.76510267, 0.43541222,
```
0.04601392)

plot(x,y)
irset = c(rep(0.1,length(x)))
calculateassociations(x,y,irset)

#---
Run spatial NBDA to estimate the social and asocial parameters
s and lambda.
The associations for the social network in this example are calculated
using an interaction function that assumes each individual has
an area of interaction or zone of influence.
#---

data(papertimes)
data(papernests)
data(x)
data(y)
z = array(0,c(length(x[,1]),1))# setting up array for storing spatial covariate information

for(i in 1:70){ # simulating spatial covariate information
 xx = x[,1][i]
 yy = y[,1][i]
 z[i] = (3*xx + 14*yy) * exp(2 * (.4*xx - 1))
}

Times = papertimes[,1]
Ids = papernests[,1]
Diffusions = rep(1,length(Times))
Groups = rep(1,length(Times))
Events = c(1:length(Times))
socialites = matrix(1,nrow=70,ncol=70)

plot(x[,1],y[,1],xlab="x",ylab="y",cex=2,pch=16,main="Point pattern of nest positions")

areas = calculate.areas(x[,1],y[,1],rep(0.05,70),1000)
spatialareas = areas
len = length(x[,1])

spatialnetwork = matrix(0,nrow=len,ncol=len)
for(i in 1:len){
 for(j in i:len){
 template = spatialareas[i][j]
Description

These data consist of diffusion times for ten diffusions.

Usage

data(Times)
Description

This dataset provides the x coordinates for nest positions for the data in the spatial NBDA example with an environmental covariate. These values are used to create the point pattern associated with the spatial NBDA dataset as shown below:

Usage

data(x)

Format

A data frame with 70 observations on the following variable.

x a numeric vector

Examples

data(x)
maybe str(x) ; plot(x) ...
Description

This dataset provides the x coordinates for nest positions for the data in the spatial NBDA example where random effects are considered. These values are used to create the point pattern (as shown below) associated with the spatial NBDA dataset.

Usage

data(xx)

Description

This dataset provides the y coordinates for nest positions for the data in the spatial NBDA example with an environmental covariate. These values are used to create the point pattern associated with
the spatial NBDA dataset as shown below:

Usage

```r
data(y)
```

Format

A data frame with 70 observations on the following variable.

- `y` a numeric vector

Examples

```r
data(y)
```
Description

This dataset provides the x coordinates for nest positions for the data in the spatial NBDA example where random effects are considered. These values are used to create the point pattern (as shown below) associated with the spatial nbda dataset.

Usage

data(Yy)
Index

*Topic datasets
 papernests, 9
 papertimes, 9
 x, 22
 y, 23

FormatData, 2

idarray, 3
Ids, 3

mcmc, 3
mcmc_re, 6

nullmcmc, 8

papernests, 9
papertimes, 9

rj_mcmc, 10

smcmc, 13
socialx, 17
socialy, 17
spatial_nbda, 18

timearray, 21
Times, 21

x, 22
Xx, 23

y, 23
Yy, 24