Package ‘spatstat.explore’

May 13, 2023

Version 3.2-1

Date 2023-05-13

Title Exploratory Data Analysis for the 'spatstat' Family

Maintainer Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Depends R (>= 3.5.0), spatstat.data (>= 3.0-1), spatstat.geom (>= 3.2-1), spatstat.random (>= 3.1-4), stats, graphics, grDevices, utils, methods, nlme

Imports spatstat.utils (>= 3.0-3), spatstat.sparse (>= 3.0-1), goftest (>= 1.2-2), Matrix, abind

Suggests sm, maptools (>= 0.9-9), gsl, locfit, spatial, fftwtools (>= 0.9-8), spatstat.linnet (>= 3.1), spatstat.model (>= 3.2-3), spatstat (>= 3.0-5)

Description Functionality for exploratory data analysis and nonparametric analysis of spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported.

License GPL (>= 2)

URL http://spatstat.org/

NeedsCompilation yes

ByteCompile true

BugReports https://github.com/spatstat/spatstat.explore/issues
Author Adrian Baddeley [aut, cre, cph]
 (<https://orcid.org/0000-0001-9499-8382>),
 Rolf Turner [aut, cph] (<https://orcid.org/0000-0001-5521-5218>),
 Ege Rubak [aut, cph] (<https://orcid.org/0000-0002-6675-533X>),
 Kasper Klitgaard Berthelsen [ctb],
 Warick Brown [cph],
 Achmad Choiruddin [ctb],
 Jean-Francois Coeurjolly [ctb],
 Ottmar Cronie [ctb],
 Tilman Davies [ctb, cph],
 Julian Gilbey [ctb],
 Jonatan Gonzalez [ctb],
 Yongtao Guan [ctb],
 Ute Hahn [ctb],
 Kassel Hingee [ctb, cph],
 Abdollah Jalilian [ctb],
 Frederic Lavancier [ctb],
 Marie-Colette van Lieshout [ctb, cph],
 Greg McSwiggan [ctb],
 Robin K Milne [cph],
 Tuomas Rajala [ctb],
 Suman Rakshit [ctb, cph],
 Dominic Schuhmacher [ctb],
 Rasmus Plenge Waagepetersen [ctb],
 Hangsheng Wang [ctb]

Repository CRAN

Date/Publication 2023-05-13 07:20:02 UTC

R topics documented:

- spatstat.explore-package ... 7
- adaptive.density .. 15
- allstats .. 16
- alltypes .. 17
- as.data.frame.envelope ... 20
- as.function.fv .. 21
- as.function.rhohat ... 23
- as.fv ... 24
- as.owin.quadrattest ... 26
- as.tess ... 29
- auc ... 30
- berman.test ... 31
- bind.fv .. 33
- bits.envelope .. 35
- bits.test .. 37
- blur ... 39
- bw.abram ... 41
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bw.abram.ppp</td>
<td>42</td>
</tr>
<tr>
<td>bw.CvL</td>
<td>45</td>
</tr>
<tr>
<td>bw.CvL.adaptive</td>
<td>46</td>
</tr>
<tr>
<td>bw.CvLHeat</td>
<td>48</td>
</tr>
<tr>
<td>bw.diggle</td>
<td>50</td>
</tr>
<tr>
<td>bw.frac</td>
<td>51</td>
</tr>
<tr>
<td>bw.optim.object</td>
<td>53</td>
</tr>
<tr>
<td>bw.pcf</td>
<td>54</td>
</tr>
<tr>
<td>bw.ppl</td>
<td>56</td>
</tr>
<tr>
<td>bw.pplHeat</td>
<td>57</td>
</tr>
<tr>
<td>bw.relrisk</td>
<td>59</td>
</tr>
<tr>
<td>bw.scott</td>
<td>60</td>
</tr>
<tr>
<td>bw.smoothppp</td>
<td>62</td>
</tr>
<tr>
<td>bw.stoyan</td>
<td>64</td>
</tr>
<tr>
<td>CDF</td>
<td>65</td>
</tr>
<tr>
<td>cdf.test</td>
<td>66</td>
</tr>
<tr>
<td>circdensity</td>
<td>69</td>
</tr>
<tr>
<td>clarkevans</td>
<td>70</td>
</tr>
<tr>
<td>clarkevans.test</td>
<td>72</td>
</tr>
<tr>
<td>clusterset</td>
<td>74</td>
</tr>
<tr>
<td>collapse.fv</td>
<td>76</td>
</tr>
<tr>
<td>compatible.fasp</td>
<td>77</td>
</tr>
<tr>
<td>compatible.fv</td>
<td>78</td>
</tr>
<tr>
<td>compileK</td>
<td>79</td>
</tr>
<tr>
<td>cov.im</td>
<td>81</td>
</tr>
<tr>
<td>dclf.progress</td>
<td>82</td>
</tr>
<tr>
<td>dclf.sigtrace</td>
<td>84</td>
</tr>
<tr>
<td>dclf.test</td>
<td>86</td>
</tr>
<tr>
<td>density.ppp</td>
<td>90</td>
</tr>
<tr>
<td>density.psp</td>
<td>96</td>
</tr>
<tr>
<td>density.splitppp</td>
<td>98</td>
</tr>
<tr>
<td>densityAdaptiveKernel</td>
<td>100</td>
</tr>
<tr>
<td>densityfun.ppp</td>
<td>102</td>
</tr>
<tr>
<td>densityHeat</td>
<td>104</td>
</tr>
<tr>
<td>densityHeat.ppp</td>
<td>105</td>
</tr>
<tr>
<td>densityVoronoi</td>
<td>108</td>
</tr>
<tr>
<td>deriv.fv</td>
<td>110</td>
</tr>
<tr>
<td>dg.envelope</td>
<td>112</td>
</tr>
<tr>
<td>dg.progress</td>
<td>114</td>
</tr>
<tr>
<td>dg.sigtrace</td>
<td>116</td>
</tr>
<tr>
<td>dg.test</td>
<td>119</td>
</tr>
<tr>
<td>dimhat</td>
<td>121</td>
</tr>
<tr>
<td>distcdf</td>
<td>122</td>
</tr>
<tr>
<td>dkernel</td>
<td>123</td>
</tr>
<tr>
<td>domain.quadrattest</td>
<td>125</td>
</tr>
<tr>
<td>edge.Ripley</td>
<td>126</td>
</tr>
<tr>
<td>edge.Trans</td>
<td>127</td>
</tr>
<tr>
<td>Emark</td>
<td>129</td>
</tr>
<tr>
<td>R topics documented:</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>envelope</td>
<td>132</td>
</tr>
<tr>
<td>envelope.envelope</td>
<td>141</td>
</tr>
<tr>
<td>envelope.pp3</td>
<td>143</td>
</tr>
<tr>
<td>envelopeArray</td>
<td>146</td>
</tr>
<tr>
<td>eval.fasp</td>
<td>148</td>
</tr>
<tr>
<td>eval.fv</td>
<td>149</td>
</tr>
<tr>
<td>Extract.fasp</td>
<td>151</td>
</tr>
<tr>
<td>Extract.fv</td>
<td>153</td>
</tr>
<tr>
<td>F3est</td>
<td>154</td>
</tr>
<tr>
<td>fasp.object</td>
<td>157</td>
</tr>
<tr>
<td>Fest</td>
<td>158</td>
</tr>
<tr>
<td>Finhom</td>
<td>162</td>
</tr>
<tr>
<td>FmultiInhom</td>
<td>165</td>
</tr>
<tr>
<td>formula.fv</td>
<td>166</td>
</tr>
<tr>
<td>fryplot</td>
<td>167</td>
</tr>
<tr>
<td>fv</td>
<td>170</td>
</tr>
<tr>
<td>fv.object</td>
<td>172</td>
</tr>
<tr>
<td>fvnames</td>
<td>173</td>
</tr>
<tr>
<td>G3est</td>
<td>175</td>
</tr>
<tr>
<td>Gcross</td>
<td>176</td>
</tr>
<tr>
<td>Gcross.inhom</td>
<td>180</td>
</tr>
<tr>
<td>Gdot</td>
<td>182</td>
</tr>
<tr>
<td>Gdot.inhom</td>
<td>185</td>
</tr>
<tr>
<td>Gest</td>
<td>187</td>
</tr>
<tr>
<td>Gfox</td>
<td>191</td>
</tr>
<tr>
<td>Ginhom</td>
<td>193</td>
</tr>
<tr>
<td>Gmulti</td>
<td>195</td>
</tr>
<tr>
<td>GmultiInhom</td>
<td>198</td>
</tr>
<tr>
<td>harmonise.fv</td>
<td>200</td>
</tr>
<tr>
<td>Hest</td>
<td>201</td>
</tr>
<tr>
<td>hopskel</td>
<td>203</td>
</tr>
<tr>
<td>hotbox</td>
<td>205</td>
</tr>
<tr>
<td>idw</td>
<td>207</td>
</tr>
<tr>
<td>Iest</td>
<td>209</td>
</tr>
<tr>
<td>increment.fv</td>
<td>211</td>
</tr>
<tr>
<td>Jcross</td>
<td>212</td>
</tr>
<tr>
<td>Jcross.inhom</td>
<td>214</td>
</tr>
<tr>
<td>Jdot</td>
<td>216</td>
</tr>
<tr>
<td>Jdot.inhom</td>
<td>219</td>
</tr>
<tr>
<td>Jest</td>
<td>221</td>
</tr>
<tr>
<td>Jinhom</td>
<td>224</td>
</tr>
<tr>
<td>Jmulti</td>
<td>226</td>
</tr>
<tr>
<td>Jmulti.inhom</td>
<td>229</td>
</tr>
<tr>
<td>K3est</td>
<td>231</td>
</tr>
<tr>
<td>kaplan.meier</td>
<td>232</td>
</tr>
<tr>
<td>Kcross</td>
<td>233</td>
</tr>
<tr>
<td>Kcross.inhom</td>
<td>236</td>
</tr>
<tr>
<td>Kdot</td>
<td>240</td>
</tr>
</tbody>
</table>
R topics documented:

Kdot.inhom ... 243
kernel.factor .. 247
kernel.moment ... 248
kernel.squint .. 249
Kest .. 250
Kest.fft .. 254
Kinhom ... 256
km.rs ... 260
Kmark ... 262
Kmeasure .. 264
Kmulti ... 267
Kmulti.inhom ... 269
Kscaled ... 273
Ksector ... 276
laslett .. 277
Lcross ... 280
Lcross.inhom .. 281
Ldot .. 283
Ldot.inhom ... 285
Lest .. 286
Linhom .. 288
localK ... 289
localKcross ... 291
localKcross.inhom 293
localKdot .. 296
localKinhom ... 298
localpcf .. 300
lohboot ... 302
markconnect .. 305
markcorr .. 308
markcrosscorr .. 312
markmarksscatter 314
marktable .. 315
markvario .. 316
Math.fasp .. 318
Math.fv ... 320
methods.rho2hat ... 321
methods.rhohat ... 323
methods.ssf .. 325
miplot ... 327
nnclean .. 328
nncorr ... 330
ndensity.ppp .. 333
nnorient .. 334
pairMean ... 336
pairorient .. 337
pairs.im .. 339
panel.contour ... 340
R topics documented:

- `pcf` .. 342
- `pcf.fasp` .. 343
- `pcf.fv` ... 345
- `pcf.ppp` ... 347
- `pcf3est` ... 351
- `pcf.cross` .. 353
- `pcf.crosstest` .. 355
- `pcfdot` ... 357
- `pcfdot.inhom` .. 360
- `pcfinhom` ... 362
- `pcf.multi` ... 365
- `plot.bermantest` ... 367
- `plot.cdftest` .. 368
- `plot.envelope` ... 370
- `plot.fasp` .. 371
- `plot.fv` ... 373
- `plot.laslett` ... 377
- `plot.quadrat.test` .. 378
- `plot.scan.test` .. 379
- `plot.ss` ... 380
- `plot.studperm.test` 382
- `pool` ... 384
- `pool.anylist` ... 385
- `pool.envelope` ... 386
- `pool.fasp` .. 387
- `pool.fv` ... 388
- `pool.quadrat.test` 389
- `pool.rat` ... 390
- `PPversion` .. 392
- `quadrat.test` .. 393
- `quadrat.test.splitppp` 397
- `quantile.density` .. 398
- `radcumint` .. 400
- `rat` .. 401
- `rectcontact` ... 402
- `reduced.sample` ... 403
- `reloa.or.compute` ... 404
- `relrisk` .. 406
- `relrisk.ppp` ... 407
- `rho2hat` ... 411
- `rhohat` .. 412
- `roc` .. 419
- `rose` .. 421
- `rotmean` ... 423
- `scan.test` .. 424
- `scanLRTS` .. 427
- `sdr` .. 429
- `sdrPredict` .. 430
Description

The spatstat.explore package belongs to the spatstat family of packages. It contains the core functionality for statistical analysis and modelling of spatial data.

Details

spatstat is a family of R packages for the statistical analysis of spatial data. Its main focus is the analysis of spatial patterns of points in two-dimensional space.

The original spatstat package has now been split into several sub-packages.

This sub-package spatstat.explore contains the user-level functions that perform exploratory data analysis and nonparametric data analysis of spatial data.

(The main exception is that functions for linear networks are in the separate sub-package spatstat.linnet.)
structure of the spatstat family

The original spatstat package grew to be very large. It has now been divided into several sub-packages:

- spatstat.utils containing basic utilities
- spatstat.sparse containing linear algebra utilities
- spatstat.data containing datasets
- spatstat.geom containing geometrical objects and geometrical operations
- spatstat.explore containing the functionality for exploratory data analysis and nonparametric analysis of spatial data.
- spatstat.model containing the functionality for statistical modelling, model-fitting, formal statistical inference and informal model diagnostics.
- spatstat.linnet containing functions for spatial data on a linear network

spatstat, which simply loads the other sub-packages listed above, and provides documentation.

When you install spatstat, these sub-packages are also installed. Then if you load the spatstat package by typing library(spatstat), the other sub-packages listed above will automatically be loaded or imported.

For an overview of all the functions available in the sub-packages of spatstat, see the help file for “spatstat-package” in the spatstat package.

Additionally there are several extension packages:

- spatstat.gui for interactive graphics
- spatstat.local for local likelihood (including geographically weighted regression)
- spatstat.Knet for additional, computationally efficient code for linear networks
- spatstat.sphere (under development) for spatial data on a sphere, including spatial data on the earth’s surface

The extension packages must be installed separately and loaded explicitly if needed. They also have separate documentation.

overview of functionality in spatstat.explore

The spatstat family of packages is designed to support a complete statistical analysis of spatial data. It supports

- creation, manipulation and plotting of point patterns;
- exploratory data analysis;
- spatial random sampling;
- simulation of point process models;
- parametric model-fitting;
- non-parametric smoothing and regression;
- formal inference (hypothesis tests, confidence intervals);
• model diagnostics.

For an overview, see the help file for "spatstat-package" in the spatstat package.

Following is a list of the functionality provided in the spatstat.explore package only.

To simulate a random point pattern:
Functions for generating random point patterns are now contained in the spatstat.random package.

To interrogate a point pattern:

- **density.ppp** kernel estimation of point pattern intensity
- **densityHeat.ppp** diffusion kernel estimation of point pattern intensity
- **Smooth.ppp** kernel smoothing of marks of point pattern
- **sharpen.ppp** data sharpening

Manipulation of pixel images:
An object of class "im" represents a pixel image.

- **blur** apply Gaussian blur to image
- **Smooth.im** apply Gaussian blur to image
- **transect.im** line transect of image
- **pixelcentres** extract centres of pixels
- **rnoise** random pixel noise

Line segment patterns
An object of class "psp" represents a pattern of straight line segments.

- **density.psp** kernel smoothing of line segments
- **rpoisline** generate a realisation of the Poisson line process inside a window

Tessellations
An object of class "tess" represents a tessellation.

- **rpoislinetess** generate tessellation using Poisson line process

Three-dimensional point patterns
An object of class "pp3" represents a three-dimensional point pattern in a rectangular box. The box is represented by an object of class "box3".

- **runifpoint3** generate uniform random points in 3-D
- **rpoispp3** generate Poisson random points in 3-D
- **envelope.pp3** generate simulation envelopes for 3-D pattern

Multi-dimensional space-time point patterns
An object of class "ppx" represents a point pattern in multi-dimensional space and/or time.
runifpointx generate uniform random points
rpoisppx generate Poisson random points

Classical exploratory tools:
clarkevans Clark and Evans aggregation index
fryplot Fry plot
miplot Morisita Index plot

Smoothing:
density.ppp kernel smoothed density/intensity
relrisk kernel estimate of relative risk
Smooth.ppp spatial interpolation of marks
bw.diggle cross-validated bandwidth selection for density.ppp
bw.ppl likelihood cross-validated bandwidth selection for density.ppp
bw.CvL Cronie-Van Lieshout bandwidth selection for density estimation
bw.scott Scott’s rule of thumb for density estimation
bw.abram Abramson’s rule for adaptive bandwidths
bw.relrisk cross-validated bandwidth selection for relrisk
bw.smoothppp cross-validated bandwidth selection for Smooth.ppp
bw.frac bandwidth selection using window geometry
bw.stoyan Stoyan’s rule of thumb for bandwidth for pcf

Modern exploratory tools:
clusterset Allard-Fraley feature detection
nnclean Byers-Raftery feature detection
sharpen.ppp Choi-Hall data sharpening
rhohat Kernel estimate of covariate effect
rho2hat Kernel estimate of effect of two covariates
spatialcdf Spatial cumulative distribution function
roc Receiver operating characteristic curve

Summary statistics for a point pattern:
Fest empty space function F
Gest nearest neighbour distribution function G
Jest J-function $J = (1 - G)/(1 - F)$
Kest Ripley’s K-function
Lest Besag L-function
Tstat Third order T-function
allstats all four functions F, G, J, K
pcf pair correlation function
Kinhom K for inhomogeneous point patterns
Linhom L for inhomogeneous point patterns
pcfinhom pair correlation for inhomogeneous patterns
Finhom F for inhomogeneous point patterns
Ginhom \(G \) for inhomogeneous point patterns
Jinhom \(J \) for inhomogeneous point patterns
localL Getis-Franklin neighbourhood density function
localK neighbourhood \(K \)-function
localpcf local pair correlation function
localKinhom local \(K \) for inhomogeneous point patterns
localLinhom local \(L \) for inhomogeneous point patterns
localpcfinhom local pair correlation for inhomogeneous patterns
localL Directional \(L \)-function
localKscaled locally scaled \(K \)-function
Kest.fft fast \(K \)-function using FFT for large datasets
Kmeasure reduced second moment measure
envelope simulation envelopes for a summary function
varblock variances and confidence intervals
for a summary function
Ksector Directional \(K \)-function
Kcross,Gdot,Gmulti multitype nearest neighbour distributions \(G_{ij}, G_{i\bullet} \)
Kcross,Kdot,Kmulti multitype \(K \)-functions \(K_{ij}, K_{i\bullet} \)
Lcross,Ldot multitype \(L \)-functions \(L_{ij}, L_{i\bullet} \)
Jcross,Jdot,Jmulti multitype \(J \)-functions \(J_{ij}, J_{i\bullet} \)
pcfcross multitype pair correlation function \(g_{ij} \)
pcfdot multitype pair correlation function \(g_{i\bullet} \)
pcfmulti general pair correlation function \(g_{i\bullet} \)
markconnect marked connection function \(p_{ij} \)
alltypes estimates of the above for all \(i,j \) pairs

Related facilities:

plot.fv plot a summary function
eval.fv evaluate any expression involving summary functions
harmonise.fv make functions compatible
eval.fasp evaluate any expression involving an array of functions
with.fv evaluate an expression for a summary function
Smooth.fv apply smoothing to a summary function
deriv.fv calculate derivative of a summary function
pool.fv pool several estimates of a summary function
density.ppp kernel smoothed density
densityHeat.ppp diffusion kernel smoothed density
Smooth.ppp spatial interpolation of marks
relrisk kernel estimate of relative risk
sharpen.ppp data sharpening
rknn theoretical distribution of nearest neighbour distance

Summary statistics for a multitype point pattern: A multitype point pattern is represented by an object \(X \) of class "ppp" such that \(\text{marks}(X) \) is a factor.
Summary statistics for a marked point pattern: A marked point pattern is represented by an object X of class "ppp" with a component X\$marks. The entries in the vector X\$marks may be numeric, complex, string or any other atomic type. For numeric marks, there are the following functions:

- **markmean**: smoothed local average of marks
- **markvar**: smoothed local variance of marks
- **markcorr**: mark correlation function
- **markcrosscorr**: mark cross-correlation function
- **markvario**: mark variogram
- **markmarkscatter**: mark-mark scatterplot
- **Kmark**: mark-weighted K function
- **Emark**: mark independence diagnostic $E(r)$
- **Vmark**: mark independence diagnostic $V(r)$
- **nnmean**: nearest neighbour mean index
- **nnvario**: nearest neighbour mark variance index

For marks of any type, there are the following:

- **Gmulti**: multitype nearest neighbour distribution
- **Kmulti**: multitype K-function
- **Jmulti**: multitype J-function

Alternatively use `cut.ppp` to convert a marked point pattern to a multitype point pattern.

Programming tools:

- **marktable**: tabulate the marks of neighbours in a point pattern

Summary statistics for a three-dimensional point pattern:

These are for 3-dimensional point pattern objects (class pp3).

- **F3est**: empty space function F
- **G3est**: nearest neighbour function G
- **K3est**: K-function
- **pcf3est**: pair correlation function

Related facilities:

- **envelope.pp3**: simulation envelopes
Summary statistics for random sets:
These work for point patterns (class ppp), line segment patterns (class psp) or windows (class owin).

- **Hest**
 spherical contact distribution H

- **Gfox**
 Foxall G-function

- **Jfox**
 Foxall J-function

Model fitting
Functions for fitting point process models are now contained in the **spatstat.model** package.

Simulation
There are many ways to generate a random point pattern, line segment pattern, pixel image or tessellation in **spatstat**.

Random point patterns: Functions for random generation are now contained in the **spatstat.random** package.

See also **varblock** for estimating the variance of a summary statistic by block resampling, and **lohboot** for another bootstrap technique.

Fitted point process models:
If you have fitted a point process model to a point pattern dataset, the fitted model can be simulated. Methods for simulating a fitted model are now contained in the **spatstat.model** package.

Other random patterns: Functions for random generation are now contained in the **spatstat.random** package.

Simulation-based inference

- **envelope**
 critical envelope for Monte Carlo test of goodness-of-fit

- **bits.envelope**
 critical envelope for balanced two-stage Monte Carlo test

- **qqplot.ppm**
 diagnostic plot for interpoint interaction

- **scan.test**
 spatial scan statistic/test

- **studpermu.test**
 studentised permutation test

- **segregation.test**
 test of segregation of types

Hypothesis tests:

- **quadrat.test**
 χ^2 goodness-of-fit test on quadrat counts

- **clarkevans.test**
 Clark and Evans test

- **cdf.test**
 Spatial distribution goodness-of-fit test

- **berman.test**
 Berman's goodness-of-fit tests

- **envelope**
 critical envelope for Monte Carlo test of goodness-of-fit

- **scan.test**
 spatial scan statistic/test

- **dclf.test**
 Diggle-Cressie-Loosmore-Ford test

- **mad.test**
 Mean Absolute Deviation test

- **anova.ppm**
 Analysis of Deviance for point process models

More recently-developed tests:

- **dg.test**
 Dao-Genton test
Model diagnostics:

Classical measures of model sensitivity such as leverage and influence, and classical model diagnostic tools such as residuals, partial residuals, and effect estimates, have been adapted to point process models. These capabilities are now provided in the `spatstat.model` package.

Resampling and randomisation procedures

You can build your own tests based on randomisation and resampling using the following capabilities:

- `quadratresample` — block resampling
- `rshift` — random shifting of (subsets of) points
- `rthin` — random thinning

Licence

This library and its documentation are usable under the terms of the "GNU General Public License", a copy of which is distributed with the package.

Acknowledgements

Kasper Klitgaard Berthelsen, Ottmar Cronie, Tilman Davies, Julian Gilbey, Yongtao Guan, Ute Hahn, Kassel Hingee, Abdollah Jalilian, Marie-Colette van Lieshout, Greg McSwiggan, Tuomas Rajala, Suman Rakshit, Dominic Schuhmacher, Rasmus Waagepetersen and Hangsheng Wang made substantial contributions of code.

For comments, corrections, bug alerts and suggestions, we thank Monsuru Adepeju, Corey Anderson, Ang Qi Wei, Ryan Arellano, Jens Åström, Robert Aue, Marcel Austenfeld, Sandro Azaele, Malissa Baddeley, Guy Bayegnak, Colin Beale, Melanie Bell, Thomas Bendtsen, Ricardo Bernhardt, Andrew Bevan, Brad Biggerstaff, Anders Bilgrau, Leanne Bischof, Christophe Biscio, Roger Bivand, Jose M. Blanco Moreno, Florent Bonneau, Jordan Brown, Ian Buller, Julian Burgos, Simon Byers, Ya-Mei Chang, Jianbao Chen, Igor Chernayavsky, Y.C. Chin, Bjarke Christensen, Lucía Cobo Sanchez, Jean-François Coeurjolly, Kim Colyvas, Hadrien Commenges, Rochelle Constantine, Robin Corria Ainslie, Richard Cotton, Marcelino de la Cruz, Peter Dalgaard, Mario D’Antuono, Sourav Das, Peter Diggle, Patrick Donnelly, Ian Dryden, Stephen Eglen, Ahmed El-Gabbas, Belarmain Fandohan, Olivier Flores, David Ford, Peter Forbes, Shane Frank, Janet Franklin, Funwi-Gabga Neba, Oscar Garcia, Agnes Gault, Jonas Geldmann, Marc Genton, Shaaban Ghalandarayeshi, Jason Goldstick, Pavel Grabarnik, C. Graf, Ute Hahn, Andrew Hardegen, Martin Bogsted Hansen, Martin Hazelton, Juha Heikkinen, Mandy Hering, Markus Herrmann, Maximilian Hesselbarth, Paul Hewson, Hamidreza Heydarian, Kurt Hornik, Philipp Hunziker, Jack Hywood, Ross Ihaka, Çenk Içös, Aruna Jammalamadaka, Robert John-Chandran, Devin Johnson, Mahdieh Khanmohammadi, Bob Klaver, Lily Kozmian-Ledward, Peter Kovesi, Mike Kuhn, Jeff Laake, Robert Lamb, Frédéric Lavancier, Tom Lawrence, Tomas Lazauskas, Jonathan Lee, George Leser, Angela Li, Li Haitao, George Limitsios, Andrew Lister, Nestor Luambua, Ben

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

adaptive.density
Adaptive Estimate of Intensity of Point Pattern

Description
Computes an adaptive estimate of the intensity function of a point pattern.

Usage
adaptive.density(X, ..., method=c("voronoi", "kernel", "nearest"))

Arguments
X Point pattern (object of class "ppp" or "lpp").
method Character string specifying the estimation method

Details
This function is an alternative to density.ppp. It computes an estimate of the intensity function of a point pattern dataset. The result is a pixel image giving the estimated intensity.

If method="voronoi" the data are passed to the function densityVoronoi which estimates the intensity using the Voronoi-Dirichlet tessellation.
If \texttt{method}="kernel" the data are passed to the function \texttt{densityAdaptiveKernel} which estimates the intensity using a variable-bandwidth kernel estimator.

If \texttt{method}="nearest" the data are passed to the function \texttt{nndensity} which estimates the intensity using the distance to the k-th nearest data point. (This is not supported when \texttt{X} has class "lpp".)

\textbf{Value}

A pixel image (object of class "im") whose values are estimates of the intensity of \texttt{X}.

\textbf{Author(s)}

Adrian Baddeley \texttt{<Adrian.Baddeley@curtin.edu.au>}, Rolf Turner \texttt{<r.turner@auckland.ac.nz>} and Ege Rubak \texttt{<rubak@math.aau.dk>} and Mehdi Moradi \texttt{<m2.moradi@yahoo.com>}.

\textbf{See Also}

density.ppp, densityVoronoi, densityAdaptiveKernel, nndensity, im.object.

\textbf{Examples}

\begin{verbatim}
plot(adaptive.density(nztrees, 1), main="Voronoi estimate")
\end{verbatim}
Details

This computes four standard summary statistics for a point pattern: the empty space function $F(r)$, nearest neighbour distance distribution function $G(r)$, van Lieshout-Baddeley function $J(r)$ and Ripley’s function $K(r)$. The real work is done by Fest, Gest, Jest and Kest respectively. Consult the help files for these functions for further information about the statistical interpretation of F, G, J and K.

If `verb` is `TRUE`, then “progress reports” (just indications of completion) are printed out when the calculations are finished for each of the four function types.

The overall title of the array of four functions (for plotting by `plot.fasp`) will be formed from the argument `dataname`. If this is not given, it defaults to the expression for `pp` given in the call to `allstats`.

Value

A list of length 4 containing the F, G, J and K functions respectively.

The list can be plotted directly using `plot` (which dispatches to `plot.solist`).

Each list entry retains the format of the output of the relevant estimating routine Fest, Gest, Jest or Kest. Thus each entry in the list is a function value table (object of class "fv", see `fv.object`).

The default formulae for plotting these functions are $\text{cbind(km, theo)} \sim r$ for F, G, and J, and $\text{cbind(trans, theo)} \sim r$ for K.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`plot.solist`, `plot.fv`, `fv.object`, `Fest`, `Gest`, `Jest`, `Kest`

Examples

```r
a <- allstats(swedishpines, dataname="Swedish Pines")
if(interactive()) {
  plot(a)
  plot(a, subset=list("r<=15","r<=15","r<=15","r<=50"))
}
```

Description

Given a marked point pattern, this computes the estimates of a selected summary function (F, G, J, K etc) of the pattern, for all possible combinations of marks, and returns these functions in an array.
Usage

\texttt{alltypes(X, fun="K", ...,
 dataname=NULL, verb=FALSE, envelope=FALSE, reuse=TRUE)}

Arguments

\begin{itemize}
\item \textbf{X}
The observed point pattern, for which summary function estimates are required.
An object of class "\texttt{ppp}" or "\texttt{lpp}".

\item \textbf{fun}
The summary function. Either an \texttt{R} function, or a character string indicating the summary function required. Options for strings are "\texttt{F}", "\texttt{G}", "\texttt{J}", "\texttt{K}", "\texttt{L}", "\texttt{pcf}", "\texttt{Gcross}", "\texttt{Jcross}", "\texttt{Kcross}", "\texttt{Lcross}", "\texttt{Gdot}", "\texttt{Jdot}", "\texttt{Kdot}", "\texttt{Ldot}".

\item \textbf{...}
Arguments passed to the summary function (and to the function \texttt{envelope} if appropriate)

\item \textbf{dataname}
Character string giving an optional (alternative) name to the point pattern, different from what is given in the call. This name, if supplied, may be used by \texttt{plot.fasp()} in forming the title of the plot. If not supplied it defaults to the parsing of the argument supplied as \texttt{X} in the call.

\item \textbf{verb}
Logical value. If \texttt{verb} is true then terse “progress reports” (just the values of the mark indices) are printed out when the calculations for that combination of marks are completed.

\item \textbf{envelope}
Logical value. If \texttt{envelope} is true, then simulation envelopes of the summary function will also be computed. See Details.

\item \textbf{reuse}
Logical value indicating whether the envelopes in each panel should be based on the same set of simulated patterns (\texttt{reuse=TRUE}) or on different, independent sets of simulated patterns (\texttt{reuse=FALSE}).
\end{itemize}

Details

This routine is a convenient way to analyse the dependence between types in a multitype point pattern. It computes the estimates of a selected summary function of the pattern, for all possible combinations of marks. It returns these functions in an array (an object of class "\texttt{fasp}") amenable to plotting by \texttt{plot.fasp()}

The argument \texttt{fun} specifies the summary function that will be evaluated for each type of point, or for each pair of types. It may be either an \texttt{R} function or a character string.

Suppose that the points have possible types 1, 2, \ldots, \textit{m} and let \textit{X}_i denote the pattern of points of type \textit{i} only.

If \texttt{fun="F"} then this routine calculates, for each possible type \textit{i}, an estimate of the Empty Space Function \textit{F}_\textit{i}(r) of \textit{X}_i. See \texttt{Fest} for explanation of the empty space function. The estimate is computed by applying \texttt{Fest} to \textit{X}_i with the optional arguments \ldots

If \texttt{fun} is "\texttt{Gcross}", "\texttt{Jcross}", "\texttt{Kcross}" or "\texttt{Lcross}", the routine calculates, for each pair of types (\textit{i}, \textit{j}), an estimate of the “\textit{i}-to\textit{j}” cross-type function \textit{G}_{\textit{i}j}(r), \textit{J}_{\textit{i}j}(r), \textit{K}_{\textit{i}j}(r) or \textit{L}_{\textit{i}j}(r) respectively describing the dependence between \textit{X}_i and \textit{X}_j. See \texttt{Gcross}, \texttt{Jcross}, \texttt{Kcross} or \texttt{Lcross} respectively for explanation of these functions. The estimate is computed by applying the relevant function (\texttt{Gcross} etc) to \textit{X} using each possible value of the arguments \textit{i}, \textit{j}, together with the optional arguments \ldots
If fun is "pcf" the routine calculates the cross-type pair correlation function \(pcf \) between each pair of types.

If fun is "Gdot", "Jdot", "Kdot" or "Ldot", the routine calculates, for each type \(i \), an estimate of the “i-to-any” dot-type function \(G_i(r) \), \(J_i(r) \) or \(K_i(r) \) or \(L_i(r) \) respectively describing the dependence between \(X_i \) and \(X \). See \(Gdot \), \(Jdot \), \(Kdot \) or \(Ldot \) respectively for explanation of these functions. The estimate is computed by applying the relevant function (\(Gdot \) etc) to \(X \) using each possible value of the argument \(i \), together with the optional arguments . . .

The letters "G", "J", "K" and "L" are interpreted as abbreviations for \(Gcross \), \(Jcross \), \(Kcross \) and \(Lcross \) respectively, assuming the point pattern is marked. If the point pattern is unmarked, the appropriate function \(Fest \), \(Jest \), \(Kest \) or \(Lest \) is invoked instead.

If envelope=TRUE, then as well as computing the value of the summary function for each combination of types, the algorithm also computes simulation envelopes of the summary function for each combination of types. The arguments . . . are passed to the function \(envelope \) to control the number of simulations, the random process generating the simulations, the construction of envelopes, and so on.

When envelope=TRUE it is possible that errors could occur because the simulated point patterns do not satisfy the requirements of the summary function (for example, because the simulated pattern is empty and fun requires at least one point). If the number of such errors exceeds the maximum permitted number \(maxnerr \), then the envelope algorithm will give up, and will return the empirical summary function for the data point pattern, \(fun(X) \), in place of the envelope.

Value

A function array (an object of class "fasp", see \(fasp.object \)). This can be plotted using \(plot.fasp \).

If the pattern is not marked, the resulting “array” has dimensions 1 \(\times \) 1. Otherwise the following is true:

If fun="F", the function array has dimensions \(m \times 1 \) where \(m \) is the number of different marks in the point pattern. The entry at position \([i,1]\) in this array is the result of applying \(Fest \) to the points of type \(i \) only.

If fun is "Gdot", "Jdot", "Kdot" or "Ldot", the function array again has dimensions \(m \times 1 \). The entry at position \([i,1]\) in this array is the result of \(Gdot(X, i) \), \(Jdot(X, i) \) \(Kdot(X, i) \) or \(Ldot(X, i) \) respectively.

If fun is "Gcross", "Jcross", "Kcross" or "Lcross" (or their abbreviations "G", "J", "K" or "L"), the function array has dimensions \(m \times m \). The \([i,j]\) entry of the function array (for \(i \neq j \)) is the result of applying the function \(Gcross \), \(Jcross \), \(Kcross \) or \(Lcross \) to the pair of types \((i,j)\). The diagonal \([i,i]\) entry of the function array is the result of applying the univariate function \(Fest \), \(Jest \), \(Kest \) or \(Lest \) to the points of type \(i \) only.

If envelope=FALSE, then each function entry \(fns[[i]] \) retains the format of the output of the relevant estimating routine \(Fest \), \(Gest \), \(Jest \), \(Jest \), \(Kest \), \(Lest \), \(Gcross \), \(Jcross \), \(Kcross \), \(Lcross \), \(Gdot \), \(Jdot \), \(Kdot \) or \(Ldot \). The default formulae for plotting these functions are \(cbind(km, theo) \sim r \) for \(F \), \(G \), and \(J \) functions, and \(cbind(trans, theo) \sim r \) for \(K \) and \(L \) functions.

If envelope=TRUE, then each function entry \(fns[[i]] \) has the same format as the output of the \(envelope \) command.
Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

plot.fasp, fasp.object, Fest, Gest, Jest, Kest, Lest, Gcross, Jcross, Kcross, Lcross, Gdot, Jdot, Kdot, envelope.

Examples

```r
# bramblecanes (3 marks).
bram <- bramblecanes
bF <- alltypes(bram,"F",verb=TRUE)
plot(bF)
if(interactive()) {
  plot(alltypes(bram,"G"))
  plot(alltypes(bram,"Gdot"))
}

# Swedishpines (unmarked).
swed <- swedishpines
plot(alltypes(swed,"K"))
plot(alltypes(amacrine, "pcf"), ylim=c(0,1.3))

# envelopes
bKE <- alltypes(bram,"K",envelope=TRUE,nsim=19)
# global version:
bFE <- alltypes(bram,"F",envelope=TRUE,nsim=19,global=TRUE)

# extract one entry
as.fv(bKE[1,1])
```

as.data.frame.envelope

Coerce Envelope to Data Frame

Description

Converts an envelope object to a data frame.
as.function.fv

Usage

S3 method for class 'envelope'
as.data.frame(x, ..., simfuns=FALSE)

Arguments

x Envelope object (class "envelope").
...

simfuns Logical value indicating whether the result should include the values of the simulated functions that were used to build the envelope.

Details

This is a method for the generic function as.data.frame for the class of envelopes (see envelope). The result is a data frame with columns containing the values of the function argument (usually named r), the function estimate for the original point pattern data (obs), the upper and lower envelope limits (hi and lo), and possibly additional columns.

If simfuns=TRUE, the result also includes columns of values of the simulated functions that were used to compute the envelope. This is possible only when the envelope was computed with the argument savefuns=TRUE in the call to envelope.

Value

A data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

Examples

E <- envelope(cells, nsim=5, savefuns=TRUE)
tail(as.data.frame(E))
tail(as.data.frame(E, simfuns=TRUE))

as.function.fv Convert Function Value Table to Function

Description

Converts an object of class "fv" to an \texttt{R} language function.

Usage

S3 method for class 'fv'
as.function(x, ..., value="y", extrapolate=FALSE)
Arguments

- **x**: Object of class "fv" or "rhohat".
- **...**: Ignored.
- **value**: Optional. Character string or character vector selecting one or more of the columns of x for use as the function value. See Details.
- **extrapolate**: Logical, indicating whether to extrapolate the function outside the domain of x. See Details.

Details

A function value table (object of class "fv") is a convenient way of storing and plotting several different estimates of the same function. Objects of this class are returned by many commands in spatstat, such as Kest, which returns an estimate of Ripley's K-function for a point pattern dataset. Sometimes it is useful to convert the function value table to a function in the R language. This is done by as.function.fv. It converts an object x of class "fv" to an R function f.

If f <- as.function(x) then f is an R function that accepts a numeric argument and returns a corresponding value for the summary function by linear interpolation between the values in the table x.

Argument values lying outside the range of the table yield an NA value (if extrapolate=FALSE) or the function value at the nearest endpoint of the range (if extrapolate = TRUE). To apply different rules to the left and right extremes, use extrapolate=c(TRUE, FALSE) and so on.

Typically the table x contains several columns of function values corresponding to different edge corrections. Auxiliary information for the table identifies one of these columns as the recommended value. By default, the values of the function f <- as.function(x) are taken from this column of recommended values. This default can be changed using the argument value, which can be a character string or character vector of names of columns of x. Alternatively value can be one of the abbreviations used by fvnames.

If value specifies a single column of the table, then the result is a function f(r) with a single numeric argument r (with the same name as the original argument of the function table).

If value specifies several columns of the table, then the result is a function f(r,what) where r is the numeric argument and what is a character string identifying the column of values to be used.

The formal arguments of the resulting function are f(r, what=value), which means that in a call to this function f, the permissible values of what are the entries of the original vector value; the default value of what is the first entry of value.

The command as.function.fv is a method for the generic command as.function.

Value

A function(r) or function(r,what) where r is the name of the original argument of the function table.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>
as.function.rhohat

See Also

as.function.rhohat, fv, fv.object, fvnames, plot.fv, Kest

Examples

K <- Kest(cells)
f <- as.function(K)
f
f(0.1)
g <- as.function(K, value=c("iso", "trans"))
g
g(0.1, "trans")

as.function.rhohat Convert Function Table to Function

Description

Converts an object of class "rhohat" to an R language function.

Usage

S3 method for class 'rhohat'
as.function(x, ..., value=."y", extrapolate=TRUE)

Arguments

x Object of class "rhohat", produced by the function rhohat.
...
Ignored.
value Optional. Character string or character vector selecting one or more of the
columns of x for use as the function value. See Details.
extrapolate Logical, indicating whether to extrapolate the function outside the domain of x.
See Details.

Details

An object of class "rhohat" is essentially a data frame of estimated values of the function rho(x) as described in the help file for rhohat.

Sometimes it is useful to convert the function value table to a function in the R language. This is done by as.function.rhohat. It converts an object x of class "rhohat" to an R function f.

The command as.function.rhohat is a method for the generic command as.function for the class "rhohat".

If f <- as.function(x) then f is an R function that accepts a numeric argument and returns a corresponding value for the summary function by linear interpolation between the values in the table x.
Argument values lying outside the range of the table yield an NA value (if extrapolate=FALSE) or the function value at the nearest endpoint of the range (if extrapolate = TRUE). To apply different rules to the left and right extremes, use extrapolate=c(TRUE, FALSE) and so on.

Typically the table \(x \) contains several columns of function values corresponding to different edge corrections. Auxiliary information for the table identifies one of these columns as the *recommended value*. By default, the values of the function \(f \leftarrow \text{as.function}(x) \) are taken from this column of recommended values. This default can be changed using the argument value, which can be a character string or character vector of names of columns of \(x \). Alternatively value can be one of the abbreviations used by \text{fvnames}.

If value specifies a single column of the table, then the result is a function \(f(r) \) with a single numeric argument \(r \) (with the same name as the original argument of the function table).

If value specifies several columns of the table, then the result is a function \(f(r, \text{what}) \) where \(r \) is the numeric argument and what is a character string identifying the column of values to be used.

The formal arguments of the resulting function are \(f(r, \text{what=value}) \), which means that in a call to this function \(f \), the permissible values of what are the entries of the original vector value; the default value of what is the first entry of value.

Value

A function\((r) \) or function\((r, \text{what}) \) where \(r \) is the name of the original argument of the function table.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\text{rhohat}, \text{methods.rhohat}, \text{as.function.fv}.

Examples

\begin{verbatim}
g <- rhohat(cells, "x")
f <- as.function(g)
f
f(0.1)
\end{verbatim}
Usage

```r
as.fv(x)
```

S3 method for class 'fv'
```r
as.fv(x)
```

S3 method for class 'data.frame'
```r
as.fv(x)
```

S3 method for class 'matrix'
```r
as.fv(x)
```

S3 method for class 'fasp'
```r
as.fv(x)
```

S3 method for class 'bw.optim'
```r
as.fv(x)
```

Arguments

- **x**: Data which will be converted into a function table

Details

This command converts data `x`, that could be interpreted as the values of a function, into a function value table (object of the class "fv" as described in `fv.object`). This object can then be plotted easily using `plot.fv`.

The dataset `x` may be any of the following:

- an object of class "fv";
- a matrix or data frame with at least two columns;
- an object of class "fasp", representing an array of "fv" objects.
- an object of class "minconfit", giving the results of a minimum contrast fit by the command `mincontrast`. The
 - an object of class "kppm", representing a fitted Cox or cluster point process model, obtained from the model-fitting command `kppm`;
 - an object of class "dppm", representing a fitted determinantal point process model, obtained from the model-fitting command `dppm`;
 - an object of class "bw.optim", representing an optimal choice of smoothing bandwidth by a cross-validation method, obtained from commands like `bw.diggle`.

The function `as.fv` is generic, with methods for each of the classes listed above. The behaviour is as follows:

- If `x` is an object of class "fv", it is returned unchanged.
- If `x` is a matrix or data frame, the first column is interpreted as the function argument, and subsequent columns are interpreted as values of the function computed by different methods.
- If \(x \) is an object of class "fasp" representing an array of "fv" objects, these are combined into a single "fv" object.
- If \(x \) is an object of class "minconfit", or an object of class "kppm" or "dppm", the result is a function table containing the observed summary function and the best fit summary function.
- If \(x \) is an object of class "bw.optim", the result is a function table of the optimisation criterion as a function of the smoothing bandwidth.

Value

An object of class "fv" (see \texttt{fv.object}).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

Examples

```r
r <- seq(0, 1, length=101)
x <- data.frame(r=r, y=r^2)
as.fv(x)
```

Description

Converts data specifying an observation window in any of several formats, into an object of class "owin".

Usage

```r
## S3 method for class 'quadrattest'
as.owin(W, ..., fatal=TRUE)
```

Arguments

- \(W \)
 Data specifying an observation window, in any of several formats described under \texttt{Details} below.
- \(\text{fatal} \)
 Logical value determining what to do if the data cannot be converted to an observation window. See Details.
- \(\ldots \)
 Ignored.
Details

The class "owin" is a way of specifying the observation window for a point pattern. See \texttt{owin.object} for an overview.

The generic function \texttt{as.owin} converts data in any of several formats into an object of class "owin" for use by the \texttt{spatstat} package. The function \texttt{as.owin} is generic, with methods for different classes of objects, and a default method.

The argument \texttt{W} may be

- an object of class "owin"
- a structure with entries \texttt{xrange}, \texttt{yrange} specifying the \texttt{x} and \texttt{y} dimensions of a rectangle
- a structure with entries named \texttt{xmin}, \texttt{xmax}, \texttt{ymin}, \texttt{ymax} (in any order) specifying the \texttt{x} and \texttt{y} dimensions of a rectangle. This will accept objects of class \texttt{bbox} in the \texttt{sf} package.
- a numeric vector of length 4 (interpreted as (\texttt{xmin}, \texttt{xmax}, \texttt{ymin}, \texttt{ymax}) in that order) specifying the \texttt{x} and \texttt{y} dimensions of a rectangle
- a structure with entries named \texttt{x1}, \texttt{xu}, \texttt{yl}, \texttt{yu} (in any order) specifying the \texttt{x} and \texttt{y} dimensions of a rectangle as (\texttt{xmin}, \texttt{xmax}) = (\texttt{x1}, \texttt{xu}) and (\texttt{ymin}, \texttt{ymax}) = (\texttt{yl}, \texttt{yu}). This will accept objects of class \texttt{spp} used in the Venables and Ripley \texttt{spatial} package.
- an object of class "ppp" representing a point pattern. In this case, the object's \texttt{window} structure will be extracted.
- an object of class "psp" representing a line segment pattern. In this case, the object's \texttt{window} structure will be extracted.
- an object of class "tess" representing a tessellation. In this case, the object's \texttt{window} structure will be extracted.
- an object of class "quad" representing a quadrature scheme. In this case, the \texttt{window} of the \texttt{data} component will be extracted.
- an object of class "im" representing a pixel image. In this case, a window of type "mask" will be returned, with the same pixel raster coordinates as the image. An image pixel value of \texttt{NA}, signifying that the pixel lies outside the window, is transformed into the logical value \texttt{FALSE}, which is the corresponding convention for window masks.
- an object of class "ppm", "kppm", "slrm" or "dppm" representing a fitted point process model. In this case, if \texttt{from="data"} (the default), \texttt{as.owin} extracts the original point pattern data to which the model was fitted, and returns the observation window of this point pattern. If \texttt{from="covariates"} then \texttt{as.owin} extracts the covariate images to which the model was fitted, and returns a binary mask window that specifies the pixel locations.
- an object of class "lpp" representing a point pattern on a linear network. In this case, \texttt{as.owin} extracts the linear network and returns a window containing this network.
- an object of class "lppm" representing a fitted point process model on a linear network. In this case, \texttt{as.owin} extracts the linear network and returns a window containing this network.
- A \texttt{data.frame} with exactly three columns. Each row of the data frame corresponds to one pixel. Each row contains the \texttt{x} and \texttt{y} coordinates of a pixel, and a logical value indicating whether the pixel lies inside the window.
- A \texttt{data.frame} with exactly two columns. Each row of the data frame contains the \texttt{x} and \texttt{y} coordinates of a pixel that lies inside the window.
• an object of class "distfun", "nnfun" or "funxy" representing a function of spatial location, defined on a spatial domain. The spatial domain of the function will be extracted.

• an object of class "rmhmodel" representing a point process model that can be simulated using \texttt{rmh}. The window (spatial domain) of the model will be extracted. The window may be \texttt{NULL} in some circumstances (indicating that the simulation window has not yet been determined). This is not treated as an error, because the argument \texttt{fatal} defaults to \texttt{FALSE} for this method.

• an object of class "layered" representing a list of spatial objects. See \texttt{layered}. In this case, \texttt{as.owin} will be applied to each of the objects in the list, and the union of these windows will be returned.

• an object of class "SpatialPolygon", "SpatialPolygons" or "SpatialPolygonsDataFrame". To handle these data types, the package \texttt{maptools} must be loaded, because it provides the methods for \texttt{as.owin} for these classes. For full details, see \texttt{vignette('shapefiles')}. If the argument \texttt{W} is not in one of these formats and cannot be converted to a window, then an error will be generated (if \texttt{fatal=TRUE}) or a value of \texttt{NULL} will be returned (if \texttt{fatal=FALSE}).

When \texttt{W} is a data frame, the argument \texttt{step} can be used to specify the pixel grid spacing; otherwise, the spacing will be guessed from the data.

Value

An object of class "owin" (see \texttt{owin.object}) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

\texttt{as.owin, as.owin.rmhmodel, as.owin.lpp.}
\texttt{owin.object, owin.}

Additional methods for \texttt{as.owin} are provided in the \texttt{maptools} package: \texttt{as.owin.SpatialPolygon}, \texttt{as.owin.SpatialPolygons, as.owin.SpatialPolygonsDataFrame}.

Examples

```r
  te <- quadrat.test(redwood, nx=3)
  as.owin(te)
```
as.tess

Convert Data To Tessellation

Description
Converting data specifying a tessellation, in any of several formats, into an object of class "tess".

Usage
S3 method for class 'quadrattest'
as.tess(X)

Arguments
X Data to be converted to a tessellation.

Details
A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger spatial region. This command creates an object of class "tess" that represents a tessellation.

This function converts data in any of several formats into an object of class "tess" for use by the spatstat package. The argument X may be

- an object of class "tess". The object will be stripped of any extraneous attributes and returned.
- a pixel image (object of class "im") with pixel values that are logical or factor values. Each level of the factor will determine a tile of the tessellation.
- a window (object of class "owin"). The result will be a tessellation consisting of a single tile.
- a set of quadrat counts (object of class "quadratcount") returned by the command quadratcount. The quadrats used to generate the counts will be extracted and returned as a tessellation.
- a quadrat test (object of class "quadrattest") returned by the command quadrat.test. The quadrats used to perform the test will be extracted and returned as a tessellation.
- a list of windows (objects of class "owin") giving the tiles of the tessellation.

The function as.tess is generic, with methods for various classes, as listed above.

Value
An object of class "tess" specifying a tessellation.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also
tess
Examples

h <- quadrat.test(nztrees, nx=4, ny=3)
as.tess(h)

| auc | Area Under ROC Curve |

Description

Compute the AUC (area under the Receiver Operating Characteristic curve) for an observed point pattern.

Usage

auc(X, ...)

S3 method for class 'ppp'

Arguments

X Point pattern (object of class "ppp" or "lpp") or fitted point process model (object of class "ppm", "kppm", "slrm" or "lppm").

covariate Spatial covariate. Either a function(x,y), a pixel image (object of class "im"), or one of the strings "x" or "y" indicating the Cartesian coordinates.

high Logical value indicating whether the threshold operation should favour high or low values of the covariate.

... Arguments passed to as.mask controlling the pixel resolution for calculations.

Details

This command computes the AUC, the area under the Receiver Operating Characteristic curve. The ROC itself is computed by roc.

For a point pattern X and a covariate Z, the AUC is a numerical index that measures the ability of the covariate to separate the spatial domain into areas of high and low density of points. Let \(x_i \) be a randomly-chosen data point from X and \(U \) a randomly-selected location in the study region. The AUC is the probability that \(Z(x_i) > Z(U) \) assuming high=TRUE. That is, AUC is the probability that a randomly-selected data point has a higher value of the covariate Z than does a randomly-selected spatial location. The AUC is a number between 0 and 1. A value of 0.5 indicates a complete lack of discriminatory power.

Value

Numeric. For auc.ppp and auc.lpp, the result is a single number giving the AUC value.
Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

See Also

roc

Examples

```r
auc(swedishpines, "x")
```

berman.test

Berman’s Tests for Point Process Model

Description

Tests the goodness-of-fit of a Poisson point process model using methods of Berman (1986).

Usage

```r
berman.test(...)
```

```r
## S3 method for class 'ppp'
berman.test(X, covariate, 
            which = c("Z1", "Z2"), 
            alternative = c("two.sided", "less", "greater"), ...)
```

Arguments

- `X` A point pattern (object of class "ppp" or "lpp").
- `covariate` The spatial covariate on which the test will be based. An image (object of class "im") or a function.
- `which` Character string specifying the choice of test.
- `alternative` Character string specifying the alternative hypothesis.
- `...` Additional arguments controlling the pixel resolution (arguments `dimyx`, `eps` and `rule.eps` passed to `as.mask`) or other undocumented features.
Details

These functions perform a goodness-of-fit test of a Poisson point process model fitted to point pattern data. The observed distribution of the values of a spatial covariate at the data points, and the predicted distribution of the same values under the model, are compared using either of two test statistics \(Z_1 \) and \(Z_2 \) proposed by Berman (1986). The \(Z_1 \) test is also known as the Lawson-Waller test.

The function `berman.test` is generic, with methods for point patterns ("ppp" or "lpp") and point process models ("ppm" or "lppm").

- If \(X \) is a point pattern dataset (object of class "ppp" or "lpp"), then `berman.test(X, ...)` performs a goodness-of-fit test of the uniform Poisson point process (Complete Spatial Randomness, CSR) for this dataset.
- If `model` is a fitted point process model (object of class "ppm" or "lppm") then `berman.test(model, ...)` performs a test of goodness-of-fit for this fitted model. In this case, `model` should be a Poisson point process.

The test is performed by comparing the observed distribution of the values of a spatial covariate at the data points, and the predicted distribution of the same covariate under the model. Thus, you must nominate a spatial covariate for this test.

The argument `covariate` should be either a `function(x,y)` or a pixel image (object of class "im" containing the values of a spatial function. If `covariate` is an image, it should have numeric values, and its domain should cover the observation window of the `model`. If `covariate` is a function, it should expect two arguments `x` and `y` which are vectors of coordinates, and it should return a numeric vector of the same length as `x` and `y`.

First the original data point pattern is extracted from `model`. The values of the `covariate` at these data points are collected.

Next the values of the `covariate` at all locations in the observation window are evaluated. The point process intensity of the fitted model is also evaluated at all locations in the window.

- If `which="Z1"`, the test statistic \(Z_1 \) is computed as follows. The sum \(S \) of the covariate values at all data points is evaluated. The predicted mean \(\mu \) and variance \(\sigma^2 \) of \(S \) are computed from the values of the covariate at all locations in the window. Then we compute \(Z_1 = (S - \mu) / \sigma \). Closely-related tests were proposed independently by Waller et al (1993) and Lawson (1993) so this test is often termed the Lawson-Waller test in epidemiological literature.
- If `which="Z2"`, the test statistic \(Z_2 \) is computed as follows. The values of the `covariate` at all locations in the observation window, weighted by the point process intensity, are compiled into a cumulative distribution function \(F \). The probability integral transformation is then applied: the values of the `covariate` at the original data points are transformed by the predicted cumulative distribution function \(F \) into numbers between 0 and 1. If the model is correct, these numbers are i.i.d. uniform random numbers. The standardised sample mean of these numbers is the statistic \(Z_2 \).

In both cases the null distribution of the test statistic is the standard normal distribution, approximately.

The return value is an object of class "htest" containing the results of the hypothesis test. The print method for this class gives an informative summary of the test outcome.
Value

An object of class "htest" (hypothesis test) and also of class "bermantest", containing the results of the test. The return value can be plotted (by \texttt{plot.bermantest}) or printed to give an informative summary of the test.

Warning

The meaning of a one-sided test must be carefully scrutinised: see the printed output.

Author(s)

Adrian Baddeley (<Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

See Also

cdf.test, quadrat.test, ppm

Examples

\begin{verbatim}
Berman's data
X <- copper$SouthPoints
L <- copper$SouthLines
D <- distmap(L, eps=1)
test of CSR
berman.test(X, D)
berman.test(X, D, "Z2")
\end{verbatim}

Description

Advanced Use Only. Combine objects of class "fv", or glue extra columns of data onto an existing "fv" object.
Usage

```r
# S3 method for class 'fv'
cbind(...) 
bind.fv(x, y, labl = NULL, desc = NULL, preferred = NULL, clip=FALSE)
```

Arguments

- `...`: Any number of arguments, which are objects of class "fv".
- `x`: An object of class "fv".
- `y`: Either a data frame or an object of class "fv".
- `labl`: Plot labels (see `fv`) for columns of `y`. A character vector.
- `desc`: Descriptions (see `fv`) for columns of `y`. A character vector.
- `preferred`: Character string specifying the column which is to be the new recommended value of the function.
- `clip`: Logical value indicating whether each object must have exactly the same domain, that is, the same sequence of values of the function argument (`clip=FALSE`, the default) or whether objects with different domains are permissible and will be restricted to a common domain (`clip=TRUE`).

Details

This documentation is provided for experienced programmers who want to modify the internal behaviour of `spatstat`.

The function `cbind.fv` is a method for the generic R function `cbind`. It combines any number of objects of class "fv" into a single object of class "fv". The objects must be compatible, in the sense that they have identical values of the function argument.

The function `bind.fv` is a lower level utility which glues additional columns onto an existing object `x` of class "fv". It has two modes of use:

- If the additional dataset `y` is an object of class "fv", then `x` and `y` must be compatible as described above. Then the columns of `y` that contain function values will be appended to the object `x`.
- Alternatively if `y` is a data frame, then `y` must have the same number of rows as `x`. All columns of `y` will be appended to `x`.

The arguments `labl` and `desc` provide plot labels and description strings (as described in `fv`) for the new columns. If `y` is an object of class "fv" then `labl` and `desc` are optional, and default to the relevant entries in the object `y`. If `y` is a data frame then `labl` and `desc` must be provided.

Value

An object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.
See Also

fv, with.fv.

Undocumented functions for modifying an "fv" object include fvnames, fvnames<-, tweak.fv.entry and rebadge.fv.

Examples

K1 <- Kest(cells, correction="border")
K2 <- Kest(cells, correction="iso")

remove column 'theo' to avoid duplication
K2 <- K2[, names(K2) != "theo"]

cbind(K1, K2)
bind.fv(K1, K2, preferred="iso")

constrain border estimate to be monotonically increasing
bm <- cumsum(c(0, pmax(0, diff(K1$border))))
bind.fv(K1, data.frame(bmono=bm),
"%s[bmo](r)",
"monotone border-corrected estimate of %s",
"bmono")

bits.envelope

Global Envelopes for Balanced Independent Two-Stage Test

Description

Computes the global envelopes corresponding to the balanced independent two-stage Monte Carlo test of goodness-of-fit.

Usage

bits.envelope(X, ...,
nsim = 19, nrank = 1,
alternative=c("two.sided", "less", "greater"),
leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

Arguments

X Either a point pattern dataset (object of class "ppp", "lpp" or "pp3") or a fitted point process model (object of class "ppm", "kppm" or "slrm").
Arguments passed to `mad.test` or `envelope` to control the conduct of the test. Useful arguments include `fun` to determine the summary function, `rinterval` to determine the range of \(r \) values used in the test, and `verbose=FALSE` to turn off the messages.

- **nsim**: Number of simulated patterns to be generated in each stage. Number of simulations in each basic test. There will be \(nsim \) repetitions of the basic test, each involving \(nsim \) simulated realisations, together with one independent set of \(nsim \) realisations, so there will be a total of \(nsim \times (nsim + 1) \) simulations.

- **nrank**: Integer. Rank of the envelope value amongst the \(nsim \) simulated values. A rank of 1 means that the minimum and maximum simulated values will be used.

- **alternative**: Character string determining whether the envelope corresponds to a two-sided test (`alternative="two.sided"`, the default) or a one-sided test with a lower critical boundary (`alternative="less"`) or a one-sided test with an upper critical boundary (`alternative="greater"`).

- **leaveout**: Optional integer 0, 1 or 2 indicating how to calculate the deviation between the observed summary function and the nominal reference value, when the reference value must be estimated by simulation. See Details.

- **interpolate**: Logical value indicating whether to interpolate the distribution of the test statistic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

- **savefuns**: Logical flag indicating whether to save the simulated function values (from the first stage).

- **savepatterns**: Logical flag indicating whether to save the simulated point patterns (from the first stage).

- **verbose**: Logical value determining whether to print progress reports.

Details

Computes global simulation envelopes corresponding to the balanced independent two-stage Monte Carlo test of goodness-of-fit described by Baddeley et al (2017). The envelopes are described in Baddeley et al (2019).

If \(X \) is a point pattern, the null hypothesis is CSR.

If \(X \) is a fitted model, the null hypothesis is that model.

This command is similar to `dg.envelope` which corresponds to the Dao-Genton test of goodness-of-fit. It was shown in Baddeley et al (2017) that the Dao-Genton test is biased when the significance level is very small (small \(p \)-values are not reliable) and we recommend `bits.envelope` in this case.

Value

An object of class "fv".

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rakshit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.
References

See Also
dg.envelope, bits.test, mad.test, envelope

Examples

```r
ns <- if(interactive()) 19 else 4
E <- bits.envelope(swedishpines, Lest, nsim=ns)
E
plot(E)
Eo <- bits.envelope(swedishpines, Lest, alternative="less", nsim=ns)
Ei <- bits.envelope(swedishpines, Lest, interpolate=TRUE, nsim=ns)
```

bits.test

Balanced Independent Two-Stage Monte Carlo Test

Description

Performs a Balanced Independent Two-Stage Monte Carlo test of goodness-of-fit for spatial pattern.

Usage

```r
bits.test(X, ...,
  exponent = 2, nsim=19,
  alternative=c("two.sided", "less", "greater"),
  leaveout=1, interpolate = FALSE,
  savefuns=FALSE, savepatterns=FALSE,
  verbose = TRUE)
```

Arguments

- `X` Either a point pattern dataset (object of class "ppp", "lpp" or "pp3") or a fitted point process model (object of class "ppm", "kppm", "lppm" or "s1rm").
- `...` Arguments passed to `dclf.test` or `mad.test` or `envelope` to control the conduct of the test. Useful arguments include `fun` to determine the summary function, `rinterval` to determine the range of `r` values used in the test, and `use.theory` described under Details.
exponent Exponent used in the test statistic. Use exponent=2 for the Diggle-Cressie-Loosmore-Ford test, and exponent=Inf for the Maximum Absolute Deviation test.

nsim Number of replicates in each stage of the test. A total of nsim * (nsim + 1) simulated point patterns will be generated, and the p-value will be a multiple of 1/(nsim+1).

alternative Character string specifying the alternative hypothesis. The default (alternative="two.sided") is that the true value of the summary function is not equal to the theoretical value postulated under the null hypothesis. If alternative="less" the alternative hypothesis is that the true value of the summary function is lower than the theoretical value.

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the observed summary function and the nominal reference value, when the reference value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statistic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the first stage).

verbose Logical value indicating whether to print progress reports.

Details

If X is a point pattern, the null hypothesis is CSR.
If X is a fitted model, the null hypothesis is that model.

The argument use.theory passed to envelope determines whether to compare the summary function for the data to its theoretical value for CSR (use.theory=TRUE) or to the sample mean of simulations from CSR (use.theory=FALSE).

The argument leaveout specifies how to calculate the discrepancy between the summary function for the data and the nominal reference value, when the reference value must be estimated by simulation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al, 2014, Appendix) to computing the difference observed - reference where the reference is the mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by Dao and Genton (2014).

Value
A hypothesis test (object of class "htest") which can be printed to show the outcome of the test.

Author(s)
Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rakshit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.
References

See Also

Simulation envelopes: `bits.envelope`

Other tests: `dg.test`, `dclf.test`, `mad.test`.

Examples

```r
ns <- if(interactive()) 19 else 4
bits.test(cells, nsim=ns)
bits.test(cells, alternative="less", nsim=ns)
bits.test(cells, nsim=ns, interpolate=TRUE)
```

blur

Apply Gaussian Blur to a Pixel Image

Description

Applies a Gaussian blur to a pixel image.

Usage

```r
blur(x, sigma = NULL, ..., 
   kernel="gaussian", normalise=FALSE, bleed = TRUE, varcov=NULL)
```

```
## S3 method for class 'im'
Smooth(X, sigma = NULL, ..., 
   kernel="gaussian", 
   normalise=FALSE, bleed = TRUE, varcov=NULL)
```

Arguments

- `x`: The pixel image. An object of class "im".
- `sigma`: Standard deviation of isotropic Gaussian smoothing kernel.
- `...`: Ignored.
- `kernel`: String (partially matched) specifying the smoothing kernel. Current options are "gaussian", "epanechnikov", "quartic" or "disc".
normalise
Logical flag indicating whether the output values should be divided by the corresponding blurred image of the window itself. See Details.

bleed
 Logical flag indicating whether to allow blur to extend outside the original domain of the image. See Details.

varcov
Variance-covariance matrix of anisotropic Gaussian kernel. Incompatible with sigma.

Details

This command applies a Gaussian blur to the pixel image x.

Smooth.im is a method for the generic Smooth for pixel images. It is currently identical to blur, apart from the name of the first argument.

The blurring kernel is the isotropic Gaussian kernel with standard deviation sigma, or the anisotropic Gaussian kernel with variance-covariance matrix varcov. The arguments sigma and varcov are incompatible. Also sigma may be a vector of length 2 giving the standard deviations of two independent Gaussian coordinates, thus equivalent to varcov = diag(sigma^2).

If the pixel values of x include some NA values (meaning that the image domain does not completely fill the rectangular frame) then these NA values are first reset to zero.

The algorithm then computes the convolution $x \ast G$ of the (zero-padded) pixel image x with the specified Gaussian kernel G.

If normalise=FALSE, then this convolution $x \ast G$ is returned. If normalise=TRUE, then the convolution $x \ast G$ is normalised by dividing it by the convolution $w \ast G$ of the image domain w with the same Gaussian kernel. Normalisation ensures that the result can be interpreted as a weighted average of input pixel values, without edge effects due to the shape of the domain.

If bleed=FALSE, then pixel values outside the original image domain are set to NA. Thus the output is a pixel image with the same domain as the input. If bleed=TRUE, then no such alteration is performed, and the result is a pixel image defined everywhere in the rectangular frame containing the input image.

Computation is performed using the Fast Fourier Transform.

Value
A pixel image with the same pixel array as the input image x.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also
interp.im for interpolating a pixel image to a finer resolution, density.ppp for blurring a point pattern, Smooth.ppp for interpolating marks attached to points.
bw.abram

Examples

Z <- as.im(function(x,y) { 4 * x^2 + 3 * y }, letterR)
opa <- par(mfrow=c(1,3))
plot(Z)
plot(letterR, add=TRUE)
plot(blur(Z, 0.3, bleed=TRUE))
plot(letterR, add=TRUE)
plot(blur(Z, 0.3, bleed=FALSE))
plot(letterR, add=TRUE)
par(opa)

bw.abram

Abramson’s Adaptive Bandwidths

Description

Computes adaptive smoothing bandwidths according to the inverse-square-root rule of Abramson (1982).

Usage

bw.abram(X, h0, ...)

Arguments

X Data to be smoothed.

h0 Global smoothing bandwidth. A numeric value.

... Additional arguments passed to methods.

Details

This function computes adaptive smoothing bandwidths for a dataset, using the methods of Abramson (1982) and Hall and Marron (1988).

The function bw.abram is generic. There is a method bw.abram.ppp for spatial point patterns (objects of class "ppp"), and possibly other methods.

Value

See the documentation for the particular method.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.
References

See Also

bw.abram.ppp

Description

Computes adaptive smoothing bandwidths for a spatial point pattern, according to the inverse-square-root rule of Abramson (1982).

Usage

```r
## S3 method for class 'ppp'
bw.abram(X, h0, ...
, at=c("points", "pixels"),
  hp = h0, pilot = NULL, trim=5, smoother=density.ppp)
```

Arguments

- **X** A point pattern (object of class "ppp") for which the variable bandwidths should be computed.
- **h0** A scalar value giving the global smoothing bandwidth in the same units as the coordinates of X. The default is h0=bw.ppl(X).
- **...** Additional arguments passed to as.im to control the pixel resolution, or passed to density.ppp or smoother to control the type of smoothing, when computing the pilot estimate.
- **at** Character string (partially matched) specifying whether to compute bandwidth values at the points of X (at="points", the default) or to compute bandwidths at every pixel in a fine pixel grid (at="pixels").
- **hp** Optional. A scalar pilot bandwidth, used for estimation of the pilot density if required. Ignored if pilot is a pixel image (object of class "im"); see below.
Optional. Specification of a pilot density (possibly unnormalised). If pilot=NULL the pilot density is computed by applying fixed-bandwidth density estimation to X using bandwidth hp. If pilot is a point pattern, the pilot density is is computed using a fixed-bandwidth estimate based on pilot and hp. If pilot is a pixel image (object of class "im"), this is taken to be the (possibly unnormalised) pilot density, and hp is ignored.

A trimming value required to curb excessively large bandwidths. See Details. The default is sensible in most cases.

Smother for the pilot. A function or character string, specifying the function to be used to compute the pilot estimate when pilot is NULL or is a point pattern.

Details

This function computes adaptive smoothing bandwidths using the methods of Abramson (1982) and Hall and Marron (1988).

The function `bw.abram` is generic. The function `bw.abram.ppp` documented here is the method for spatial point patterns (objects of class "ppp").

If at="points" (the default) a smoothing bandwidth is computed for each point in the pattern X. Alternatively if at="pixels" a smoothing bandwidth is computed for each spatial location in a pixel grid.

Under the Abramson-Hall-Marron rule, the bandwidth at location \(u \) is

\[
h(u) = h_0 \times \min\left(\frac{\hat{f}(u)^{-1/2}}{\gamma}, \text{trim}\right)
\]

where \(\hat{f}(u) \) is a pilot estimate of the spatially varying probability density. The variable bandwidths are rescaled by \(\gamma \), the geometric mean of the \(\hat{f}(u)^{-1/2} \) terms evaluated at the data; this allows the global bandwidth \(h_0 \) to be considered on the same scale as a corresponding fixed bandwidth. The trimming value trim has the same interpretation as the required 'clipping' of the pilot density at some small nominal value (see Hall and Marron, 1988), to necessarily prevent extreme bandwidths (which can occur at very isolated observations).

The pilot density or intensity is determined as follows:

1. If pilot is a pixel image, this is taken as the pilot density or intensity.
2. If pilot is NULL, then the pilot intensity is computed as a fixed-bandwidth kernel intensity estimate using `density.ppp` applied to the data pattern X using the pilot bandwidth hp.
3. If pilot is a different point pattern on the same spatial domain as X, then the pilot intensity is computed as a fixed-bandwidth kernel intensity estimate using `density.ppp` applied to pilot using the pilot bandwidth hp.

In each case the pilot density or intensity is renormalised to become a probability density, and then the Abramson rule is applied.

Instead of calculating the pilot as a fixed-bandwidth density estimate, the user can specify another density estimation procedure using the argument smoother. This should be either a function or the character string name of a function. It will replace `density.ppp` as the function used to calculate the pilot estimate. The pilot estimate will be computed as smoother(X, sigma=hp, ...) if pilot is NULL, or smoother(pilot, sigma=hp, ...) if pilot is a point pattern. If smoother does not recognise the argument name sigma for the smoothing bandwidth, then hp is effectively ignored, as shown in the Examples.
Value

Either a numeric vector of length \(npoints(X) \) giving the Abramson bandwidth for each point (when \(\text{at} = \text{"points"} \), the default), or the entire pixel image of the Abramson bandwidths over the relevant spatial domain (when \(\text{at} = \text{"pixels"} \)).

Author(s)

Tilman M. Davies. Adapted by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

See Also

`bw.abram`

Examples

```r
# 'ch' just 58 laryngeal cancer cases
ch <- split(chorley)[[1]]

h <- bw.abram(ch,h0=1,hp=0.7)
length(h)
summary(h)
if(interactive()) hist(h)

# calculate pilot based on all 1036 observations
h.pool <- bw.abram(ch,h0=1,hp=0.7,pilot=chorley)
length(h.pool)
summary(h.pool)
if(interactive()) hist(h.pool)

# get full image used for 'h' above
him <- bw.abram(ch,h0=1,hp=0.7,at="pixels")
plot(him);points(ch,col="grey")

# use Voronoi-Dirichlet pilot ('hp' is ignored)
hvo <- bw.abram(ch, h0=1, smoother=densityVoronoi)
```
bw.CvL

Cronie and van Lieshout’s Criterion for Bandwidth Selection for Kernel Density

Description

Uses Cronie and van Lieshout’s criterion based on Campbell’s formula to select a smoothing bandwidth for the kernel estimation of point process intensity.

Usage

\[\text{bw.CvL}(X, \ldots, \text{srange} = \text{NULL}, \text{ns} = 16, \text{sigma} = \text{NULL}, \text{warn} = \text{TRUE}) \]

Arguments

- **X**: A point pattern (object of class "ppp").
- **...**: Ignored.
- **srange**: Optional numeric vector of length 2 giving the range of values of bandwidth to be searched.
- **ns**: Optional integer giving the number of values of bandwidth to search.
- **sigma**: Optional. Vector of values of the bandwidth to be searched. Overrides the values of \(\text{ns} \) and \(\text{srange} \).
- **warn**: Logical. If \(\text{TRUE} \), a warning is issued if the optimal value of the cross-validation criterion occurs at one of the ends of the search interval.

Details

This function selects an appropriate bandwidth \(\sigma \) for the kernel estimator of point process intensity computed by \text{density.ppp}.

The bandwidth \(\sigma \) is chosen to minimise the discrepancy between the area of the observation window and the sum of reciprocal estimated intensity values at the points of the point process

\[\text{CvL}(\sigma) = (|W| - \sum_i 1/\hat{\lambda}(x_i))^2 \]

where the sum is taken over all the data points \(x_i \), and where \(\hat{\lambda}(x_i) \) is the kernel-smoothing estimate of the intensity at \(x_i \) with smoothing bandwidth \(\sigma \).

The value of \(\text{CvL}(\sigma) \) is computed directly, using \text{density.ppp}, for \(\text{ns} \) different values of \(\sigma \) between \text{srange}[1] and \text{srange}[2].

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class “bw.optim” (see \text{bw.optim.object}) which can be plotted to show the bandwidth selection criterion as a function of \(\sigma \).
bw.CvL.adaptive

Select Adaptive Bandwidth for Kernel Estimation Using Cronie-Van Lieshout Criterion

Description

Uses the Cronie-Van Lieshout criterion to select the global smoothing bandwidth for adaptive kernel estimation of point process intensity.

Usage

bw.CvL.adaptive(X, ..., hrange = NULL, nh = 16, h=NULL, bwPilot = bw.scott.iso(X), edge = FALSE, diggle = TRUE)

References

See Also

density.ppp, bw.optim.object.
Alternative methods: bw.diggle, bw.scott, bw.ppl, bw.frac.
For adaptive smoothing bandwidths, use bw.CvL.adaptive.
bw.CvL.adaptive

Arguments

- **X**: A point pattern (object of class "ppp").
- **hrange**: Optional numeric vector of length 2 giving the range of values of global bandwidth \(h \) to be searched.
- **nh**: Optional integer giving the number of values of bandwidth \(h \) to search.
- **h**: Optional. Vector of values of the bandwidth to be searched. Overrides the values of nh and hrange.
- **bwPilot**: Pilot bandwidth. A scalar value in the same units as the coordinates of \(X \). The smoothing bandwidth for computing an initial estimate of intensity using \texttt{density.ppp}
- **edge**: Logical value indicating whether to apply edge correction.
- **diggle**: Logical. If \texttt{TRUE}, use the Jones-Diggle improved edge correction, which is more accurate but slower to compute than the default correction.

Details

This function selects an appropriate value of global bandwidth \(h_0 \) for adaptive kernel estimation of the intensity function for the point pattern \(X \).

In adaptive estimation, each point in the point pattern is subjected to a different amount of smoothing, controlled by data-dependent or spatially-varying bandwidths. The global bandwidth \(h_0 \) is a scale factor which is used to adjust all of the data-dependent bandwidths according to the Abramson (1982) square-root rule.

This function considers each candidate value of bandwidth \(h \), performs the smoothing steps described above, extracts the adaptively-estimated intensity values \(\hat{\lambda}(x_i) \) at each data point \(x_i \), and calculates the Cronie-Van Lieshout criterion

\[
CvL(h) = \sum_{i=1}^{n} \frac{1}{\hat{\lambda}(x_i)}.
\]

The value of \(h \) which minimises the squared difference

\[
LP^2(h) = (CvL(h) - |W|)^2
\]

(where \(|W| \) is the area of the window of \(X \)) is selected as the optimal global bandwidth.

Bandwidths \(h \) are physical distance values expressed in the same units as the coordinates of \(X \).

Value

A single numerical value giving the selected global bandwidth. The result also belongs to the class "bw.optim" (see \texttt{bw.optim.object}) which can be plotted to show the bandwidth selection criterion as a function of sigma.

Author(s)

Marie-Colette Van Lieshout. Modified by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.
References

See Also

`bw.optim.object`

`adaptive.density, densityAdaptiveKernel, bw.abram, density.ppp`

To select a *fixed* smoothing bandwidth using the Cronie-Van Lieshout criterion, use `bw.CvL`.

Examples

```r
online <- interactive()
if(online) {
  h0 <- bw.CvL.adaptive(redwood3)
} else {
  ## faster computation for package checker
  h0 <- bw.CvL.adaptive(redwood3, nh=8,
                        hrange=c(1/4, 4) * bw.diggle(redwood3))
}
plot(h0)
plot(as.fv(h0), CvL ~ h)
if(online) {
  Z <- densityAdaptiveKernel(redwood3, h0)
  plot(Z)
}
```

bw.CvLHeat

Bandwidth Selection for Diffusion Smoother by Cronie-van Lieshout Rule

Description

Selects an optimal bandwidth for diffusion smoothing using the Cronie-van Lieshout rule.

Usage

```r
bw.CvLHeat(X, ..., srange=NULL, ns=16, sigma=NULL,
            leaveoneout=TRUE, verbose = TRUE)
```
Arguments

- **X**: Point pattern (object of class "ppp").
- **...**: Arguments passed to `densityHeat.ppp`.
- **srange**: Numeric vector of length 2 specifying a range of bandwidths to be considered.
- **ns**: Integer. Number of candidate bandwidths to be considered.
- **sigma**: Maximum smoothing bandwidth. A numeric value, or a pixel image, or a function(x,y). Alternatively a numeric vector containing a sequence of candidate bandwidths.
- **leaveoneout**: Logical value specifying whether intensity values at data points should be estimated using the leave-one-out rule.
- **verbose**: Logical value specifying whether to print progress reports.

Details

This algorithm selects the optimal global bandwidth for kernel estimation of intensity for the dataset X using diffusion smoothing `densityHeat.ppp`.

If `sigma` is a numeric value, the algorithm finds the optimal bandwidth `tau <= sigma`.

If `sigma` is a pixel image or function, the algorithm finds the optimal fraction `0 < f <= 1` such that smoothing with `f * sigma` would be optimal.

Value

A numerical value giving the selected bandwidth (if `sigma` was a numeric value) or the selected fraction of the maximum bandwidth (if `sigma` was a pixel image or function). The result also belongs to the class "bw.optim" which can be plotted.

Author(s)

Adrian Baddeley.

See Also

- `bw.pplHeat` for an alternative method.
- `densityHeat.ppp`

Examples

```r
one <- interactive()
if(!online) op <- spatstat.options(npixel=32)
f <- function(x,y) { dnorm(x, 2.3, 0.1) * dnorm(y, 2.0, 0.2) }
X <- rpoint(15, f, win=letterR)
plot(X)
b <- bw.CvLHeat(X, sigma=0.25)
b
plot(b)
if(!online) spatstat.options(op)
```
Description

Uses cross-validation to select a smoothing bandwidth for the kernel estimation of point process intensity.

Usage

bw.diggle(X, ..., correction="good", hmax=NULL, nr=512, warn=TRUE)

Arguments

X A point pattern (object of class "ppp").
...
Ignored.
correction Character string passed to Kest determining the edge correction to be used to calculate the K function.
hmax Numeric. Maximum value of bandwidth that should be considered.
_nr Integer. Number of steps in the distance value r to use in computing numerical integrals.
warn Logical. If TRUE, issue a warning if the minimum of the cross-validation criterion occurs at one of the ends of the search interval.

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process intensity computed by density.ppp.

The bandwidth \(\sigma \) is chosen to minimise the mean-square error criterion defined by Diggle (1985).

The algorithm uses the method of Berman and Diggle (1989) to compute the quantity

\[
M(\sigma) = \frac{\text{MSE}(\sigma)}{\lambda^2} - g(0)
\]

as a function of bandwidth \(\sigma \), where MSE(\(\sigma \)) is the mean squared error at bandwidth \(\sigma \), while \(\lambda \) is the mean intensity, and \(g \) is the pair correlation function. See Diggle (2003, pages 115-118) for a summary of this method.

The result is a numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim" which can be plotted to show the (rescaled) mean-square error as a function of sigma.

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim" (see bw.optim.object) which can be plotted to show the bandwidth selection criterion as a function of sigma.
Definition of bandwidth

The smoothing parameter \(\sigma \) returned by \texttt{bw.diggle} (and displayed on the horizontal axis of the plot) corresponds to \(h/2 \), where \(h \) is the smoothing parameter described in Diggle (2003, pages 116-118) and Berman and Diggle (1989). In those references, the smoothing kernel is the uniform density on the disc of radius \(h \). In \texttt{density.ppp}, the smoothing kernel is the isotropic Gaussian density with standard deviation \(\sigma \). When replacing one kernel by another, the usual practice is to adjust the bandwidths so that the kernels have equal variance (cf. Diggle 2003, page 118). This implies that \(\sigma = h/2 \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

See Also

density.ppp, bw.optim.object.

Alternative methods: \texttt{bw.ppl, bw.scott, bw.CvL, bw.frac}.

Examples

\begin{verbatim}
attach(split(lansing))
b <- bw.diggle(hickory)
plot(b, ylim=c(-2, 0), main="Cross validation for hickories")
if(interactive()) {
 plot(density(hickory, b))
}
\end{verbatim}
Usage

bw.frac(X, ..., f=1/4)

Arguments

X A window (object of class "owin") or point pattern (object of class "ppp") or other data which can be converted to a window using as.owin.

... Arguments passed to distcdf.

f Probability value (between 0 and 1) determining the quantile of the distribution.

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process intensity computed by density.ppp.

The bandwidth σ is computed as a quantile of the distance between two independent random points in the window. The default is the lower quartile of this distribution.

If $F(r)$ is the cumulative distribution function of the distance between two independent random points uniformly distributed in the window, then the value returned is the quantile with probability f. That is, the bandwidth is the value r such that $F(r) = f$.

The cumulative distribution function $F(r)$ is computed using distcdf. We then we compute the smallest number r such that $F(r) \geq f$.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.frac" which can be plotted to show the cumulative distribution function and the selected quantile.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

For estimating point process intensity, see density.ppp, bw.diggle, bw.ppl, bw.scott, bw.CvL.

For other smoothing purposes, see bw.stoyan, bw.smoothppp, bw.relrisk.

Examples

h <- bw.frac(letterR)
hplot(h, main="bw.frac(letterR)"
bw.optim.object

Class of Optimized Bandwidths

Description

An object of the class "bw.optim" represents a tuning parameter (usually a smoothing bandwidth) that has been selected automatically. The object can be used as if it were a numerical value, but it can also be plotted to show the optimality criterion.

Details

An object of the class "bw.optim" represents the numerical value of a smoothing bandwidth, a threshold, or a similar tuning parameter, that has been selected by optimising a criterion such as cross-validation.

The object is a numerical value, with some attributes that retain information about how the value was selected.

Attributes include the vector of candidate values that were examined, the corresponding values of the optimality criterion, the name of the parameter, the name of the optimality criterion, and the units in which the parameter is measured.

There are methods for print, plot, summary, as.data.frame and as.fv for the class "bw.optim".

The print method simply prints the numerical value of the parameter. The summary method prints this value, and states how this value was selected.

The plot method produces a plot of the optimisation criterion against the candidate value of the parameter. The as.data.frame and as.fv methods extract this graphical information as a data frame or function table, respectively.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

Functions which produce objects of class bw.optim include bw.CvL, bw.CvL.adaptive, bw.diggle, bw.lppl, bw.pcf, bw.ppl, bw.relrisk, bw.relrisk.lpp, bw.smoothppp and bw.voronoi.

Examples

Ns <- if(interactive()) 32 else 3
b <- bw.ppl(redwood, srange=c(0.02, 0.07), ns=Ns)
b
summary(b)
plot(b)
bw.pcf

Cross Validated Bandwidth Selection for Pair Correlation Function

Description

Uses composite likelihood or generalized least squares cross-validation to select a smoothing bandwidth for the kernel estimation of pair correlation function.

Usage

```r
bw.pcf(X, rmax=NULL, lambda=NULL, divisor="r",
kernel="epanechnikov", nr=10000, bias.correct=TRUE,
cv.method=c("compLik", "leastSQ"), simple=TRUE, srange=NULL,
..., verbose=FALSE, warn=TRUE)
```

Arguments

- **X**
 - A point pattern (object of class "ppp").

- **rmax**
 - Numeric. Maximum value of the spatial lag distance \(r \) for which \(g(r) \) should be evaluated.

- **lambda**
 - Optional. Values of the estimated intensity function. A vector giving the intensity values at the points of the pattern \(X \).

- **divisor**
 - Choice of divisor in the estimation formula: either "r" (the default) or "d". See `pcf.ppp`.

- **kernel**
 - Choice of smoothing kernel, passed to `density`; see `pcf` and `pcfinhom`.

- **nr**
 - Integer. Number of subintervals for discretization of \([0, \text{rmax}]\) to use in computing numerical integrals.

- **bias.correct**
 - Logical. Whether to use bias corrected version of the kernel estimate. See Details.

- **cv.method**
 - Choice of cross validation method: either "compLik" or "leastSQ" (partially matched).

- **simple**
 - Logical. Whether to use simple removal of spatial lag distances. See Details.

- **srange**
 - Optional. Numeric vector of length 2 giving the range of bandwidth values that should be searched to find the optimum bandwidth.

- **...**
 - Other arguments, passed to `pcf` or `pcfinhom`.

- **verbose**
 - Logical value indicating whether to print progress reports during the optimization procedure.

- **warn**
 - Logical. If TRUE, issue a warning if the optimum value of the cross-validation criterion occurs at one of the ends of the search interval.
bw.pcf

Details

This function selects an appropriate bandwidth bw for the kernel estimator of the pair correlation function of a point process intensity computed by pcf.ppp (homogeneous case) or pcfinhom (inhomogeneous case).

With cv.method="leastSQ", the bandwidth h is chosen to minimise an unbiased estimate of the integrated mean-square error criterion $M(h)$ defined in equation (4) in Guan (2007a). The code implements the fast algorithm of Jalilian and Waagepetersen (2018).

With cv.method="compLik", the bandwidth h is chosen to maximise a likelihood cross-validation criterion $CV(h)$ defined in equation (6) of Guan (2007b).

$$M(b) = \frac{\text{MSE}(\sigma)}{\lambda^2} - g(0)$$

The result is a numerical value giving the selected bandwidth.

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim" (see bw.optim.object) which can be plotted to show the bandwidth selection criterion as a function of sigma.

Definition of bandwidth

The bandwidth bw returned by bw.pcf is the standard deviation of the smoothing kernel, following the standard convention in R. As mentioned in the documentation for density.default and pcf.ppp, this differs from other definitions of bandwidth that can be found in the literature. The scale parameter h, which is called the bandwidth in some literature, is defined differently. For example for the Epanechnikov kernel, h is the half-width of the kernel, and bw=h/sqrt(5).

Author(s)

Rasmus Waagepetersen and Abdollah Jalilian. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

See Also

pcf.ppp, pcfinhom, bw.optim.object
Examples

```r
b <- bw.pcf(redwood)
plot(pcf(redwood, bw=b))
```

bw.ppl

Likelihood Cross Validation Bandwidth Selection for Kernel Density

Description

Uses likelihood cross-validation to select a smoothing bandwidth for the kernel estimation of point process intensity.

Usage

```r
bw.ppl(X, ..., srange=NULL, ns=16, sigma=NULL, weights=NULL,
shortcut=FALSE, warn=TRUE)
```

Arguments

- **X**: A point pattern (object of class "ppp").
- **srange**: Optional numeric vector of length 2 giving the range of values of bandwidth to be searched.
- **ns**: Optional integer giving the number of values of bandwidth to search.
- **sigma**: Optional. Vector of values of the bandwidth to be searched. Overrides the values of ns and srange.
- **weights**: Optional. Numeric vector of weights for the points of X. Argument passed to `density.ppp`
- **...**: Additional arguments passed to `density.ppp`
- **shortcut**: Logical value indicating whether to speed up the calculation by omitting the integral term in the cross-validation criterion.
- **warn**: Logical. If TRUE, issue a warning if the maximum of the cross-validation criterion occurs at one of the ends of the search interval.

Details

This function selects an appropriate bandwidth `sigma` for the kernel estimator of point process intensity computed by `density.ppp`

The bandwidth `sigma` is chosen to maximise the point process likelihood cross-validation criterion

$$
LCV(\sigma) = \sum_i \log \hat{\lambda}_{-i}(x_i) - \int_W \hat{\lambda}(u) \, du
$$

where the sum is taken over all the data points `x_i`, where `\hat{\lambda}_{-i}(x_i)` is the leave-one-out kernel-smoothing estimate of the intensity at `x_i` with smoothing bandwidth `sigma`, and `\hat{\lambda}(u)` is the kernel-smoothing estimate of the intensity at a spatial location `u` with smoothing bandwidth `sigma`. See Loader(1999, Section 5.3).
The value of $LCV(\sigma)$ is computed directly, using \texttt{density.ppp}, for ns different values of σ between $srange[1]$ and $srange[2]$. The result is a numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim" which can be plotted to show the (rescaled) mean-square error as a function of σ. If \texttt{shortcut=TRUE}, the computation is accelerated by omitting the integral term in the equation above. This is valid because the integral is approximately constant.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim" which can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

See Also

density.ppp, bw.diggle, bw.scott, bw.CvL, bw.frac.

Examples

```r
if(interactive()) {
  b <- bw.ppl(redwood)
  plot(b, main="Likelihood cross validation for redwoods")
  plot(density(redwood, b))
}
```

bw.pplHeat

\textit{Bandwidth Selection for Diffusion Smoother by Likelihood Cross-Validation}

Description

Selects an optimal bandwidth for diffusion smoothing by point process likelihood cross-validation.

Usage

```r
bw.pplHeat(X, ..., srange=NULL, ns=16, sigma=NULL,
leaveoneout=TRUE, verbose = TRUE)
```
Arguments

- **X**: Point pattern (object of class "ppp").
- **...**: Arguments passed to `densityHeat.ppp`.
- **srange**: Numeric vector of length 2 specifying a range of bandwidths to be considered.
- **ns**: Integer. Number of candidate bandwidths to be considered.
- **sigma**: Maximum smoothing bandwidth. A numeric value, or a pixel image, or a function(x,y). Alternatively a numeric vector containing a sequence of candidate bandwidths.
- **leaveoneout**: Logical value specifying whether intensity values at data points should be estimated using the leave-one-out rule.
- **verbose**: Logical value specifying whether to print progress reports.

Details

This algorithm selects the optimal global bandwidth for kernel estimation of intensity for the dataset X using diffusion smoothing `densityHeat.ppp`.

- If sigma is a numeric value, the algorithm finds the optimal bandwidth $\tau \leq \sigma$.
- If sigma is a pixel image or function, the algorithm finds the optimal fraction $0 < f \leq 1$ such that smoothing with $f \times \sigma$ would be optimal.

Value

A numerical value giving the selected bandwidth (if sigma was a numeric value) or the selected fraction of the maximum bandwidth (if sigma was a pixel image or function). The result also belongs to the class "bw.optim" which can be plotted.

Author(s)

Adrian Baddeley and Tilman Davies.

See Also

- `bw.CvLHeat` for an alternative method.
- `densityHeat.ppp`

Examples

```r
online <- interactive()
if(!online) op <- spatstat.options(npixel=32)
f <- function(x,y) { dnorm(x, 2.3, 0.1) * dnorm(y, 2.0, 0.2) }
X <- rpoint(15, f, win=letterR)
plot(X)
b <- bw.pplHeat(X, sigma=0.25)
b
plot(b)
if(!online) spatstat.options(op)
```
bw.relrisk

Cross Validated Bandwidth Selection for Relative Risk Estimation

Description

Uses cross-validation to select a smoothing bandwidth for the estimation of relative risk.

Usage

bw.relrisk(X, ...)

S3 method for class 'ppp'

bw.relrisk(X, method = "likelihood", ...,
 nh = spatstat.options("n.bandwidth"),
 hmin=NULL, hmax=NULL, warn=TRUE)

Arguments

X

A multitype point pattern (object of class "ppp" which has factor valued marks).

method

Character string determining the cross-validation method. Current options are
"likelihood", "leastsquares" or "weightedleastsquares".

nh

Number of trial values of smoothing bandwidth \(\sigma\) to consider. The default is
32.

hmin, hmax

Optional. Numeric values. Range of trial values of smoothing bandwidth \(\sigma\) to consider. There is a sensible default.

warn

Logical. If TRUE, issue a warning if the minimum of the cross-validation crite-
ron occurs at one of the ends of the search interval.

...

Additional arguments passed to density.ppp or to other methods for bw.relrisk.

Details

This function selects an appropriate bandwidth for the nonparametric estimation of relative risk
using relrisk.

Consider the indicators \(y_{ij}\) which equal 1 when data point \(x_i\) belongs to type \(j\), and equal 0 other-
ise. For a particular value of smoothing bandwidth, let \(\hat{p}_j(u)\) be the estimated probabilities that a
point at location \(u\) will belong to type \(j\). Then the bandwidth is chosen to minimise either the nega-
tive likelihood, the squared error, or the approximately standardised squared error, of the indicators
\(y_{ij}\) relative to the fitted values \(\hat{p}_j(x_i)\). See Diggle (2003) or Baddeley et al (2015).

The result is a numerical value giving the selected bandwidth \(\sigma\). The result also belongs to
the class "bw.optim" allowing it to be printed and plotted. The plot shows the cross-validation crite-
ron as a function of bandwidth.

The range of values for the smoothing bandwidth \(\sigma\) is set by the arguments hmin, hmax. There
is a sensible default, based on multiples of Stoyan’s rule of thumb bw.stoyan.
If the optimal bandwidth is achieved at an endpoint of the interval [\(h_{\text{min}}, h_{\text{max}}\)], the algorithm will issue a warning (unless \(\text{warn}=\text{FALSE}\)). If this occurs, then it is probably advisable to expand the interval by changing the arguments \(h_{\text{min}}, h_{\text{max}}\).

Computation time depends on the number \(n_h\) of trial values considered, and also on the range \([h_{\text{min}}, h_{\text{max}}]\) of values considered, because larger values of \(\sigma\) require calculations involving more pairs of data points.

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class “\(\text{bw.optim}\)” (see \(\text{bw.optim.object}\)) which can be plotted to show the bandwidth selection criterion as a function of \(\sigma\).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References

See Also

\(\text{relrisk, bw.stoyan}\).

\(\text{bw.optim.object}\).

Examples

```r
b <- bw.relrisk(urkiola)
b
plot(b)
b <- bw.relrisk(urkiola, hmax=20)
plot(b)
```

bw.scott

Scott’s Rule for Bandwidth Selection for Kernel Density

Description

Use Scott’s rule of thumb to determine the smoothing bandwidth for the kernel estimation of point process intensity.
Usage

bw.scott(X, isotropic=FALSE, d=NULL)

bw.scott.iso(X)

Arguments

X A point pattern (object of class "ppp", "lpp", "pp3" or "ppx").

isotropic Logical value indicating whether to compute a single bandwidth for an isotropic Gaussian kernel (isotropic=TRUE) or separate bandwidths for each coordinate axis (isotropic=FALSE, the default).

d Advanced use only. An integer value that should be used in Scott’s formula instead of the true number of spatial dimensions.

Details

These functions select a bandwidth σ for the kernel estimator of point process intensity computed by \texttt{density.ppp} or other appropriate functions. They can be applied to a point pattern belonging to any class "ppp", "lpp", "pp3" or "ppx".

The bandwidth σ is computed by the rule of thumb of Scott (1992, page 152, equation 6.42). The bandwidth is proportional to $n^{-1/(d+4)}$ where n is the number of points and d is the number of spatial dimensions.

This rule is very fast to compute. It typically produces a larger bandwidth than \texttt{bw.diggle}. It is useful for estimating gradual trend.

If isotropic=FALSE (the default), \texttt{bw.scott} provides a separate bandwidth for each coordinate axis, and the result of the function is a vector, of length equal to the number of coordinates. If isotropic=TRUE, a single bandwidth value is computed and the result is a single numeric value.

\texttt{bw.scott.iso(X)} is equivalent to \texttt{bw.scott(X, isotropic=TRUE)}.

The default value of d is as follows:

<table>
<thead>
<tr>
<th>class</th>
<th>dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>"ppp"</td>
<td>2</td>
</tr>
<tr>
<td>"lpp"</td>
<td>1</td>
</tr>
<tr>
<td>"pp3"</td>
<td>3</td>
</tr>
<tr>
<td>"ppx"</td>
<td>number of spatial coordinates</td>
</tr>
</tbody>
</table>

The use of $d=1$ for point patterns on a linear network (class "lpp") was proposed by McSwiggan et al (2016) and Rakshit et al (2019).

Value

A numerical value giving the selected bandwidth, or a numerical vector giving the selected bandwidths for each coordinate.
bw.smoothppp

Cross Validated Bandwidth Selection for Spatial Smoothing

Description

Uses least-squares cross-validation to select a smoothing bandwidth for spatial smoothing of marks.

Usage

bw.smoothppp(X, nh = spatstat.options("n.bandwidth"),
 hmin=NULL, hmax=NULL, warn=TRUE, kernel="gaussian")

Arguments

X
 A marked point pattern with numeric marks.

nh
 Number of trial values of smoothing bandwidth \(\sigma \) to consider. The default is 32.

hmin, hmax
 Optional. Numeric values. Range of trial values of smoothing bandwidth \(\sigma \) to consider. There is a sensible default.

warn
 Logical. If TRUE, issue a warning if the minimum of the cross-validation criterion occurs at one of the ends of the search interval.

kernel
 The smoothing kernel. A character string specifying the smoothing kernel (current options are "gaussian", "epanechnikov", "quartic" or "disc").

Examples

hickory <- split(lansing)[["hickory"]]
b <- bw.scott(hickory)
b
if(interactive()) {
 plot(density(hickory, b))
}bw.scott.iso(hickory)
bw.scott(osteo$pts[[1]])
Details

This function selects an appropriate bandwidth for the nonparametric smoothing of mark values using Smooth.ppp.

The argument X must be a marked point pattern with a vector or data frame of marks. All mark values must be numeric.

The bandwidth is selected by least-squares cross-validation. Let y_i be the mark value at the ith data point. For a particular choice of smoothing bandwidth, let \hat{y}_i be the smoothed value at the ith data point. Then the bandwidth is chosen to minimise the squared error of the smoothed values $\sum_i (y_i - \hat{y}_i)^2$.

The result of bw.smoothppp is a numerical value giving the selected bandwidth sigma. The result also belongs to the class "bw.optim" allowing it to be printed and plotted. The plot shows the cross-validation criterion as a function of bandwidth.

The range of values for the smoothing bandwidth sigma is set by the arguments hmin, hmax. There is a sensible default, based on the nearest neighbour distances.

If the optimal bandwidth is achieved at an endpoint of the interval $[h_{\text{min}}, h_{\text{max}}]$, the algorithm will issue a warning (unless warn=FALSE). If this occurs, then it is probably advisable to expand the interval by changing the arguments $h_{\text{min}}, h_{\text{max}}$.

Computation time depends on the number nh of trial values considered, and also on the range $[h_{\text{min}}, h_{\text{max}}]$ of values considered, because larger values of sigma require calculations involving more pairs of data points.

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim" (see bw.optim.object) which can be plotted to show the bandwidth selection criterion as a function of sigma.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Smooth.ppp, bw.optim.object

Examples

```r
b <- bw.smoothppp(longleaf)
b
plot(b)
```
Description

Computes a rough estimate of the appropriate bandwidth for kernel smoothing estimators of the pair correlation function and other quantities.

Usage

```
bw.stoyan(X, co=0.15)
```

Arguments

- `X` A point pattern (object of class "ppp").
- `co` Coefficient appearing in the rule of thumb. See Details.

Details

Estimation of the pair correlation function and other quantities by smoothing methods requires a choice of the smoothing bandwidth. Stoyan and Stoyan (1995, equation (15.16), page 285) proposed a rule of thumb for choosing the smoothing bandwidth.

For the Epanechnikov kernel, the rule of thumb is to set the kernel’s half-width h to $0.15/\sqrt{\lambda}$ where λ is the estimated intensity of the point pattern, typically computed as the number of points of X divided by the area of the window containing X.

For a general kernel, the corresponding rule is to set the standard deviation of the kernel to $\sigma = 0.15/\sqrt{5\lambda}$.

The coefficient 0.15 can be tweaked using the argument `co`.

To ensure the bandwidth is finite, an empty point pattern is treated as if it contained 1 point.

Value

A finite positive numerical value giving the selected bandwidth (the standard deviation of the smoothing kernel).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`pcf`, `bw.relrisk`
CDF

Examples

bw.stoyan(shapley)

CDF

Cumulative Distribution Function From Kernel Density Estimate

Description

Given a kernel estimate of a probability density, compute the corresponding cumulative distribution function.

Usage

CDF(f, ...)

S3 method for class 'density'
CDF(f, ..., warn = TRUE)

Arguments

f Density estimate (object of class "density").
...
Ignoring.
warn Logical value indicating whether to issue a warning if the density estimate f had to be renormalised because it was computed in a restricted interval.

Details

CDF is generic, with a method for class "density".

This calculates the cumulative distribution function whose probability density has been estimated and stored in the object f. The object f must belong to the class "density", and would typically have been obtained from a call to the function density.

Value

A function, which can be applied to any numeric value or vector of values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

density, quantile.density
Examples

```r
b <- density(runif(10))
f <- CDF(b)
f(0.5)
plot(f)
```

cdf.test

Spatial Distribution Test for Point Pattern or Point Process Model

Description

Performs a test of goodness-of-fit of a point process model. The observed and predicted distributions of the values of a spatial covariate are compared using either the Kolmogorov-Smirnov test, Cramér-von Mises test or Anderson-Darling test. For non-Poisson models, a Monte Carlo test is used.

Usage

```r
cdf.test(...)
```

```r
# S3 method for class 'ppp'
cdf.test(X, covariate, test=c("ks", "cvm", "ad"), ...,
         interpolate=TRUE, jitter=TRUE)
```

Arguments

- **X**: A point pattern (object of class "ppp" or "lpp").
- **covariate**: The spatial covariate on which the test will be based. A function, a pixel image (object of class "im"), a list of pixel images, or one of the characters "x" or "y" indicating the Cartesian coordinates.
- **test**: Character string identifying the test to be performed: "ks" for Kolmogorov-Smirnov test, "cvm" for Cramér-von Mises test or "ad" for Anderson-Darling test.
- **...**: Arguments passed to `ks.test` (from the `stats` package) or `cvm.test` or `ad.test` (from the `goftest` package) to control the test; and arguments passed to `as.mask` to control the pixel resolution.
- **interpolate**: Logical flag indicating whether to interpolate pixel images. If interpolate=TRUE, the value of the covariate at each point of X will be approximated by interpolating the nearby pixel values. If intercept=FALSE, the nearest pixel value will be used.
- **jitter**: Logical flag. If jitter=TRUE, values of the covariate will be slightly perturbed at random, to avoid tied values in the test.
Details

These functions perform a goodness-of-fit test of a Poisson or Gibbs point process model fitted to point pattern data. The observed distribution of the values of a spatial covariate at the data points, and the predicted distribution of the same values under the model, are compared using the Kolmogorov-Smirnov test, the Cramér-von Mises test or the Anderson-Darling test. For Gibbs models, a Monte Carlo test is performed using these test statistics.

The function cdf.test is generic, with methods for point patterns ("ppp" or "lpp"), point process models ("ppm" or "lppm") and spatial logistic regression models ("slrm").

• If X is a point pattern dataset (object of class "ppp"), then cdf.test(X, ...) performs a goodness-of-fit test of the uniform Poisson point process (Complete Spatial Randomness, CSR) for this dataset. For a multitype point pattern, the uniform intensity is assumed to depend on the type of point (sometimes called Complete Spatial Randomness and Independence, CSRI).

• If model is a fitted point process model (object of class "ppm" or "lppm") then cdf.test(model, ...) performs a test of goodness-of-fit for this fitted model.

• If model is a fitted spatial logistic regression (object of class "slrm") then cdf.test(model, ...) performs a test of goodness-of-fit for this fitted model.

The test is performed by comparing the observed distribution of the values of a spatial covariate at the data points, and the predicted distribution of the same covariate under the model, using a classical goodness-of-fit test. Thus, you must nominate a spatial covariate for this test.

If X is a point pattern that does not have marks, the argument covariate should be either a function(x,y) or a pixel image (object of class "im" containing the values of a spatial function, or one of the characters "x" or "y" indicating the Cartesian coordinates. If covariate is an image, it should have numeric values, and its domain should cover the observation window of the model. If covariate is a function, it should expect two arguments x and y which are vectors of coordinates, and it should return a numeric vector of the same length as x and y.

If X is a multitype point pattern, the argument covariate can be either a function(x,y,marks), or a pixel image, or a list of pixel images corresponding to each possible mark value, or one of the characters "x" or "y" indicating the Cartesian coordinates.

First the original data point pattern is extracted from model. The values of the covariate at these data points are collected.

The predicted distribution of the values of the covariate under the fitted model is computed as follows. The values of the covariate at all locations in the observation window are evaluated, weighted according to the point process intensity of the fitted model, and compiled into a cumulative distribution function \(F \) using ewcdf.

The probability integral transformation is then applied: the values of the covariate at the original data points are transformed by the predicted cumulative distribution function \(F \) into numbers between 0 and 1. If the model is correct, these numbers are i.i.d. uniform random numbers. The A goodness-of-fit test of the uniform distribution is applied to these numbers using stats::ks.test, goftest::cvm.test or goftest::ad.test.

This test was apparently first described (in the context of spatial data, and using Kolmogorov-Smirnov) by Berman (1986). See also Baddeley et al (2005).

If model is not a Poisson process, then a Monte Carlo test is performed, by generating nsim point patterns which are simulated realisations of the model, re-fitting the model to each simulated point
pattern, and calculating the test statistic for each fitted model. The Monte Carlo p value is determined by comparing the simulated values of the test statistic with the value for the original data.

The return value is an object of class "htest" containing the results of the hypothesis test. The print method for this class gives an informative summary of the test outcome.

The return value also belongs to the class "cdftest" for which there is a plot method plot.cdftest. The plot method displays the empirical cumulative distribution function of the covariate at the data points, and the predicted cumulative distribution function of the covariate under the model, plotted against the value of the covariate.

The argument jitter controls whether covariate values are randomly perturbed, in order to avoid ties. If the original data contains any ties in the covariate (i.e., points with equal values of the covariate), and if jitter=FALSE, then the Kolmogorov-Smirnov test implemented in ks.test will issue a warning that it cannot calculate the exact p-value. To avoid this, if jitter=TRUE each value of the covariate will be perturbed by adding a small random value. The perturbations are normally distributed with standard deviation equal to one hundredth of the range of values of the covariate. This prevents ties, and the p-value is still correct. There is a very slight loss of power.

Value

An object of class "htest" containing the results of the test. See ks.test for details. The return value can be printed to give an informative summary of the test.

The value also belongs to the class "cdftest" for which there is a plot method.

Warning

The outcome of the test involves a small amount of random variability, because (by default) the coordinates are randomly perturbed to avoid tied values. Hence, if cdf.test is executed twice, the p-values will not be exactly the same. To avoid this behaviour, set jitter=FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

plot.cdftest, quadrat.test, berman.test, ks.test, cvm.test, ad.test, ppm

Examples

```r
op <- options(useFancyQuotes=FALSE)
# test of CSR using x coordinate
```
test of CSR using a function of \(x \) and \(y \)
fun <- function(x,y) (2*x + y)
cdf.test(nztrees, fun)

test of CSR using an image covariate
funimage <- as.im(fun, W=Window(nztrees))
cdf.test(nztrees, funimage)

multitype point pattern
cdf.test(amacrine, "x")

options(op)

circdensity

Density Estimation for Circular Data

Description

Computes a kernel smoothed estimate of the probability density for angular data.

Usage

```r
circdensity(x, sigma = "nrd0", ..., bw = NULL, weights=NULL, unit = c("degree", "radian"))
```

Arguments

- **x**
 - Numeric vector, containing angular data.
- **sigma**
 - Smoothing bandwidth, or bandwidth selection rule, passed to `density.default`.
- **bw**
 - Alternative to `sigma` for consistency with other functions.
- **...**
 - Additional arguments passed to `density.default`, such as `kernel` and `weights`.
- **weights**
 - Optional numeric vector of weights for the data in \(x \).
- **unit**
 - The unit of angle in which \(x \) is expressed.

Details

The angular values \(x \) are smoothed using (by default) the wrapped Gaussian kernel with standard deviation \(\sigma \).

Value

An object of class "density" (produced by `density.default`) which can be plotted by `plot` or by `rose`.
Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also
density.default, rose.

Examples

ang <- runif(1000, max=360)
rose(circdensity(ang, 12))

clarkevans Clark and Evans Aggregation Index

Description

Computes the Clark and Evans aggregation index R for a spatial point pattern.

Usage

clarkevans(X, correction=c("none", "Donnelly", "cdf"),
clipregion=NULL)

Arguments

X A spatial point pattern (object of class "ppp").
correction Character vector. The type of edge correction(s) to be applied.
clipregion Clipping region for the guard area correction. A window (object of class "owin").

See Details.

Details

The Clark and Evans (1954) aggregation index R is a crude measure of clustering or ordering of a point pattern. It is the ratio of the observed mean nearest neighbour distance in the pattern to that expected for a Poisson point process of the same intensity. A value $R > 1$ suggests ordering, while $R < 1$ suggests clustering.

Without correction for edge effects, the value of R will be positively biased. Edge effects arise because, for a point of X close to the edge of the window, the true nearest neighbour may actually lie outside the window. Hence observed nearest neighbour distances tend to be larger than the true nearest neighbour distances.

The argument correction specifies an edge correction or several edge corrections to be applied. It is a character vector containing one or more of the options "none", "Donnelly", "guard" and "cdf" (which are recognised by partial matching). These edge corrections are:

"none": No edge correction is applied.
"Donnelly": Edge correction of Donnelly (1978), available for rectangular windows only. The theoretical expected value of mean nearest neighbour distance under a Poisson process is adjusted for edge effects by the edge correction of Donnelly (1978). The value of \(R \) is the ratio of the observed mean nearest neighbour distance to this adjusted theoretical mean.

"guard": Guard region or buffer area method. The observed mean nearest neighbour distance for the point pattern \(X \) is re-defined by averaging only over those points of \(X \) that fall inside the sub-window \(\text{clipregion} \).

"cdf": Cumulative Distribution Function method. The nearest neighbour distance distribution function \(G(r) \) of the stationary point process is estimated by \(\text{Gest} \) using the Kaplan-Meier type edge correction. Then the mean of the distribution is calculated from the cdf.

Alternatively \(\text{correction="all"} \) selects all options.

If the argument \(\text{clipregion} \) is given, then the selected edge corrections will be assumed to include \(\text{correction="guard"} \).

To perform a test based on the Clark-Evans index, see \texttt{clarkevans.test}.

Value

A numeric value, or a numeric vector with named components

- **naive**: \(R \) without edge correction
- **Donnelly**: \(R \) using Donnelly edge correction
- **guard**: \(R \) using guard region
- **cdf**: \(R \) using cdf method

(as selected by \(\text{correction} \)). The value of the Donnelly component will be NA if the window of \(X \) is not a rectangle.

Author(s)

John Rudge <rudge@esc.cam.ac.uk> with modifications by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

See Also

\texttt{clarkevans.test, hopskel, nndist, Gest}
Examples

Example of a clustered pattern
clarkevans(redwood)

Example of an ordered pattern
clarkevans(cells)

Random pattern
X <- rpoispp(100)
clarkevans(X)

How to specify a clipping region
clip1 <- owin(c(0.1,0.9),c(0.1,0.9))
clip2 <- erosion(Window(cells), 0.1)
clarkevans(cells, clipregion=clip1)
clarkevans(cells, clipregion=clip2)

clarkevans.test Clark and Evans Test

Description

Performs the Clark-Evans test of aggregation for a spatial point pattern.

Usage

clarkevans.test(X, ...,
 correction="none",
 clipregion=NULL,
 alternative=c("two.sided", "less", "greater",
 "clustered", "regular"),
 nsim=999)

Arguments

X A spatial point pattern (object of class "ppp").
... Ignored.
correction Character string. The type of edge correction to be applied. See clarkevans
clipregion Clipping region for the guard area correction. A window (object of class "owin"). See clarkevans
alternative String indicating the type of alternative for the hypothesis test. Partially matched.
nsim Number of Monte Carlo simulations to perform, if a Monte Carlo p-value is required.
Details

This command uses the Clark and Evans (1954) aggregation index R as the basis for a crude test of clustering or ordering of a point pattern.

The Clark-Evans index is computed by the function `clarkevans`. See the help for `clarkevans` for information about the Clark-Evans index R and about the arguments `correction` and `clipregion`.

This command performs a hypothesis test of clustering or ordering of the point pattern X. The null hypothesis is Complete Spatial Randomness, i.e., a uniform Poisson process. The alternative hypothesis is specified by the argument `alternative`:

- `alternative="less"` or `alternative="clustered"`: the alternative hypothesis is that $R < 1$ corresponding to a clustered point pattern;
- `alternative="greater"` or `alternative="regular"`: the alternative hypothesis is that $R > 1$ corresponding to a regular or ordered point pattern;
- `alternative="two.sided"`: the alternative hypothesis is that $R \neq 1$ corresponding to a clustered or regular pattern.

The Clark-Evans index R is computed for the data as described in `clarkevans`.

If `correction="none"` and `nsim` is missing, the p-value for the test is computed by standardising R as proposed by Clark and Evans (1954) and referring the statistic to the standard Normal distribution.

Otherwise, the p-value for the test is computed by Monte Carlo simulation of $nsim$ realisations of Complete Spatial Randomness conditional on the observed number of points.

Value

An object of class "htest" representing the result of the test.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

See Also

`clarkevans`, `hopskel.test`

Examples

```r
# Redwood data - clustered
clarkevans.test(redwood)
clarkevans.test(redwood, alternative="clustered")
clarkevans.test(redwood, correction="cdf", nsim=39)
```
clusterset

Allard-Fraley Estimator of Cluster Feature

Description

Detect high-density features in a spatial point pattern using the (unrestricted) Allard-Fraley estimator.

Usage

clusterset(X, what=c("marks", "domain"),
 ..., verbose=TRUE,
 fast=FALSE,
 exact=!fast)

Arguments

- **X**: A dimensional spatial point pattern (object of class "ppp").
- **what**: Character string or character vector specifying the type of result. See Details.
- **verbose**: Logical value indicating whether to print progress reports.
- **fast**: Logical. If FALSE (the default), the Dirichlet tile areas will be computed exactly using polygonal geometry. If TRUE, the Dirichlet tile areas will be approximated using pixel counting.
- **exact**: Logical. If TRUE, the Allard-Fraley estimator of the domain will be computed exactly. If FALSE, the Allard-Fraley estimator of the domain will be approximated by a binary pixel mask.
- **...**: Optional arguments passed to `as.mask` to control the pixel resolution if exact=FALSE.

Details

Allard and Fraley (1997) developed a technique for recognising features of high density in a spatial point pattern in the presence of random clutter.

This algorithm computes the *unrestricted* Allard-Fraley estimator. The Dirichlet (Voronoi) tessellation of the point pattern X is computed. The smallest \(m \) Dirichlet cells are selected, where the number \(m \) is determined by a maximum likelihood criterion.

- If fast=FALSE (the default), the areas of the tiles of the Dirichlet tessellation will be computed exactly using polygonal geometry. This ensures that the optimal selection of tiles is computed exactly.
- If fast=TRUE, the Dirichlet tile areas will be approximated by counting pixels. This is faster, and is usually correct (depending on the pixel resolution, which is controlled by the arguments ...).

The type of result depends on the character vector what.
• If what="marks" the result is the point pattern X with a vector of marks labelling each point with a value yes or no depending on whether the corresponding Dirichlet cell is selected by the Allard-Fraley estimator. In other words each point of X is labelled as either a cluster point or a non-cluster point.

• If what="domain", the result is the Allard-Fraley estimator of the cluster feature set, which is the union of all the selected Dirichlet cells, represented as a window (object of class "owin").

• If what=c("marks", "domain") the result is a list containing both of the results described above.

Computation of the Allard-Fraley set estimator depends on the argument exact.

• If exact=TRUE (the default), the Allard-Fraley set estimator will be computed exactly using polygonal geometry. The result is a polygonal window.

• If exact=FALSE, the Allard-Fraley set estimator will be approximated by a binary pixel mask. This is faster than the exact computation. The result is a binary mask.

Value

If what="marks", a multitype point pattern (object of class "ppp").

If what="domain", a window (object of class "owin").

If what=c("marks", "domain") (the default), a list consisting of a multitype point pattern and a window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`nnclean`, `sharpen`

Examples

```r
opa <- par(mfrow=c(1,2))
W <- grow.rectangle(as.rectangle(letterR), 1)
X <- superimpose(runifpoint(300, letterR),
                   runifpoint(50, W), W=W)
plot(W, main="clusterset(X, 'm')")
plot(clusterset(X, "marks", fast=TRUE), add=TRUE, chars=c(1, 3), cols=1:2)
plot(letterR, add=TRUE)
plot(W, main="clusterset(X, 'd')")
plot(clusterset(X, "domain", exact=FALSE), add=TRUE)
```
collapse.fv

Combines several function tables (objects of class "fv") into a single function table, merging columns that are identical and relabelling columns that are different.

Usage

```r
## S3 method for class 'fv'
collapse(object, ..., same = NULL, different = NULL)
## S3 method for class 'anylist'
collapse(object, ..., same = NULL, different = NULL)
```

Arguments

- **object**: An object of class "fv", or a list of such objects.
- **...**: Additional objects of class "fv".
- **same**: Character string or character vector specifying a column or columns of function values that are identical in different "fv" objects. These columns will be included only once in the result.
- **different**: Character string or character vector specifying a column or columns of function values, that are different in different "fv" objects. Each of these columns of data will be included, with labels that distinguish them from each other.

Details

This is a method for the generic function **collapse**.

It combines the data in several function tables (objects of class "fv", see `fv.object`) to make a single function table. It is essentially a smart wrapper for `cbind.fv`.

A typical application is to calculate the same summary statistic (such as the K function) for different point patterns, and then to use `collapse.fv` to combine the results into a single object that can easily be plotted. See the Examples.

The arguments **object** and **...** should be function tables (objects of class "fv", see `fv.object`) that are compatible in the sense that they have the same values of the function argument. (This can be ensured by applying `harmonise.fv` to them.)

The argument **same** identifies any columns that are present in some or all of the function tables, and which are known to contain exactly the same values in each table that includes them. This column or columns will be included only once in the result.
The function identifies any columns that are present in some or all of the function tables, and which may contain different numerical values in different tables. Each of these columns will be included, with labels to distinguish them.

Columns that are not named in same or different will not be included.

The function argument is always included and does not need to be specified.

The arguments same and different can be NULL, or they can be character vectors containing the names of columns of object. The argument different can be one of the abbreviations recognised by fvnames.

Value

Object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv.object, cbind.fv

Examples

generate simulated data
X <- replicate(3, rpoispp(100), simplify=FALSE)
names(X) <- paste("Simulation", 1:3)
compute K function estimates
Klist <- anylapply(X, Kest)
collapse
K <- collapse(Klist, same="theo", different="iso")
K

compatible.fasp Test Whether Function Arrays Are Compatible

Description

Tests whether two or more function arrays (class "fasp") are compatible.

Usage

S3 method for class 'fasp'
compatible(A, B, ...)

Arguments

A, B, ... Two or more function arrays (object of class "fasp").
Details

An object of class "fasp" can be regarded as an array of functions. Such objects are returned by the command `alltypes`.

This command tests whether such objects are compatible (so that, for example, they could be added or subtracted). It is a method for the generic command `compatible`.

The function arrays are compatible if the arrays have the same dimensions, and the corresponding elements in each cell of the array are compatible as defined by `compatible.fv`.

Value

Logical value: TRUE if the objects are compatible, and FALSE if they are not.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

eval.fasp

compatible.fv Test Whether Function Objects Are Compatible

Description

Tests whether two or more function objects (class "fv") are compatible.

Usage

```r
## S3 method for class 'fv'
compatible(A, B, ..., samenames=TRUE)
```

Arguments

- `A,B,...` Two or more function value objects (class "fv").
- `samenames` Logical value indicating whether to check for complete agreement between the column names of the objects (samenames=TRUE, the default) or just to check that the name of the function argument is the same (samenames=FALSE).

Details

An object of class "fv" is essentially a data frame containing several different statistical estimates of the same function. Such objects are returned by `Kest` and its relatives.

This command tests whether such objects are compatible (so that, for example, they could be added or subtracted). It is a method for the generic command `compatible`.

The functions are compatible if they have been evaluated at the same sequence of values of the argument `r`, and if the statistical estimates have the same names.
CompileK

Value
Logical value: TRUE if the objects are compatible, and FALSE if they are not.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
eval.fv

compileK

Generic Calculation of K Function and Pair Correlation Function

Description
Low-level functions which calculate the estimated K function and estimated pair correlation function (or any similar functions) from a matrix of pairwise distances and optional weights.

Usage
compileK(D, r, weights = NULL, denom = 1,
 check = TRUE, ratio = FALSE, fname = "K",
 samplesize=denom)

compilepcf(D, r, weights = NULL, denom = 1,
 check = TRUE, endcorrect = TRUE, ratio=FALSE,
 ..., fname = "g", samplesize=denom)

Arguments

D
A square matrix giving the distances between all pairs of points.

r
An equally spaced, finely spaced sequence of distance values.

weights
Optional numerical weights for the pairwise distances. A numeric matrix with the same dimensions as D. If absent, the weights are taken to equal 1.

denom
Denominator for the estimator. A single number, or a numeric vector with the same length as r. See Details.

check
Logical value specifying whether to check that D is a valid matrix of pairwise distances.

ratio
Logical value indicating whether to store ratio information. See Details.

... Optional arguments passed to density.default controlling the kernel smoothing.

denoendcorrect
Logical value indicating whether to apply End Correction of the pair correlation estimate at r=0.

fname
Character string giving the name of the function being estimated.

samplesize
The sample size that should be used as the denominator when ratio=TRUE.
Details
These low-level functions construct estimates of the K function or pair correlation function, or any similar functions, given only the matrix of pairwise distances and optional weights associated with these distances.

These functions are useful for code development and for teaching, because they perform a common task, and do the housekeeping required to make an object of class "fv" that represents the estimated function. However, they are not very efficient.

`compileK` calculates the weighted estimate of the K function,
\[
\hat{K}(r) = \frac{1}{v(r)} \sum_i \sum_j 1\{d_{ij} \leq r\} w_{ij}
\]
and `compilepcf` calculates the weighted estimate of the pair correlation function,
\[
\hat{g}(r) = \frac{1}{v(r)} \sum_i \sum_j \kappa(d_{ij} - r) w_{ij}
\]
where d_{ij} is the distance between spatial points i and j, with corresponding weight w_{ij}, and $v(r)$ is a specified denominator. Here κ is a fixed-bandwidth smoothing kernel.

For a point pattern in two dimensions, the usual denominator $v(r)$ is constant for the K function, and proportional to r for the pair correlation function. See the Examples.

The result is an object of class "fv" representing the estimated function. This object has only one column of function values. Additional columns (such as a column giving the theoretical value) must be added by the user, with the aid of `bind.fv`.

If `ratio=TRUE`, the result also belongs to class "rat" and has attributes containing the numerator and denominator of the function estimate. (If `samplesize` is given, the numerator and denominator are rescaled by a common factor so that the denominator is equal to `samplesize`.) This allows function estimates from several datasets to be pooled using `pool`.

Value
An object of class "fv" representing the estimated function.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also
`Kest`, `pcf` for definitions of the K function and pair correlation function.
`bind.fv` to add more columns.

Examples
```r
X <- japanesepines
D <- pairdist(X)
Wt <- edge.Ripley(X, D)
lambda <- intensity(X)
```
\[a \leftarrow (npoints(X) - 1) \times \lambda \]
\[r \leftarrow \text{seq}(0, 0.25, \text{by}=0.01) \]
\[K \leftarrow \text{compileK}(D=D, r=r, \text{weights}=Wt, \text{denom}=a) \]
\[g \leftarrow \text{compilepcf}(D=D, r=r, \text{weights}=Wt, \text{denom}=a \times 2 \times \pi \times r) \]

cov.im

Covariance and Correlation between Images

Description

Compute the covariance or correlation between (the corresponding pixel values in) several images.

Usage

```r
cov.im(..., use = "everything", method = c("pearson", "kendall", "spearman"))
```

Arguments

- `...`: Any number of arguments, each of which is a pixel image (object of class "im"). Alternatively, a single argument which is a list of pixel images.
- `use`: Argument passed to `cov` or `cor` determining how to handle `NA` values in the data.
- `method`: Argument passed to `cov` or `cor` determining the type of correlation that will be computed.

Details

The arguments `...` should be pixel images (objects of class "im"). Their spatial domains must overlap, but need not have the same pixel dimensions.

These functions compute the covariance or correlation between the corresponding pixel values in the images given.

The pixel image domains are intersected, and converted to a common pixel resolution. Then the corresponding pixel values of each image are extracted. Finally the correlation or covariance between the pixel values of each pair of images, at corresponding pixels, is computed.

The result is a symmetric matrix with one row and column for each image. The \([i,j]\) entry is the correlation or covariance between the \(i\)th and \(j\)th images in the argument list. The row names and column names of the matrix are copied from the argument names if they were given (i.e. if the arguments were given as `name=value`).

Note that `cor` and `cov` are not generic, so you have to type `cor.im`, `cov.im`.

Value

A symmetric matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.
dclf.progress

Progress Plot of Test of Spatial Pattern

Description
Generates a progress plot (envelope representation) of the Diggle-Cressie-Loosmore-Ford test or the Maximum Absolute Deviation test for a spatial point pattern.

Usage
```r
dclf.progress(X, ...)
mad.progress(X, ...)
mctest.progress(X, fun = Lest, ...,
  exponent = 1, nrank = 1,
  interpolate = FALSE, alpha, rmin=0)
```

Arguments
- `X`: Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point process model (object of class "ppm", "kppm" or other class) or an envelope object (class "envelope").
- `...`: Arguments passed to `mctest.progress` or to `envelope`. Useful arguments include `fun` to determine the summary function, `nsim` to specify the number of Monte Carlo simulations, `alternative` to specify one-sided or two-sided envelopes, and `verbose=FALSE` to turn off the messages.
- `fun`: Function that computes the desired summary statistic for a point pattern.
- `exponent`: Positive number. The exponent of the \(L^p \) distance. See Details.
- `nrank`: Integer. The rank of the critical value of the Monte Carlo test, amongst the `nsim` simulated values. A rank of 1 means that the minimum and maximum simulated values will become the critical values for the test.
- `interpolate`: Logical value indicating how to compute the critical value. If `interpolate=FALSE` (the default), a standard Monte Carlo test is performed, and the critical value is the largest simulated value of the test statistic (if `nrank=1`) or the `nrank`-th largest (if `nrank` is another number). If `interpolate=TRUE`, kernel density estimation is applied to the simulated values, and the critical value is the upper `alpha` quantile of this estimated distribution.

See Also
- `cor.cov`
- `pairs.im`

Examples
```r
cor.im(bei.extra)
```
alpha

Optional. The significance level of the test. Equivalent to \(n_{\text{rank}} / (n_{\text{sim}} + 1) \) where \(n_{\text{sim}} \) is the number of simulations.

rmin

Optional. Left endpoint for the interval of \(r \) values on which the test statistic is calculated.

Details

The Diggle-Cressie-Loosmore-Ford test and the Maximum Absolute Deviation test for a spatial point pattern are described in \texttt{dclf.test}. These tests depend on the choice of an interval of distance values (the argument \texttt{rinterval}). A \textit{progress plot} or \textit{envelope representation} of the test (Baddeley et al, 2014) is a plot of the test statistic (and the corresponding critical value) against the length of the interval \texttt{rinterval}.

The command \texttt{dclf.progress} performs \texttt{dclf.test} on \(X \) using all possible intervals of the form \([0, R]\), and returns the resulting values of the test statistic, and the corresponding critical values of the test, as a function of \(R \).

Similarly \texttt{mad.progress} performs \texttt{mad.test} using all possible intervals and returns the test statistic and critical value.

More generally, \texttt{mctest.progress} performs a test based on the \(L^p \) discrepancy between the curves. The deviation between two curves is measured by the \(p \)th root of the integral of the \(p \)th power of the absolute value of the difference between the two curves. The exponent \(p \) is given by the argument \texttt{exponent}. The case \texttt{exponent}=2 is the Cressie-Loosmore-Ford test, while \texttt{exponent}=\texttt{Inf} is the MAD test.

If the argument \texttt{rmin} is given, it specifies the left endpoint of the interval defining the test statistic: the tests are performed using intervals \([r_{\text{min}}, R]\) where \(R \geq r_{\text{min}} \).

The result of each command is an object of class \"fv\" that can be plotted to obtain the progress plot. The display shows the test statistic (solid black line) and the Monte Carlo acceptance region (grey shading).

The significance level for the Monte Carlo test is \(n_{\text{rank}} / (n_{\text{sim}} + 1) \). Note that \(n_{\text{sim}} \) defaults to 99, so if the values of \(n_{\text{rank}} \) and \(n_{\text{sim}} \) are not given, the default is a test with significance level 0.01.

If \(X \) is an envelope object, then some of the data stored in \(X \) may be re-used:

- If \(X \) is an envelope object containing simulated functions, and \texttt{fun=NULL}, then the code will re-use the simulated functions stored in \(X \).
- If \(X \) is an envelope object containing simulated point patterns, then \texttt{fun} will be applied to the stored point patterns to obtain the simulated functions. If \texttt{fun} is not specified, it defaults to \texttt{Lest}.
- Otherwise, new simulations will be performed, and \texttt{fun} defaults to \texttt{Lest}.

Value

An object of class \"fv\" that can be plotted to obtain the progress plot.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Andrew Hardegen, Tom Lawrence, Gopal Nair and Robin Milne.
References

See Also
dclf.test and mad.test for the tests.
See plot.fv for information on plotting objects of class "fv".

Examples
plot(dclf.progress(cells, nsim=19))

dclf.sigtrace

Significance Trace of Cressie-Loosmore-Ford or Maximum Absolute Deviation Test

Description

Usage
dclf.sigtrace(X, ...)
mad.sigtrace(X, ...)
mctest.sigtrace(X, fun=Lest, ..., exponent=1, interpolate=FALSE, alpha=0.05, confint=TRUE, rmin=0)

Arguments
X
Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point process model (object of class "ppm", "kppm" or other class) or an envelope object (class "envelope").

...
Arguments passed to envelope or mctest.progress. Useful arguments include fun to determine the summary function, nsim to specify the number of Monte Carlo simulations, alternative to specify a one-sided test, and verbose=FALSE to turn off the messages.

fun
Function that computes the desired summary statistic for a point pattern.

exponent
Positive number. The exponent of the L^p distance. See Details.

interpolate
Logical value specifying whether to calculate the p-value by interpolation. If interpolate=FALSE (the default), a standard Monte Carlo test is performed, yielding a p-value of the form $(k + 1)/(n + 1)$ where n is the number of simulations and k is the number of simulated values which are more extreme than
the observed value. If interpolate=TRUE, the \(p \)-value is calculated by applying kernel density estimation to the simulated values, and computing the tail probability for this estimated distribution.

\textbf{alpha}\quad Significance level to be plotted (this has no effect on the calculation but is simply plotted as a reference value).

\textbf{confint}\quad Logical value indicating whether to compute a confidence interval for the ‘true’ \(p \)-value.

\textbf{rmin}\quad Optional. Left endpoint for the interval of \(r \) values on which the test statistic is calculated.

Details

The Diggle (1986)/ Cressie (1991)/Loosmore and Ford (2006) test and the Maximum Absolute Deviation test for a spatial point pattern are described in \texttt{dclf.test}. These tests depend on the choice of an interval of distance values (the argument \texttt{rinterval}). A \textit{significance trace} (Bowman and Azzalini, 1997; Baddeley et al, 2014, 2015; Baddeley, Rubak and Turner, 2015) of the test is a plot of the \(p \)-value obtained from the test against the length of the interval \texttt{rinterval}.

The command \texttt{dclf.sigtrace} performs \texttt{dclf.test} on \(X \) using all possible intervals of the form \([0, R]\), and returns the resulting \(p \)-values as a function of \(R \).

Similarly \texttt{mad.sigtrace} performs \texttt{mad.test} using all possible intervals and returns the \(p \)-values.

More generally, \texttt{mctest.sigtrace} performs a test based on the \(L^p \) discrepancy between the curves. The deviation between two curves is measured by the \(p \)th root of the integral of the \(p \)th power of the absolute value of the difference between the two curves. The exponent \(p \) is given by the argument \texttt{exponent}. The case \texttt{exponent=2} is the Cressie-Loosmore-Ford test, while \texttt{exponent=Inf} is the MAD test.

If the argument \texttt{rmin} is given, it specifies the left endpoint of the interval defining the test statistic: the tests are performed using intervals \([r_{\text{min}}, R]\) where \(R \geq r_{\text{min}} \).

The result of each command is an object of class "fv" that can be plotted to obtain the significance trace. The plot shows the Monte Carlo \(p \)-value (solid black line), the critical value 0.05 (dashed red line), and a pointwise 95\% confidence band (grey shading) for the ‘true’ (Neyman-Pearson) \(p \)-value. The confidence band is based on the Agresti-Coull (1998) confidence interval for a binomial proportion (when \texttt{interpolate=FALSE}) or the delta method and normal approximation (when \texttt{interpolate=TRUE}).

If \(X \) is an envelope object and \texttt{fun=NULL} then the code will re-use the simulated functions stored in \(X \).

Value

An object of class "fv" that can be plotted to obtain the significance trace.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rakshit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.
References

See Also

dclf.test for the tests; dclf.progress for progress plots.

See plot fv for information on plotting objects of class "fv".

See also dg.sigtrace.

Examples

plot(dclf.sigtrace(cells, Lest, nsim=19))

dclf.test

Diggle-Cressie-Loosmore-Ford and Maximum Absolute Deviation Tests

Description

Usage

dclf.test(X, ..., alternative=c("two.sided", "less", "greater"),
 rinterval = NULL, leaveout=1,
 scale=NULL, clamp=FALSE, interpolate=FALSE)

mad.test(X, ..., alternative=c("two.sided", "less", "greater"),
 rinterval = NULL, leaveout=1,
 scale=NULL, clamp=FALSE, interpolate=FALSE)
Arguments

X Data for the test. Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point process model (object of class "ppm", "kppm" or other class), a simulation envelope (object of class "envelope") or a previous result of dclf.test or mad.test.

Arguments passed to envelope. Useful arguments include fun to determine the summary function, nsim to specify the number of Monte Carlo simulations, verbose=FALSE to turn off the messages, savefuns or savepatterns to save the simulation results, and use.theory described under Details.

alternative The alternative hypothesis. A character string. The default is a two-sided alternative. See Details.

rinterval Interval of values of the summary function argument r over which the maximum absolute deviation, or the integral, will be computed for the test. A numeric vector of length 2.

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the observed summary function and the nominal reference value, when the reference value must be estimated by simulation. See Details.

scale Optional. A function in the R language which determines the relative scale of deviations, as a function of distance r. Summary function values for distance r will be divided by scale(r) before the test statistic is computed.

clamp Logical value indicating how to compute deviations in a one-sided test. Deviations of the observed summary function from the theoretical summary function are initially evaluated as signed real numbers, with large positive values indicating consistency with the alternative hypothesis. If clamp=FALSE (the default), these values are not changed. If clamp=TRUE, any negative values are replaced by zero.

interpolate Logical value specifying whether to calculate the p-value by interpolation. If interpolate=FALSE (the default), a standard Monte Carlo test is performed, yielding a p-value of the form \((k + 1)/(n + 1)\) where \(n\) is the number of simulations and \(k\) is the number of simulated values which are more extreme than the observed value. If interpolate=TRUE, the p-value is calculated by applying kernel density estimation to the simulated values, and computing the tail probability for this estimated distribution.

Details

These functions perform hypothesis tests for goodness-of-fit of a point pattern dataset to a point process model, based on Monte Carlo simulation from the model.

The type of test depends on the type of argument X.
• If \(X \) is some kind of point pattern, then a test of Complete Spatial Randomness (CSR) will be performed. That is, the null hypothesis is that the point pattern is completely random.

• If \(X \) is a fitted point process model, then a test of goodness-of-fit for the fitted model will be performed. The model object contains the data point pattern to which it was originally fitted. The null hypothesis is that the data point pattern is a realisation of the model.

• If \(X \) is an envelope object generated by `envelope`, then it should have been generated with `savefuns=TRUE` or `savepatterns=TRUE` so that it contains simulation results. These simulations will be treated as realisations from the null hypothesis.

• Alternatively \(X \) could be a previously-performed test of the same kind (i.e. the result of calling `dclf.test` or `mad.test`). The simulations used to perform the original test will be re-used to perform the new test (provided these simulations were saved in the original test, by setting `savefuns=TRUE` or `savepatterns=TRUE`).

The argument `alternative` specifies the alternative hypothesis, that is, the direction of deviation that will be considered statistically significant. If `alternative="two.sided"` (the default), both positive and negative deviations (between the observed summary function and the theoretical function) are significant. If `alternative="less"`, then only negative deviations (where the observed summary function is lower than the theoretical function) are considered. If `alternative="greater"`, then only positive deviations (where the observed summary function is higher than the theoretical function) are considered.

In all cases, the algorithm will first call `envelope` to generate or extract the simulated summary functions. The number of simulations that will be generated or extracted, is determined by the argument `nsim`, and defaults to 99. The summary function that will be computed is determined by the argument `fun` (or the first unnamed argument in the list ...) and defaults to `Kest` (except when \(X \) is an envelope object generated with `savefuns=TRUE`, when these functions will be taken).

The choice of summary function `fun` affects the power of the test. It is normally recommended to apply a variance-stabilising transformation (Ripley, 1981). If you are using the \(K \) function, the normal practice is to replace this by the \(L \) function (Besag, 1977) computed by `Lest`. If you are using the \(F \) or \(G \) functions, the recommended practice is to apply Fisher’s variance-stabilising transformation \(\sin^{-1}\sqrt{x} \) using the argument `transform`. See the Examples.

The argument `rinterval` specifies the interval of distance values \(r \) which will contribute to the test statistic (either maximising over this range of values for `mad.test`, or integrating over this range of values for `dclf.test`). This affects the power of the test. General advice and experiments in Baddeley et al (2014) suggest that the maximum \(r \) value should be slightly larger than the maximum possible range of interaction between points. The `dclf.test` is quite sensitive to this choice, while the `mad.test` is relatively insensitive.

It is also possible to specify a pointwise test (i.e. taking a single, fixed value of distance \(r \)) by specifying `rinterval = c(r,r)`.

The argument `use.theory` passed to `envelope` determines whether to compare the summary function for the data to its theoretical value for CSR (`use.theory=TRUE`) or to the sample mean of simulations from CSR (`use.theory=FALSE`). The test statistic \(T \) is defined in equations (10.21) and (10.22) respectively on page 394 of Baddeley, Rubak and Turner (2015).

The argument `leaveout` specifies how to calculate the discrepancy between the summary function for the data and the nominal reference value, when the reference value must be estimated by simulation. The values `leaveout=0` and `leaveout=1` are both algebraically equivalent (Baddeley et al, 2014, Appendix) to computing the difference observed - reference where the reference is the
mean of simulated values. The value `leaveout=2` gives the leave-two-out discrepancy proposed by Dao and Genton (2014).

Value

An object of class "htest". Printing this object gives a report on the result of the test. The p-value is contained in the component `p.value`.

Handling Ties

If the observed value of the test statistic is equal to one or more of the simulated values (called a tied value), then the tied values will be assigned a random ordering, and a message will be printed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Andrew Hardegen and Suman Rakshit.

References

See Also

`envelope`, `dclf.progress`
Examples

dclf.test(cells, Lest, nsim=39)
m <- mad.test(cells, Lest, verbose=FALSE, rinterval=c(0, 0.1), nsim=19)
m
extract the p-value
m$p.value
variance stabilised G function
dclf.test(cells, Gest, transform=expression(asin(sqrt(.))),
 verbose=FALSE, nsim=19)

one-sided test
ml <- mad.test(cells, Lest, verbose=FALSE, nsim=19, alternative="less")

scaled
mad.test(cells, Kest, verbose=FALSE, nsim=19,
 rinterval=c(0.05, 0.2),
 scale=function(r) { r })

density.ppp

Kernel Smoothed Intensity of Point Pattern

Description

Compute a kernel smoothed intensity function from a point pattern.

Usage

S3 method for class 'ppp'
density(x, sigma=NULL, ...,
 weights=NULL, edge=TRUE, varcov=NULL,
 at="pixels", leaveoneout=TRUE,
 adjust=1, diggle=FALSE,
 se=FALSE, wtype=c("value", "multiplicity"),
 kernel="gaussian",
 scalekernel=is.character(kernel),
 positive=FALSE, verbose=TRUE)

Arguments

x Point pattern (object of class "ppp").
sigma The smoothing bandwidth (the amount of smoothing). The standard deviation of the isotropic smoothing kernel. Either a numerical value, or a function that computes an appropriate value of sigma.
weights Optional weights to be attached to the points. A numeric vector, numeric matrix, an expression, or a pixel image.
... Additional arguments passed to pixellate.ppp and as.mask to determine the pixel resolution, or passed to sigma if it is a function.
edge Logical value indicating whether to apply edge correction.

varcov Variance-covariance matrix of anisotropic smoothing kernel. Incompatible with sigma.

at String specifying whether to compute the intensity values at a grid of pixel locations (at="pixels") or only at the points of x (at="points").

leaveoneout Logical value indicating whether to compute a leave-one-out estimator. Applicable only when at="points".

adjust Optional. Adjustment factor for the smoothing parameter.

diggle Logical. If TRUE, use the Jones-Diggle improved edge correction, which is more accurate but slower to compute than the default correction.

kernel The smoothing kernel. A character string specifying the smoothing kernel (current options are "gaussian", "epanechnikov", "quartic" or "disc"), or a pixel image (object of class "im") containing values of the kernel, or a function(x,y) which yields values of the kernel.

scalekernel Logical value. If scalekernel=TRUE, then the kernel will be rescaled to the bandwidth determined by sigma and varcov: this is the default behaviour when kernel is a character string. If scalekernel=FALSE, then sigma and varcov will be ignored: this is the default behaviour when kernel is a function or a pixel image.

se Logical value indicating whether to compute standard errors as well.

wtype Character string (partially matched) specifying how the weights should be interpreted for the calculation of standard error. See Details.

positive Logical value indicating whether to force all density values to be positive numbers. Default is FALSE.

verbose Logical value indicating whether to issue warnings about numerical problems and conditions.

Details

This is a method for the generic function density.

It computes a fixed-bandwidth kernel estimate (Diggle, 1985) of the intensity function of the point process that generated the point pattern x.

The amount of smoothing is controlled by sigma if it is specified.

By default, smoothing is performed using a Gaussian kernel. The resulting density estimate is the convolution of the isotropic Gaussian kernel, of standard deviation sigma, with point masses at each of the data points in x.

Anisotropic kernels, and non-Gaussian kernels, are also supported. Each point has unit weight, unless the argument weights is given.

If edge=TRUE (the default), the intensity estimate is corrected for edge effect bias.

If at="pixels" (the default), the result is a pixel image giving the estimated intensity at each pixel in a grid. If at="points", the result is a numeric vector giving the estimated intensity at each of the original data points in x.
Value

By default, the result is a pixel image (object of class "im"). Pixel values are estimated intensity values, expressed in "points per unit area".

If at="points", the result is a numeric vector of length equal to the number of points in x. Values are estimated intensity values at the points of x.

In either case, the return value has attributes "sigma" and "varcov" which report the smoothing bandwidth that was used.

If weights is a matrix with more than one column, then the result is a list of images (if at="pixels") or a matrix of numerical values (if at="points").

If se=TRUE, the result is a list with two elements named estimate and SE, each of the format described above.

Amount of smoothing

The amount of smoothing is determined by the arguments sigma, varcov and adjust.

- if sigma is a single numerical value, this is taken as the standard deviation of the isotropic Gaussian kernel.
- alternatively sigma may be a function that computes an appropriate bandwidth from the data point pattern by calling sigma(x). To perform automatic bandwidth selection using cross-validation, it is recommended to use the functions bw.diggle, bw.CvL, bw.scott or bw.ppl.
- The smoothing kernel may be made anisotropic by giving the variance-covariance matrix varcov. The arguments sigma and varcov are incompatible.
- Alternatively sigma may be a vector of length 2 giving the standard deviations of the x and y coordinates, thus equivalent to varcov = diag(rep(sigma^2, 2)).
- if neither sigma nor varcov is specified, an isotropic Gaussian kernel will be used, with a default value of sigma calculated by a simple rule of thumb that depends only on the size of the window.
- The argument adjust makes it easy for the user to change the bandwidth specified by any of the rules above. The value of sigma will be multiplied by the factor adjust. The matrix varcov will be multiplied by adjust^2. To double the smoothing bandwidth, set adjust=2.
- An infinite bandwidth, sigma=Inf or adjust=Inf, is permitted, and yields an intensity estimate which is constant over the spatial domain.

Edge correction

If edge=TRUE, the intensity estimate is corrected for edge effect bias in one of two ways:

- If diggle=FALSE (the default) the intensity estimate is corrected by dividing it by the convolution of the Gaussian kernel with the window of observation. This is the approach originally described in Diggle (1985). Thus the intensity value at a point u is
 \[\hat{\lambda}(u) = e(u) \sum_i k(x_i - u) w_i \]
 where k is the Gaussian smoothing kernel, $e(u)$ is an edge correction factor, and w_i are the weights.
• If \texttt{diggle=TRUE} then the code uses the improved edge correction described by Jones (1993) and Diggle (2010, equation 18.9). This has been shown to have better performance (Jones, 1993) but is slightly slower to compute. The intensity value at a point \(u \) is

\[
\hat{\lambda}(u) = \sum_i k(x_i - u)w_je(x_i)
\]

where again \(k \) is the Gaussian smoothing kernel, \(e(x_i) \) is an edge correction factor, and \(w_i \) are the weights.

In both cases, the edge correction term \(e(u) \) is the reciprocal of the kernel mass inside the window:

\[
\frac{1}{e(u)} = \int_W k(v - u) \, dv
\]

where \(W \) is the observation window.

Smoothing kernel

By default, smoothing is performed using a Gaussian kernel.

The choice of smoothing kernel is determined by the argument \texttt{kernel}. This should be a character string giving the name of a recognised two-dimensional kernel (current options are "gaussian", "epanechnikov", "quartic" or "disc"), or a pixel image (object of class "im") containing values of the kernel, or a function \((x,y) \) which yields values of the kernel. The default is a Gaussian kernel.

If \texttt{scalekernel=TRUE} then the kernel values will be rescaled according to the arguments \texttt{sigma}, \texttt{varcov} and \texttt{adjust} as explained above, effectively treating \texttt{kernel} as the template kernel with standard deviation equal to 1. This is the default behaviour when \texttt{kernel} is a character string. If \texttt{scalekernel=FALSE}, the kernel values will not be altered, and the arguments \texttt{sigma}, \texttt{varcov} and \texttt{adjust} are ignored. This is the default behaviour when \texttt{kernel} is a pixel image or a function.

Desired output

If \texttt{at="pixels"} (the default), intensity values are computed at every location \(u \) in a fine grid, and are returned as a pixel image. The point pattern is first discretised using \texttt{pixellate.ppp}, then the intensity is computed using the Fast Fourier Transform. Accuracy depends on the pixel resolution and the discretisation rule. The pixel resolution is controlled by the arguments \ldots passed to \texttt{as.mask} (specify the number of pixels by \texttt{dimyx} or the pixel size by \texttt{eps}). The discretisation rule is controlled by the arguments \ldots passed to \texttt{pixellate.ppp} (the default rule is that each point is allocated to the nearest pixel centre; this can be modified using the arguments \texttt{fractional} and \texttt{preserve}).

If \texttt{at="points"}, the intensity values are computed to high accuracy at the points of \texttt{x} only. Computation is performed by directly evaluating and summing the kernel contributions without discretising the data. The result is a numeric vector giving the density values. The intensity value at a point \(x_i \) is (if \texttt{diggle=FALSE})

\[
\hat{\lambda}(x_i) = e(x_i) \sum_j k(x_j - x_i)w_j
\]

or (if \texttt{diggle=TRUE})

\[
\hat{\lambda}(x_i) = \sum_j k(x_j - x_i)w_je(x_j)
\]
If `leaveoneout=TRUE` (the default), then the sum in the equation is taken over all \(j \) not equal to \(i \), so that the intensity value at a data point is the sum of kernel contributions from all other data points. If `leaveoneout=FALSE` then the sum is taken over all \(j \), so that the intensity value at a data point includes a contribution from the same point.

Weights

If `weights` is a matrix with more than one column, then the calculation is effectively repeated for each column of weights. The result is a list of images (if `at="pixels"`) or a matrix of numerical values (if `at="points"`).

The argument `weights` can also be an expression. It will be evaluated in the data frame `as.data.frame(x)` to obtain a vector or matrix of weights. The expression may involve the symbols \(x \) and \(y \) representing the Cartesian coordinates, the symbol `marks` representing the mark values if there is only one column of marks, and the names of the columns of marks if there are several columns.

The argument `weights` can also be a pixel image (object of class `"im"`), numerical weights for the data points will be extracted from this image (by looking up the pixel values at the locations of the data points in \(x \)).

Standard error

If `se=TRUE`, the standard error of the estimate will also be calculated. The calculation assumes a Poisson point process.

If `weights` are given, then the calculation of standard error depends on the interpretation of the weights. This is controlled by the argument `wtype`.

- If `wtype="value"` (the default), the weights are interpreted as numerical values observed at the data locations. Roughly speaking, standard errors are proportional to the absolute values of the weights.
- If `wtype="multiplicity"` the weights are interpreted as multiplicities so that a weight of 2 is equivalent to having a pair of duplicated points at the data location. Roughly speaking, standard errors are proportional to the square roots of the weights. Negative weights are not permitted.

The default rule is now `wtype="value"` but previous versions of `density.ppp` (in `spatstat.explore` versions 3.1-0 and earlier) effectively used `wtype="multiplicity"`.

The meaning of `density.ppp`

This function is often misunderstood.

The result of `density.ppp` is not a spatial smoothing of the marks or weights attached to the point pattern. To perform spatial interpolation of values that were observed at the points of a point pattern, use `Smooth.ppp`.

The result of `density.ppp` is not a probability density. It is an estimate of the intensity function of the point process that generated the point pattern data. Intensity is the expected number of random points per unit area. The units of intensity are “points per unit area”. Intensity is usually a function of spatial location, and it is this function which is estimated by `density.ppp`. The integral of the intensity function over a spatial region gives the expected number of points falling in this region.
Inspecting an estimate of the intensity function is usually the first step in exploring a spatial point pattern dataset. For more explanation, see Baddeley, Rubak and Turner (2015) or Diggle (2003, 2010).

If you have two (or more) types of points, and you want a probability map or relative risk surface (the spatially-varying probability of a given type), use relrisk.

Technical issue: Negative Values

Negative and zero values of the density estimate are possible when at="pixels" because of numerical errors in finite-precision arithmetic.

By default, density.ppp does not try to repair such errors. This would take more computation time and is not always needed. (Also it would not be appropriate if weights include negative values.)

To ensure that the resulting density values are always positive, set positive=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

References

See Also

To select the bandwidth sigma automatically by cross-validation, use bw.diggle, bw.CvL, bw.scott or bw.ppl.

To perform spatial interpolation of values that were observed at the points of a point pattern, use Smooth.ppp.

For adaptive nonparametric estimation, see adaptive.density. For data sharpening, see sharpen.ppp.

To compute a relative risk surface or probability map for two (or more) types of points, use relrisk.

For information about the data structures, see ppp.object, im.object.
Examples

```r
if(interactive()) {
  opa <- par(mfrow=c(1,2))
  plot(density(cells, 0.05))
  plot(density(cells, 0.05, diggle=TRUE))
  par(opa)
  v <- diag(c(0.05, 0.07)^2)
  plot(density(cells, varcov=v))
}
# automatic bandwidth selection
plot(density(cells, sigma=bw.diggle(cells)))
# equivalent:
plot(density(cells, bw.diggle))
# evaluate intensity at points
density(cells, 0.05, at="points")

# non-Gaussian kernel
plot(density(cells, sigma=0.4, kernel="epanechnikov"))
```

```r
if(interactive()) {
  # see effect of changing pixel resolution
  opa <- par(mfrow=c(1,2))
  plot(density(cells, sigma=0.4))
  plot(density(cells, sigma=0.4, eps=0.05))
  par(opa)
}
```

relative risk calculation by hand (see relrisk.ppp)
lung <- split(chorley)$lung
larynx <- split(chorley)$larynx
D <- density(lung, sigma=2)
plot(density(larynx, sigma=2, weights=1/D))
```

---

density.psp  
**Kernel Smoothing of Line Segment Pattern**

Description

Compute a kernel smoothed intensity function from a line segment pattern.

Usage

```r
S3 method for class 'psp'
density(x, sigma, ..., weights=NULL, edge=TRUE,
 method=c("FFT", "C", "interpreted"),
 at=NULL)
```
Arguments

- **x**: Line segment pattern (object of class "psp") to be smoothed.
- **sigma**: Standard deviation of isotropic Gaussian smoothing kernel.
- **weights**: Optional. Numerical weights for each line segment. A numeric vector, of length equal to the number of segments in x.
- **edge**: Logical flag indicating whether to apply edge correction.
- **method**: Character string (partially matched) specifying the method of computation. Option "FFT" is the fastest, while "C" is the most accurate.
- **at**: Optional. An object specifying the locations where density values should be computed. Either a window (object of class "owin") or a point pattern (object of class "ppp" or "lpp").

Details

This is the method for the generic function `density` for the class "psp" (line segment patterns).

A kernel estimate of the intensity of the line segment pattern is computed. The result is the convolution of the isotropic Gaussian kernel, of standard deviation `sigma`, with the line segments. The result is computed as follows:

- if `method="FFT"` (the default), the line segments are discretised using `pixellate.psp`, then the Fast Fourier Transform is used to calculate the convolution. This method is the fastest, but is slightly less accurate. Accuracy can be improved by increasing pixel resolution.
- if `method="C"` the exact value of the convolution at the centre of each pixel is computed analytically using C code;
- if `method="interpreted"`, the exact value of the convolution at the centre of each pixel is computed analytically using R code. This method is the slowest.

If `edge=TRUE` this result is adjusted for edge effects by dividing it by the convolution of the same Gaussian kernel with the observation window.

If `weights` are given, then the contribution from line segment i is multiplied by the value of `weights[i]`.

If the argument `at` is given, then it specifies the locations where density values should be computed.

- If `at` is a window, then the window is converted to a binary mask using `pixellate.psp`, and density values are computed at the centre of each pixel in this mask. The result is a pixel image.
- If `at` is a point pattern, then density values are computed at each point location, and the result is a numeric vector.

Value

A pixel image (object of class "im") or a numeric vector.
density.splitppp

Kernel Smoothed Intensity of Split Point Pattern

Description

Compute a kernel smoothed intensity function for each of the components of a split point pattern, or each of the point patterns in a list.

Usage

```r
S3 method for class 'splitppp'
density(x, ..., weights=NULL, se=FALSE)
S3 method for class 'ppplist'
density(x, ..., weights=NULL, se=FALSE)
```

Arguments

- **x** Split point pattern (object of class "splitppp" created by `split.ppp`) to be smoothed. Alternatively a list of point patterns, of class "ppplist".
- **...** Arguments passed to `density.ppp` to control the smoothing, pixel resolution, edge correction etc.
- **weights** Numerical weights for the points. See Details.
- **se** Logical value indicating whether to compute standard errors as well.
Details

This is a method for the generic function density.

The argument x should be a list of point patterns, and should belong to one of the classes "ppplist" or "splitppp".

Typically x is obtained by applying the function split.ppp to a point pattern y by calling split(y). This splits the points of y into several sub-patterns.

A kernel estimate of the intensity function of each of the point patterns is computed using density.ppp. The return value is usually a list, each of whose entries is a pixel image (object of class "im"). The return value also belongs to the class "solist" and can be plotted or printed.

If the argument at="points" is given, the result is a list of numeric vectors giving the intensity values at the data points.

If se=TRUE, the result is a list with two elements named estimate and SE, each of the format described above.

The argument weights specifies numerical case weights for the data points. Normally it should be a list, with the same length as x. The entry weights[[i]] will determine the case weights for the pattern x[[i]], and may be given in any format acceptable to density.ppp. For example, weights[[i]] can be a numeric vector of length equal to npoints(x[[i]]), a single numeric value, a numeric matrix, a pixel image (object of class "im"), or an expression.

For convenience, weights can also be a single expression or a single pixel image (object of class "im").

Value

A list of pixel images (objects of class "im") which can be plotted or printed; or a list of numeric vectors giving the values at specified points.

If se=TRUE, the result is a list with two elements named estimate and SE, each of the format described above above.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

ppp.object, im.object

Examples

```
Z <- density(split(amacrine), 0.05)
plot(Z)
```
densityAdaptiveKernel  Adaptive Kernel Estimate of Intensity of Point Pattern

Description

Computes an adaptive estimate of the intensity function of a point pattern using a variable-bandwidth smoothing kernel.

Usage

densityAdaptiveKernel(X, ...)  
## S3 method for class 'ppp'
densityAdaptiveKernel(X, bw, ...,  
weights=NULL,  
at=c("pixels", "points"),  
edge=TRUE, ngroups)

Arguments

X  
Point pattern (object of class "ppp").

bw  
Numeric vector of smoothing bandwidths for each point in X, or a pixel image giving the smoothing bandwidth at each spatial location, or a spatial function of class "funxy" giving the smoothing bandwidth at each location. The default is to compute bandwidths using bw.abram.ppp.

...  
Arguments passed to bw.abram to compute the smoothing bandwidths if bw is missing, or passed to as.mask to control the spatial resolution of the result.

weights  
Optional vector of numeric weights for the points of X.

at  
String specifying whether to compute the intensity values at a grid of pixel locations (at="pixels") or only at the points of X (at="points").

edge  
Logical value indicating whether to perform edge correction.

ngroups  
Number of groups into which the bandwidth values should be partitioned and discretised.

Details

This function computes a spatially-adaptive kernel estimate of the spatially-varying intensity from the point pattern X using the partitioning technique of Davies and Baddeley (2018).

The argument bw specifies the smoothing bandwidths to be applied to each of the points in X. It may be a numeric vector of bandwidth values, or a pixel image or function yielding the bandwidth values.

If the points of X are \( x_1, \ldots, x_n \) and the corresponding bandwidths are \( \sigma_1, \ldots, \sigma_n \) then the adaptive kernel estimate of intensity at a location \( u \) is

\[
\hat{\lambda}(u) = \sum_{i=1}^{n} k(u, x_i, \sigma_i)
\]
where \( k(u, v, \sigma) \) is the value at \( u \) of the (possibly edge-corrected) smoothing kernel with bandwidth \( \sigma \) induced by a data point at \( v \).

Exact computation of the estimate above can be time-consuming: it takes \( n \) times longer than fixed-bandwidth smoothing.

The partitioning method of Davies and Baddeley (2018) accelerates this computation by partitioning the range of bandwidths into \( \text{ngroups} \) intervals, correspondingly subdividing the points of the pattern \( X \) into \( \text{ngroups} \) sub-patterns according to bandwidth, and applying fixed-bandwidth smoothing to each sub-pattern.

The default value of \( \text{ngroups} \) is the integer part of the square root of the number of points in \( X \), so that the computation time is only about \( \sqrt{n} \) times slower than fixed-bandwidth smoothing. Any positive value of \( \text{ngroups} \) can be specified by the user. Specifying \( \text{ngroups} = \text{Inf} \) enforces exact computation of the estimate without partitioning. Specifying \( \text{ngroups} = 1 \) is the same as fixed-bandwidth smoothing with bandwidth \( \text{sigma} = \text{median}(\text{bw}) \).

Value

If \( \text{at} = \text{"pixels"} \) (the default), the result is a pixel image. If \( \text{at} = \text{"points"} \), the result is a numeric vector with one entry for each data point in \( X \).

Bandwidths and Bandwidth Selection

The function densityAdaptiveKernel computes one adaptive estimate of the intensity, determined by the smoothing bandwidth values \( \text{bw} \).

Typically the bandwidth values are computed by first computing a pilot estimate of the intensity, then using \( \text{bw.abram} \) to compute the vector of bandwidths according to Abramson’s rule. This involves specifying a global bandwidth \( h_0 \).

The default bandwidths may work well in many contexts, but for optimal bandwidth selection, this calculation should be performed repeatedly with different values of \( h_0 \) to optimise the value of \( h_0 \). This can be computationally demanding; we recommend the function multiscale.density in the \texttt{sparr} package which supports much faster bandwidth selection, using the FFT method of Davies and Baddeley (2018).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Tilman Davies.

References


densityfun.ppp

See Also

density.ppp, adaptive.density, densityVoronoi, im.object.

See the function bivariate.density in the sparr package for a more flexible implementation, and multiscale.density for an implementation that is more efficient for bandwidth selection.

Examples

Z <- densityAdaptiveKernel(redwood, h0=0.1)
plot(Z, main="Adaptive kernel estimate")
points(redwood, col="white")

densityfun.ppp  Kernel Estimate of Intensity as a Spatial Function

Description

Compute a kernel estimate of intensity for a point pattern, and return the result as a function of spatial location.

Usage

densityfun(X, ...)

## S3 method for class 'ppp'
densityfun(X, sigma = NULL, ..., weights = NULL, edge = TRUE, diggle = FALSE)

Arguments

X  Point pattern (object of class "ppp").
sigma  Smoothing bandwidth, or bandwidth selection function, passed to density.ppp.
...  Additional arguments passed to density.ppp.
weights  Optional vector of weights associated with the points of X.
edge,diggle  Logical arguments controlling the edge correction. Arguments passed to density.ppp.

Details

The commands densityfun and density both perform kernel estimation of the intensity of a point pattern. The difference is that density returns a pixel image, containing the estimated intensity values at a grid of locations, while densityfun returns a function(x,y) which can be used to compute the intensity estimate at any spatial locations with coordinates x,y. For purposes such as model-fitting it is more accurate to use densityfun.
Value

A function with arguments x, y, drop. The function also belongs to the class "densityfun" which has methods for print and as.im. It also belongs to the class "funxy" which has methods for plot, contour and persp.

Using the result of densityfun

If f <- densityfun(X), where X is a two-dimensional point pattern, the resulting object f is a function in the R language.

By calling this function, the user can evaluate the estimated intensity at any desired spatial locations. Additionally f belongs to other classes which allow it to be printed and plotted easily.

The function f has arguments x, y, drop.

- The arguments x, y of f specify the query locations. They can be numeric vectors of coordinates. Alternatively x can be a point pattern (or data acceptable to as.ppp) and y is omitted. The result of f(x, y) is a numeric vector giving the values of the intensity.
- The argument drop of f specifies how to handle query locations which are outside the window of the original data. If drop=TRUE (the default), such locations are ignored. If drop=FALSE, a value of NA is returned for each such location.

Note that the smoothing parameters, such as the bandwidth sigma, are assigned when densityfun is executed. Smoothing parameters are fixed inside the function f and cannot be changed by arguments of f.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

density.

To interpolate values observed at the points, use Smoothfun.

Examples

f <- densityfun(swedishpines)
f
f(42, 60)
X <- runifpoint(2, Window(swedishpines))
f(X)
plot(f)
densityHeat  

Diffusion Estimate of Point Pattern Intensity

Description

Computes a diffusion estimate of intensity for a point pattern.

Usage

densityHeat(x, sigma, ...)

Arguments

x  
Point pattern (object of class "ppp" or another class).

sigma  
Smoothing bandwidth. Usually a single number giving the equivalent standard deviation of the smoother.

...  
Additional arguments depending on the method.

Details

The generic function densityHeat computes an estimate of point process intensity using a diffusion kernel method.

Further details depend on the class of point pattern x. See the help file for the appropriate method.

Value

Depends on the class of x.

Author(s)

Adrian Baddeley and Tilman Davies.

See Also

For two-dimensional point patterns (objects of class "ppp"), the diffusion kernel estimator is densityHeat.ppp. The usual kernel estimator is density.ppp, and the tessellation-based estimator is adaptive.density.
densityHeat.ppp  Diffusion Estimate of Point Pattern Intensity

Description
Computes the diffusion estimate of the intensity of a point pattern.

Usage
```r
S3 method for class 'ppp'
densityHeat(x, sigma, ..., weights=NULL,
 connect=8, symmetric=FALSE,
 sigmaX=NULL, k=1, show=FALSE, se=FALSE,
 at=c("pixels", "points"),
 leaveoneout = TRUE,
 extrapolate = FALSE, coarsen = TRUE,
 verbose=TRUE, internal=NULL)
```

Arguments
- `x`: Point pattern (object of class "ppp").
- `sigma`: Smoothing bandwidth. A single number giving the equivalent standard deviation of the smoother. Alternatively, a pixel image (class "im") or a function(x,y) giving the spatially-varying bandwidth.
- `...`: Arguments passed to `pixellate.ppp` controlling the pixel resolution.
- `weights`: Optional numeric vector of weights associated with each point of `x`.
- `connect`: Grid connectivity: either 4 or 8.
- `symmetric`: Logical value indicating whether to force the algorithm to use a symmetric random walk.
- `sigmaX`: Numeric vector of bandwidths, one associated with each data point in `x`. See Details.
- `k`: Integer. Calculations will be performed by repeatedly multiplying the current state by the k-step transition matrix.
- `show`: Logical value indicating whether to plot successive iterations.
- `se`: Logical value indicating whether to compute standard errors.
- `at`: Character string specifying whether to compute values at a grid of pixels (`at="pixels"`, the default) or at the data points of `x` (`at="points"`).
- `leaveoneout`: Logical value specifying whether to compute a leave-one-out estimate at each data point, when `at="points"`.
- `extrapolate`: Logical value specifying whether to use Richardson extrapolation to improve the accuracy of the computation.
- `coarsen`: Logical value, controlling the calculation performed when `extrapolate=TRUE`. See Details.
- `verbose`: Logical value specifying whether to print progress reports.
- `internal`: Developer use only.
Details

This command computes a diffusion kernel estimate of point process intensity from the observed point pattern \( x \).

The function \texttt{densityHeat} is generic, with methods for point patterns in two dimensions (class "\texttt{ppp}") and point patterns on a linear network (class "\texttt{lpp}"). The function \texttt{densityHeat.ppp} described here is the method for class "\texttt{ppp}". Given a two-dimensional point pattern \( x \), it computes a diffusion kernel estimate of the intensity of the point process which generated \( x \).

Diffusion kernel estimates were developed by Botev et al (2010), Barry and McIntyre (2011) and Baddeley et al (2021).

Barry and McIntyre (2011) proposed an estimator for point process intensity based on a random walk on the pixel grid inside the observation window. Baddeley et al (2021) showed that the Barry-McIntyre method is a special case of the diffusion estimator proposed by Botev et al (2010).

The original Barry-McIntyre algorithm assumes a symmetric random walk (i.e. each possible transition has the same probability \( p \)) and requires a square pixel grid (i.e. equal spacing in the \( x \) and \( y \) directions). Their original algorithm is used if \texttt{symmetric=TRUE}. Use the ... arguments to ensure a square grid: for example, the argument \texttt{eps} specifies a square grid with spacing \( \texttt{eps} \) units.

The more general algorithm used here (Baddeley et al, 2021) does not require a square grid of pixels. If the pixel grid is not square, and if \texttt{symmetric=FALSE} (the default), then the random walk is not symmetric, in the sense that the probabilities of different jumps will be different, in order to ensure that the smoothing is isotropic.

This implementation also includes two generalizations to the case of adaptive smoothing (Baddeley et al, 2021).

In the first version of adaptive smoothing, the bandwidth is spatially-varying. The argument \texttt{sigma} should be a pixel image (class "\texttt{im}") or a function\( (x,y) \) specifying the bandwidth at each spatial location. The smoothing is performed by solving the heat equation with spatially-varying parameters.

In the second version of adaptive smoothing, each data point in \( x \) is smoothed using a separate bandwidth. The argument \texttt{sigmaX} should be a numeric vector specifying the bandwidth for each point of \( x \). The smoothing is performed using the lagged arrival algorithm. The argument \texttt{sigma} can be omitted.

If \texttt{extrapolate=FALSE} (the default), calculations are performed using the Euler scheme for the heat equation. If \texttt{extrapolate=TRUE}, the accuracy of the result will be improved by applying Richardson extrapolation (Baddeley et al, 2021, Section 4). After computing the intensity estimate using the Euler scheme on the desired pixel grid, another estimate is computed using the same method on another pixel grid, and the two estimates are combined by Richardson extrapolation to obtain a more accurate result. The second grid is coarser than the original grid if \texttt{coarsen=TRUE} (the default), and finer than the original grid if \texttt{coarsen=FALSE}. Setting \texttt{extrapolate=TRUE} increases computation time by 35% if \texttt{coarsen=TRUE} and by 400% if \texttt{coarsen=FALSE}.

Value

Pixel image (object of class "\texttt{im}") giving the estimated intensity of the point process.

If \texttt{se=TRUE}, the result has an attribute "\texttt{se}" which is another pixel image giving the estimated standard error.

If \texttt{at="points"} then the result is a numeric vector with one entry for each point of \( x \).
Author(s)
Adrian Baddeley and Tilman Davies.

References
Baddeley, A., Davies, T., Rakshit, S., Nair, G. and McSwiggan, G. (2021) Diffusion smoothing for
spatial point patterns. Statistical Science, in press.
Barry, R.P. and McIntyre, J. (2011) Estimating animal densities and home range in regions with
irregular boundaries and holes: a lattice-based alternative to the kernel density estimator. Ecological
Modelling 222, 1666–1672.
of Statistics 38, 2916–2957.

See Also
density.ppp for the usual kernel estimator, and adaptive.density for the tessellation-based esti-
mator.

Examples
online <- interactive()
if(!online) op <- spatstat.options(npixel=32)

X <- runifpoint(25, letterR)
Z <- densityHeat(X, 0.2)
if(online) {
  plot(Z, main="Diffusion estimator")
  plot(X, add=TRUE, pch=16)
  integral(Z) # should equal 25
}

Z <- densityHeat(X, 0.2, se=TRUE)
Zse <- attr(Z, "se")
if(online) plot(solist(estimate=Z, SE=Zse), main="")

Zex <- densityHeat(X, 0.2, extrapolate=TRUE)

ZS <- densityHeat(X, 0.2, symmetric=TRUE, eps=0.125)
if(online) {
  plot(ZS, main="fixed bandwidth")
  plot(X, add=TRUE, pch=16)
}

sig <- function(x,y) { (x-1.5)/10 }
ZZ <- densityHeat(X, sig)
if(online) {
  plot(ZZ, main="adaptive (I)")
  plot(X, add=TRUE, pch=16)
}
densityVoronoi

Intensity Estimate of Point Pattern Using Voronoi-Dirichlet Tessellation

Description

Computes an adaptive estimate of the intensity function of a point pattern using the Dirichlet-Voronoi tessellation.

Usage

densityVoronoi(X, ...)

## S3 method for class 'ppp'
densityVoronoi(X, f = 1, ...,
               counting=FALSE,
               fixed=FALSE,
               nrep = 1, verbose=TRUE)

Arguments

X
Point pattern dataset (object of class "ppp").

f
Fraction (between 0 and 1 inclusive) of the data points that will be used to build a tessellation for the intensity estimate.

...
Arguments passed to as.im determining the pixel resolution of the result.

counting
Logical value specifying the choice of estimation method. See Details.

fixed
Logical. If FALSE (the default), the data points are independently randomly thinned, so the number of data points that are retained is random. If TRUE, the number of data points retained is fixed. See Details.

nrep
Number of independent repetitions of the randomised procedure.

verbose
Logical value indicating whether to print progress reports.

Details

This function is an alternative to density.ppp. It computes an estimate of the intensity function of a point pattern dataset. The result is a pixel image giving the estimated intensity.

If f=1 (the default), the Voronoi estimate (Barr and Schoenberg, 2010) is computed: the point pattern X is used to construct a Voronoi/Dirichlet tessellation (see dirichlet); the areas of the
Dirichlet tiles are computed; the estimated intensity in each tile is the reciprocal of the tile area. The result is a pixel image of intensity estimates which are constant on each tile of the tessellation.

If \( f=0 \), the intensity estimate at every location is equal to the average intensity (number of points divided by window area). The result is a pixel image of intensity estimates which are constant.

If \( f \) is strictly between 0 and 1, the estimation method is applied to a random subset of \( X \). This randomised procedure is repeated \( n_{\text{rep}} \) times, and the results are averaged. The subset is selected as follows:

- if \( \text{fixed}=\text{FALSE} \), the dataset \( X \) is randomly thinned by deleting or retaining each point independently, with probability \( f \) of retaining a point.
- if \( \text{fixed}=\text{TRUE} \), a random sample of fixed size \( m \) is taken from the dataset \( X \), where \( m \) is the largest integer less than or equal to \( f\times n \) and \( n \) is the number of points in \( X \).

Then the intensity estimate is calculated as follows:

- if \( \text{counting}=\text{FALSE} \) (the default), the thinned pattern is used to construct a Dirichlet tessellation and form the Voronoi estimate (Barr and Schoenberg, 2010) which is then adjusted by a factor \( 1/f \) or \( n/m \) as appropriate to obtain an estimate of the intensity of \( X \) in the tile.
- if \( \text{counting}=\text{TRUE} \), the randomly selected subset \( A \) is used to construct a Dirichlet tessellation, while the complementary subset \( B \) (consisting of points that were not selected in the sample) is used for counting to calculate a quadrat count estimate of intensity. For each tile of the Dirichlet tessellation formed by \( A \), we count the number of points of \( B \) falling in the tile, and divide by the area of the same tile, to obtain an estimate of the intensity of the pattern \( B \) in the tile. This estimate is adjusted by \( 1/(1-f) \) or \( n/(n-m) \) as appropriate to obtain an estimate of the intensity of \( X \) in the tile.

Ogata et al. (2003) and Ogata (2004) estimated intensity using the Dirichlet-Voronoi tessellation in a modelling context. Baddeley (2007) proposed intensity estimation by subsampling with \( 0 < f < 1 \), and used the technique described above with \( \text{fixed}=\text{TRUE} \) and \( \text{counting}=\text{TRUE} \). Barr and Schoenberg (2010) described and analysed the Voronoi estimator (corresponding to \( f=1 \)). Moradi et al (2019) developed the subsampling technique with \( \text{fixed}=\text{FALSE} \) and \( \text{counting}=\text{FALSE} \) and called it the smoothed Voronoi estimator.

Value

A pixel image (object of class "im") whose values are estimates of the intensity of \( X \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk> and Mehdi Moradi <m2.moradi@yahoo.com>.

References

110

deriv.fv

See Also
adaptive.density, density.ppp, dirichlet, im.object.
Examples
plot(densityVoronoi(nztrees, 1, f=1), main="Voronoi estimate")
nr <- if(interactive()) 100 else 5
plot(densityVoronoi(nztrees, f=0.5, nrep=nr), main="smoothed Voronoi estimate")

deriv.fv

Calculate Derivative of Function Values

Description
Applies numerical differentiation to the values in selected columns of a function value table.
Usage
## S3 method for class 'fv'
deriv(expr, which = "*", ...,
method=c("spline", "numeric"),
kinks=NULL,
periodic=FALSE,
Dperiodic=periodic)
Arguments
expr

Function values to be differentiated. A function value table (object of class "fv",
see fv.object).

which

Character vector identifying which columns of the table should be differentiated.
Either a vector containing names of columns, or one of the wildcard strings "*"
or "." explained below.

...

Extra arguments passed to smooth.spline to control the differentiation algorithm, if method="spline".

method

Differentiation method. A character string, partially matched to either "spline"
or "numeric".


kinks Optional vector of \( x \) values where the derivative is allowed to be discontinuous.
periodic Logical value indicating whether the function \( \text{expr} \) is periodic.
Dperiodic Logical value indicating whether the resulting derivative should be a periodic function.

Details

This command performs numerical differentiation on the function values in a function value table (object of class "fv"). The differentiation is performed either by \texttt{smooth.spline} or by a naive numerical difference algorithm.

The command \texttt{deriv} is generic. This is the method for objects of class "fv".

Differentiation is applied to every column (or to each of the selected columns) of function values in turn, using the function argument as the \( x \) coordinate and the selected column as the \( y \) coordinate. The original function values are then replaced by the corresponding derivatives.

The optional argument \texttt{which} specifies which of the columns of function values in \( \text{expr} \) will be differentiated. The default (indicated by the wildcard \texttt{which="*"}) is to differentiate all function values, i.e. all columns except the function argument. Alternatively \texttt{which="."} designates the subset of function values that are displayed in the default plot. Alternatively which can be a character vector containing the names of columns of \( \text{expr} \).

If the argument \texttt{kinks} is given, it should be a numeric vector giving the discontinuity points of the function: the value or values of the function argument at which the function is not differentiable. Differentiation will be performed separately on intervals between the discontinuity points.

If \texttt{periodic=TRUE} then the function \( \text{expr} \) is taken to be periodic, with period equal to the range of the function argument in \( \text{expr} \). The resulting derivative is periodic.

If \texttt{periodic=FALSE} but \texttt{Dperiodic=TRUE}, then the derivative is assumed to be periodic. This would be appropriate if \( \text{expr} \) is the cumulative distribution function of an angular variable, for example.

Value

Another function value table (object of class "fv") of the same format.

Author(s)

Adrian Baddeley \texttt{<Adrian.Baddeley@curtin.edu.au>}
and Rolf Turner \texttt{<r.turner@auckland.ac.nz>}

See Also

\texttt{with.fv, fv.object, smooth.spline}

Examples

\begin{verbatim}
G <- Gest(cells)
plot(deriv(G, which=".", spar=0.5))
A <- pairorient(redwood, 0.05, 0.15)
DA <- deriv(A, spar=0.6, Dperiodic=TRUE)
\end{verbatim}
dg.envelope  

Global Envelopes for Dao-Genton Test

Description
Computes the global envelopes corresponding to the Dao-Genton test of goodness-of-fit.

Usage

```r
dg.envelope(X, ...,
 nsim = 19, nsimsub=nsim-1, nrank = 1,
 alternative=c("two.sided", "less", "greater"),
 leaveout=1, interpolate = FALSE,
 savefuns=FALSE, savepatterns=FALSE,
 verbose = TRUE)
```

Arguments

- **X** Either a point pattern dataset (object of class "ppp", "lpp" or "pp3") or a fitted point process model (object of class "ppm", "kppm" or "slrm").
- **...** Arguments passed to `mad.test` or `envelope` to control the conduct of the test. Useful arguments include `fun` to determine the summary function, `rinterval` to determine the range of \( r \) values used in the test, and `verbose=FALSE` to turn off the messages.
- **nsim** Number of simulated patterns to be generated in the primary experiment.
- **nsimsub** Number of simulations in each basic test. There will be \( nsim \) repetitions of the basic test, each involving \( nsimsub \) simulated realisations, so there will be a total of \( nsim \times (nsimsub + 1) \) simulations.
- **nrank** Integer. Rank of the envelope value amongst the \( nsim \) simulated values. A rank of 1 means that the minimum and maximum simulated values will be used.
- **alternative** Character string determining whether the envelope corresponds to a two-sided test (`alternative="two.sided"`, the default) or a one-sided test with a lower critical boundary (`alternative="less"`) or a one-sided test with an upper critical boundary (`alternative="greater"`).
- **leaveout** Optional integer 0, 1 or 2 indicating how to calculate the deviation between the observed summary function and the nominal reference value, when the reference value must be estimated by simulation. See Details.
- **interpolate** Logical value indicating whether to interpolate the distribution of the test statistic by kernel smoothing, as described in Dao and Genton (2014, Section 5).
- **savefuns** Logical flag indicating whether to save the simulated function values (from the first stage).
- **savepatterns** Logical flag indicating whether to save the simulated point patterns (from the first stage).
- **verbose** Logical value determining whether to print progress reports.
Details


If \( X \) is a point pattern, the null hypothesis is CSR.

If \( X \) is a fitted model, the null hypothesis is that model.

The Dao-Genton test is biased when the significance level is very small (small \( p \)-values are not reliable) and we recommend \texttt{bits.envelope} in this case.

Value

An object of class "fv".

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rakshit. Implemented by Adrian Baddeley \texttt{<Adrian.Baddeley@curtin.edu.au>}, Rolf Turner \texttt{<r.turner@auckland.ac.nz>} and Ege Rubak \texttt{<rubak@math.aau.dk>}.

References


See Also

\texttt{dg.test, mad.test, envelope}

Examples

```r
ns <- if(interactive()) 19 else 4
E <- dg.envelope(swedishpines, Lest, nsim=ns)
plot(E)
Eo <- dg.envelope(swedishpines, Lest, alternative="less", nsim=ns)
Ei <- dg.envelope(swedishpines, Lest, interpolate=TRUE, nsim=ns)
```
**dg.progress**

*Progress Plot of Dao-Genton Test of Spatial Pattern*

**Description**
Generates a progress plot (envelope representation) of the Dao-Genton test for a spatial point pattern.

**Usage**
```
dg.progress(X, fun = Lest, ...,
 exponent = 2, nsim = 19, nsimsub = nsim - 1,
 nrank = 1, alpha, leaveout=1, interpolate = FALSE, rmin=0,
 savefuns = FALSE, savepatterns = FALSE, verbose=TRUE)
```

**Arguments**
- **X** Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point process model (object of class "ppm", "kppm" or other class) or an envelope object (class "envelope").
- **fun** Function that computes the desired summary statistic for a point pattern.
- **...** Arguments passed to `envelope`. Useful arguments include `alternative` to specify one-sided or two-sided envelopes.
- **exponent** Positive number. The exponent of the $L^p$ distance. See Details.
- **nsim** Number of repetitions of the basic test.
- **nsimsub** Number of simulations in each basic test. There will be `nsim` repetitions of the basic test, each involving `nsimsub` simulated realisations, so there will be a total of `nsim * (nsimsub + 1)` simulations.
- **nrank** Integer. The rank of the critical value of the Monte Carlo test, amongst the `nsim` simulated values. A rank of 1 means that the minimum and maximum simulated values will become the critical values for the test.
- **alpha** Optional. The significance level of the test. Equivalent to `nrank/(nsim+1)` where `nsim` is the number of simulations.
- **leaveout** Optional integer 0, 1 or 2 indicating how to calculate the deviation between the observed summary function and the nominal reference value, when the reference value must be estimated by simulation. See Details.
- **interpolate** Logical value indicating how to compute the critical value. If `interpolate=FALSE` (the default), a standard Monte Carlo test is performed, and the critical value is the largest simulated value of the test statistic (if `nrank=1`) or the `nrank`-th largest (if `nrank` is another number). If `interpolate=TRUE`, kernel density estimation is applied to the simulated values, and the critical value is the upper `alpha` quantile of this estimated distribution.
- **rmin** Optional. Left endpoint for the interval of $r$ values on which the test statistic is calculated.
savefuns Logical value indicating whether to save the simulated function values (from the first stage).

savepatterns Logical value indicating whether to save the simulated point patterns (from the first stage).

verbose Logical value indicating whether to print progress reports.

Details

The Dao and Genton (2014) test for a spatial point pattern is described in `dg.test`. This test depends on the choice of an interval of distance values (the argument `rinterval`). A progress plot or envelope representation of the test (Baddeley et al, 2014, 2015; Baddeley, Rubak and Turner, 2015) is a plot of the test statistic (and the corresponding critical value) against the length of the interval `rinterval`.

The command `dg.progress` effectively performs `dg.test` on `X` using all possible intervals of the form `[0, R]`, and returns the resulting values of the test statistic, and the corresponding critical values of the test, as a function of `R`.

The result is an object of class "fv" that can be plotted to obtain the progress plot. The display shows the test statistic (solid black line) and the test acceptance region (grey shading). If `X` is an envelope object, then some of the data stored in `X` may be re-used:

- If `X` is an envelope object containing simulated functions, and `fun=NULL`, then the code will re-use the simulated functions stored in `X`.
- If `X` is an envelope object containing simulated point patterns, then `fun` will be applied to the stored point patterns to obtain the simulated functions. If `fun` is not specified, it defaults to `Lest`.
- Otherwise, new simulations will be performed, and `fun` defaults to `Lest`.

If the argument `rmin` is given, it specifies the left endpoint of the interval defining the test statistic: the tests are performed using intervals `[rmin, R]` where `R ≥ rmin`.

The argument `leaveout` specifies how to calculate the discrepancy between the summary function for the data and the nominal reference value, when the reference value must be estimated by simulation. The values `leaveout=0` and `leaveout=1` are both algebraically equivalent (Baddeley et al, 2014, Appendix) to computing the difference `observed - reference` where the `reference` is the mean of simulated values. The value `leaveout=2` gives the leave-two-out discrepancy proposed by Dao and Genton (2014).

Value

An object of class "fv" that can be plotted to obtain the progress plot.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rakshit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>. 
References


See Also

dg.test, dclf.progress

Examples

```r/ns <- if(interactive()) 19 else 5
plot(dg.progress(cells, nsim=ns))
```

dg.sigtrace

**Significance Trace of Dao-Genton Test**

Description

Generates a Significance Trace of the Dao and Genton (2014) test for a spatial point pattern.

Usage

```r
dg.sigtrace(X, fun = Lest, ..., exponent = 2, nsim = 19, nsimsub = nsim - 1,
alternative = c("two.sided", "less", "greater"),
rmin=0, leaveout=1,
interpolate = FALSE, confint = TRUE, alpha = 0.05,
savefuns=FALSE, savepatterns=FALSE, verbose=FALSE)
```

Arguments

- **X**
  Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point process model (object of class "ppm", "kppm" or other class) or an envelope object (class "envelope").

- **fun**
  Function that computes the desired summary statistic for a point pattern.

- **...**
  Arguments passed to `envelope`.

- **exponent**
  Positive number. Exponent used in the test statistic. Use `exponent=2` for the Diggle-Cressie-Loosmore-Ford test, and `exponent=Inf` for the Maximum Absolute Deviation test. See Details.
nsim
Number of repetitions of the basic test.

nsimsub
Number of simulations in each basic test. There will be nsim repetitions of the basic test, each involving nsimsub simulated realisations, so there will be a total of nsim * (nsimsub + 1) simulations.

alternative
Character string specifying the alternative hypothesis. The default (alternative="two.sided") is that the true value of the summary function is not equal to the theoretical value postulated under the null hypothesis. If alternative="less" the alternative hypothesis is that the true value of the summary function is lower than the theoretical value.

rmin
Optional. Left endpoint for the interval of r values on which the test statistic is calculated.

leaveout
Optional integer 0, 1 or 2 indicating how to calculate the deviation between the observed summary function and the nominal reference value, when the reference value must be estimated by simulation. See Details.

interpolate
Logical value indicating whether to interpolate the distribution of the test statistic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

confint
Logical value indicating whether to compute a confidence interval for the ‘true’ p-value.

alpha
Significance level to be plotted (this has no effect on the calculation but is simply plotted as a reference value).

savefuns
Logical flag indicating whether to save the simulated function values (from the first stage).

savepatterns
Logical flag indicating whether to save the simulated point patterns (from the first stage).

verbose
Logical flag indicating whether to print progress reports.

Details
The Dao and Genton (2014) test for a spatial point pattern is described in dg.test. This test depends on the choice of an interval of distance values (the argument rinterval). A significance trace (Bowman and Azzalini, 1997; Baddeley et al, 2014, 2015; Baddeley, Rubak and Turner, 2015) of the test is a plot of the p-value obtained from the test against the length of the interval rinterval.

The command dg.sigtrace effectively performs dg.test on X using all possible intervals of the form [0, R], and returns the resulting p-values as a function of R.

The result is an object of class "fv" that can be plotted to obtain the significance trace. The plot shows the Dao-Genton adjusted p-value (solid black line), the critical value 0.05 (dashed red line), and a pointwise 95% confidence band (grey shading) for the ‘true’ (Neyman-Pearson) p-value. The confidence band is based on the Agresti-Coull (1998) confidence interval for a binomial proportion.

If X is an envelope object and fun=NULL then the code will re-use the simulated functions stored in X.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic: the tests are performed using intervals [rmin, R] where R ≥ rmin.

The argument leaveout specifies how to calculate the discrepancy between the summary function for the data and the nominal reference value, when the reference value must be estimated by simulation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed - reference where the reference is the mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by Dao and Genton (2014).

Value

An object of class "fv" that can be plotted to obtain the significance trace.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rakshit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References


See Also

dg.test for the Dao-Genton test, dclf.sigtrace for significance traces of other tests.

Examples

```r
ns <- if(interactive()) 19 else 5
plot(dg.sigtrace(cells, nsim=ns))
```
Dao-Genton Adjusted Goodness-Of-Fit Test

Description


Usage

dg.test(X, ...,
exponent = 2, nsim=19, nsimsub=nsim-1,
alternative=c("two.sided", "less", "greater"),
reuse = TRUE, leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

Arguments

X
Either a point pattern dataset (object of class "ppp", "lpp" or "pp3") or a fitted
point process model (object of class "ppm", "kppm", "lppm" or "slrm").

... Arguments passed to dclf.test or mad.test or envelope to control the con-
donact of the test. Useful arguments include fun to determine the summary func-
tion, rinterval to determine the range of r values used in the test, and use.theory
described under Details.

exponent Exponent used in the test statistic. Use exponent=2 for the Diggle-Cressie-
Loosmore-Ford test, and exponent=Inf for the Maximum Absolute Deviation
test.

nsim Number of repetitions of the basic test.

nsimsub Number of simulations in each basic test. There will be nsim repetitions of the
basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

alternative Character string specifying the alternative hypothesis. The default (alternative="two.sided")
is that the true value of the summary function is not equal to the theoretical
value postulated under the null hypothesis. If alternative="less" the alter-
native hypothesis is that the true value of the summary function is lower than the
theoretical value.

reuse Logical value indicating whether to re-use the first stage simulations at the sec-
dond stage, as described by Dao and Genton (2014).

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).
savepatterns Logical flag indicating whether to save the simulated point patterns (from the first stage).

verbose Logical value indicating whether to print progress reports.

Details


If \( X \) is a point pattern, the null hypothesis is CSR.

If \( X \) is a fitted model, the null hypothesis is that model.

The argument `use.theory` passed to `envelope` determines whether to compare the summary function for the data to its theoretical value for CSR (`use.theory=TRUE`) or to the sample mean of simulations from CSR (`use.theory=FALSE`).

The argument `leaveout` specifies how to calculate the discrepancy between the summary function for the data and the nominal reference value, when the reference value must be estimated by simulation. The values `leaveout=0` and `leaveout=1` are both algebraically equivalent (Baddeley et al, 2014, Appendix) to computing the difference observed - reference where the reference is the mean of simulated values. The value `leaveout=2` gives the leave-two-out discrepancy proposed by Dao and Genton (2014).

The Dao-Genton test is biased when the significance level is very small (small \( p \)-values are not reliable) and we recommend `bits.test` in this case.

Value

A hypothesis test (object of class “htest”) which can be printed to show the outcome of the test.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rakshit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References


See Also

`bits.test, dclf.test, mad.test`
Examples

```r
ns <- if(interactive()) 19 else 4
dg.test(cells, nsim=ns)
dg.test(cells, alternative="less", nsim=ns)
dg.test(cells, nsim=ns, interpolate=TRUE)
```

---

**dimhat**

*Estimate Dimension of Central Subspace*

---

**Description**

Given the kernel matrix that characterises a central subspace, this function estimates the dimension of the subspace.

**Usage**

```r
dimhat(M)
```

**Arguments**

- `M` Kernel of subspace. A symmetric, non-negative definite, numeric matrix, typically obtained from `sdr`.

**Details**

This function computes the maximum descent estimate of the dimension of the central subspace with a given kernel matrix `M`.

The matrix `M` should be the kernel matrix of a central subspace, which can be obtained from `sdr`. It must be a symmetric, non-negative-definite, numeric matrix.

The algorithm finds the eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$ of $M$, and then determines the index $k$ for which $\lambda_k/\lambda_{k-1}$ is greatest.

**Value**

A single integer giving the estimated dimension.

**Author(s)**

Matlab original by Yongtao Guan, translated to R by Suman Rakshit.

**References**


**See Also**

`sdr`, `subspaceDistance`
distcdf

Distribution Function of Interpoint Distance

Description

Computes the cumulative distribution function of the distance between two independent random points in a given window or windows.

Usage

```
distcdf(W, V=W, ..., dW=1, dV=dW, nr=1024,
 regularise=TRUE, savedenom=FALSE, delta=NULL)
```

Arguments

- `W`: A window (object of class "owin") containing the first random point.
- `V`: Optional. Another window containing the second random point. Defaults to `W`.
- `...`: Arguments passed to `as.mask` to determine the pixel resolution for the calculation.
- `dV`, `dW`: Optional. Probability densities (not necessarily normalised) for the first and second random points respectively. Data in any format acceptable to `as.im`, for example, a function(x,y) or a pixel image or a numeric value. The default corresponds to a uniform distribution over the window.
- `nr`: Integer. The number of values of interpoint distance $r$ for which the CDF will be computed. Should be a large value. Alternatively if `nr=NULL`, a good default value will be chosen, depending on the pixel resolution.
- `regularise`: Logical value indicating whether to smooth the results for very small distances, to avoid discretisation artefacts.
- `savedenom`: Logical value indicating whether to save the denominator of the double integral as an attribute of the result.
- `delta`: Optional. A positive number. The maximum permitted spacing between values of the function argument.

Details

This command computes the Cumulative Distribution Function $CDF(r) = \text{Prob}(T \leq r)$ of the Euclidean distance $T = \|X_1 - X_2\|$ between two independent random points $X_1$ and $X_2$.

In the simplest case, the command `distcdf(W)`, the random points are assumed to be uniformly distributed in the same window `W`.

Alternatively the two random points may be uniformly distributed in two different windows `W` and `V`.

In the most general case the first point $X_1$ is random in the window `W` with a probability density proportional to `dW`, and the second point $X_2$ is random in a different window `V` with probability density proportional to `dV`. The values of `dW` and `dV` must be finite and nonnegative.
The calculation is performed by numerical integration of the set covariance function `setcov` for uniformly distributed points, and by computing the covariance function `imcov` in the general case. The accuracy of the result depends on the pixel resolution used to represent the windows: this is controlled by the arguments ... which are passed to `as.mask`. For example use `eps=0.1` to specify pixels of size 0.1 units.

The arguments `W` or `V` may also be point patterns (objects of class "ppp"). The result is the cumulative distribution function of the distance from a randomly selected point in the point pattern, to a randomly selected point in the other point pattern or window.

If `regularise=TRUE` (the default), values of the cumulative distribution function for very short distances are smoothed to avoid discretisation artefacts. Smoothing is applied to all distances shorter than the width of 10 pixels.

Numerical accuracy of some calculations requires very fine spacing of the values of the function argument `r`. If the argument `delta` is given, then after the cumulative distribution function has been calculated, it will be interpolated onto a finer grid of `r` values with spacing less than or equal to `delta`.

### Value

An object of class "fv", see `fv.object`, which can be plotted directly using `plot.fv`.

### Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

### See Also

`setcov`, `as.mask`.

### Examples

# The unit disc
B <- disc()
plot(distcdf(B))
Arguments

- **x, q**  Vector of quantiles.
- **p**  Vector of probabilities.
- **kernel**  String name of the kernel. Options are "gaussian", "rectangular", "triangular", "epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching is used).
- **n**  Number of observations.
- **mean**  Mean of distribution.
- **sd**  Standard deviation of distribution.
- **lower.tail**  Logical; if TRUE (the default), then probabilities are \( P(X \leq x) \), otherwise, \( P(X > x) \).

Details

These functions give the probability density, cumulative distribution function, quantile function and random generation for several distributions used in kernel estimation for one-dimensional (numerical) data.

The available kernels are those used in `density.default`, namely "gaussian", "rectangular", "triangular", "epanechnikov", "biweight", "cosine" and "optcosine". For more information about these kernels, see `density.default`.

dkernel gives the probability density, pkernel gives the cumulative distribution function, qkernel gives the quantile function, and rkernel generates random deviates.

Value

A numeric vector. For dkernel, a vector of the same length as x containing the corresponding values of the probability density. For pkernel, a vector of the same length as x containing the corresponding values of the cumulative distribution function. For qkernel, a vector of the same length as p containing the corresponding quantiles. For rkernel, a vector of length n containing randomly generated values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Martin Hazelton

See Also

density.default, kernel.factor

Examples

```r
x <- seq(-3,3,length=100)
plot(x, dkernel(x, "epa"), type="l",
 main=c("Epanechnikov kernel", "probability density"))
plot(x, pkernel(x, "opt"), type="l",
 main=c("OptCosine kernel", "cumulative distribution function"))
p <- seq(0.1, length=256)
```
plot(p, qkernel(p, "biw"), type="l",
    main=c("Biweight kernel", "cumulative distribution function"))

y <- rkernel(100, "tri")
hist(y, main="Random variates from triangular density")
rug(y)

---

**domain.quadrattest**

*Extract the Domain of any Spatial Object*

**Description**

Given a spatial object such as a point pattern, in any number of dimensions, this function extracts the spatial domain in which the object is defined.

**Usage**

```r
S3 method for class 'quadtratst'
domain(X, ...)
```

**Arguments**

- **X**
  A spatial object such as a point pattern (in any number of dimensions), line segment pattern or pixel image.

- **...**
  Extra arguments. They are ignored by all the methods listed here.

**Details**

The function `domain` is generic.

For a spatial object `X` in any number of dimensions, `domain(X)` extracts the spatial domain in which `X` is defined.

For a two-dimensional object `X`, typically `domain(X)` is the same as `Window(X)`.

Exceptions occur for methods related to linear networks.

**Value**

A spatial object representing the domain of `X`. Typically a window (object of class "owin"), a three-dimensional box ("box3"), a multidimensional box ("boxx") or a linear network ("linnet").

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak.math.aau.dk>.
See Also
domain, domain.quadratcount, domain.ppm, domain.rmhmodel, domain.lpp, Window, Frame.

Examples
domain(quadrat.test(redwood, 2, 2))

edge.Ripley  Ripley's Isotropic Edge Correction

Description
Computes Ripley’s isotropic edge correction weights for a point pattern.

Usage
edge.Ripley(X, r, W = Window(X), method = c("C", "interpreted"),
maxweight = 100, internal=list())
rmax.Ripley(W)

Arguments
X  Point pattern (object of class "ppp").
W  Window for which the edge correction is required.
r  Vector or matrix of interpoint distances for which the edge correction should be computed.
method  Choice of algorithm. Either "interpreted" or "C". This is needed only for debugging purposes.
maxweight  Maximum permitted value of the edge correction weight.
internal  For developer use only.

Details
The function edge.Ripley computes Ripley’s (1977) isotropic edge correction weight, which is used in estimating the $K$ function and in many other contexts.
The function rmax.Ripley computes the maximum value of distance $r$ for which the isotropic edge correction estimate of $K(r)$ is valid.
For a single point $x$ in a window $W$, and a distance $r > 0$, the isotropic edge correction weight is
\[ e(u, r) = \frac{2\pi r}{\text{length}(c(u, r) \cap W)} \]
where $c(u, r)$ is the circle of radius $r$ centred at the point $u$. The denominator is the length of the overlap between this circle and the window $W$. 
The function `edge.Ripley` computes this edge correction weight for each point in the point pattern \( X \) and for each corresponding distance value in the vector or matrix \( r \).

If \( r \) is a vector, with one entry for each point in \( X \), then the result is a vector containing the edge correction weights \( e(X[i], r[i]) \) for each \( i \).

If \( r \) is a matrix, with one row for each point in \( X \), then the result is a matrix whose \( i, j \) entry gives the edge correction weight \( e(X[i], r[i,j]) \). For example `edge.Ripley(X, pairdist(X))` computes all the edge corrections required for the \( K \)-function.

If any value of the edge correction weight exceeds `maxwt`, it is set to `maxwt`.

The function `rmax.Ripley` computes the smallest distance \( r \) such that it is possible to draw a circle of radius \( r \), centred at a point of \( W \), such that the circle does not intersect the interior of \( W \).

**Value**

A numeric vector or matrix.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

`edge.Trans`, `rmax.Trans`, `Kest`

**Examples**

```r
v <- edge.Ripley(cells, pairdist(cells))

rmax.Ripley(Window(cells))
```
Usage

edge.Trans(X, Y = X, W = Window(X),
    exact = FALSE, paired = FALSE,
    ..., trim = spatstat.options("maxedgewt"),
    dx=NULL, dy=NULL,
    gW=spatstat.options("maxedgewt")
)

Arguments

X, Y  Point patterns (objects of class "ppp").
W  Window for which the edge correction is required.
exact  Logical. If TRUE, a slow algorithm will be used to compute the exact value. If
FALSE, a fast algorithm will be used to compute the approximate value.
paired  Logical value indicating whether X and Y are paired. If TRUE, compute the edge
        correction for corresponding points X[i], Y[i] for all i. If FALSE, compute the
        edge correction for each possible pair of points X[i], Y[j] for all i and j.
    ...  Ignored.
trim  Maximum permitted value of the edge correction weight.
dx, dy  Alternative data giving the x and y coordinates of the vector differences between
        the points. Incompatible with X and Y. See Details.
give.rmax  Logical. If TRUE, also compute the value of rmax.Trans(W) and return it as an
        attribute of the result.
g, gW  Optional. Set covariance of W, if it has already been computed. Not required if
        W is a rectangle.

Details

The function edge.Trans computes Ohser and Stoyan’s translation edge correction weight, which
is used in estimating the K function and in many other contexts.
The function rmax.Trans computes the maximum value of distance r for which the translation
edge correction estimate of K(r) is valid.
For a pair of points x and y in a window W, the translation edge correction weight is

\[ e(u, r) = \frac{ \text{area}(W) }{ \text{area}(W \cap (W + y - x)) } \]

where \( W + y - x \) is the result of shifting the window W by the vector \( y - x \). The denominator is
the area of the overlap between this shifted window and the original window.
The function edge.Trans computes this edge correction weight. If paired=TRUE, then X and Y
should contain the same number of points. The result is a vector containing the edge correction
weights \( e(X[i], Y[i]) \) for each i.
If paired=FALSE, then the result is a matrix whose i,j entry gives the edge correction weight
\( e(X[i], Y[j]) \).
Computation is exact if the window is a rectangle. Otherwise,
• if exact=TRUE, the edge correction weights are computed exactly using overlap.owin, which can be quite slow.
• if exact=FALSE (the default), the weights are computed rapidly by evaluating the set covariance function setcov using the Fast Fourier Transform.

If any value of the edge correction weight exceeds trim, it is set to trim.

The arguments dx and dy can be provided as an alternative to X and Y. If paired=TRUE then dx, dy should be vectors of equal length such that the vector difference of the ith pair is c(dx[i], dy[i]). If paired=FALSE then dx, dy should be matrices of the same dimensions, such that the vector difference between X[i] and Y[j] is c(dx[i,j], dy[i,j]). The argument W is needed.

The value of rmax.Trans is the shortest distance from the origin (0,0) to the boundary of the support of the set covariance function of W. It is computed by pixel approximation using setcov, unless W is a rectangle, when rmax.Trans(W) is the length of the shortest side of the rectangle.

Value

Numeric vector or matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References


See Also

rmax.Trans, edge.Ripley, setcov, Kest

Examples

v <- edge.Trans(cells)
rmax.Trans(Window(cells))
Usage

Emark(X, r=NULL,
    correction=c("isotropic", "Ripley", "translate"),
    method="density", ..., normalise=FALSE)
Vmark(X, r=NULL,
    correction=c("isotropic", "Ripley", "translate"),
    method="density", ..., normalise=FALSE)

Arguments

X
The observed point pattern. An object of class "ppp" or something acceptable to as.ppp. The pattern should have numeric marks.

r
Optional. Numeric vector. The values of the argument r at which the function \(E(r)\) or \(V(r)\) should be evaluated. There is a sensible default.

correction
A character vector containing any selection of the options "isotropic", "Ripley" or "translate". It specifies the edge correction(s) to be applied.

method
A character vector indicating the user’s choice of density estimation technique to be used. Options are "density", "loess", "sm" and "smrep".

...
Arguments passed to the density estimation routine (density, loess or sm.density) selected by method.

normalise
If TRUE, normalise the estimate of \(E(r)\) or \(V(r)\) so that it would have value equal to 1 if the marks are independent of the points.

Details

For a marked point process, Schlather et al (2004) defined the functions \(E(r)\) and \(V(r)\) to be the conditional mean and conditional variance of the mark attached to a typical random point, given that there exists another random point at a distance \(r\) away from it.

More formally,
\[
E(r) = E_{0u}[M(0)]
\]
and
\[
V(r) = E_{0u}[(M(0) - E(u))^2]
\]
where \(E_{0u}\) denotes the conditional expectation given that there are points of the process at the locations 0 and \(u\) separated by a distance \(r\), and where \(M(0)\) denotes the mark attached to the point 0.

These functions may serve as diagnostics for dependence between the points and the marks. If the points and marks are independent, then \(E(r)\) and \(V(r)\) should be constant (not depending on \(r\)). See Schlather et al (2004).

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to as.ppp. It must be a marked point pattern with numeric marks.

The argument r is the vector of values for the distance \(r\) at which \(k_f(r)\) is estimated.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in X as Window(X)) may have arbitrary shape.
Biases due to edge effects are treated in the same manner as in Kest. The edge corrections implemented here are

**isotropic/Ripley** Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is implemented only for rectangular and polygonal windows (not for binary masks).

**translate** Translation correction (Ohser, 1983). Implemented for all window geometries, but slow for complex windows.

Note that the estimator assumes the process is stationary (spatially homogeneous).

The numerator and denominator of the mark correlation function (in the expression above) are estimated using density estimation techniques. The user can choose between

"density" which uses the standard kernel density estimation routine density, and works only for evenly-spaced r values;

"loess" which uses the function loess in the package modreg;

"sm" which uses the function sm.density in the package sm and is extremely slow;

"smrep" which uses the function sm.density in the package sm and is relatively fast, but may require manual control of the smoothing parameter hmult.

**Value**

If marks(X) is a numeric vector, the result is an object of class "fv" (see fv.object). If marks(X) is a data frame, the result is a list of objects of class "fv", one for each column of marks.

An object of class "fv" is essentially a data frame containing numeric columns

- **r** the values of the argument r at which the function E(r) or V(r) has been estimated
- **theo** the theoretical, constant value of E(r) or V(r) when the marks attached to different points are independent

Together with a column or columns named "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function E(r) or V(r) obtained by the edge corrections named.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

Mark correlation markcorr, mark variogram markvario for numeric marks.

Mark connection function markconnect and multitype K-functions Kcross, Kdot for factor-valued marks.
Examples

```r
plot(Emark(spruces))
E <- Emark(spruces, method="density", kernel="epanechnikov")
plot(Vmark(spruces))

plot(Emark(finpines))
V <- Vmark(finpines)
```

Description

Computes simulation envelopes of a summary function.

Usage

```r
evelope(Y, fun, ...)
```

### S3 method for class 'ppp'

```r
evelope(Y, fun=Kest, nsim=99, nrank=1, ...,
 funargs=list(), funYargs=funargs,
 simulate=NULL, fix.n=FALSE, fix.marks=FALSE,
 verbose=TRUE, clipdata=TRUE,
 transform=NULL, global=FALSE, ginterval=NULL, use.theory=NULL,
 alternative=c("two.sided", "less", "greater"),
 scale=NULL, clamp=FALSE,
 savefuns=FALSE, savepatterns=FALSE,
 nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
 maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
 do.pwrong=FALSE, envir.simul=NULL)
```

Arguments

- **Y**: Object containing point pattern data. A point pattern (object of class "ppp") or a fitted point process model (object of class "ppm", "kppm" or "slrm").
- **fun**: Function that computes the desired summary statistic for a point pattern.
- **nsim**: Number of simulated point patterns to be generated when computing the envelopes.
- **nrank**: Integer. Rank of the envelope value amongst the nsim simulated values. A rank of 1 means that the minimum and maximum simulated values will be used.
- **...**: Extra arguments passed to fun.
- **funargs**: A list, containing extra arguments to be passed to fun.
- **funYargs**: Optional. A list, containing extra arguments to be passed to fun when applied to the original data Y only.
Optional. Specifies how to generate the simulated point patterns. If `simulate` is an expression in the R language, then this expression will be evaluated `nsim` times, to obtain `nsim` point patterns which are taken as the simulated patterns from which the envelopes are computed. If `simulate` is a function, then this function will be repeatedly applied to the data pattern `Y` to obtain `nsim` simulated patterns. If `simulate` is a list of point patterns, then the entries in this list will be treated as the simulated patterns from which the envelopes are computed. Alternatively, `simulate` may be an object produced by the `envelope` command: see Details.

Logical. If `TRUE`, simulated patterns will have the same number of points as the original data pattern. This option is currently not available for `envelope.kppm`.

Logical. If `TRUE`, simulated patterns will have the same number of points and the same marks as the original data pattern. In a multitype point pattern this means that the simulated patterns will have the same number of points of each type as the original data. This option is currently not available for `envelope.kppm`.

Logical flag indicating whether to print progress reports during the simulations.

Logical flag indicating whether the data point pattern should be clipped to the same window as the simulated patterns, before the summary function for the data is computed. This should usually be `TRUE` to ensure that the data and simulations are properly comparable.

Optional. A transformation to be applied to the function values, before the envelopes are computed. An expression object (see Details).

Logical flag indicating whether envelopes should be pointwise (`global=FALSE`) or simultaneous (`global=TRUE`).

Optional. A vector of length 2 specifying the interval of `r` values for the simultaneous critical envelopes. Only relevant if `global=TRUE`.

Logical value indicating whether to use the theoretical value, computed by `fun`, as the reference value for simultaneous envelopes. Only relevant when `global=TRUE`. Default is `use.theory=TRUE` if `Y` is a point pattern, or a point process model equivalent to Complete Spatial Randomness, and `use.theory=FALSE` otherwise.

Character string determining whether the envelope corresponds to a two-sided test (`side="two.sided"`, the default) or a one-sided test with a lower critical boundary (`side="less"`) or a one-sided test with an upper critical boundary (`side="greater"`).

Optional. Scaling function for global envelopes. A function in the R language which determines the relative scale of deviations, as a function of distance `r`, when computing the global envelopes. Applicable only when `global=TRUE`. Summary function values for distance `r` will be divided by `scale(r)` before the maximum deviation is computed. The resulting global envelopes will have width proportional to `scale(r)`.

Logical value indicating how to compute envelopes when `alternative="less"` or `alternative="greater"`. Deviations of the observed summary function from the theoretical summary function are initially evaluated as signed real numbers, with large positive values indicating consistency with the alternative
hypothesis. If clamp=FALSE (the default), these values are not changed. If clamp=TRUE, any negative values are replaced by zero.

- **savefuns**: Logical flag indicating whether to save all the simulated function values.
- **savepatterns**: Logical flag indicating whether to save all the simulated point patterns.
- **nsim2**: Number of extra simulated point patterns to be generated if it is necessary to use simulation to estimate the theoretical mean of the summary function. Only relevant when global=TRUE and the simulations are not based on CSR.
- **VARIANCE**: Logical. If TRUE, critical envelopes will be calculated as sample mean plus or minus nSD times sample standard deviation.
- **nSD**: Number of estimated standard deviations used to determine the critical envelopes, if VARIANCE=TRUE.
- **Yname**: Character string that should be used as the name of the data point pattern Y when printing or plotting the results.
- **maxnerr**: Maximum number of rejected patterns. If fun yields a fatal error when applied to a simulated point pattern (for example, because the pattern is empty and fun requires at least one point), the pattern will be rejected and a new random point pattern will be generated. If this happens more than maxnerr times, the algorithm will give up.
- **rejectNA**: Logical value specifying whether to reject a simulated pattern if the resulting values of fun are all equal to NA, NaN or infinite. If FALSE (the default), then simulated patterns are only rejected when fun gives a fatal error.
- **silent**: Logical value specifying whether to print a report each time a simulated pattern is rejected.
- **do.pwrong**: Logical. If TRUE, the algorithm will also estimate the true significance level of the “wrong” test (the test that declares the summary function for the data to be significant if it lies outside the pointwise critical boundary at any point). This estimate is printed when the result is printed.
- **envir.simul**: Environment in which to evaluate the expression simulate, if not the current environment.

**Details**

The envelope command performs simulations and computes envelopes of a summary statistic based on the simulations. The result is an object that can be plotted to display the envelopes. The envelopes can be used to assess the goodness-of-fit of a point process model to point pattern data.

For the most basic use, if you have a point pattern X and you want to test Complete Spatial Randomness (CSR), type `plot(envelope(X, Kest,nsim=39))` to see the K function for X plotted together with the envelopes of the K function for 39 simulations of CSR.

The envelope function is generic, with methods for the classes "ppp", "ppm", "kppm" and "slrm" described here. There are also methods for the classes "pp3", "lpp" and "lppm" which are described separately under `envelope.pp3` and `envelope.lpp`. Envelopes can also be computed from other envelopes, using `envelope.envelope`.

To create simulation envelopes, the command `envelope(Y, . . .)` first generates nsim random point patterns in one of the following ways.
• If \(Y\) is a point pattern (an object of class "ppp") and \(\text{simulate} = \text{NULL}\), then we generate \(\text{nsim}\) simulations of Complete Spatial Randomness (i.e. \(\text{nsim}\) simulated point patterns each being a realisation of the uniform Poisson point process) with the same intensity as the pattern \(Y\). (If \(Y\) is a multitype point pattern, then the simulated patterns are also given independent random marks; the probability distribution of the random marks is determined by the relative frequencies of marks in \(Y\).)

• If \(Y\) is a fitted point process model (an object of class "ppm" or "kppm" or "slrm") and \(\text{simulate} = \text{NULL}\), then this routine generates \(\text{nsim}\) simulated realisations of that model.

• If \(\text{simulate}\) is supplied, then it determines how the simulated point patterns are generated. It may be either
  
  – an expression in the R language, typically containing a call to a random generator. This expression will be evaluated \(\text{nsim}\) times to yield \(\text{nsim}\) point patterns. For example if \(\text{simulate} = \text{expression(}\text{runifpoint}(100)\text{)}\) then each simulated pattern consists of exactly 100 independent uniform random points.
  
  – a function in the R language, typically containing a call to a random generator. This function will be applied repeatedly to the original data pattern \(Y\) to yield \(\text{nsim}\) point patterns. For example if \(\text{simulate} = \text{rlabel}\) then each simulated pattern was generated by evaluating \(\text{rlabel}(Y)\) and consists of a randomly-relabelled version of \(Y\).
  
  – a list of point patterns. The entries in this list will be taken as the simulated patterns.
  
  – an object of class "envelope". This should have been produced by calling \text{envelope} with the argument \(\text{savepatterns}=\text{TRUE}\). The simulated point patterns that were saved in this object will be extracted and used as the simulated patterns for the new envelope computation. This makes it possible to plot envelopes for two different summary functions based on exactly the same set of simulated point patterns.

The summary statistic \(\text{fun}\) is applied to each of these simulated patterns. Typically \(\text{fun}\) is one of the functions \text{Kest}, \text{Gest}, \text{Fest}, \text{Jest}, \text{pcf}, \text{Kcross}, \text{Kdot}, \text{Gcross}, \text{Gdot}, \text{Kmulti}, \text{Gmulti}, \text{Jmulti} or \text{Kinhom}. It may also be a character string containing the name of one of these functions.

The statistic \(\text{fun}\) can also be a user-supplied function; if so, then it must have arguments \(X\) and \(r\) like those in the functions listed above, and it must return an object of class "fv".

Upper and lower critical envelopes are computed in one of the following ways:

**pointwise**: by default, envelopes are calculated pointwise (i.e. for each value of the distance argument \(r\)), by sorting the \(\text{nsim}\) simulated values, and taking the \(m\)-th lowest and \(m\)-th highest values, where \(m = \text{nrank}\). For example if \(\text{nrank}=1\), the upper and lower envelopes are the pointwise maximum and minimum of the simulated values.

The pointwise envelopes are not “confidence bands” for the true value of the function! Rather, they specify the critical points for a Monte Carlo test (Ripley, 1981). The test is constructed by choosing a fixed value of \(r\), and rejecting the null hypothesis if the observed function value lies outside the envelope at this value of \(r\). This test has exact significance level \(\alpha = 2 \times \text{nrank}/(1 + \text{nsim})\).

**simultaneous**: if \(\text{global}=\text{TRUE}\), then the envelopes are determined as follows. First we calculate the theoretical mean value of the summary statistic (if we are testing CSR, the theoretical value is supplied by \text{fun}; otherwise we perform a separate set of \(\text{nsim2}\) simulations, compute the average of all these simulated values, and take this average as an estimate of the theoretical mean value). Then, for each simulation, we compare the simulated curve to the theoretical curve,
and compute the maximum absolute difference between them (over the interval of \( r \) values specified by \( \text{ginterval} \)). This gives a deviation value \( d_i \) for each of the \( \text{nsim} \) simulations. Finally we take the \( m \)-th largest of the deviation values, where \( m=\text{rank} \), and call this \( \text{dcrit} \).

Then the simultaneous envelopes are of the form \( \text{lo} = \text{expected} - \text{dcrit} \) and \( \text{hi} = \text{expected} + \text{dcrit} \) where \( \text{expected} \) is either the theoretical mean value \( \text{theo} \) (if we are testing CSR) or the estimated theoretical value \( \text{mmean} \) (if we are testing another model). The simultaneous critical envelopes have constant width \( 2 \times \text{dcrit} \).

The simultaneous critical envelopes allow us to perform a different Monte Carlo test (Ripley, 1981). The test rejects the null hypothesis if the graph of the observed function lies outside the envelope at any value of \( r \). This test has exact significance level \( \alpha = \text{rank} / (1 + \text{nsim}) \).

This test can also be performed using \texttt{mad.test}.

**based on sample moments:** if \texttt{VARIANCE=TRUE}, the algorithm calculates the (pointwise) sample mean and sample variance of the simulated functions. Then the envelopes are computed as mean plus or minus \( \text{nSD} \) standard deviations. These envelopes do not have an exact significance interpretation. They are a naive approximation to the critical points of the Neyman-Pearson test assuming the summary statistic is approximately Normally distributed.

The return value is an object of class "fv" containing the summary function for the data point pattern, the upper and lower simulation envelopes, and the theoretical expected value (exact or estimated) of the summary function for the model being tested. It can be plotted using \texttt{plot.envelope}.

If \texttt{VARIANCE=TRUE} then the return value also includes the sample mean, sample variance and other quantities.

Arguments can be passed to the function \texttt{fun} through \texttt{...}. This means that you simply specify these arguments in the call to \texttt{envelope}, and they will be passed to \texttt{fun}. In particular, the argument \texttt{correction} determines the edge correction to be used to calculate the summary statistic. See the section on Edge Corrections, and the Examples.

Arguments can also be passed to the function \texttt{fun} through the list \texttt{funargs}. This mechanism is typically used if an argument of \texttt{fun} has the same name as an argument of \texttt{envelope}. The list \texttt{funargs} should contain entries of the form \texttt{name=value}, where each \texttt{name} is the name of an argument of \texttt{fun}.

There is also an option, rarely used, in which different function arguments are used when computing the summary function for the data \( Y \) and for the simulated patterns. If \texttt{funYargs} is given, it will be used when the summary function for the data \( Y \) is computed, while \texttt{funargs} will be used when computing the summary function for the simulated patterns. This option is only needed in rare cases: usually the basic principle requires that the data and simulated patterns must be treated equally, so that \texttt{funargs} and \texttt{funYargs} should be identical.

If \( Y \) is a fitted cluster point process model (object of class "kppm"), and \texttt{simulate=NULL}, then the model is simulated directly using \texttt{simulate.kppm}.

If \( Y \) is a fitted Gibbs point process model (object of class "ppm"), and \texttt{simulate=NULL}, then the model is simulated by running the Metropolis-Hastings algorithm \texttt{rmh}. Complete control over this algorithm is provided by the arguments \texttt{start} and \texttt{control} which are passed to \texttt{rmh}.

For simultaneous critical envelopes (\texttt{global=TRUE}) the following options are also useful:

\texttt{ginterval} determines the interval of \( r \) values over which the deviation between curves is calculated. It should be a numeric vector of length 2. There is a sensible default (namely, the recommended plotting interval for \texttt{fun(X)}, or the range of \( r \) values if \( r \) is explicitly specified).
transform specifies a transformation of the summary function fun that will be carried out before the deviations are computed. Such transforms are useful if global=TRUE or VARIANCE=TRUE. The transform must be an expression object using the symbol . to represent the function value (and possibly other symbols recognised by with.fv). For example, the conventional way to normalise the $K$ function (Ripley, 1981) is to transform it to the $L$ function $L(r) = \sqrt{\frac{K(r)}{\pi}}$ and this is implemented by setting transform=expression(sqrt(./pi)).

It is also possible to extract the summary functions for each of the individual simulated point patterns, by setting savefuns=TRUE. Then the return value also has an attribute "simfuns" containing all the summary functions for the individual simulated patterns. It is an "fv" object containing functions named sim1, sim2, ... representing the nsim summary functions.

It is also possible to save the simulated point patterns themselves, by setting savepatterns=TRUE. Then the return value also has an attribute "simpatterns" which is a list of length nsim containing all the simulated point patterns.

See plot.envelope and plot.fv for information about how to plot the envelopes.

Different envelopes can be recomputed from the same data using envelope.envelope. Envelopes can be combined using pool.envelope.

Value

An object of class "envelope" and "fv", see fv.object, which can be printed and plotted directly. Essentially a data frame containing columns

- \textbf{r} the vector of values of the argument \textit{r} at which the summary function \textit{fun} has been estimated
- \textbf{obs} values of the summary function for the data point pattern
- \textbf{lo} lower envelope of simulations
- \textbf{hi} upper envelope of simulations

and either

- \textbf{theo} theoretical value of the summary function under CSR (Complete Spatial Randomness, a uniform Poisson point process) if the simulations were generated according to CSR
- \textbf{mmean} estimated theoretical value of the summary function, computed by averaging simulated values, if the simulations were not generated according to CSR.

Additionally, if savepatterns=TRUE, the return value has an attribute "simpatterns" which is a list containing the nsim simulated patterns. If savefuns=TRUE, the return value has an attribute "simfuns" which is an object of class "fv" containing the summary functions computed for each of the nsim simulated patterns.

Errors and warnings

An error may be generated if one of the simulations produces a point pattern that is empty, or is otherwise unacceptable to the function fun.

The upper envelope may be \texttt{NA} (plotted as plus or minus infinity) if some of the function values computed for the simulated point patterns are \texttt{NA}. Whether this occurs will depend on the function fun, but it usually happens when the simulated point pattern does not contain enough points to compute a meaningful value.
Confidence intervals

Simulation envelopes do not compute confidence intervals; they generate significance bands. If you really need a confidence interval for the true summary function of the point process, use `lohboot`. See also `varblock`.

Edge corrections

It is common to apply a correction for edge effects when calculating a summary function such as the $K$ function. Typically the user has a choice between several possible edge corrections. In a call to `envelope`, the user can specify the edge correction to be applied in `fun`, using the argument `correction`. See the Examples below.

Summary functions in spatstat

Summary functions that are available in `spatstat`, such as `Kest`, `Gest` and `pcf`, have a standard argument called `correction` which specifies the name of one or more edge corrections.

The list of available edge corrections is different for each summary function, and may also depend on the kind of window in which the point pattern is recorded. In the case of `Kest` (the default and most frequently used value of `fun`) the best edge correction is Ripley's isotropic correction if the window is rectangular or polygonal, and the translation correction if the window is a binary mask. See the help files for the individual functions for more information.

All the summary functions in `spatstat` recognise the option `correction="best"` which gives the “best” (most accurate) available edge correction for that function.

In a call to `envelope`, if `fun` is one of the summary functions provided in `spatstat`, then the default is `correction="best"`. This means that by default, the envelope will be computed using the “best” available edge correction.

The user can override this default by specifying the argument `correction`. For example the computation can be accelerated by choosing another edge correction which is less accurate than the “best” one, but faster to compute.

User-written summary functions

If `fun` is a function written by the user, then `envelope` has to guess what to do.

If `fun` has an argument called `correction`, or has ... arguments, then `envelope` assumes that the function can handle a correction argument. To compute the envelope, `fun` will be called with a correction argument. The default is `correction="best"`, unless overridden in the call to `envelope`.

Otherwise, if `fun` does not have an argument called `correction` and does not have ... arguments, then `envelope` assumes that the function cannot handle a correction argument. To compute the envelope, `fun` is called without a correction argument.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References


**See Also**

dclf.test, mad.test for envelope-based tests.

test.object, plot.envelope, plot.fv, envelope.envelope, pool.envelope for handling envelopes. There are also methods for print and summary.

Kest, Gest, Fest, Jest, pcf, ppm, default.expand

**Examples**

```r
X <- simdat
online <- interactive()
Nsim <- if(online) 19 else 3

Envelope of K function under CSR
plot(envelope(X, nsim=Nsim))

Translation edge correction (this is also FASTER): if(online) {
plot(envelope(X, correction="translate"))
} else {
E <- envelope(X, nsim=Nsim, correction="translate")
}

Global envelopes
if(online) {
plot(envelope(X, Lest, global=TRUE))
plot(envelope(X, Kest, global=TRUE, scale=function(r) { r })))
} else {
E <- envelope(X, Lest, nsim=Nsim, global=TRUE)
E <- envelope(X, Kest, nsim=Nsim, global=TRUE, scale=function(r) { r })
E
summary(E)
}

Envelope of G function under CSR
if(online) {
plot(envelope(X, Gest))
} else {
E <- envelope(X, Gest, correction="rs", nsim=Nsim)
}
```
# Envelope of L function under CSR
# \( L(r) = \sqrt{K(r)/\pi} \)
if(online) {
    E <- envelope(X, Kest)
} else {
    E <- envelope(X, Kest, correction="border", nsim=Nsim)
}
plot(E, sqrt(./pi) ~ r)

# Simultaneous critical envelope for L function
# (alternatively, use Lest)
if(online) {
    plot(envelope(X, Kest, transform=expression(sqrt(./pi)), global=TRUE))
} else {
    E <- envelope(X, Kest, nsim=Nsim, correction="border",
                   transform=expression(sqrt(./pi)), global=TRUE)
}

## One-sided envelope
if(online) {
    plot(envelope(X, Lest, alternative="less"))
} else {
    E <- envelope(X, Lest, nsim=Nsim, alternative="less")
}

# How to pass arguments needed to compute the summary functions:
# We want envelopes for Jcross(X, "A", "B")
# where "A" and "B" are types of points in the dataset 'demopat'
if(online) {
    plot(envelope(demopat, Jcross, i="A", j="B"))
} else {
    plot(envelope(demopat, Jcross, correction="rs", i="A", j="B", nsim=Nsim))
}

# Use of `simulate` expression
if(online) {
    plot(envelope(cells, Gest, simulate=expression(runifpoint(42))))
    plot(envelope(cells, Gest, simulate=expression(rMaternI(100,0.02))))
} else {
    plot(envelope(cells, Gest, correction="rs", simulate=expression(runifpoint(42)), nsim=Nsim))
    plot(envelope(cells, Gest, correction="rs", simulate=expression(rMaternI(100,0.02)),
                   nsim=Nsim, global=TRUE))
}

# Use of `simulate` function
if(online) {
    plot(envelope(amacrine, Kcross, simulate=rlabel))
} else {
    plot(envelope(amacrine, Kcross, simulate=rlabel, nsim=Nsim))
}
Envelope under random toroidal shifts
if(online) {
  plot(envelope(amacrine, Kcross, i="on", j="off",
                simulate=expression(rshift(amacrine, radius=0.25))))
}

Envelope under random shifts with erosion
if(online) {
  plot(envelope(amacrine, Kcross, i="on", j="off",
                simulate=expression(rshift(amacrine, radius=0.1, edge="erode"))))
}

Note that the principle of symmetry, essential to the validity of
simulation envelopes, requires that both the observed and
simulated patterns be subjected to the same method of intensity
estimation. In the following example it would be incorrect to set the
argument `lambda=red.dens` in the envelope command, because this
would mean that the inhomogeneous K functions of the simulated
patterns would be computed using the intensity function estimated
from the original redwood data, violating the symmetry. There is
still a concern about the fact that the simulations are generated
from a model that was fitted to the data; this is only a problem in
small datasets.

if(online) {
  red.dens <- density(redwood, sigma=bw.diggle, positive=TRUE)
  plot(envelope(redwood, Kinhom, sigma=bw.diggle,
                simulate=expression(rpoispp(red.dens))))
}

Precomputed list of point patterns
if(online) {
  nX <- npoints(X)
  PatList <- list()
  for(i in 1:Nsim) PatList[[i]] <- runifpoint(nX)
  E <- envelope(X, Kest, nsim=19, simulate=PatList)
} else {
  PatList <- list()
  for(i in 1:Nsim) PatList[[i]] <- runifpoint(10)
  E <- envelope(X, Kest, nsim=Nsim, simulate=PatList)

  re-using the same point patterns
  EK <- envelope(X, Kest, nsim=Nsim, savepatterns=TRUE)
  EG <- envelope(X, Gest, nsim=Nsim, simulate=EK)
Description

Given a simulation envelope (object of class "envelope"), compute another envelope from the same simulation data using different parameters.

Usage

```r
S3 method for class 'envelope'
envelope(Y, fun = NULL, ...,
 transform=NULL, global=FALSE, VARIANCE=FALSE)
```

Arguments

- `Y` A simulation envelope (object of class "envelope").
- `fun` Optional. Summary function to be applied to the simulated point patterns.
- `...`, `transform`, `global`, `VARIANCE`
  Parameters controlling the type of envelope that is re-computed. See `envelope`.

Details

This function can be used to re-compute a simulation envelope from previously simulated data, using different parameter settings for the envelope: for example, a different significance level, or a global envelope instead of a pointwise envelope.

The function `envelope` is generic. This is the method for the class "envelope".

The argument `Y` should be a simulation envelope (object of class "envelope") produced by any of the methods for `envelope`. Additionally, `Y` must contain either

- the simulated point patterns that were used to create the original envelope (so `Y` should have been created by calling `envelope` with `savepatterns=TRUE`);
- the summary functions of the simulated point patterns that were used to create the original envelope (so `Y` should have been created by calling `envelope` with `savefuns=TRUE`).

If the argument `fun` is given, it should be a summary function that can be applied to the simulated point patterns that were used to create `Y`. The envelope of the summary function `fun` for these point patterns will be computed using the parameters specified in `...`.

If `fun` is not given, then:

- If `Y` contains the summary functions that were used to compute the original envelope, then the new envelope will be computed from these original summary functions.
- Otherwise, if `Y` contains the simulated point patterns, then the \(K\) function `Kest` will be applied to each of these simulated point patterns, and the new envelope will be based on the \(K\) functions.

The new envelope will be computed using the parameters specified in `...`.

See `envelope` for a full list of envelope parameters. Frequently-used parameters include `nrank` and `nsim` (to change the number of simulations used and the significance level of the envelope), `global` (to change from pointwise to global envelopes) and `VARIANCE` (to compute the envelopes from the sample moments instead of the ranks).
Value

An envelope (object of class "envelope").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

envelope

Examples

E <- envelope(cells, Kest, nsim=19, savefuns=TRUE, savepatterns=TRUE)
E2 <- envelope(E, nrank=2)
Eg <- envelope(E, global=TRUE)
EG <- envelope(E, Gest)
EL <- envelope(E, transform=expression(sqrt(./pi)))

Simulation Envelopes of Summary Function for 3D Point Pattern

Description

Computes simulation envelopes of a summary function for a three-dimensional point pattern.

Usage

## S3 method for class 'pp3'
envelope(Y, fun=K3est, nsim=99, nrank=1, ..., funargs=list(), funYargs=funargs, simulate= NULL, verbose=TRUE, transform=NULL, global=FALSE, ginterval=NULL, use.theory=NULL, alternative=c("two.sided", "less", "greater"), scale=NULL, clamp=FALSE, savefuns=FALSE, savepatterns=FALSE, nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL, maxnerr=nsim, rejectNA=FALSE, silent=FALSE, do.pwrong=FALSE, envir.simul=NULL)

Arguments

Y
fun
nsim

A three-dimensional point pattern (object of class "pp3").
Function that computes the desired summary statistic for a 3D point pattern.
Number of simulated point patterns to be generated when computing the envelopes.
nrank: Integer. Rank of the envelope value amongst the nsim simulated values. A rank of 1 means that the minimum and maximum simulated values will be used.

funargs: A list, containing extra arguments to be passed to fun.

funYargs: Optional. A list, containing extra arguments to be passed to fun when applied to the original data Y only.

simulate: Optional. Specifies how to generate the simulated point patterns. If simulate is an expression in the R language, then this expression will be evaluated nsim times, to obtain nsim point patterns which are taken as the simulated patterns from which the envelopes are computed. If simulate is a function, then this function will be repeatedly applied to the data pattern Y to obtain nsim simulated patterns. If simulate is a list of point patterns, then the entries in this list will be treated as the simulated patterns from which the envelopes are computed. Alternatively simulate may be an object produced by the envelope command: see Details.

verbose: Logical flag indicating whether to print progress reports during the simulations.

transform: Optional. A transformation to be applied to the function values, before the envelopes are computed. An expression object (see Details).

global: Logical flag indicating whether envelopes should be pointwise (global=FALSE) or simultaneous (global=TRUE).

ginterval: Optional. A vector of length 2 specifying the interval of r values for the simultaneous critical envelopes. Only relevant if global=TRUE.

use.theory: Logical value indicating whether to use the theoretical value, computed by fun, as the reference value for simultaneous envelopes. Applicable only when global=TRUE.

alternative: Character string determining whether the envelope corresponds to a two-sided test (side="two.sided", the default) or a one-sided test with a lower critical boundary (side="less") or a one-sided test with an upper critical boundary (side="greater").

scale: Optional. Scaling function for global envelopes. A function in the R language which determines the relative scale of deviations, as a function of distance r, when computing the global envelopes. Applicable only when global=TRUE. Summary function values for distance r will be divided by scale(r) before the maximum deviation is computed. The resulting global envelopes will have width proportional to scale(r).

clamp: Logical value indicating how to compute envelopes when alternative="less" or alternative="greater". Deviations of the observed summary function from the theoretical summary function are initially evaluated as signed real numbers, with large positive values indicating consistency with the alternative hypothesis. If clamp=FALSE (the default), these values are not changed. If clamp=TRUE, any negative values are replaced by zero.

savefuns: Logical flag indicating whether to save all the simulated function values.

savepatterns: Logical flag indicating whether to save all the simulated point patterns.

nsim2: Number of extra simulated point patterns to be generated if it is necessary to use simulation to estimate the theoretical mean of the summary function. Only relevant when global=TRUE and the simulations are not based on CSR.
VARIANCE Logical. If TRUE, critical envelopes will be calculated as sample mean plus or minus nSD times sample standard deviation.

nSD Number of estimated standard deviations used to determine the critical envelopes, if VARIANCE=TRUE.

Yname Character string that should be used as the name of the data point pattern Y when printing or plotting the results.

maxnerr Maximum number of rejected patterns. If fun yields a fatal error when applied to a simulated point pattern (for example, because the pattern is empty and fun requires at least one point), the pattern will be rejected and a new random point pattern will be generated. If this happens more than maxnerr times, the algorithm will give up.

rejectNA Logical value specifying whether to reject a simulated pattern if the resulting values of fun are all equal to NA, NaN or infinite. If FALSE (the default), then simulated patterns are only rejected when fun gives a fatal error.

silent Logical value specifying whether to print a report each time a simulated pattern is rejected.

do.pwrong Logical. If TRUE, the algorithm will also estimate the true significance level of the “wrong” test (the test that declares the summary function for the data to be significant if it lies outside the pointwise critical boundary at any point). This estimate is printed when the result is printed.

envir.simul Environment in which to evaluate the expression simulate, if not the current environment.

Details

The envelope command performs simulations and computes envelopes of a summary statistic based on the simulations. The result is an object that can be plotted to display the envelopes. The envelopes can be used to assess the goodness-of-fit of a point process model to point pattern data.

The envelope function is generic, with methods for the classes "ppp", "ppm" and "kppm" described in the help file for envelope. This function envelope.pp3 is the method for three-dimensional point patterns (objects of class "pp3").

For the most basic use, if you have a 3D point pattern X and you want to test Complete Spatial Randomness (CSR), type plot(envelope(X, K3est, nsim=39)) to see the three-dimensional K function for X plotted together with the envelopes of the three-dimensional K function for 39 simulations of CSR.

To create simulation envelopes, the command envelope(Y, ...) first generates nsim random point patterns in one of the following ways.

- If simulate=NULL, then we generate nsim simulations of Complete Spatial Randomness (i.e. nsim simulated point patterns each being a realisation of the uniform Poisson point process) with the same intensity as the pattern Y.
- If simulate is supplied, then it determines how the simulated point patterns are generated. See envelope for details.
The summary statistic \( \text{fun} \) is applied to each of these simulated patterns. Typically \( \text{fun} \) is one of the functions \( K3est \), \( G3est \), \( F3est \) or \( pcf3est \). It may also be a character string containing the name of one of these functions.

For further information, see the documentation for \texttt{envelope}.

**Value**

A function value table (object of class \"fv\") which can be plotted directly. See \texttt{envelope} for further details.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

\texttt{pp3}, \texttt{rpoispp3}, \texttt{K3est}, \texttt{G3est}, \texttt{F3est}, \texttt{pcf3est}.

**Examples**

```r
X <- rpoispp3(20, box3())
if(interactive()) {
 plot(envelope(X, nsim=39))
}
```

---

**envelopeArray**  
*Array of Simulation Envelopes of Summary Function*

**Description**

Compute an array of simulation envelopes using a summary function that returns an array of curves.

**Usage**

\[
\text{envelopeArray}(X, \text{fun}, \ldots, \text{dataname} = \text{NULL}, \text{verb} = \text{FALSE}, \text{reuse} = \text{TRUE})
\]
envelopeArray

Arguments

X Object containing point pattern data. A point pattern (object of class "ppp", "lpp", "pp3" or "ppx") or a fitted point process model (object of class "ppm", "kppm" or "lppm").

fun Function that computes the desired summary statistic for a point pattern. The result of fun should be a function array (object of class "fasp").

... Arguments passed to envelope to control the simulations, or passed to fun when evaluating the function.

datename Optional character string name for the data.

verb Logical value indicating whether to print progress reports.

reuse Logical value indicating whether the envelopes in each panel should be based on the same set of simulated patterns (reuse=TRUE, the default) or on different, independent sets of simulated patterns (reuse=FALSE).

Details

This command is the counterpart of envelope when the function fun that is evaluated on each simulated point pattern will return an object of class "fasp" representing an array of summary functions.

Simulated point patterns are generated according to the rules described for envelope. In brief, if X is a point pattern, the algorithm generates simulated point patterns of the same kind, according to complete spatial randomness. If X is a fitted model, the algorithm generates simulated point patterns according to this model.

For each simulated point pattern Y, the function fun is invoked. The result Z <- fun(Y, ...) should be an object of class "fasp" representing an array of summary functions. The dimensions of the array Z should be the same for each simulated pattern Y.

This algorithm finds the simulation envelope of the summary functions in each cell of the array.

Value

An object of class "fasp" representing an array of envelopes.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

envelope, alltypes.

Examples

if(interactive()) {
  Nsim <- 19
  X <- finpines
  co <- "best"
## smaller task to reduce check time
Nsim <- 3
X <- finpines[c(FALSE, TRUE)]
co <- "none"
A <- envelopeArray(X, markcrosscorr, nsim=Nsim, correction=co)
plot(A)

---

**eval.fasp**

Evaluate Expression Involving Function Arrays

**Description**

Evaluates any expression involving one or more function arrays (fasp objects) and returns another function array.

**Usage**

```
eval.fasp(expr, envir, dotonly=TRUE)
```

**Arguments**

- `expr` An expression involving the names of objects of class "fasp".
- `envir` Optional. The environment in which to evaluate the expression, or a named list containing "fasp" objects to be used in the expression.
- `dotonly` Logical. Passed to `eval.fv`.

**Details**

This is a wrapper to make it easier to perform pointwise calculations with the arrays of summary functions used in spatial statistics.

A function array (object of class "fasp") can be regarded as a matrix whose entries are functions. Objects of this kind are returned by the command `alltypes`.

Suppose \(X\) is an object of class "fasp". Then `eval.fasp(X+3)` effectively adds 3 to the value of every function in the array \(X\), and returns the resulting object.

Suppose \(X\) and \(Y\) are two objects of class "fasp" which are compatible (for example the arrays must have the same dimensions). Then `eval.fasp(X + Y)` will add the corresponding functions in each cell of the arrays \(X\) and \(Y\), and return the resulting array of functions.

Suppose \(X\) is an object of class "fasp" and \(f\) is an object of class "fv". Then `eval.fasp(X + f)` will add the function \(f\) to the functions in each cell of the array \(X\), and return the resulting array of functions.

In general, \(expr\) can be any expression involving (a) the names of objects of class "fasp" or "fv", (b) scalar constants, and (c) functions which are vectorised. See the Examples.

First `eval.fasp` determines which of the variable names in the expression `expr` refer to objects of class "fasp". The expression is then evaluated for each cell of the array using `eval.fv`. 

---

Set smaller task to reduce check time
Nsim <- 3
X <- finpines[c(FALSE, TRUE)]
co <- "none"
A <- envelopeArray(X, markcrosscorr, nsim=Nsim, correction=co)
plot(A)
The expression expr must be vectorised. There must be at least one object of class "fasp" in the expression. All such objects must be compatible.

Value

Another object of class "fasp".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fasp.object, Kest

Examples

K <- alltypes(amacrine, "K")

# expressions involving a fasp object
eval.fasp(K + 3)
L <- eval.fasp(sqrt(K/pi))

# expression involving two fasp objects
D <- eval.fasp(K - L)

# subtracting the unmarked K function from the cross-type K functions
K0 <- Kest(unmark(amacrine))
DK <- eval.fasp(K - K0)

## Use of 'envir'
S <- eval.fasp(1-G, list(G=alltypes(amacrine, 'G')))
Arguments

- `expr` An expression.
- `envir` Optional. The environment in which to evaluate the expression, or a named list containing "fv" objects to be used in the expression.
- `dotonly` Logical. See Details.
- `equiv` Mapping between column names of different objects that are deemed to be equivalent. See Details.
- `relabel` Logical value indicating whether to compute appropriate labels for the resulting function. This should normally be `TRUE` (the default). See Details.

Details

This is a wrapper to make it easier to perform pointwise calculations with the summary functions used in spatial statistics.

An object of class "fv" is essentially a data frame containing several different statistical estimates of the same function. Such objects are returned by `Kest` and its relatives.

For example, suppose `X` is an object of class "fv" containing several different estimates of the Ripley’s K function \( K(r) \), evaluated at a sequence of values of \( r \). Then `eval.fv(X+3)` effectively adds 3 to each function estimate in \( X \), and returns the resulting object.

Suppose `X` and `Y` are two objects of class "fv" which are compatible (in particular they have the same vector of \( r \) values). Then `eval.im(X + Y)` will add the corresponding function values in \( X \) and \( Y \), and return the resulting function.

In general, `expr` can be any expression involving (a) the names of objects of class "fv", (b) scalar constants, and (c) functions which are vectorised. See the Examples.

First `eval.fv` determines which of the variable names in the expression `expr` refer to objects of class "fv". Each such name is replaced by a vector containing the function values. The expression is then evaluated. The result should be a vector; it is taken as the new vector of function values.

The expression `expr` must be vectorised. There must be at least one object of class "fv" in the expression. If the objects are not compatible, they will be made compatible by `harmonise.fv`.

If `dotonly=TRUE` (the default), the expression will be evaluated only for those columns of an "fv" object that contain values of the function itself (rather than values of the derivative of the function, the hazard rate, etc). If `dotonly=FALSE`, the expression will be evaluated for all columns.

For example the result of `Fest` includes several columns containing estimates of the empty space function \( F(r) \), but also includes an estimate of the hazard \( h(r) \) of \( F(r) \). Transformations that are valid for \( F \) may not be valid for \( h \). Accordingly, \( h \) would normally be omitted from the calculation.

The columns of an object `x` that represent the function itself are identified by its “dot” names, `fvnames(x, ".")`. They are the columns normally plotted by `plot.fv` and identified by the symbol "." in plot formulas in `plot.fv`.

The argument `equiv` can be used to specify that two different column names in different function objects are mathematically equivalent or cognate. It should be a list of name=value pairs, or a named vector of character strings, indicating the pairing of equivalent names. (Without this argument, these columns would be discarded.) See the Examples.

The argument `relabel` should normally be `TRUE` (the default). It determines whether to compute appropriate mathematical labels and descriptions for the resulting function object (used when the
object is printed or plotted). If `relabel=FALSE` then this does not occur, and the mathematical labels and descriptions in the result are taken from the function object that appears first in the expression. This reduces computation time slightly (for advanced use only).

**Value**

Another object of class "fv".

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

fv.object, Kest

**Examples**

```r
manipulating the K function
X <- runifrect(42)
Ks <- Kest(X)

eval.fv(Ks + 3)
Ls <- eval.fv(sqrt(Ks/pi))

manipulating two K functions
Y <- runifrect(20)
Kr <- Kest(Y)

Kdif <- eval.fv(Ks - Kr)
Z <- eval.fv(sqrt(Ks/pi) - sqrt(Kr/pi))

Use of 'envir'
U <- eval.fv(sqrt(K), list(K=Ks))

Use of 'equiv'
Fc <- Fest(cells)
Gc <- Gest(cells)
Hanisch and Chiu-Stoyan estimators are cognate
Dc <- eval.fv(Fc - Gc, equiv=list(cs="han"))
```

---

**Extract.fasp**

*Extract Subset of Function Array*

**Description**

Extract a subset of a function array (an object of class "fasp").
Usage

```r
S3 method for class 'fasp'
x[I, J, drop=TRUE,...]
```

Arguments

- `x` A function array. An object of class "fasp".
- `I` any valid expression for a subset of the row indices of the array.
- `J` any valid expression for a subset of the column indices of the array.
- `drop` Logical. When the selected subset consists of only one cell of the array, if `drop=FALSE` the result is still returned as a $1 \times 1$ array of functions (class "fasp") while if `drop=TRUE` it is returned as a function (class "fv").
- `...` Ignored.

Details

A function array can be regarded as a matrix whose entries are functions. See `fasp.object` for an explanation of function arrays.

This routine extracts a sub-array according to the usual conventions for matrix indexing.

Value

A function array (of class "fasp"). Exceptionally, if the array has only one cell, and if `drop=TRUE`, then the result is a function value table (class "fv").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

`fasp.object`

Examples

```r
online <- interactive()
Lansing woods data - multitype points with 6 types
X <- lansing
if(!online) {
 # subsample data (from 2251 to 450 points) to shorten check time
 X <- X[c(FALSE,FALSE,FALSE,FALSE,TRUE)]
}
a <- alltypes(X, 'K')
extract first three marks only
b <- a[1:3,1:3]
```
if(online) {plot(b)}
# subset of array pertaining to hickories
h <- a["hickory", ]
if(online) {plot(h)}

Extract.fv

Extract or Replace Subset of Function Values

Description

Extract or replace a subset of an object of class "fv".

Usage

### S3 method for class 'fv'

```r
x[i, j, ..., drop=FALSE]
```

### S3 replacement method for class 'fv'

```r
x[i, j] <- value
```

Arguments

- **x**: a function value object, of class "fv" (see `fv.object`). Essentially a data frame.
- **i**: any appropriate subset index. Selects a subset of the rows of the data frame, i.e. a subset of the domain of the function(s) represented by `x`.
- **j**: any appropriate subset index for the columns of the data frame. Selects some of the functions present in `x`.
- **name**: the name of a column of the data frame.
- **...**: Ignored.
- **drop**: Logical. If TRUE, the result is a data frame or vector containing the selected rows and columns of data. If FALSE (the default), the result is another object of class "fv".
- **value**: Replacement value for the column or columns selected by name or `j`.

Details

These functions extract a designated subset of an object of class "fv", or replace the designated subset with other data, or delete the designated subset.

The subset is specified by the row index `i` and column index `j`, or by the column name `name`. Either `i` or `j` may be missing, or both may be missing.

The function `[.fv is a method for the generic operator `[ for the class "fv". It extracts the designated subset of `x`, and returns it as another object of class "fv" (if `drop=FALSE`) or as a data frame or vector (if `drop=TRUE`).
The function \[<-\text{.fv}\] is a method for the generic operator \([<-\text{ for the class "fv". If value is NULL, the designated subset of x will be deleted from x. Otherwise, the designated subset of x will be replaced by the data contained in value. The return value is the modified object x. The function \$<-\text{.fv}\] is a method for the generic operator \(\$$ for the class "fv". If value is NULL, the designated column of x will be deleted from x. Otherwise, the designated column of x will be replaced by the data contained in value. The return value is the modified object x.

**Value**

The result of \[\text{.fv}\text{ with drop=}\text{TRUE}\] is a data frame or vector. Otherwise, the result is another object of class "fv".

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

fv.object

**Examples**

\[
K <- \text{Kest(cells)}
\]
\[
\text{# discard the estimates of K(r) for r > 0.1}
Ksub <- K[K$r <= 0.1, ]
\]
\[
\text{# extract the border method estimates}
bor <- K[, "border", drop=TRUE]
\]
\[
\text{# or equivalently}
bor <- K$\text{border}
\]
\[
\text{# remove the border-method estimates}
K$\text{border} <- \text{NULL}
K
\]
Arguments

- **X**: Three-dimensional point pattern (object of class "pp3").
- **rmax**: Optional. Maximum value of argument $r$ for which $F_3(r)$ will be estimated.
- **nrval**: Optional. Number of values of $r$ for which $F_3(r)$ will be estimated. A large value of *nrval* is required to avoid discretisation effects.
- **vside**: Optional. Side length of the voxels in the discrete approximation.
- **correction**: Optional. Character vector specifying the edge correction(s) to be applied. See Details.
- **sphere**: Optional. Character string specifying how to calculate the theoretical value of $F_3(r)$ for a Poisson process. See Details.

Details

For a stationary point process $\Phi$ in three-dimensional space, the empty space function is

$$F_3(r) = P(d(0, \Phi) \leq r)$$

where $d(0, \Phi)$ denotes the distance from a fixed origin $0$ to the nearest point of $\Phi$.

The three-dimensional point pattern $X$ is assumed to be a partial realisation of a stationary point process $\Phi$. The empty space function of $\Phi$ can then be estimated using techniques described in the References.

The box containing the point pattern is discretised into cubic voxels of side length $vside$. The distance function $d(u, \Phi)$ is computed for every voxel centre point $u$ using a three-dimensional version of the distance transform algorithm (Borgefors, 1986). The empirical cumulative distribution function of these values, with appropriate edge corrections, is the estimate of $F_3(r)$.

The available edge corrections are:

- "rs": the reduced sample (aka minus sampling, border correction) estimator (Baddeley et al, 1993)
- "km": the three-dimensional version of the Kaplan-Meier estimator (Baddeley and Gill, 1997)
- "cs": the three-dimensional generalisation of the Chiu-Stoyan or Hanisch estimator (Chiu and Stoyan, 1998).

Alternatively, correction="all" selects all options.

The result includes a column *theo* giving the theoretical value of $F_3(r)$ for a uniform Poisson process (Complete Spatial Randomness). This value depends on the volume of the sphere of radius $r$ measured in the discretised distance metric. The argument *sphere* determines how this will be calculated.

- If sphere="ideal" the calculation will use the volume of an ideal sphere of radius $r$ namely $(4/3)\pi r^3$. This is not recommended because the theoretical values of $F_3(r)$ are inaccurate.
- If sphere="fudge" then the volume of the ideal sphere will be multiplied by 0.78, which gives the approximate volume of the sphere in the discretised distance metric.
- If sphere="digital" then the volume of the sphere in the discretised distance metric is computed exactly using another distance transform. This takes longer to compute, but is exact.
Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame containing the function values.

Warnings

A small value of vside and a large value of nrval are required for reasonable accuracy.

The default value of vside ensures that the total number of voxels is $2^{22}$ or about 4 million. To change the default number of voxels, see `spatstat.options("nvoxel")`.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rana Moyeed.

References


See Also

`pp3` to create a three-dimensional point pattern (object of class "pp3").

`G3est,K3est,pcf3est` for other summary functions of a three-dimensional point pattern.

`Fest` to estimate the empty space function of point patterns in two dimensions.

Examples

```r
X <- rpoispp3(42)
Z <- F3est(X)
if(interactive()) plot(Z)
```
Description

A class "fasp" to represent a “matrix” of functions, amenable to plotting as a matrix of plot panels.

Details

An object of this class is a convenient way of storing (and later plotting, editing, etc) a set of functions \( f_{i,j}(r) \) of a real argument \( r \), defined for each possible pair \((i,j)\) of indices \(1 \leq i,j \leq n\). We may think of this as a matrix or array of functions \( f_{i,j} \).

Function arrays are particularly useful in the analysis of a multitype point pattern (a point pattern in which the points are identified as belonging to separate types). We may want to compute a summary function for the points of type \( i \) only, for each of the possible types \( i \). This produces a \( 1 \times m \) array of functions. Alternatively we may compute a summary function for each possible pair of types \((i,j)\). This produces an \( m \times m \) array of functions.

For multitype point patterns the command \texttt{alltypes} will compute arrays of summary functions for each possible type or for each possible pair of types. The function \texttt{alltypes} returns an object of class “fasp”.

An object of class “fasp” is a list containing at least the following components:

- \texttt{fns} A list of data frames, each representing one of the functions.
- \texttt{which} A matrix representing the spatial arrangement of the functions. If \texttt{which}[i,j] = k then the function represented by \texttt{fns[[k]]} should be plotted in the panel at position \((i,j)\). If \texttt{which}[i,j] = NA then nothing is plotted in that position.
- \texttt{titles} A list of character strings, providing suitable plotting titles for the functions.
- \texttt{default.formulae} A list of default formulae for plotting each of the functions.
- \texttt{title} A character string, giving a default title for the array when it is plotted.

Functions available

There are methods for \texttt{plot}, \texttt{print} and "[" for this class.

The plot method displays the entire array of functions. The method \texttt{[.fasp} selects a sub-array using the natural indices \(i,j\).

The command \texttt{eval.fasp} can be used to apply a transformation to each function in the array, and to combine two arrays.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>
Fest

Estimate the Empty Space Function or its Hazard Rate

Description

Estimates the empty space function \( F(r) \) or its hazard rate \( h(r) \) from a point pattern in a window of arbitrary shape.

Usage

Fest(X, ..., eps=NULL, r=NULL, breaks=NULL, correction=c("rs", "km", "cs"), domain=NULL)

Fhazard(X, ...)

Arguments

- **X**
  - The observed point pattern, from which an estimate of \( F(r) \) will be computed. An object of class ppp, or data in any format acceptable to as.ppp().
- **...**
  - Extra arguments, passed from Fhazard to Fest. Extra arguments to Fest are ignored.
- **eps**
  - Optional. A positive number. The resolution of the discrete approximation to Euclidean distance (see below). There is a sensible default.
- **r**
  - Optional. Numeric vector. The values of the argument \( r \) at which \( F(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).
This argument is for internal use only.

correction

Optional. The edge correction(s) to be used to estimate $F(r)$. A vector of character strings selected from "none", "rs", "km", "cs" and "best". Alternatively correction="all" selects all options.

domain

Optional. Calculations will be restricted to this subset of the window. See Details.

Details

Fest computes an estimate of the empty space function $F(r)$, and Fhazard computes an estimate of its hazard rate $h(r)$.

The empty space function (also called the “spherical contact distribution” or the “point-to-nearest-event” distribution) of a stationary point process $X$ is the cumulative distribution function $F$ of the distance from a fixed point in space to the nearest point of $X$.

An estimate of $F$ derived from a spatial point pattern dataset can be used in exploratory data analysis and formal inference about the pattern (Cressie, 1991; Diggle, 1983; Ripley, 1988). In exploratory analyses, the estimate of $F$ is a useful statistic summarising the sizes of gaps in the pattern. For inferential purposes, the estimate of $F$ is usually compared to the true value of $F$ for a completely random (Poisson) point process, which is

$$F(r) = 1 - e^{-\lambda \pi r^2}$$

where $\lambda$ is the intensity (expected number of points per unit area). Deviations between the empirical and theoretical $F$ curves may suggest spatial clustering or spatial regularity.

This algorithm estimates the empty space function $F$ from the point pattern $X$. It assumes that $X$ can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in $X$) may have arbitrary shape.

The argument $X$ is interpreted as a point pattern object (of class "ppp", see ppp.object) and can be supplied in any of the formats recognised by as.ppp.

The algorithm uses two discrete approximations which are controlled by the parameter eps and by the spacing of values of $r$ respectively. (See below for details.) First-time users are strongly advised not to specify these arguments.

The estimation of $F$ is hampered by edge effects arising from the unobservability of points of the random pattern outside the window. An edge correction is needed to reduce bias (Baddeley, 1998; Ripley, 1988). The edge corrections implemented here are the border method or "reduced sample" estimator, the spatial Kaplan-Meier estimator (Baddeley and Gill, 1997) and the Chiu-Stoyan estimator (Chiu and Stoyan, 1998).

Our implementation makes essential use of the distance transform algorithm of image processing (Borgefors, 1986). A fine grid of pixels is created in the observation window. The Euclidean distance between two pixels is approximated by the length of the shortest path joining them in the grid, where a path is a sequence of steps between adjacent pixels, and horizontal, vertical and diagonal steps have length 1, 1 and $\sqrt{2}$ respectively in pixel units. If the pixel grid is sufficiently fine then this is an accurate approximation.

The parameter eps is the pixel width of the rectangular raster used to compute the distance transform (see below). It must not be too large: the absolute error in distance values due to discretisation is bounded by eps.
If `eps` is not specified, the function checks whether the window `Window(X)` contains pixel raster information. If so, then `eps` is set equal to the pixel width of the raster; otherwise, `eps` defaults to 1/100 of the width of the observation window.

The argument `r` is the vector of values for the distance `r` at which `F(r)` should be evaluated. It is also used to determine the breakpoints (in the sense of `hist`) for the computation of histograms of distances. The estimators are computed from histogram counts. This introduces a discretisation error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify `r`. However, if it is specified, `r` must satisfy `r[1] = 0`, and `max(r)` must be larger than the radius of the largest disc contained in the window. Furthermore, the spacing of successive `r` values must be very fine (ideally not greater than `eps/4`).

The algorithm also returns an estimate of the hazard rate function, `h(r)` of `F(r)`. The hazard rate is defined by

\[ h(r) = -\frac{d}{dr}\log(1 - F(r)) \]

The hazard rate of `F` has been proposed as a useful exploratory statistic (Baddeley and Gill, 1994). The estimate of `h(r)` given here is a discrete approximation to the hazard rate of the Kaplan-Meier estimator of `F`. Note that `F` is absolutely continuous (for any stationary point process `X`), so the hazard function always exists (Baddeley and Gill, 1997).

If the argument `domain` is given, the estimate of `F(r)` will be based only on the empty space distances measured from locations inside `domain` (although their nearest data points may lie outside `domain`). This is useful in bootstrap techniques. The argument `domain` should be a window (object of class "owin") or something acceptable to `as.owin`. It must be a subset of the window of the point pattern `X`.

The naive empirical distribution of distances from each location in the window to the nearest point of the data pattern, is a biased estimate of `F`. However this is also returned by the algorithm (if `correction="none"`), as it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical `F` as if it were an unbiased estimator of `F`.

**Value**

An object of class "fv", see `fv.object`, which can be plotted directly using `plot.fv`.

The result of `Fest` is essentially a data frame containing up to seven columns:

- `r` the values of the argument `r` at which the function `F(r)` has been estimated
- `rs` the “reduced sample” or “border correction” estimator of `F(r)`
- `km` the spatial Kaplan-Meier estimator of `F(r)`
- `hazard` the hazard rate `\lambda(r)` of `F(r)` by the spatial Kaplan-Meier method
- `cs` the Chiu-Stoyan estimator of `F(r)`
- `raw` the uncorrected estimate of `F(r)`, i.e. the empirical distribution of the distance from a random point in the window to the nearest point of the data pattern `X`
- `theo` the theoretical value of `F(r)` for a stationary Poisson process of the same estimated intensity.

The result of `Fhazard` contains only three columns

- `r` the values of the argument `r` at which the hazard rate `h(r)` has been estimated
hazard  the spatial Kaplan-Meier estimate of the hazard rate $h(r)$
theo   the theoretical value of $h(r)$ for a stationary Poisson process of the same estimated intensity.

Warnings

The reduced sample (border method) estimator of $F$ is pointwise approximately unbiased, but need not be a valid distribution function; it may not be a nondecreasing function of $r$. Its range is always within $[0, 1]$.

The spatial Kaplan-Meier estimator of $F$ is always nondecreasing but its maximum value may be less than 1.

The estimate of hazard rate $h(r)$ returned by the algorithm is an approximately unbiased estimate for the integral of $h()$ over the corresponding histogram cell. It may exhibit oscillations due to discretisation effects. We recommend modest smoothing, such as kernel smoothing with kernel width equal to the width of a histogram cell, using Smooth.fv.

Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

Gest, Jest, Kest, km.rs, reduced.sample, kaplan.meier

Examples

Fc <- Fest(cells, 0.01)

# Tip: don't use F for the left hand side!
# That's an abbreviation for FALSE

plot(Fc)

# P-P style plot
plot(Fc, cbind(km, theo) ~ theo)

# The empirical F is above the Poisson F
# indicating an inhibited pattern

if(interactive()) {
plot(Fc, . ~ theo)
plot(Fc, asin(sqrt(.)) ~ asin(sqrt(theo)))
}

Finhom

Inhomogeneous Empty Space Function

Description

Estimates the inhomogeneous empty space function of a non-stationary point pattern.

Usage

Finhom(X, lambda = NULL, lmin = NULL, ..., 
sigma = NULL, varcov = NULL, 
r = NULL, breaks = NULL, ratio = FALSE, 
update = TRUE, warn.bias=TRUE, savelambda=FALSE)

Arguments

X

The observed data point pattern, from which an estimate of the inhomogeneous $F$ function will be computed. An object of class "ppp" or in a format recognised by as.ppp()

lambda

Optional. Values of the estimated intensity function. Either a vector giving the intensity values at the points of the pattern $X$, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm") or a function(x,y) which can be evaluated to give the intensity value at any location.
Optional. The minimum possible value of the intensity over the spatial domain. A positive numerical value.

Optional arguments passed to `density.ppp` to control the smoothing bandwidth, when `lambda` is estimated by kernel smoothing.

Extra arguments passed to `as.mask` to control the pixel resolution, or passed to `density.ppp` to control the smoothing bandwidth.

vector of values for the argument `r` at which the inhomogeneous \( K \) function should be evaluated. Not normally given by the user; there is a sensible default.

This argument is for internal use only.

Logical. If `TRUE`, the numerator and denominator of the estimate will also be saved, for use in analysing replicated point patterns.

Logical. If \( \lambda \) is a fitted model (class "ppm" or "kppm") and `update=TRUE` (the default), the model will first be refitted to the data \( X \) (using `update.ppm` or `update.kppm`) before the fitted intensity is computed. If `update=FALSE`, the fitted intensity of the model will be computed without fitting it to \( X \).

Logical value specifying whether to issue a warning when the inhomogeneity correction factor takes extreme values, which can often lead to biased results. This usually occurs when insufficient smoothing is used to estimate the intensity.

Logical value specifying whether to save the values of \( lmin \) and \( \lambda \) as attributes of the result.

This command computes estimates of the inhomogeneous \( F \)-function (van Lieshout, 2010) of a point pattern. It is the counterpart, for inhomogeneous spatial point patterns, of the empty space function \( F \) for homogeneous point patterns computed by `Fest`.

The argument \( X \) should be a point pattern (object of class "ppp").

The inhomogeneous \( F \) function is computed using the border correction, equation (6) in Van Lieshout (2010).

The argument \( \lambda \) should supply the (estimated) values of the intensity function \( \lambda \) of the point process. It may be either

- a numeric vector containing the values of the intensity function at the points of the pattern \( X \).
- a pixel image (object of class "im") assumed to contain the values of the intensity function at all locations in the window.
- a fitted point process model (object of class "ppm" or "kppm") whose fitted `trend` can be used as the fitted intensity. (If `update=TRUE` the model will first be refitted to the data \( X \) before the trend is computed.)
- a function which can be evaluated to give values of the intensity at any locations.

omitted: if \( \lambda \) is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If \( \lambda \) is a numeric vector, then its length should be equal to the number of points in the pattern \( X \). The value \( \lambda[i] \) is assumed to be the (estimated) value of the intensity \( \lambda(x_i) \) for the point \( x_i \) of the pattern \( X \). Each value must be a positive number; NA’s are not allowed.
If \( \lambda \) is a pixel image, the domain of the image should cover the entire window of the point pattern. If it does not (which may occur near the boundary because of discretisation error), then the missing pixel values will be obtained by applying a Gaussian blur to \( \lambda \) using \texttt{blur}, then looking up the values of this blurred image for the missing locations. (A warning will be issued in this case.)

If \( \lambda \) is a function, then it will be evaluated in the form \( \lambda(x, y) \) where \( x \) and \( y \) are vectors of coordinates of the points of \( X \). It should return a numeric vector with length equal to the number of points in \( X \).

If \( \lambda \) is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother. The estimate \( \lambda[i] \) for the point \( X[i] \) is computed by removing \( X[i] \) from the point pattern, applying kernel smoothing to the remaining points using \texttt{density.ppp}, and evaluating the smoothed intensity at the point \( X[i] \). The smoothing kernel bandwidth is controlled by the arguments \texttt{sigma} and \texttt{varcov}, which are passed to \texttt{density.ppp} along with any extra arguments.

\section*{Value}
An object of class "fv", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}.

\section*{Author(s)}
Original code by Marie-Colette van Lieshout. C implementation and R adaptation by Adrian Baddeley \texttt{<Adrian.Baddeley@curtin.edu.au>} and Ege Rubak \texttt{<rubak@math.aau.dk>}.

\section*{References}


\section*{See Also}
\texttt{Ginhom, Jinhom, Fest}

\section*{Examples}

```r
online <- interactive()
if(online) {
 plot(Finhom(swedishpines, sigma=10))
 plot(Finhom(swedishpines, sigma=bw.diggle, adjust=2))
} else {
 ## use a coarse grid for faster computation and package testing
 plot(Finhom(swedishpines, sigma=10, dimyx=32))
}
```
**FmultiInhom**

**Inhomogeneous Marked F-Function**

**Description**
For a marked point pattern, estimate the inhomogeneous version of the multitype $F$ function, effectively the cumulative distribution function of the distance from a fixed point to the nearest point in subset $J$, adjusted for spatially varying intensity.

**Usage**

```r
Fmulti.inhom(X, J, lambda = NULL, lambdaJ = NULL, lambdamin = NULL, ..., r = NULL)
FmultiInhom(X, J, lambda = NULL, lambdaJ = NULL, lambdamin = NULL, ..., r = NULL)
```

**Arguments**

- **X**  A spatial point pattern (object of class "ppp").
- **J**  A subset index specifying the subset of points to which distances are measured. Any kind of subset index acceptable to `[.ppp`.
- **lambda**  Intensity estimates for each point of $X$. A numeric vector of length equal to `npoints(X)`. Incompatible with `lambdaJ`.
- **lambdaJ**  Intensity estimates for each point of $X[J]$. A numeric vector of length equal to `npoints(X[J])`. Incompatible with `lambda`.
- **lambdamin**  A lower bound for the intensity, or at least a lower bound for the values in `lambdaJ` or `lambda[J]`.
- **...**  Extra arguments passed to `as.mask` to control the pixel resolution for the computation.
- **r**  Vector of distance values at which the inhomogeneous $G$ function should be estimated. There is a sensible default.

**Details**

The functions `FmultiInhom` and `Fmulti.inhom` are identical.

**Value**
Object of class "fv" containing the estimate of the inhomogeneous multitype $F$ function.
formula.fv

Extract or Change the Plot Formula for a Function Value Table

Description

Extract or change the default plotting formula for an object of class "fv" (function value table).

Usage

## S3 method for class 'fv'
formula(x, ...)

formula(x, ...) <- value

## S3 replacement method for class 'fv'
formula(x, ...) <- value
Arguments

- **x**: An object of class "fv", containing the values of several estimates of a function.
- **...**: Arguments passed to other methods.
- **value**: New value of the formula. Either a formula or a character string.

Details

A function value table (object of class "fv", see `fv.object`) is a convenient way of storing and plotting several different estimates of the same function.

The default behaviour of `plot(x)` for a function value table `x` is determined by a formula associated with `x` called its *plot formula*. See `plot.fv` for explanation about these formulae.

The function `formula.fv` is a method for the generic command `formula`. It extracts the plot formula associated with the object.

The function `formula<-` is generic. It changes the formula associated with an object.

The function `formula<-.fv` is the method for `formula<-` for the class "fv". It changes the plot formula associated with the object.

Value

The result of `formula.fv` is a character string containing the plot formula. The result of `formula<-.fv` is a new object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`fv`, `plot.fv`, `formula`.

Examples

```r
K <- Kest(cells)
formula(K)
formula(K) <- (iso ~ r)
```

Description

Displays the Fry plot (Patterson plot) of a spatial point pattern.

Usage

```r
fryplot(X, ..., width=NULL, from=NULL, to=NULL, axes=FALSE)
frypoints(X, from=NULL, to=NULL, dmax=Inf)
```
Arguments

X  A point pattern (object of class "ppp") or something acceptable to as.ppp.
... Optional arguments to control the appearance of the plot.
width  Optional parameter indicating the width of a box for a zoomed-in view of the Fry plot near the origin.
from,to  Optional. Subset indices specifying which points of X will be considered when forming the vectors (drawn from each point of from, to each point of to.)
axes  Logical value indicating whether to draw axes, crossing at the origin.
dmax  Maximum distance between points. Pairs at greater distances do not contribute to the result. The default means there is no maximum distance.

Details

The function fryplot generates a Fry plot (or Patterson plot); frypoints returns the points of the Fry plot as a point pattern dataset.

Fry (1979) and Hanna and Fry (1979) introduced a manual graphical method for investigating features of a spatial point pattern of mineral deposits. A transparent sheet, marked with an origin or centre point, is placed over the point pattern. The transparent sheet is shifted so that the origin lies over one of the data points, and the positions of all the other data points are copied onto the transparent sheet. This procedure is repeated for each data point in turn. The resulting plot (the Fry plot) is a pattern of \( n(n - 1) \) points, where \( n \) is the original number of data points. This procedure was previously proposed by Patterson (1934, 1935) for studying inter-atomic distances in crystals, and is also known as a Patterson plot.

The function fryplot generates the Fry/Patterson plot. Standard graphical parameters such as main, pch, lwd, col, bg, cex can be used to control the appearance of the plot. To zoom in (to view only a subset of the Fry plot at higher magnification), use the argument width to specify the width of a rectangular field of view centred at the origin, or the standard graphical arguments xlim and ylim to specify another rectangular field of view. (The actual field of view may be slightly larger, depending on the graphics device.)

The function frypoints returns the points of the Fry plot as a point pattern object. There may be a large number of points in this pattern, so this function should be used only if further analysis of the Fry plot is required.

Fry plots are particularly useful for recognising anisotropy in regular point patterns. A void around the origin in the Fry plot suggests regularity (inhibition between points) and the shape of the void gives a clue to anisotropy in the pattern. Fry plots are also useful for detecting periodicity or rounding of the spatial coordinates.

In mathematical terms, the Fry plot of a point pattern \( X \) is simply a plot of the vectors \( X[i] - X[j] \) connecting all pairs of distinct points in \( X \).

The Fry plot is related to the \( K \) function (see Kest) and the reduced second moment measure (see Kmeasure). For example, the number of points in the Fry plot lying within a circle of given radius is an unnormalised and uncorrected version of the \( K \) function. The Fry plot has a similar appearance to the plot of the reduced second moment measure Kmeasure when the smoothing parameter sigma is very small.

The Fry plot does not adjust for the effect of the size and shape of the sampling window. The density of points in the Fry plot tapers off near the edges of the plot. This is an edge effect, a consequence...
of the bounded sampling window. In geological applications this is usually not important, because interest is focused on the behaviour near the origin where edge effects can be ignored. To correct for the edge effect, use \texttt{Kmeasure} or \texttt{Kest} or its relatives.

**Value**

\texttt{fryplot} returns \texttt{NULL}. \texttt{frypoints} returns a point pattern (object of class "ppp").

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>  
and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

\texttt{Kmeasure}, \texttt{Kest}

**Examples**

```r
unmarked data
fryplot(cells)
Y <- frypoints(cells)

numerical marks
fryplot(longleaf, width=4, axes=TRUE)

multitype points
fryplot(amacrine, width=0.2,
 from=(marks(amacrine) == "on"),
 chars=c(3,16), cols=2:3,
 main="Fry plot centred at an On-cell")
points(0,0)
```
**fv**  
*Create a Function Value Table*

**Description**

Advanced Use Only. This low-level function creates an object of class "fv" from raw numerical data.

**Usage**

```r
fv(x, argu = "r", ylab = NULL, valu, fmla = NULL, alim = NULL,
 labl = names(x), desc = NULL, unitname = NULL, fname = NULL, yexp = ylab)
```

**Arguments**

- `x`  
  A data frame with at least 2 columns containing the values of the function argument and the corresponding values of (one or more versions of) the function.

- `argu`  
  String. The name of the column of `x` that contains the values of the function argument.

- `ylab`  
  Either `NULL`, or an R language expression representing the mathematical name of the function. See Details.

- `valu`  
  String. The name of the column of `x` that should be taken as containing the function values, in cases where a single column is required.

- `fmla`  
  Either `NULL`, or a formula specifying the default plotting behaviour. See Details.

- `alim`  
  Optional. The default range of values of the function argument for which the function will be plotted. Numeric vector of length 2.

- `labl`  
  Optional. Plot labels for the columns of `x`. A vector of strings, with one entry for each column of `x`.

- `desc`  
  Optional. Descriptions of the columns of `x`. A vector of strings, with one entry for each column of `x`.

- `unitname`  
  Optional. Name of the unit (usually a unit of length) in which the function argument is expressed. Either a single character string, or a vector of two character strings giving the singular and plural forms, respectively.

- `fname`  
  Optional. The name of the function itself. A character string.

- `yexp`  
  Optional. Alternative form of `ylab` more suitable for annotating an axis of the plot. See Details.

**Details**

This documentation is provided for experienced programmers who want to modify the internal behaviour of `spatstat`. Other users please see `fv.object`.

The low-level function `fv` is used to create an object of class "fv" from raw numerical data.
The data frame \( x \) contains the numerical data. It should have one column (typically but not necessarily named "r") giving the values of the function argument for which the function has been evaluated; and at least one other column, containing the corresponding values of the function.

Typically there is more than one column of function values. These columns typically give the values of different versions or estimates of the same function, for example, different estimates of the \( K \) function obtained using different edge corrections. However they may also contain the values of related functions such as the derivative or hazard rate.

\texttt{argu} specifies the name of the column of \( x \) that contains the values of the function argument (typically \texttt{argu}="r" but this is not compulsory).

\texttt{valu} specifies the name of another column that contains the ‘recommended’ estimate of the function. It will be used to provide function values in those situations where a single column of data is required. For example, \texttt{envelope} computes its simulation envelopes using the recommended value of the summary function.

\texttt{fmla} specifies the default plotting behaviour. It should be a formula, or a string that can be converted to a formula. Variables in the formula are names of columns of \( x \). See \texttt{plot.fv} for the interpretation of this formula.

\texttt{alim} specifies the recommended range of the function argument. This is used in situations where statistical theory or statistical practice indicates that the computed estimates of the function are not trustworthy outside a certain range of values of the function argument. By default, \texttt{plot.fv} will restrict the plot to this range.

\texttt{fname} is a string giving the name of the function itself. For example, the \( K \) function would have \texttt{fname}="K".

\texttt{ylab} is a mathematical expression for the function value, used when labelling an axis of the plot, or when printing a description of the function. It should be an \texttt{R} language object. For example the \( K \) function’s mathematical name \( K(r) \) is rendered by \texttt{ylab=quote(K(r))}.

If \texttt{yexp} is present, then \texttt{ylab} will be used only for printing, and \texttt{yexp} will be used for annotating axes in a plot. (Otherwise \texttt{yexp} defaults to \texttt{ylab}). For example the cross-type \( K \) function \( K_{1,2}(r) \) is rendered by something like \texttt{ylab=quote(Kcross[1,2](r))} and \texttt{yexp=quote(Kcross[list(1,2)](r))} to get the most satisfactory behaviour.

(A useful tip: use \texttt{substitute} instead of \texttt{quote} to insert values of variables into an expression, e.g. \texttt{substitute(Kcross[i,j](r), list(i=42,j=97))} yields the same as \texttt{quote(Kcross[42,97](r))}.)

\texttt{labl} is a character vector specifying plot labels for each column of \( x \). These labels will appear on the plot axes (in non-default plots), legends and printed output. Entries in \texttt{labl} may contain the string "\%s" which will be replaced by \texttt{fname}. For example the border-corrected estimate of the \( K \) function has label "\%s[bord](r)" which becomes "K[bord](r)".

\texttt{desc} is a character vector containing intelligible explanations of each column of \( x \). Entries in \texttt{desc} may contain the string "\%s" which will be replaced by \texttt{ylab}. For example the border correction estimate of the \( K \) function has description "border correction estimate of \%s".

**Value**

An object of class "fv", see \texttt{fv.object}. 

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

See `plot.fv` for plotting an "fv" object.
See `as.function.fv` to convert an "fv" object to an R function.
Use `cbind.fv` to combine several "fv" objects. Use `bind.fv` to glue additional columns onto an existing "fv" object.
Simple calculations such as arithmetic and mathematical operations can be computed directly. The range of y values of a function f can be computed by typing `range(f)`. These operations are dispatched to `Summary.fv`, `Math.fv` and `Ops.fv`.
Use `eval.fv` or `with.fv` for more complicated calculations.
The functions `fvnames`, `fvnames<-` allow the user to use standard abbreviations to refer to columns of an "fv" object.

Undocumented functions for modifying an "fv" object include `tweak.fv.entry` and `rebadge.fv`.

Examples

```r
df <- data.frame(r=seq(0,5,by=0.1))
df <- transform(df, a=pi*r^2, b=3*r^2)
X <- fv(df, "r", quote(A(r)),
 "a", cbind(a, b) ~ r,
 alim=c(0,4),
 labl=c("r", "%s[true](r)", "%s[approx](r)"),
 desc=c("radius of circle",
 "true area %s",
 "rough area %s"),
 fname="A")
X
```

fv.object Function Value Table

Description

A class "fv" to support the convenient plotting of several estimates of the same function.

Details

An object of this class is a convenient way of storing and plotting several different estimates of the same function.
It is a data frame with extra attributes indicating the recommended way of plotting the function, and other information.
There are methods for `print` and `plot` for this class.
Objects of class "fv" are returned by `Fest`, `Gest`, `Jest`, and `Kest` along with many other functions.
Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Objects of class "fv" are returned by Fest, Gest, Jest, and Kest along with many other functions. See plot.fv for plotting an "fv" object. See as.function.fv to convert an "fv" object to an R function. Use cbind.fv to combine several "fv" objects. Use bind.fv to glue additional columns onto an existing "fv" object. Undocumented functions for modifying an "fv" object include fvnames, fvnames<-, tweak.fv.entry and rebadge.fv.

Examples

```r
K <- Kest(cells)
class(K)

K # prints a sensible summary

plot(K)
```

---

fvnames

Abbreviations for Groups of Columns in Function Value Table

Description

Groups of columns in a function value table (object of class "fv") identified by standard abbreviations.

Usage

```r
fvnames(X, a = ".")
fvnames(X, a = ".") <- value
```

Arguments

```
X Function value table (object of class "fv"). See fv.object.

a One of the standard abbreviations listed below.

value Character vector containing names of columns of X.
```
Details

An object of class "fv" represents a table of values of a function, usually a summary function for spatial data such as the $K$-function, for which several different statistical estimators may be available. The different estimates are stored as columns of the table.

Auxiliary information carried in the object $X$ specifies some columns or groups of columns of this table that should be used for particular purposes. For convenience these groups can be referred to by standard abbreviations which are recognised by various functions in the spatstat package, such as plot.fv.

These abbreviations are:

- ".x" the function argument
- ".y" the recommended value of the function
- "." all function values to be plotted by default (in order of plotting)
- ".s" the upper and lower limits of shading (for envelopes and confidence intervals)
- ".a" all function values (in column order)

The command fvnames($X$, a) expands the abbreviation a and returns a character vector containing the names of the columns.

The assignment fvnames($X$, a) <- value changes the definition of the abbreviation a to the character string value (which should be the name of another column of $X$). The column names of $X$ are not changed.

Note that fvnames($X$, ".") lists the columns of values that will be plotted by default, in the order that they would be plotted, not in order of the column position. The order in which curves are plotted affects the colours and line styles associated with the curves.

Value

For fvnames, a character vector.
For fvnames<-, the updated object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv.object, plot.fv

Examples

```
K <- Kest(cells)
fvnames(K, ".y")
fvnames(K, ".y") <- "trans"
```
**G3est**

**Nearest Neighbour Distance Distribution Function of a Three-Dimensional Point Pattern**

**Description**

Estimates the nearest-neighbour distance distribution function $G_3(r)$ from a three-dimensional point pattern.

**Usage**

```r
G3est(X, ..., rmax = NULL, nrval = 128, correction = c("rs", "km", "Hanisch"))
```

**Arguments**

- **X**: Three-dimensional point pattern (object of class "pp3").
- **...**: Ignored.
- **rmax**: Optional. Maximum value of argument $r$ for which $G_3(r)$ will be estimated.
- **nrval**: Optional. Number of values of $r$ for which $G_3(r)$ will be estimated. A large value of nrval is required to avoid discretisation effects.
- **correction**: Optional. Character vector specifying the edge correction(s) to be applied. See Details.

**Details**

For a stationary point process $\Phi$ in three-dimensional space, the nearest-neighbour function is

$$G_3(r) = P(d^*(x, \Phi) \leq r \mid x \in \Phi)$$

the cumulative distribution function of the distance $d^*(x, \Phi)$ from a typical point $x$ in $\Phi$ to its nearest neighbour, i.e. to the nearest other point of $\Phi$.

The three-dimensional point pattern $X$ is assumed to be a partial realisation of a stationary point process $\Phi$. The nearest neighbour function of $\Phi$ can then be estimated using techniques described in the References. For each data point, the distance to the nearest neighbour is computed. The empirical cumulative distribution function of these values, with appropriate edge corrections, is the estimate of $G_3(r)$.

The available edge corrections are:

- "rs": the reduced sample (aka minus sampling, border correction) estimator (Baddeley et al, 1993)
- "km": the three-dimensional version of the Kaplan-Meier estimator (Baddeley and Gill, 1997)
- "Hanisch": the three-dimensional generalisation of the Hanisch estimator (Hanisch, 1984).

Alternatively `correction="all"` selects all options.
Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame containing the function values.

Warnings

A large value of nrval is required in order to avoid discretisation effects (due to the use of histograms in the calculation).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rana Moyeed.

References


See Also

`pp3` to create a three-dimensional point pattern (object of class "pp3").

`F3est, K3est, pcf3est` for other summary functions of a three-dimensional point pattern.

`Gest` to estimate the empty space function of point patterns in two dimensions.

Examples

```r
X <- rpoispp3(42)
Z <- G3est(X)
if(interactive()) plot(Z)
```

Description

For a multitype point pattern, estimate the distribution of the distance from a point of type *i* to the nearest point of type *j*.

Usage

```r
Gcross(X, i, j, r=NULL, breaks=NULL, ..., correction=c("rs", "km", "han"))
```
The observed point pattern, from which an estimate of the cross type distance distribution function $G_{ij}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

The type (mark value) of the points in $X$ from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of $\text{marks}(X)$.

The type (mark value) of the points in $X$ to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of $\text{marks}(X)$.

Optional. Numeric vector. The values of the argument $r$ at which the distribution function $G_{ij}(r)$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on $r$.

This argument is for internal use only.

Ignored.

Optional. Character string specifying the edge correction(s) to be used. Options are "none", "rs", "km", "hanisch" and "best". Alternatively correction="all" selects all options.

This function $G_{\text{cross}}$ and its companions $G_{\text{dot}}$ and $G_{\text{multi}}$ are generalisations of the function $G_{\text{est}}$ to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible "colours" or "types". In the spatstat package, a multitype pattern is represented as a single point pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point.

The argument $X$ must be a point pattern (object of class "ppp") or any data that are acceptable to as.ppp. It must be a marked point pattern, and the mark vector $X$ marks must be a factor. The arguments $i$ and $j$ will be interpreted as levels of the factor $X$ marks. (Warning: this means that an integer value $i=3$ will be interpreted as the number 3, not the 3rd smallest level).

The “cross-type” (type $i$ to type $j$) nearest neighbour distance distribution function of a multitype point process is the cumulative distribution function $G_{ij}(r)$ of the distance from a typical random point of the process with type $i$ the nearest point of type $j$.

An estimate of $G_{ij}(r)$ is a useful summary statistic in exploratory data analysis of a multitype point pattern. If the process of type $i$ points were independent of the process of type $j$ points, then $G_{ij}(r)$ would equal $F_j(r)$, the empty space function of the type $j$ points. For a multitype Poisson point process where the type $i$ points have intensity $\lambda_i$, we have

$$G_{ij}(r) = 1 - e^{-\lambda_j \pi r^2}$$

Deviations between the empirical and theoretical $G_{ij}$ curves may suggest dependence between the points of types $i$ and $j$. 

This function $G_{\text{cross}}$ and its companions $G_{\text{dot}}$ and $G_{\text{multi}}$ are generalisations of the function $G_{\text{est}}$ to multitype point patterns.
This algorithm estimates the distribution function $G_{ij}(r)$ from the point pattern $X$. It assumes that $X$ can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in $X$ as Window$(X)$) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in Gest.

The argument $r$ is the vector of values for the distance $r$ at which $G_{ij}(r)$ should be evaluated. It is also used to determine the breakpoints (in the sense of hist) for the computation of histograms of distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts. In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify $r$. However, if it is specified, $r$ must satisfy $r[1] = 0$, and max$(r)$ must be larger than the radius of the largest disc contained in the window. Furthermore, the successive entries of $r$ must be finely spaced.

The algorithm also returns an estimate of the hazard rate function, $\lambda(r)$, of $G_{ij}(r)$. This estimate should be used with caution as $G_{ij}(r)$ is not necessarily differentiable.

The naive empirical distribution of distances from each point of the pattern $X$ to the nearest other point of the pattern, is a biased estimate of $G_{ij}(r)$. However this is also returned by the algorithm, as it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical $G_{ij}$ as if it were an unbiased estimator of $G_{ij}$.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

- $r$: the values of the argument $r$ at which the function $G_{ij}(r)$ has been estimated
- $rs$: the “reduced sample” or “border correction” estimator of $G_{ij}(r)$
- $han$: the Hanisch-style estimator of $G_{ij}(r)$
- $km$: the spatial Kaplan-Meier estimator of $G_{ij}(r)$
- $hazard$: the hazard rate $\lambda(r)$ of $G_{ij}(r)$ by the spatial Kaplan-Meier method
- $raw$: the uncorrected estimate of $G_{ij}(r)$, i.e. the empirical distribution of the distances from each point of type $i$ to the nearest point of type $j$
- $theo$: the theoretical value of $G_{ij}(r)$ for a marked Poisson process with the same estimated intensity (see below).

Warnings

The arguments $i$ and $j$ are always interpreted as levels of the factor $X$\$marks. They are converted to character strings if they are not already character strings. The value $i=1$ does not refer to the first level of the factor.

The function $G_{ij}$ does not necessarily have a density.

The reduced sample estimator of $G_{ij}$ is pointwise approximately unbiased, but need not be a valid distribution function; it may not be a nondecreasing function of $r$. Its range is always within $[0, 1]$.

The spatial Kaplan-Meier estimator of $G_{ij}$ is always nondecreasing but its maximum value may be less than 1.
Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References
Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit: analysis of a bivariate spatial
Springer Verlag, 1995.
Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-

See Also
`Gdot`, `Gest`, `Gmulti`

Examples

```r
amacrine cells data
G01 <- Gcross(amacrine)

equivalent to:
G01 <- Gcross(amacrine, "off", "on")

plot(G01)

empty space function of `on` points
if(interactive()) {
 F1 <- Fest(split(amacrine)$on, r = G01$r)
 lines(F1$r, F1$km, lty=3)
}

synthetic example
pp <- runifpoispp(30)
pp <- pp %mark% factor(sample(0:1, npoints(pp), replace=TRUE))
G <- Gcross(pp, "0", "1") # note: "0" not 0
```


Inhomogeneous Multitype G Cross Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the cross $G$ function, which is the distribution of the distance from a point of type $i$ to the nearest point of type $j$, adjusted for spatially varying intensity.

Usage

```r
Gcross.inhom(X, i, j,
lambda = NULL, lambdaI = NULL, lambdaJ = NULL,
lambdamin = NULL,
...,
 r = NULL,
ReferenceMeasureMarkSetI = NULL,
 ratio = FALSE)
```

Arguments

- **X**
  The observed point pattern, from which an estimate of the inhomogeneous cross type $G$ function $G_{ij}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

- **i**
  The type (mark value) of the points in $X$ from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of `marks(X)`.

- **j**
  The type (mark value) of the points in $X$ to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of `marks(X)`.

- **lambda**
  Optional. Values of the estimated intensity of the point process. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the points in $X$, a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function($x,y$) which can be evaluated to give the intensity value at any location.

- **lambdaI**
  Optional. Values of the estimated intensity of the sub-process of points of type $i$. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the type $i$ points in $X$, a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function($x,y$) which can be evaluated to give the intensity value at any location.

- **lambdaJ**
  Optional. Values of the the estimated intensity of the sub-process of points of type $j$. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the type $j$ points in $X$, a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function($x,y$) which can be evaluated to give the intensity value at any location.
Optional. The minimum possible value of the intensity over the spatial domain. A positive numerical value.

... Extra arguments passed to `as.mask` to control the pixel resolution for the computation.

`r` vector of values for the argument `r` at which the inhomogeneous $G$ function should be evaluated. Not normally given by the user; there is a sensible default.

Optional. The total measure of the mark set. A positive number.

Logical value indicating whether to save ratio information.

Details

This is a generalisation of the function `Gcross` to include an adjustment for spatially inhomogeneous intensity, in a manner similar to the function `Ginhom`.

The argument `lambdaI` supplies the values of the intensity of the sub-process of points of type `i`. It may be either

- a pixel image (object of class "im") which gives the values of the type `i` intensity at all locations in the window containing `X`;
- a numeric vector containing the values of the type `i` intensity evaluated only at the data points of type `i`. The length of this vector must equal the number of type `i` points in `X`.
- a function of the form `function(x,y)` which can be evaluated to give values of the intensity at any locations.
- a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be used as the fitted intensity. (If `update=TRUE` the model will first be refitted to the data `X` before the trend is computed.)

omitted: if `lambdaI` is omitted then it will be estimated using a leave-one-out kernel smoother.

If `lambdaI` is omitted, then it will be estimated using a 'leave-one-out' kernel smoother.

Similarly the argument `lambdaJ` should contain estimated values of the intensity of the points of type `j`. It may be either a pixel image, a numeric vector of length equal to the number of points in `X`, a function, or omitted.

The argument `r` is the vector of values for the distance `r` at which $G_{ij}(r)$ should be evaluated. The values of `r` must be increasing nonnegative numbers and the maximum `r` value must not exceed the radius of the largest disc contained in the window.

Value

An object of class "fv" (see `fv.object`) containing estimates of the inhomogeneous cross type $G$ function.

Warnings

The argument `i` is interpreted as a level of the factor `X$marks`. It is converted to a character string if it is not already a character string. The value `i=1` does not refer to the first level of the factor.
Gdot

Multitype Nearest Neighbour Distance Function (i-to-any)

Description

For a multitype point pattern, estimate the distribution of the distance from a point of type \textit{i} to the nearest other point of any type.

Usage

\texttt{Gdot(X, i, r=NULL, breaks=NULL, ..., correction=c("km", "rs", "han"))}

Arguments

\begin{itemize}
  \item \texttt{X} \hspace{2em} The observed point pattern, from which an estimate of the distance distribution function \(G_{i\cdot}(r)\) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.
  \item \texttt{i} \hspace{2em} The type (mark value) of the points in \texttt{X} from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of \texttt{marks(X)}.
\end{itemize}

Examples

\begin{verbatim}
X <- rescale(amacrine)
if(interactive() && require(spatstat.model)) {
  ## how to do it normally
  mod <- ppm(X ~ marks * x)
  lam <- fitted(mod, dataonly=TRUE)
  lmin <- min(predict(mod)[["off"]]) * 0.9
} else {
  ## for package testing
  lam <- intensity(X)[as.integer(marks(X))]
  lmin <- intensity(X)[2] * 0.9
}
GC <- Gcross.inhom(X, "on", "off", lambda=lam, lambdamin=lmin)
\end{verbatim}

References


See Also

\texttt{Gcross, Ginhom, Gcross.inhom, Gmulti.inhom}.
**Gdot**

Optional. Numeric vector. The values of the argument \( r \) at which the distribution function \( G_{i \bullet}(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).

**breaks**

This argument is for internal use only.

... Ignored.

**correction**

Optional. Character string specifying the edge correction(s) to be used. Options are "none", "rs", "km", "hanisch" and "best". Alternatively correction="all" selects all options.

**Details**

This function Gdot and its companions Gcross and Gmulti are generalisations of the function Gest to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible “colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point.

The argument \( X \) must be a point pattern (object of class "ppp") or any data that are acceptable to as.ppp. It must be a marked point pattern, and the mark vector \( X \$ \text{marks} \) must be a factor. The argument will be interpreted as a level of the factor \( X \$ \text{marks} \). (Warning: this means that an integer value \( i=3 \) will be interpreted as the number 3, not the 3rd smallest level.)

The “dot-type” (type \( i \) to any type) nearest neighbour distance distribution function of a multitype point process is the cumulative distribution function \( G_{i \bullet}(r) \) of the distance from a typical random point of the process with type \( i \) the nearest other point of the process, regardless of type.

An estimate of \( G_{i \bullet}(r) \) is a useful summary statistic in exploratory data analysis of a multitype point pattern. If the type \( i \) points were independent of all other points, then \( G_{i \bullet}(r) \) would equal \( G_{ii}(r) \), the nearest neighbour distance distribution function of the type \( i \) points alone. For a multitype Poisson point process with total intensity \( \lambda \), we have

\[
G_{i \bullet}(r) = 1 - e^{-\lambda \pi r^2}
\]

Deviations between the empirical and theoretical \( G_{i \bullet} \) curves may suggest dependence of the type \( i \) points on the other points.

This algorithm estimates the distribution function \( G_{i \bullet}(r) \) from the point pattern \( X \). It assumes that \( X \) can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in \( X \) as Window(\( X \))) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in Gest.

The argument \( r \) is the vector of values for the distance \( r \) at which \( G_{i \bullet}(r) \) should be evaluated. It is also used to determine the breakpoints (in the sense of hist) for the computation of histograms of distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts. In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify \( r \). However, if it is specified, \( r \) must satisfy \( r[1] = 0 \), and \( \max(r) \) must be larger than the radius of the largest disc contained in the window. Furthermore, the successive entries of \( r \) must be finely spaced.
The algorithm also returns an estimate of the hazard rate function, \( \lambda(r) \), of \( G_{i\bullet}(r) \). This estimate should be used with caution as \( G_{i\bullet}(r) \) is not necessarily differentiable.

The naive empirical distribution of distances from each point of the pattern \( X \) to the nearest other point of the pattern, is a biased estimate of \( G_{i\bullet} \). However this is also returned by the algorithm, as it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical \( G_{i\bullet} \) as if it were an unbiased estimator of \( G_{i\bullet} \).

Value

An object of class "fv" (see \texttt{fv.object}).

Essentially a data frame containing six numeric columns

- \( r \) the values of the argument \( r \) at which the function \( G_{i\bullet}(r) \) has been estimated
- \( rs \) the "reduced sample" or "border correction" estimator of \( G_{i\bullet}(r) \)
- \( han \) the Hanisch-style estimator of \( G_{i\bullet}(r) \)
- \( km \) the spatial Kaplan-Meier estimator of \( G_{i\bullet}(r) \)
- \( hazard \) the hazard rate \( \lambda(r) \) of \( G_{i\bullet}(r) \) by the spatial Kaplan-Meier method
- \( raw \) the uncorrected estimate of \( G_{i\bullet}(r) \), i.e. the empirical distribution of the distances from each point of type \( i \) to the nearest other point of any type.
- \( theo \) the theoretical value of \( G_{i\bullet}(r) \) for a marked Poisson process with the same estimated intensity (see below).

Warnings

The argument \( i \) is interpreted as a level of the factor \( X$marks \). It is converted to a character string if it is not already a character string. The value \( i=1 \) does \textbf{not} refer to the first level of the factor.

The function \( G_{i\bullet} \) does not necessarily have a density.

The reduced sample estimator of \( G_{i\bullet} \) is pointwise approximately unbiased, but need not be a valid distribution function; it may not be a nondecreasing function of \( r \). Its range is always within \([0, 1]\).

The spatial Kaplan-Meier estimator of \( G_{i\bullet} \) is always nondecreasing but its maximum value may be less than 1.

Author(s)

Adrian Baddeley \(<\text{Adrian.Baddeley@curtin.edu.au}>\)

and Rolf Turner \(<\text{r.turner@auckland.ac.nz}>\)

References


**See Also**

Gcross, Gest, Gmulti

**Examples**

```r
amacrine cells data
g0 <- Gdot(amacrine, "off")
plot(g0.)

synthetic example
pp <- runifpoispp(30)
pp <- pp %mark% factor(sample(0:1, npoints(pp), replace=TRUE))
g <- Gdot(pp, "0")
g <- Gdot(pp, 0) # equivalent
```

---

**Gdot.inhom**

**Inhomogeneous Multitype G Dot Function**

**Description**

For a multitype point pattern, estimate the inhomogeneous version of the dot $G$ function, which is the distribution of the distance from a point of type $i$ to the nearest other point of any type, adjusted for spatially varying intensity.

**Usage**

```r
Gdot.inhom(X, i,
lambdaI = NULL, lambdadot = NULL, lambdamin = NULL,
...,
 r = NULL, ReferenceMeasureMarkSetI = NULL, ratio = FALSE)
```

**Arguments**

- **X**
  The observed point pattern, from which an estimate of the inhomogeneous dot type $G$ function $G_{ia}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

- **i**
  The type (mark value) of the points in $X$ from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of marks($X$).
Optional. Values of the estimated intensity of the sub-process of points of type $i$. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the type $i$ points in $X$, a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function $(x,y)$ which can be evaluated to give the intensity value at any location.

Optional. Values of the estimated intensity of the entire point process. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the points in $X$, a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function $(x,y)$ which can be evaluated to give the intensity value at any location.

Optional. The minimum possible value of the intensity over the spatial domain. A positive numerical value.

... Ignored.

vector of values for the argument $r$ at which the inhomogeneous dot type $G$ function $G_{i•}(r)$ should be evaluated. Not normally given by the user; there is a sensible default.

Optional. The total measure of the mark set. A positive number.

Logical value indicating whether to save ratio information.

This is a generalisation of the function $Gdot$ to include an adjustment for spatially inhomogeneous intensity, in a manner similar to the function $Ginhom$.

The argument lambdaI supplies the values of the intensity of the sub-process of points of type $i$. It may be either

- a pixel image (object of class "im") which gives the values of the type $i$ intensity at all locations in the window containing $X$;
- a numeric vector containing the values of the type $i$ intensity evaluated only at the data points of type $i$. The length of this vector must equal the number of type $i$ points in $X$.
- a function of the form function $(x,y)$ which can be evaluated to give values of the intensity at any locations.
- a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be used as the fitted intensity. (If update=TRUE the model will first be refitted to the data $X$ before the trend is computed.)

omitted: if lambdaI is omitted then it will be estimated using a leave-one-out kernel smoother.

If lambdaI is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

Similarly the argument lambdadot should contain estimated values of the intensity of the entire point process. It may be either a pixel image, a numeric vector of length equal to the number of points in $X$, a function, or omitted.

The argument $r$ is the vector of values for the distance $r$ at which $G_{i•}(r)$ should be evaluated. The values of $r$ must be increasing nonnegative numbers and the maximum $r$ value must not exceed the radius of the largest disc contained in the window.
Value

An object of class "fv" (see \texttt{fv.object}) containing estimates of the inhomogeneous dot type $G$ function.

Warnings

The argument \(i\) is interpreted as a level of the factor \(X$marks\). It is converted to a character string if it is not already a character string. The value \(i=1\) does \textbf{not} refer to the first level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

References


See Also

\texttt{Gdot}, \texttt{Ginhom}, \texttt{Gcross.inhom}, \texttt{Gmulti.inhom}.

Examples

X <- rescale(amacrine)
if(interactive() \&\& require(spatstat.model)) {
  ## how to do it normally
  mod <- ppm(X ~ marks * x)
  lam <- fitted(mod, dataonly=TRUE)
  lmin <- min(predict(mod)[["off"]]) * 0.9
} else {
  ## for package testing
  lam <- intensity(X)[as.integer(marks(X))]
  lmin <- intensity(X)[2] * 0.9
}
lamI <- lam[marks(X) == "on"]
GD <- Gdot.inhom(X, "on", lambdai=lamI, lambdadot=lam, lambdamin=lmin)

\textbf{Gest}

\textit{Nearest Neighbour Distance Function G}

\textbf{Description}

Estimates the nearest neighbour distance distribution function $G(r)$ from a point pattern in a window of arbitrary shape.
Usage

Gest(X, r=NULL, breaks=NULL, ..., correction=c("rs", "km", "han"),
    domain=NULL)

Arguments

X
The observed point pattern, from which an estimate of \(G(r)\) will be computed.
An object of class ppp, or data in any format acceptable to \texttt{as.ppp()}.

r
Optional. Numeric vector. The values of the argument \(r\) at which \(G(r)\) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \(r\).

breaks
This argument is for internal use only.

...
Ignored.

correction
Optional. The edge correction(s) to be used to estimate \(G(r)\). A vector of character strings selected from "none", "rs", "km", "Hanisch" and "best". Alternatively correction="all" selects all options.

domain
Optional. Calculations will be restricted to this subset of the window. See Details.

Details

The nearest neighbour distance distribution function (also called the "event-to-event" or "inter-event" distribution) of a point process \(X\) is the cumulative distribution function \(G\) of the distance from a typical random point of \(X\) to the nearest other point of \(X\).

An estimate of \(G\) derived from a spatial point pattern dataset can be used in exploratory data analysis and formal inference about the pattern (Cressie, 1991; Diggle, 1983; Ripley, 1988). In exploratory analyses, the estimate of \(G\) is a useful statistic summarising one aspect of the "clustering" of points. For inferential purposes, the estimate of \(G\) is usually compared to the true value of \(G\) for a completely random (Poisson) point process, which is

\[ G(r) = 1 - e^{-\lambda \pi r^2} \]

where \(\lambda\) is the intensity (expected number of points per unit area). Deviations between the empirical and theoretical \(G\) curves may suggest spatial clustering or spatial regularity.

This algorithm estimates the nearest neighbour distance distribution function \(G\) from the point pattern \(X\). It assumes that \(X\) can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in \(X\) as \texttt{Window(X)}) may have arbitrary shape.

The argument \(X\) is interpreted as a point pattern object (of class "ppp", see \texttt{ppp.object}) and can be supplied in any of the formats recognised by \texttt{as.ppp()}. The estimation of \(G\) is hampered by edge effects arising from the unobservability of points of the random pattern outside the window. An edge correction is needed to reduce bias (Baddeley, 1998; Ripley, 1988). The edge corrections implemented here are the border method or "reduced sample" estimator, the spatial Kaplan-Meier estimator (Baddeley and Gill, 1997) and the Hanisch estimator (Hanisch, 1984).
The argument \( r \) is the vector of values for the distance \( r \) at which \( G(r) \) should be evaluated. It is also used to determine the breakpoints (in the sense of \texttt{hist}) for the computation of histograms of distances. The estimators are computed from histogram counts. This introduces a discretisation error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify \( r \). However, if it is specified, \( r \) must satisfy \( r[1] = 0 \), and \( \max(r) \) must be larger than the radius of the largest disc contained in the window. Furthermore, the successive entries of \( r \) must be finely spaced.

The algorithm also returns an estimate of the hazard rate function, \( \lambda(r) \), of \( G(r) \). The hazard rate is defined as the derivative

\[
\lambda(r) = -\frac{d}{dr} \log(1 - G(r))
\]

This estimate should be used with caution as \( G \) is not necessarily differentiable.

If the argument \texttt{domain} is given, the estimate of \( G(r) \) will be based only on the nearest neighbour distances measured from points falling inside \texttt{domain} (although their nearest neighbours may lie outside \texttt{domain}). This is useful in bootstrap techniques. The argument \texttt{domain} should be a window (object of class "\texttt{owin}" or something acceptable to \texttt{as.owin}). It must be a subset of the window of the point pattern \texttt{X}.

The naive empirical distribution of distances from each point of the pattern \texttt{X} to the nearest other point of the pattern, is a biased estimate of \( G \). However it is sometimes useful. It can be returned by the algorithm, by selecting \texttt{correction="none"}. Care should be taken not to use the uncorrected empirical \( G \) as if it were an unbiased estimator of \( G \).

To simply compute the nearest neighbour distance for each point in the pattern, use \texttt{nndist}. To determine which point is the nearest neighbour of a given point, use \texttt{nnwhich}.

**Value**

An object of class "\texttt{fv}" see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}.

Essentially a data frame containing some or all of the following columns:

- \texttt{r} the values of the argument \( r \) at which the function \( G(r) \) has been estimated
- \texttt{rs} the “reduced sample” or “border correction” estimator of \( G(r) \)
- \texttt{km} the spatial Kaplan-Meier estimator of \( G(r) \)
- \texttt{hazard} the hazard rate \( \lambda(r) \) of \( G(r) \) by the spatial Kaplan-Meier method
- \texttt{raw} the uncorrected estimate of \( G(r) \), i.e. the empirical distribution of the distances from each point in the pattern \( X \) to the nearest other point of the pattern
- \texttt{han} the Hanisch correction estimator of \( G(r) \)
- \texttt{theo} the theoretical value of \( G(r) \) for a stationary Poisson process of the same estimated intensity.

**Warnings**

The function \( G \) does not necessarily have a density. Any valid c.d.f. may appear as the nearest neighbour distance distribution function of a stationary point process.

The reduced sample estimator of \( G \) is pointwise approximately unbiased, but need not be a valid distribution function; it may not be a nondecreasing function of \( r \). Its range is always within \([0, 1]\).

The spatial Kaplan-Meier estimator of \( G \) is always nondecreasing but its maximum value may be less than 1.
Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

`nndist, nnwhich, Fest, Jest, Kest, km.rs, reduced.sample, kaplan.meier`

Examples

```r
G <- Gest(cells)
plot(G)

P-P style plot
plot(G, cbind(km, theo) ~ theo)

the empirical G is below the Poisson G,
indicating an inhibited pattern

if(interactive()) {
 plot(G, . ~ r)
 plot(G, . ~ theo)
 plot(G, asin(sqrt(.)) ~ asin(sqrt(theo)))
}
```
Foxall's Distance Functions

Description

Given a point pattern \( X \) and a spatial object \( Y \), compute estimates of Foxall’s \( G \) and \( J \) functions.

Usage

\[
\text{Gfox}(X, Y, r=NULL, \text{breaks=NULL, correction=c("km", "rs", "han"), W, \ldots})
\]
\[
\text{Jfox}(X, Y, r=NULL, \text{breaks=NULL, correction=c("km", "rs", "han"), W, \ldots, warn.trim=TRUE})
\]

Arguments

- **\( X \)**: A point pattern (object of class "ppp") from which distances will be measured.
- **\( Y \)**: An object of class "ppp", "psp" or "owin" to which distances will be measured. Alternatively a pixel image (class "im") with logical values.
- **\( r \)**: Optional. Numeric vector. The values of the argument \( r \) at which \( Gfox(r) \) or \( Jfox(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).
- **\( \text{breaks} \)**: This argument is for internal use only.
- **\( \text{correction} \)**: Optional. The edge correction(s) to be used to estimate \( Gfox(r) \) or \( Jfox(r) \). A vector of character strings selected from "none", "rs", "km", "cs" and "best". Alternatively correction="all" selects all options.
- **\( W \)**: Optional. A window (object of class "owin") to be taken as the window of observation. The distribution function will be estimated from data inside \( W \). The default is \( W=\text{Frame}(Y) \) when \( Y \) is a window, and \( W=\text{Window}(Y) \) otherwise.
- **\( \ldots \)**: Extra arguments affecting the discretisation of distances. These arguments are ignored by Gfox, but Jfox passes them to Hest to determine the discretisation of the spatial domain.
- **\( \text{warn.trim} \)**: Logical value indicating whether a warning should be issued by Jfox when the window of \( X \) had to be trimmed in order to be a subset of the frame of \( Y \).

Details

Given a point pattern \( X \) and another spatial object \( Y \), these functions compute two nonparametric measures of association between \( X \) and \( Y \), introduced by Foxall (Foxall and Baddeley, 2002).

Let the random variable \( R \) be the distance from a typical point of \( X \) to the object \( Y \). Foxall’s \( G \)-function is the cumulative distribution function of \( R \):

\[
G(r) = P(R \leq r)
\]
Let the random variable $S$ be the distance from a fixed point in space to the object $Y$. The cumulative distribution function of $S$ is the (unconditional) spherical contact distribution function

$$H(r) = P(S \leq r)$$

which is computed by `Hest`.

Foxall’s $J$-function is the ratio

$$J(r) = \frac{1 - G(r)}{1 - H(r)}$$

For further interpretation, see Foxall and Baddeley (2002).

Accuracy of $Jfox$ depends on the pixel resolution, which is controlled by the arguments `eps`, `dimyx` and `xy` passed to `as.mask`. For example, use `eps=0.1` to specify square pixels of side 0.1 units, and `dimyx=256` to specify a 256 by 256 grid of pixels.

**Value**

A function value table (object of class "fv") which can be printed, plotted, or converted to a data frame of values.

**Author(s)**

Rob Foxall and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

**References**


**See Also**

`Gest`, `Hest`, `Jest`, `Fest`

**Examples**

```r
X <- copper$SouthPoints
Y <- copper$SouthLines
G <- Gfox(X, Y)
J <- Jfox(X, Y, correction="km")
```
Ginhom

Inhomogeneous Nearest Neighbour Function

Description

Estimates the inhomogeneous nearest neighbour function $G$ of a non-stationary point pattern.

Usage

Ginhom(X, lambda = NULL, lmin = NULL, ..., 
  sigma = NULL, varcov = NULL, 
  r = NULL, breaks = NULL, ratio = FALSE, 
  update = TRUE, warn.bias=TRUE, savelambda=FALSE)

Arguments

- **X**: The observed data point pattern, from which an estimate of the inhomogeneous $G$ function will be computed. An object of class "ppp" or in a format recognised by `as.ppp()`
- **lambda**: Optional. Values of the estimated intensity function. Either a vector giving the intensity values at the points of the pattern X, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm") or a function(x,y) which can be evaluated to give the intensity value at any location.
- **lmin**: Optional. The minimum possible value of the intensity over the spatial domain. A positive numerical value.
- **sigma, varcov**: Optional arguments passed to `density.ppp` to control the smoothing bandwidth, when lambda is estimated by kernel smoothing.
- **...**: Extra arguments passed to `as.mask` to control the pixel resolution, or passed to `density.ppp` to control the smoothing bandwidth.
- **r**: vector of values for the argument r at which the inhomogeneous $K$ function should be evaluated. Not normally given by the user; there is a sensible default.
- **breaks**: This argument is for internal use only.
- **ratio**: Logical. If TRUE, the numerator and denominator of the estimate will also be saved, for use in analysing replicated point patterns.
- **update**: Logical. If lambda is a fitted model (class "ppm" or "kppm") and update=TRUE (the default), the model will first be refitted to the data X (using `update.ppm` or `update.kppm`) before the fitted intensity is computed. If update=FALSE, the fitted intensity of the model will be computed without fitting it to X.
- **warn.bias**: Logical value specifying whether to issue a warning when the inhomogeneity correction factor takes extreme values, which can often lead to biased results. This usually occurs when insufficient smoothing is used to estimate the intensity.
- **savelambda**: Logical value specifying whether to save the values of lmin and lambda as attributes of the result.
Details

This command computes estimates of the inhomogeneous G-function (van Lieshout, 2010) of a point pattern. It is the counterpart, for inhomogeneous spatial point patterns, of the nearest-neighbour distance distribution function G for homogeneous point patterns computed by Gest.

The argument X should be a point pattern (object of class "ppp").

The inhomogeneous G function is computed using the border correction, equation (7) in Van Lieshout (2010).

The argument lambda should supply the (estimated) values of the intensity function \( \lambda \) of the point process. It may be either

- a numeric vector containing the values of the intensity function at the points of the pattern X.
- a pixel image (object of class "im") assumed to contain the values of the intensity function at all locations in the window.
- a fitted point process model (object of class "ppm" or "kppm") whose fitted trend can be used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before the trend is computed.)
- a function which can be evaluated to give values of the intensity at any locations.

omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern X. The value lambda[i] is assumed to be the (estimated) value of the intensity \( \lambda(x_i) \) for the point \( x_i \) of the pattern X. Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point pattern. If it does not (which may occur near the boundary because of discretisation error), then the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then looking up the values of this blurred image for the missing locations. (A warning will be issued in this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors of coordinates of the points of X. It should return a numeric vector with length equal to the number of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother. The estimate lambda[i] for the point X[i] is computed by removing X[i] from the point pattern, applying kernel smoothing to the remaining points using density.ppp, and evaluating the smoothed intensity at the point X[i]. The smoothing kernel bandwidth is controlled by the arguments sigma and varcov, which are passed to density.ppp along with any extra arguments.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Author(s)

Original code by Marie-Colette van Lieshout. C implementation and R adaptation by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.
References


See Also

Ginhom, Jinhom, Gest

Examples

```r
plot(Ginhom(swedishpines, sigma=10))

plot(Ginhom(swedishpines, sigma=bw.diggle, adjust=2))
```

---

### Gmulti

*Marked Nearest Neighbour Distance Function*

**Description**

For a marked point pattern, estimate the distribution of the distance from a typical point in subset \( I \) to the nearest point of subset \( J \).

**Usage**

```r
Gmulti(X, I, J, r=NULL, breaks=NULL, ..., disjoint=NULL, correction=c("rs", "km", "han"))
```

**Arguments**

- **X**: The observed point pattern, from which an estimate of the multitype distance distribution function \( G_{IJ}(r) \) will be computed. It must be a marked point pattern. See under Details.
- **I**: Subset of points of \( X \) from which distances are measured.
- **J**: Subset of points in \( X \) to which distances are measured.
- **r**: Optional. Numeric vector. The values of the argument \( r \) at which the distribution function \( G_{IJ}(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).
- **breaks**: This argument is for internal use only.
- **...**: Ignored.
- **disjoint**: Optional flag indicating whether the subsets \( I \) and \( J \) are disjoint. If missing, this value will be computed by inspecting the vectors \( I \) and \( J \).
correction  Optional. Character string specifying the edge correction(s) to be used. Options are "none", "rs", "km", "hanisch" and "best". Alternatively correction="all" selects all options.

Details

The function Gmulti generalises Gest (for unmarked point patterns) and Gdot and Gcross (for multitype point patterns).

Suppose \( X_I, X_J \) are subsets, possibly overlapping, of a marked point process. This function computes an estimate of the cumulative distribution function \( G_{IJ}(r) \) of the distance from a typical point of \( X_I \) to the nearest distinct point of \( X_J \).

The argument \( X \) must be a point pattern (object of class "ppp") or any data that are acceptable to as.ppp.

The arguments \( I \) and \( J \) specify two subsets of the point pattern. They may be any type of subset indices, for example, logical vectors of length equal to npoints(\( X \)), or integer vectors with entries in the range 1 to npoints(\( X \)), or negative integer vectors.

Alternatively, \( I \) and \( J \) may be functions that will be applied to the point pattern \( X \) to obtain index vectors. If \( I \) is a function, then evaluating \( I(X) \) should yield a valid subset index. This option is useful when generating simulation envelopes using envelope.

This algorithm estimates the distribution function \( G_{IJ}(r) \) from the point pattern \( X \). It assumes that \( X \) can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in \( X \) as Window(\( X \))) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in Gest.

The argument \( r \) is the vector of values for the distance \( r \) at which \( G_{IJ}(r) \) should be evaluated. It is also used to determine the breakpoints (in the sense of hist) for the computation of histograms of distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts. In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify \( r \). However, if it is specified, \( r \) must satisfy \( r[1] = 0 \), and \( \max(r) \) must be larger than the radius of the largest disc contained in the window. Furthermore, the successive entries of \( r \) must be finely spaced.

The algorithm also returns an estimate of the hazard rate function, \( \lambda(r) \), of \( G_{IJ}(r) \). This estimate should be used with caution as \( G_{IJ}(r) \) is not necessarily differentiable.

The naive empirical distribution of distances from each point of the pattern \( X \) to the nearest other point of the pattern, is a biased estimate of \( G_{IJ} \). However this is also returned by the algorithm, as it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical \( G_{IJ} \) as if it were an unbiased estimator of \( G_{IJ} \).

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

\[ r \] the values of the argument \( r \) at which the function \( G_{IJ}(r) \) has been estimated

\[ rs \] the “reduced sample” or “border correction” estimator of \( G_{IJ}(r) \)
the Hanisch-style estimator of $G_{IJ}(r)$

the spatial Kaplan-Meier estimator of $G_{IJ}(r)$

the hazard rate $\lambda(r)$ of $G_{IJ}(r)$ by the spatial Kaplan-Meier method

the uncorrected estimate of $G_{IJ}(r)$, i.e. the empirical distribution of the distances from each point of type $i$ to the nearest point of type $j$

the theoretical value of $G_{IJ}(r)$ for a marked Poisson process with the same estimated intensity

**Warnings**

The function $G_{IJ}$ does not necessarily have a density.

The reduced sample estimator of $G_{IJ}$ is pointwise approximately unbiased, but need not be a valid distribution function; it may not be a nondecreasing function of $r$. Its range is always within $[0, 1]$.

The spatial Kaplan-Meier estimator of $G_{IJ}$ is always nondecreasing but its maximum value may be less than 1.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

**References**


**See Also**

`Gcross`, `Gdot`, `Gest`
Examples

trees <- longleaf
# Longleaf Pine data: marks represent diameter
Gm <- Gmulti(trees, marks(trees) <= 15, marks(trees) >= 25)
plot(Gm)

GmultiInhom  Inhomogeneous Marked G-Function

Description

For a marked point pattern, estimate the inhomogeneous version of the multitype $G$ function, effectively the cumulative distribution function of the distance from a point in subset $I$ to the nearest point in subset $J$, adjusted for spatially varying intensity.

Usage

Gmulti.inhom(X, I, J,
  lambda = NULL, lambdaI = NULL, lambdaJ = NULL,
  lambdamin = NULL, ...,
  r = NULL,
  ReferenceMeasureMarkSetI = NULL,
  ratio = FALSE)

GmultiInhom(X, I, J,
  lambda = NULL, lambdaI = NULL, lambdaJ = NULL,
  lambdamin = NULL, ...,
  r = NULL,
  ReferenceMeasureMarkSetI = NULL,
  ratio = FALSE)

Arguments

X  A spatial point pattern (object of class "ppp").
I  A subset index specifying the subset of points from which distances are measured. Any kind of subset index acceptable to [.ppp.
J  A subset index specifying the subset of points to which distances are measured. Any kind of subset index acceptable to [.ppp.
lambda  Intensity estimates for each point of X. A numeric vector of length equal to npoints(X). Incompatible with lambdaI, lambdaJ.
lambdaI  Intensity estimates for each point of X[I]. A numeric vector of length equal to npoints(X[I]). Incompatible with lambda.
lambdaJ  Intensity estimates for each point of X[J]. A numeric vector of length equal to npoints(X[J]). Incompatible with lambda.
lambdamin  A lower bound for the intensity, or at least a lower bound for the values in lambdaJ or lambda[J].

...  Ignored.

r  Vector of distance values at which the inhomogeneous G function should be estimated. There is a sensible default.

ReferenceMeasureMarkSetI  Optional. The total measure of the mark set. A positive number.

ratio  Logical value indicating whether to save ratio information.

Details


The functions GmultiInhom and Gmulti.inhom are identical.

Value

Object of class "fv" containing the estimate of the inhomogeneous multitype G function.

Author(s)

Ottmar Cronie and Marie-Colette van Lieshout. Rewritten for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References


See Also

Ginhom, Gmulti

Examples

X <- rescale(amacrine)
I <- (marks(X) == "on")
J <- (marks(X) == "off")
if(interactive() && require(spatstat.model)) {
  ## how to do it normally
  mod <- ppm(X ~ marks * x)
  lam <- fitted(mod, dataonly=TRUE)
  lmin <- min(predict(mod)["off"] * 0.9
} else {
  ## for package testing
  lam <- intensity(X)[as.integer(marks(X))]
  lmin <- intensity(X)[2] * 0.9
}
plot(GmultiInhom(X, I, J, lambda=lam, lambdamin=lmin))
# equivalent
plot(GmultiInhom(X, I, J, lambdai=lam[I], lambdaJ=lam[J], lambdamin=lmin),
     main="")
Description

Convert several objects of class "fv" to the same values of the function argument.

Usage

## S3 method for class 'fv'
harmonise(..., strict=FALSE)

## S3 method for class 'fv'
harmonize(..., strict=FALSE)

Arguments

... Any number of function tables (objects of class "fv").
strict Logical. If TRUE, a column of data will be deleted if columns of the same name

Arguments

... Any number of function tables (objects of class "fv").
strict Logical. If TRUE, a column of data will be deleted if columns of the same name
do not appear in every object.

Details

A function value table (object of class "fv") is essentially a data frame giving the values of a
function \( f(x) \) (or several alternative estimates of this value) at equally-spaced values of the function
argument \( x \).

The command `harmonise` is generic. This is the method for objects of class "fv".

This command makes any number of "fv" objects compatible, in the loose sense that they have the
same sequence of values of \( x \). They can then be combined by `cbind.fv`, but not necessarily by
`eval.fv`.

All arguments ... must be function value tables (objects of class "fv"). The result will be a list, of
length equal to the number of arguments ..., containing new versions of each of these functions,
converted to a common sequence of \( x \) values. If the arguments were named (name=value) then the
return value also carries these names.

The range of \( x \) values in the resulting functions will be the intersection of the ranges of \( x \) values in
the original functions. The spacing of \( x \) values in the resulting functions will be the finest (narrow-
est) of the spacings of the \( x \) values in the original functions. Function values are interpolated using
`approxfun`.

If strict=TRUE, each column of data will be retained only if a column of the same name appears in
all of the arguments .... This ensures that the resulting objects are strictly compatible in the sense of
`compatible.fv`, and can be combined using `eval.fv` or `collapse.fv`.

If strict=FALSE (the default), this does not occur, and then the resulting objects are not guaranteed
to be compatible in the sense of `compatible.fv`. 
Value

A list, of length equal to the number of arguments ..., whose entries are objects of class "fv". If the arguments were named (name=value) then the return value also carries these names.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

fv.object, cbind.fv, eval.fv, compatible.fv

Examples

```r
H <- harmonise(K=Kest(cells), G=Gest(cells))
H
```

---

### Hest

*Sphereical Contact Distribution Function*

**Description**

Estimates the spherical contact distribution function of a random set.

**Usage**

```r
Hest(X, r=NULL, breaks=NULL, ..., W, correction=c("km", "rs", "han"), conditional=TRUE)
```

**Arguments**

- **X** The observed random set. An object of class "ppp", "psp" or "owin". Alternatively a pixel image (class "im") with logical values.
- **r** Optional. Vector of values for the argument r at which \(H(r)\) should be evaluated. Users are advised not to specify this argument; there is a sensible default.
- **breaks** This argument is for internal use only.
- **...** Arguments passed to `as.mask` to control the discretisation.
- **W** Optional. A window (object of class "owin") to be taken as the window of observation. The contact distribution function will be estimated from values of the contact distance inside W. The default is W=Frame(X) when X is a window, and W=Window(X) otherwise.
correction  Optional. The edge correction(s) to be used to estimate \( H(r) \). A vector of character strings selected from "none", "rs", "km", "han" and "best". Alternatively, correction="all" selects all options.

conditional  Logical value indicating whether to compute the conditional or unconditional distribution. See Details.

Details

The spherical contact distribution function of a stationary random set \( X \) is the cumulative distribution function \( H \) of the distance from a fixed point in space to the nearest point of \( X \), given that the point lies outside \( X \). That is, \( H(r) \) equals the probability that \( X \) lies closer than \( r \) units away from the fixed point \( x \), given that \( X \) does not cover \( x \).

Let \( D = d(x, X) \) be the shortest distance from an arbitrary point \( x \) to the set \( X \). Then the spherical contact distribution function is

\[
H(r) = P(D \leq r \mid D > 0)
\]

For a point process, the spherical contact distribution function is the same as the empty space function \( F \) discussed in \texttt{Fest}.

The argument \( X \) may be a point pattern (object of class "ppp"), a line segment pattern (object of class "psp") or a window (object of class "owin"). It is assumed to be a realisation of a stationary random set.

The algorithm first calls \texttt{distmap} to compute the distance transform of \( X \), then computes the Kaplan-Meier and reduced-sample estimates of the cumulative distribution following Hansen et al (1999). If \texttt{conditional=TRUE} (the default) the algorithm returns an estimate of the spherical contact function \( H(r) \) as defined above. If \texttt{conditional=FALSE}, it instead returns an estimate of the cumulative distribution function \( H^*(r) = P(D \leq r) \) which includes a jump at \( r = 0 \) if \( X \) has nonzero area.

Accuracy depends on the pixel resolution, which is controlled by the arguments \( \texttt{eps} \), \( \texttt{dimyx} \) and \( \texttt{xy} \) passed to \texttt{as.mask}. For example, use \( \texttt{eps=0.1} \) to specify square pixels of side 0.1 units, and \( \texttt{dimyx=256} \) to specify a 256 by 256 grid of pixels.

Value

An object of class "fv", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}.

Essentially a data frame containing up to six columns:

\[
\begin{align*}
    r & \quad \text{the values of the argument } r \text{ at which the function } H(r) \text{ has been estimated} \\
    rs & \quad \text{the “reduced sample” or “border correction” estimator of } H(r) \\
    km & \quad \text{the spatial Kaplan-Meier estimator of } H(r) \\
    hazard & \quad \text{the hazard rate } \lambda(r) \text{ of } H(r) \text{ by the spatial Kaplan-Meier method} \\
    han & \quad \text{the spatial Hanisch-Chiu-Stoyan estimator of } H(r) \\
    raw & \quad \text{the uncorrected estimate of } H(r), \text{ i.e. the empirical distribution of the distance from a fixed point in the window to the nearest point of } X
\end{align*}
\]

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk> with contributions from Kassel Hingee.
References


See Also

Fest

Examples

```r
X <- runifpoint(42)
H <- Hest(X)
Y <- rpoisline(10)
H <- Hest(Y)
H <- Hest(Y, dimyx=256)
X <- heather$coarse
plot(Hest(X))
H <- Hest(X, conditional=FALSE)

P <- owin(poly=list(x=c(5.3, 8.5, 8.3, 3.7, 1.3, 3.7),
 y=c(9.7, 10.0, 13.6, 14.4, 10.7, 7.2)))
plot(X)
plot(P, add=TRUE, col="red")
H <- Hest(X, W=P)
Z <- as.im(FALSE, Frame(X))
Z[X] <- TRUE
Z <- Z[P, drop=FALSE]
plot(Z)
H <- Hest(Z)
```

---

**Hopkins-Skellam Test**

**Description**

Perform the Hopkins-Skellam test of Complete Spatial Randomness, or simply calculate the test statistic.
Usage

hopskel(X)

hopskel.test(X, ...,
  alternative=c("two.sided", "less", "greater",
  "clustered", "regular"),
  method=c("asymptotic", "MonteCarlo"),
  nsim=999)

Arguments

X        Point pattern (object of class "ppp").
alternative String indicating the type of alternative for the hypothesis test. Partially matched.
method    Method of performing the test. Partially matched.
nsim      Number of Monte Carlo simulations to perform, if a Monte Carlo p-value is required.
...      Ignored.

Details

Hopkins and Skellam (1954) proposed a test of Complete Spatial Randomness based on comparing nearest-neighbour distances with point-event distances.

If the point pattern X contains n points, we first compute the nearest-neighbour distances $P_1, \ldots, P_n$ so that $P_i$ is the distance from the $i$th data point to the nearest other data point. Then we generate another completely random pattern $U$ with the same number n of points, and compute for each point of $U$ the distance to the nearest point of $X$, giving distances $I_1, \ldots, I_n$. The test statistic is

$$A = \frac{\sum_i P_i^2}{\sum_i I_i^2}$$

The null distribution of $A$ is roughly an $F$ distribution with shape parameters $(2n, 2n)$. (This is equivalent to using the test statistic $H = A/(1 + A)$ and referring $H$ to the Beta distribution with parameters $(n, n)$).

The function hopskel calculates the Hopkins-Skellam test statistic $A$, and returns its numeric value. This can be used as a simple summary of spatial pattern: the value $H = 1$ is consistent with Complete Spatial Randomness, while values $H < 1$ are consistent with spatial clustering, and values $H > 1$ are consistent with spatial regularity.

The function hopskel.test performs the test. If method="asymptotic" (the default), the test statistic $H$ is referred to the $F$ distribution. If method="MonteCarlo", a Monte Carlo test is performed using nsim simulated point patterns.

Value

The value of hopskel is a single number.

The value of hopskel.test is an object of class "htest" representing the outcome of the test. It can be printed.
hotbox

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

See Also
clarkevans, clarkevans.test, nndist, nncross

Examples

```r
hopskel(redwood)
hopskel.test(redwood, alternative="clustered")
```

---

**hotbox**

*Heat Kernel for a Two-Dimensional Rectangle*

Description

Calculate values of the heat kernel in a rectangle with insulated edges.

Usage

```r
hotbox(Xsource, Xquery, sigma,
..., W=NULL, squared=FALSE, nmax=20)
```

Arguments

- **Xsource**: Point pattern of sources of heat. Object of class "ppp" or convertible to a point pattern using `as.ppp(Xsource, W)`.
- **Xquery**: Locations where the heat kernel value is required. An object of class "ppp" specifying query location points, or an object of class "im" or "owin" specifying a grid of query points.
- **sigma**: Bandwidth for kernel. A single number.
- **W**: Window (object of class "owin") used to define the spatial domain when `Xsource` is not of class "ppp".
- **squared**: Logical value indicating whether to take the square of each heat kernel value, before summing over the source points.
- **nmax**: Number of terms to be used from the infinite-sum expression for the heat kernel. A single integer.
Details

This function computes the sum of heat kernels associated with each of the source points, evaluating them at each query location.

The window for evaluation of the heat kernel must be a rectangle.

The heat kernel in any region can be expressed as an infinite sum of terms associated with the eigenfunctions of the Laplacian. The heat kernel in a rectangle is the product of heat kernels for one-dimensional intervals on the horizontal and vertical axes. This function uses `hotrod` to compute the one-dimensional heat kernels, truncating the infinite sum to the first `nmax` terms, and then calculates the two-dimensional heat kernel from each source point to each query location. If `squared=TRUE` these values are squared. Finally the values are summed over all source points to obtain a single value for each query location.

Value

If `Xquery` is a point pattern, the result is a numeric vector with one entry for each query point.

If `Xquery` is an image or window, the result is a pixel image.

Author(s)

Adrian Baddeley and Greg McSwiggan.

References


See Also

densityHeat.ppp

Examples

```r
X <- runifpoint(10)
Y <- runifpoint(5)
hotbox(X, Y, 0.1)
plot(hotbox(X, Window(X), 0.1))
points(X, pch=16)
```
idw

Inverse-distance weighted smoothing of observations at irregular points

Description

Performs spatial smoothing of numeric values observed at a set of irregular locations using inverse-distance weighting.

Usage

idw(X, power=2, at=c("pixels", "points"), ..., se=FALSE)

Arguments

x  A marked point pattern (object of class "ppp").

power  Numeric. Power of distance used in the weighting.

at  Character string specifying whether to compute the intensity values at a grid of pixel locations (at="pixels") or only at the points of X (at="points"). String is partially matched.

...  Arguments passed to as.mask to control the pixel resolution of the result.

se  Logical value specifying whether to calculate a standard error.

Details

This function performs spatial smoothing of numeric values observed at a set of irregular locations. Smoothing is performed by inverse distance weighting. If the observed values are $v_1, \ldots, v_n$ at locations $x_1, \ldots, x_n$ respectively, then the smoothed value at a location $u$ is

$$g(u) = \sum_i w_i v_i \sum_i w_i$$

where the weights are the inverse $p$-th powers of distance,

$$w_i = \frac{1}{d(u, x_i)^p}$$

where $d(u, x_i) = ||u - x_i||$ is the Euclidean distance from $u$ to $x_i$.

The argument X must be a marked point pattern (object of class "ppp", see ppp.object). The points of the pattern are taken to be the observation locations $x_i$, and the marks of the pattern are taken to be the numeric values $v_i$ observed at these locations.

The marks are allowed to be a data frame. Then the smoothing procedure is applied to each column of marks.

If at="pixels" (the default), the smoothed mark value is calculated at a grid of pixels, and the result is a pixel image. The arguments ... control the pixel resolution. See as.mask.
If at="points", the smoothed mark values are calculated at the data points only, using a leave-one-out rule (the mark value at a data point is excluded when calculating the smoothed value for that point).

An estimate of standard error is also calculated, if se=TRUE. The calculation assumes that the data point locations are fixed, that is, the standard error only takes into account the variability in the mark values, and not the variability due to randomness of the data point locations.

An alternative to inverse-distance weighting is kernel smoothing, which is performed by Smooth.ppp.

Value

If X has a single column of marks:

- If at="pixels" (the default), the result is a pixel image (object of class "im"). Pixel values are values of the interpolated function.
- If at="points", the result is a numeric vector of length equal to the number of points in X. Entries are values of the interpolated function at the points of X.

If X has a data frame of marks:

- If at="pixels" (the default), the result is a named list of pixel images (object of class "im"). There is one image for each column of marks. This list also belongs to the class "solist", for which there is a plot method.
- If at="points", the result is a data frame with one row for each point of X, and one column for each column of marks. Entries are values of the interpolated function at the points of X.

If se=TRUE, then the result is a list with two entries named estimate and SE, which each have the format described above.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>. Variance calculation by Andrew P Wheeler with modifications by Adrian Baddeley.

References


See Also

density.ppp, ppp.object, im.object.

See Smooth.ppp for kernel smoothing and nnmark for nearest-neighbour interpolation.

To perform other kinds of interpolation, see also the akima package.
Examples

```r
data frame of marks: trees marked by diameter and height
plot(idw(finpines))
idw(finpines, at="points")[1:5,]
plot(idw(finpines, se=TRUE)$SE)
idw(finpines, at="points", se=TRUE)$SE[1:5,]
```

Iest

Estimate the I-function

Description

Estimates the summary function \( I(r) \) for a multitype point pattern.

Usage

```r
Iest(X, ..., eps=NULL, r=NULL, breaks=NULL, correction=NULL)
```

Arguments

- **X**: The observed point pattern, from which an estimate of \( I(r) \) will be computed. An object of class "ppp", or data in any format acceptable to `as.ppp()`.
- **...**: Ignored.
- **eps**: the resolution of the discrete approximation to Euclidean distance (see below). There is a sensible default.
- **r**: Optional. Numeric vector of values for the argument \( r \) at which \( I(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).
- **breaks**: This argument is for internal use only.
- **correction**: Optional. Vector of character strings specifying the edge correction(s) to be used by `Jest`.

Details

The \( I \) function summarises the dependence between types in a multitype point process (Van Lieshout and Baddeley, 1999). It is based on the concept of the \( J \) function for an unmarked point process (Van Lieshout and Baddeley, 1996). See `Jest` for information about the \( J \) function.

The \( I \) function is defined as

\[
I(r) = \sum_{i=1}^{m} p_i J_{ii}(r) - J_{\bullet\bullet}(r)
\]

where \( J_{\bullet\bullet} \) is the \( J \) function for the entire point process ignoring the marks, while \( J_{ii} \) is the \( J \) function for the process consisting of points of type \( i \) only, and \( p_i \) is the proportion of points which are of type \( i \).

The \( I \) function is designed to measure dependence between points of different types, even if the points are not Poisson. Let \( X \) be a stationary multitype point process, and write \( X_i \) for the process of
points of type $i$. If the processes $X_i$ are independent of each other, then the $I$-function is identically equal to 0. Deviations $I(r) < 1$ or $I(r) > 1$ typically indicate negative and positive association, respectively, between types. See Van Lieshout and Baddeley (1999) for further information.

An estimate of $I$ derived from a multitype spatial point pattern dataset can be used in exploratory data analysis and formal inference about the pattern. The estimate of $I(r)$ is compared against the constant function 0. Deviations $I(r) < 1$ or $I(r) > 1$ may suggest negative and positive association, respectively.

This algorithm estimates the $I$-function from the multitype point pattern $X$. It assumes that $X$ can be treated as a realisation of a stationary (spatially homogeneous) random spatial marked point process in the plane, observed through a bounded window.

The argument $X$ is interpreted as a point pattern object (of class "ppp", see ppp.object) and can be supplied in any of the formats recognised by as.ppp(). It must be a multitype point pattern (it must have a marks vector which is a factor).

The function Jest is called to compute estimates of the $J$ functions in the formula above. In fact three different estimates are computed using different edge corrections. See Jest for information.

**Value**

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing

- $r$: the vector of values of the argument $r$ at which the function $I$ has been estimated
- $rs$: the "reduced sample" or "border correction" estimator of $I(r)$ computed from the border-corrected estimates of $J$ functions
- $km$: the spatial Kaplan-Meier estimator of $I(r)$ computed from the Kaplan-Meier estimates of $J$ functions
- $han$: the Hanisch-style estimator of $I(r)$ computed from the Hanisch-style estimates of $J$ functions
- $un$: the uncorrected estimate of $I(r)$ computed from the uncorrected estimates of $J$
- $theo$: the theoretical value of $I(r)$ for a stationary Poisson process: identically equal to 0

**Note**

Sizeable amounts of memory may be needed during the calculation.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

**References**


increment.fv

See Also

Jest

Examples

Ic <- Jest(amacrine)
plot(Ic, main="Amacrine Cells data")
# values are below I= 0, suggesting negative association
# between 'on' and 'off' cells.

Description

Compute the change in the value of a function \( f \) when the function argument increases by \( \delta \).

Usage

increment.fv(f, \delta)

Arguments

f Object of class "fv" representing a function.
\delta Numeric. The increase in the value of the function argument.

Details

This command computes the new function

\[ g(x) = f(x + h) - f(x - h) \]

where \( h = \delta/2 \). The value of \( g(x) \) is the change in the value of \( f \) over an interval of length \( \delta \) centred at \( x \).

Value

Another object of class "fv" compatible with \( X \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

fv.object, deriv.fv
Examples

plot(increment.fv(Kest(cells), 0.05))

Jcross

Multitype J Function (i-to-j)

Description

For a multitype point pattern, estimate the multitype J function summarising the interpoint dependence between points of type i and of type j.

Usage

Jcross(X, i, j, eps=NULL, r=NULL, breaks=NULL, ..., correction=NULL)

Arguments

X
The observed point pattern, from which an estimate of the multitype J function \( J_{ij}(r) \) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

i
The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string).Defaults to the first level of marks(X).

j
The type (mark value) of the points in X to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of marks(X).

eps
A positive number. The resolution of the discrete approximation to Euclidean distance (see below). There is a sensible default.

r
Optional. Numeric vector. The values of the argument r at which the function \( J_{ij}(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on r.

breaks
This argument is for internal use only.

...
Ignored.

correction
Optional. Character string specifying the edge correction(s) to be used. Options are "none", "rs", "km", "Hanisch" and "best". Alternatively correction="all" selects all options.

Details

This function Jcross and its companions Jdot and Jmulti are generalisations of the function Jest to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible "colours" or "types". In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor. The argument i will be interpreted as a level of the factor X$marks. (Warning: this means that an integer value i=3 will be interpreted as the number 3, not the 3rd smallest level).

The “type i to type j” multitype J function of a stationary multitype point process X was introduced by Van Lieshout and Baddeley (1999). It is defined by

\[ J_{ij}(r) = \frac{1 - G_{ij}(r)}{1 - F_j(r)} \]

where \( G_{ij}(r) \) is the distribution function of the distance from a type i point to the nearest point of type j, and \( F_j(r) \) is the distribution function of the distance from a fixed point in space to the nearest point of type j in the pattern.

An estimate of \( J_{ij}(r) \) is a useful summary statistic in exploratory data analysis of a multitype point pattern. If the subprocess of type i points is independent of the subprocess of points of type j, then \( J_{ij}(r) \equiv 1 \). Hence deviations of the empirical estimate of \( J_{ij} \) from the value 1 may suggest dependence between types.

This algorithm estimates \( J_{ij}(r) \) from the point pattern X. It assumes that X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in X as Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in Jest, using the Kaplan-Meier and border corrections. The main work is done by Gmulti and Fest.

The argument r is the vector of values for the distance r at which \( J_{ij}(r) \) should be evaluated. The values of r must be increasing nonnegative numbers and the maximum r value must not exceed the radius of the largest disc contained in the window.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

- \( J \): the recommended estimator of \( J_{ij}(r) \), currently the Kaplan-Meier estimator.
- \( r \): the values of the argument r at which the function \( J_{ij}(r) \) has been estimated.
- \( \text{km} \): the Kaplan-Meier estimator of \( J_{ij}(r) \).
- \( \text{rs} \): the “reduced sample” or “border correction” estimator of \( J_{ij}(r) \).
- \( \text{han} \): the Hanisch-style estimator of \( J_{ij}(r) \).
- \( \text{un} \): the “uncorrected” estimator of \( J_{ij}(r) \) formed by taking the ratio of uncorrected empirical estimators of \( 1 - G_{ij}(r) \) and \( 1 - F_j(r) \), see Gdot and Fest.
- \( \text{theo} \): the theoretical value of \( J_{ij}(r) \) for a marked Poisson process, namely 1.

The result also has two attributes “G” and “F” which are respectively the outputs of Gcross and Fest for the point pattern.
Warnings

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted to character strings if they are not already character strings. The value i=1 does not refer to the first level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References


See Also

`Jdot, Jest, Jmulti`

Examples

```r
Lansing woods data: 6 types of trees
woods <- lansing
Jhm <- Jcross(woods, "hickory", "maple")
diagnostic plot for independence between hickories and maples
plot(Jhm)

synthetic example with two types "a" and "b"
pp <- runifpoint(30) %mark% factor(sample(c("a","b"), 30, replace=TRUE))
J <- Jcross(pp)
```

Description

For a multitype point pattern, estimate the inhomogeneous multitype J function summarising the interpoint dependence between points of type i and of type j.

Usage

```r
Jcross.inhom(X, i, j,
lambda = NULL, lambdaI = NULL, lambdaJ = NULL,
lambdamin = NULL,
...,
r = NULL, ReferenceMeasureMarkSetI = NULL, ratio = FALSE)
```
Arguments

X The observed point pattern, from which an estimate of the multitype $J$ function $J_{ij}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of marks(X).

lambda Optional. Values of the estimated intensity of the point process. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the points in X, a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to give the intensity value at any location.

lambdaI Optional. Values of the estimated intensity of the sub-process of points of type i. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the type i points in X, a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to give the intensity value at any location.

lambdaJ Optional. Values of the the estimated intensity of the sub-process of points of type j. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the type j points in X, a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to give the intensity value at any location.

lambdamin Optional. The minimum possible value of the intensity over the spatial domain. A positive numerical value.

... Extra arguments passed to as.mask to control the pixel resolution for the computation.

r vector of values for the argument r at which the inhomogeneous $J$ function should be evaluated. Not normally given by the user; there is a sensible default.

ReferenceMeasureMarkSetI Optional. The total measure of the mark set. A positive number.

ratio Logical value indicating whether to save ratio information.

Details

This function is the counterpart of Jcross for inhomogeneous patterns. It is computed as a special case of Jmulti.inhom.

Value

Object of class "fv" containing the estimate of the inhomogeneous multitype $J$ function.

Author(s)

Jonatan González and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.
References


See Also

`Jdot.inhom`, `Jmulti.inhom`, `Jcross`.

Examples

```r
X <- rescale(amacrine)
if(interactive() && require(spatstat.model)) {
 ## how to do it normally
 mod <- ppm(X ~ marks * x)
 lam <- fitted(mod, dataonly=TRUE)
 lmin <- min(predict(mod)[["off"]]) * 0.9
 dd <- NULL
} else {
 ## for package testing
 lam <- intensity(X)[as.integer(marks(X))]
 lmin <- intensity(X)[2] * 0.9
 dd <- 32
}
JC <- Jcross.inhom(X, "on", "off", lambda=lam, lambdamin=lmin, dimyx=dd)
```

---

**Jdot**  
*Multitype J Function (i-to-any)*

Description

For a multitype point pattern, estimate the multitype \( J \) function summarising the interpoint dependence between the type \( i \) points and the points of any type.

Usage

```r
Jdot(X, i, eps=NULL, r=NULL, breaks=NULL, ..., correction=NULL)
```

Arguments

- **X**: The observed point pattern, from which an estimate of the multitype \( J \) function \( J_i(x) \) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.
- **i**: The type (mark value) of the points in \( X \) from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of `marks(X)`.
- **eps**: A positive number. The resolution of the discrete approximation to Euclidean distance (see below). There is a sensible default.
The values of the argument $r$ at which the function $J_i(r)$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on $r$.

breaks

This argument is for internal use only.

... Ignored.

correction

Optional. Character string specifying the edge correction(s) to be used. Options are "none", "rs", "km", "Hanisch" and "best". Alternatively correction="all" selects all options.

Details

This function Jdot and its companions Jcross and Jmulti are generalisations of the function Jest to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible “colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to as.ppp. It must be a marked point pattern, and the mark vector $X$marks must be a factor. The argument i will be interpreted as a level of the factor $X$marks. (Warning: this means that an integer value i=3 will be interpreted as the number 3, not the 3rd smallest level.)

The “type i to any type” multitype J function of a stationary multitype point process $X$ was introduced by Van Lieshout and Baddeley (1999). It is defined by

$$J_i(r) = \frac{1 - G_i(r)}{1 - F_i(r)}$$

where $G_i(r)$ is the distribution function of the distance from a type $i$ point to the nearest other point of the pattern, and $F_i(r)$ is the distribution function of the distance from a fixed point in space to the nearest point of the pattern.

An estimate of $J_i(r)$ is a useful summary statistic in exploratory data analysis of a multitype point pattern. If the pattern is a marked Poisson point process, then $J_i(r) = 1$. If the subprocess of type $i$ points is independent of the subprocess of points of all types not equal to $i$, then $J_i(r)$ equals $J_{ii}(r)$, the ordinary J function (see Jest and Van Lieshout and Baddeley (1996)) of the points of type $i$. Hence deviations from zero of the empirical estimate of $J_i - J_{ii}$ may suggest dependence between types.

This algorithm estimates $J_i(r)$ from the point pattern $X$. It assumes that $X$ can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in $X$ as Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in Jest, using the Kaplan-Meier and border corrections. The main work is done by Gmulti and Fest.

The argument $r$ is the vector of values for the distance $r$ at which $J_i(r)$ should be evaluated. The values of $r$ must be increasing nonnegative numbers and the maximum $r$ value must not exceed the radius of the largest disc contained in the window.
Value

An object of class "fv" (see \texttt{fv.object}). Essentially a data frame containing six numeric columns

- \(J\) the recommended estimator of \(J_i(r)\), currently the Kaplan-Meier estimator.
- \(r\) the values of the argument \(r\) at which the function \(J_i(r)\) has been estimated.
- \(km\) the Kaplan-Meier estimator of \(J_i(r)\).
- \(rs\) the “reduced sample” or “border correction” estimator of \(J_i(r)\).
- \(han\) the Hanisch-style estimator of \(J_i(r)\).
- \(un\) the “uncorrected” estimator of \(J_i(r)\) formed by taking the ratio of uncorrected empirical estimators of \(1 - G_i(r)\) and \(1 - F_i(r)\), see \texttt{Gdot} and \texttt{Fest}.
- \(theo\) the theoretical value of \(J_i(r)\) for a marked Poisson process, namely 1.

The result also has two attributes "G" and "F" which are respectively the outputs of \texttt{Gdot} and \texttt{Fest} for the point pattern.

Warnings

The argument \(i\) is interpreted as a level of the factor \(X\$marks\). It is converted to a character string if it is not already a character string. The value \(i=1\) does not refer to the first level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References


See Also

\texttt{Jcross}, \texttt{Jest}, \texttt{Jmulti}

Examples

```r
Lansing woods data: 6 types of trees
woods <- lansing
Jh. <- Jdot(woods, "hickory")
plot(Jh.)
diagnostic plot for independence between hickories and other trees
Jhh <- Jest(split(woods)$hickory)
plot(Jhh, add=TRUE, legendpos="bottom")
```
# synthetic example with two marks "a" and "b"

```r
pp <- runifpoint(30) %mark% factor(sample(c("a","b"), 30, replace=TRUE))
J <- Jdot(pp, "a")
```

---

### Jdot.inhom

**Inhomogeneous Multitype J function (i-to-any)**

**Description**

For a multitype point pattern, estimate the inhomogeneous multitype $J$ function summarising the interpoint dependence between points of type $i$ and points of any type.

**Usage**

```r
Jdot.inhom(X, i,
lambdaI = NULL, lambdadot = NULL,
lambdamin = NULL,
...,
r = NULL, ReferenceMeasureMarkSetI = NULL, ratio = FALSE)
```

**Arguments**

- **X**
  - The observed point pattern, from which an estimate of the inhomogeneous multitype $J$ function $J_{i\cdot}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

- **i**
  - The type (mark value) of the points in $X$ from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of `marks(X)`.

- **lambdaI**
  - Optional. Values of the estimated intensity of the sub-process of points of type $i$. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the type $i$ points in $X$, a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to give the intensity value at any location.

- **lambdadot**
  - Optional. Values of the estimated intensity of the point process. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the points in $X$, a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to give the intensity value at any location.

- **lambdamin**
  - Optional. The minimum possible value of the intensity over the spatial domain. A positive numerical value.

- **...**
  - Extra arguments passed to `as.mask` to control the pixel resolution for the computation.

- **r**
  - vector of values for the argument $r$ at which the inhomogeneous $K$ function should be evaluated. Not normally given by the user; there is a sensible default.
ReferenceMeasureMarkSetI

Optional. The total measure of the mark set. A positive number.

ratio

Logical value indicating whether to save ratio information.

Details

This function is the counterpart of Jdot for inhomogeneous patterns. It is computed as a special case of Jmulti.inhom.

Value

Object of class "fv" containing the estimate of the inhomogeneous multitype $J$ function.

Author(s)

Jonatan González and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References


See Also

Jdot.inhom, Jmulti.inhom, Jdot.

Examples

X <- rescale(amacrine)
if(interactive() && require(spatstat.model)) {
  ## how to do it normally
  mod <- ppm(X ~ marks * x)
  lam <- fitted(mod, dataonly=TRUE)
  lmin <- min(predict(mod)["off"])) * 0.9
  dd <- NULL
} else {
  ## for package testing
  lam <- intensity(X)[as.integer(marks(X))]
  lmin <- intensity(X)[2] * 0.9
  dd <- 32
}

lamI <- lam[marks(X) == "on"]
JD <- Jdot.inhom(X, "on", lambdaI=lamI, lambdadot=lam, lambdamin=lmin, dimyx=dd)
**Jest**

Estimate the J-function

**Description**

Estimates the summary function $J(r)$ for a point pattern in a window of arbitrary shape.

**Usage**

```r
Jest(X, ..., eps=NULL, r=NULL, breaks=NULL, correction=NULL)
```

**Arguments**

- `X`: The observed point pattern, from which an estimate of $J(r)$ will be computed. An object of class "ppp", or data in any format acceptable to `as.ppp()`.
- `...`: Ignored.
- `eps`: the resolution of the discrete approximation to Euclidean distance (see below). There is a sensible default.
- `r`: vector of values for the argument $r$ at which $J(r)$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on $r$.
- `breaks`: This argument is for internal use only.
- `correction`: Optional. Character string specifying the choice of edge correction(s) in `Fest` and `Gest`. See Details.

**Details**

The $J$ function (Van Lieshout and Baddeley, 1996) of a stationary point process is defined as

$$J(r) = \frac{1 - G(r)}{1 - F(r)}$$

where $G(r)$ is the nearest neighbour distance distribution function of the point process (see `Gest`) and $F(r)$ is its empty space function (see `Fest`).

For a completely random (uniform Poisson) point process, the $J$-function is identically equal to 1. Deviations $J(r) < 1$ or $J(r) > 1$ typically indicate spatial clustering or spatial regularity, respectively. The $J$-function is one of the few characteristics that can be computed explicitly for a wide range of point processes. See Van Lieshout and Baddeley (1996), Baddeley et al (2000), Thonnes and Van Lieshout (1999) for further information.

An estimate of $J$ derived from a spatial point pattern dataset can be used in exploratory data analysis and formal inference about the pattern. The estimate of $J(r)$ is compared against the constant function 1. Deviations $J(r) < 1$ or $J(r) > 1$ may suggest spatial clustering or spatial regularity, respectively.

This algorithm estimates the $J$-function from the point pattern $X$. It assumes that $X$ can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane,
observed through a bounded window. The window (which is specified in \texttt{X} as \texttt{window(X)}) may have arbitrary shape.

The argument \texttt{X} is interpreted as a point pattern object (of class "\texttt{ppp}", see \texttt{ppp.object}) and can be supplied in any of the formats recognised by \texttt{as.ppp()}.

The functions \texttt{Fest} and \texttt{Gest} are called to compute estimates of $F(r)$ and $G(r)$ respectively. These estimates are then combined by simply taking the ratio $J(r) = (1 - G(r))/(1 - F(r))$.

In fact several different estimates are computed using different edge corrections (Baddeley, 1998). The Kaplan-Meier estimate (returned as \texttt{km}) is the ratio $J = (1-G)/(1-F)$ of the Kaplan-Meier estimates of $1 - F$ and $1 - G$ computed by \texttt{Fest} and \texttt{Gest} respectively. This is computed if \texttt{correction=NULL} or if \texttt{correction} includes "\texttt{km}".

The Hanisch-style estimate (returned as \texttt{han}) is the ratio $J = (1-G)/(1-F)$ where $F$ is the Chiu-Stoyan estimate of $F$ and $G$ is the Hanisch estimate of $G$. This is computed if \texttt{correction=NULL} or if \texttt{correction} includes "\texttt{cs}" or "\texttt{han}".

The reduced-sample or border corrected estimate (returned as \texttt{rs}) is the same ratio $J = (1-G)/(1-F)$ of the border corrected estimates. This is computed if \texttt{correction=NULL} or if \texttt{correction} includes "\texttt{rs}" or "\texttt{border}".

These edge-corrected estimators are slightly biased for $J$, since they are ratios of approximately unbiased estimators. The logarithm of the Kaplan-Meier estimate is exactly unbiased for \texttt{log J}.

The uncorrected estimate (returned as \texttt{un} and computed only if \texttt{correction} includes "\texttt{none}") is the ratio $J = (1-G)/(1-F)$ of the uncorrected ("\texttt{raw}") estimates of the survival functions of $F$ and $G$, which are the empirical distribution functions of the empty space distances \texttt{Fest(X, \ldots)$raw} and of the nearest neighbour distances \texttt{Gest(X, \ldots)$raw}. The uncorrected estimates of $F$ and $G$ are severely biased. However the uncorrected estimate of $J$ is approximately unbiased (if the process is close to Poisson); it is insensitive to edge effects, and should be used when edge effects are severe (see Baddeley et al, 2000).

The algorithm for \texttt{Fest} uses two discrete approximations which are controlled by the parameter \texttt{eps} and by the spacing of values of \texttt{r} respectively. See \texttt{Fest} for details. First-time users are strongly advised not to specify these arguments.

Note that the value returned by \texttt{Jest} includes the output of \texttt{Fest} and \texttt{Gest} as attributes (see the last example below). If the user is intending to compute the $F$, $G$ and $J$ functions for the point pattern, it is only necessary to call \texttt{Jest}.

\textbf{Value}

An object of class "fv", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}. Essentially a data frame containing

\begin{itemize}
  \item \texttt{r} the vector of values of the argument \texttt{r} at which the function \texttt{J} has been estimated
  \item \texttt{rs} the “reduced sample” or “border correction” estimator of \texttt{J(r)} computed from the border-corrected estimates of $F$ and $G$
  \item \texttt{km} the spatial Kaplan-Meier estimator of \texttt{J(r)} computed from the Kaplan-Meier estimates of $F$ and $G$
  \item \texttt{han} the Hanisch-style estimator of \texttt{J(r)} computed from the Hanisch estimate of $G$ and the Chiu-Stoyan estimate of $F$
\end{itemize}
Jest

un the uncorrected estimate of \( J(r) \) computed from the uncorrected estimates of \( F \) and \( G \)
theo the theoretical value of \( J(r) \) for a stationary Poisson process: identically equal to 1

The data frame also has attributes

\( F \) the output of \texttt{Fest} for this point pattern, containing three estimates of the empty space function \( F(r) \) and an estimate of its hazard function
\( G \) the output of \texttt{Gest} for this point pattern, containing three estimates of the nearest neighbour distance distribution function \( G(r) \) and an estimate of its hazard function

Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

\texttt{Jinhom,Fest,Gest,Kest,km.rs,reduced.sample,kaplan.meier}
Examples

```
J <- Jest(cells, 0.01)
plot(J, main="cells data")
values are far above J = 1, indicating regular pattern

data(redwood)
J <- Jest(redwood, 0.01, legendpos="center")
plot(J, main="redwood data")
values are below J = 1, indicating clustered pattern
```

Jinhom

Inhomogeneous J-function

Description

Estimates the inhomogeneous J function of a non-stationary point pattern.

Usage

```
Jinhom(X, lambda = NULL, lmin = NULL, ...,
 sigma = NULL, varcov = NULL,
 r = NULL, breaks = NULL, ratio=FALSE,
 update = TRUE, warn.bias=TRUE, savelambda=FALSE)
```

Arguments

- **X**
  The observed data point pattern, from which an estimate of the inhomogeneous J function will be computed. An object of class "ppp" or in a format recognised by `as.ppp()`.

- **lambda**
  Optional. Values of the estimated intensity function. Either a vector giving the intensity values at the points of the pattern X, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm" or "kppm") or a function(x,y) which can be evaluated to give the intensity value at any location.

- **lmin**
  Optional. The minimum possible value of the intensity over the spatial domain. A positive numerical value.

- **sigma, varcov**
  Optional arguments passed to `density.ppp` to control the smoothing bandwidth, when lambda is estimated by kernel smoothing.

- **...**
  Extra arguments passed to `as.mask` to control the pixel resolution, or passed to `density.ppp` to control the smoothing bandwidth.

- **r**
  vector of values for the argument r at which the inhomogeneous K function should be evaluated. Not normally given by the user; there is a sensible default.

- **breaks**
  This argument is for internal use only.

- **ratio**
  Logical. If TRUE, the numerator and denominator of the estimate will also be saved, for use in analysing replicated point patterns.
update Logical. If lambda is a fitted model (class "ppm" or "kppm") and update=TRUE (the default), the model will first be refitted to the data X (using update.ppm or update.kppm) before the fitted intensity is computed. If update=FALSE, the fitted intensity of the model will be computed without fitting it to X.

warn.bias Logical value specifying whether to issue a warning when the inhomogeneity correction factor takes extreme values, which can often lead to biased results. This usually occurs when insufficient smoothing is used to estimate the intensity.

savelambda Logical value specifying whether to save the values of lmin and lambda as attributes of the result.

Details

This command computes estimates of the inhomogeneous J-function (Van Lieshout, 2010) of a point pattern. It is the counterpart, for inhomogeneous spatial point patterns, of the J function for homogeneous point patterns computed by Jest.

The argument X should be a point pattern (object of class "ppp").

The inhomogeneous J function is computed as \( Jinhom(r) = (1 - Ginhom(r))/(1 - Finhom(r)) \)
where \( Ginhom, Finhom \) are the inhomogeneous \( G \) and \( F \) functions computed using the border correction (equations (7) and (6) respectively in Van Lieshout, 2010).

The argument lambda should supply the (estimated) values of the intensity function \( \lambda \) of the point process. It may be either

- **a numeric vector** containing the values of the intensity function at the points of the pattern X.
- **a pixel image** (object of class "im") assumed to contain the values of the intensity function at all locations in the window.
- **a fitted point process model** (object of class "ppm" or "kppm") whose fitted trend can be used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before the trend is computed.)
- **a function** which can be evaluated to give values of the intensity at any locations.
- **omitted**: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern X. The value lambda[i] is assumed to be the the (estimated) value of the intensity \( \lambda(x_i) \) for the point \( x_i \) of the pattern X. Each value must be a positive number; NA's are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point pattern. If it does not (which may occur near the boundary because of discretisation error), then the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then looking up the values of this blurred image for the missing locations. (A warning will be issued in this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors of coordinates of the points of X. It should return a numeric vector with length equal to the number of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother. The estimate lambda[i] for the point X[i] is computed by removing X[i] from the point pattern, applying kernel smoothing to the remaining points using density.ppp, and evaluating the smoothed intensity at the point X[i]. The smoothing kernel bandwidth is controlled by the arguments sigma and varcov, which are passed to density.ppp along with any extra arguments.
**Description**

For a marked point pattern, estimate the multitype J function summarising dependence between the points in subset I and those in subset J.

**Usage**

```r
Jmulti(X, I, J, eps=NULL, r=NULL, breaks=NULL, ..., disjoint=NULL, correction=NULL)
```
**Arguments**

- **X**: The observed point pattern, from which an estimate of the multitype distance distribution function $J_{IJ}(r)$ will be computed. It must be a marked point pattern. See under Details.
- **I**: Subset of points of $X$ from which distances are measured. See Details.
- **J**: Subset of points in $X$ to which distances are measured. See Details.
- **eps**: A positive number. The pixel resolution of the discrete approximation to Euclidean distance (see *Jest*). There is a sensible default.
- **r**: numeric vector. The values of the argument $r$ at which the distribution function $J_{IJ}(r)$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on $r$.
- **breaks**: This argument is for internal use only.
- **...**: Ignored.
- **disjoint**: Optional flag indicating whether the subsets $I$ and $J$ are disjoint. If missing, this value will be computed by inspecting the vectors $I$ and $J$.
- **correction**: Optional. Character string specifying the edge correction(s) to be used. Options are "none", "rs", "km", "Hanisch" and "best". Alternatively correction="all" selects all options.

**Details**

The function *Jmulti* generalises *Jest* (for unmarked point patterns) and *Jdot* and *Jcross* (for multitype point patterns) to arbitrary marked point patterns.

Suppose $X_I, X_J$ are subsets, possibly overlapping, of a marked point process. Define

$$J_{IJ}(r) = \frac{1 - G_{IJ}(r)}{1 - F_J(r)}$$

where $F_J(r)$ is the cumulative distribution function of the distance from a fixed location to the nearest point of $X_J$, and $G_{IJ}(r)$ is the distribution function of the distance from a typical point of $X_I$ to the nearest distinct point of $X_J$.

The argument $X$ must be a point pattern (object of class "ppp") or any data that are acceptable to *as.ppp*.

The arguments $I$ and $J$ specify two subsets of the point pattern. They may be any type of subset indices, for example, logical vectors of length equal to npoints($X$), or integer vectors with entries in the range 1 to npoints($X$), or negative integer vectors.

Alternatively, $I$ and $J$ may be functions that will be applied to the point pattern $X$ to obtain index vectors. If $I$ is a function, then evaluating $I(X)$ should yield a valid subset index. This option is useful when generating simulation envelopes using *envelope*.

It is assumed that $X$ can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in $X$ as Window($X$)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in *Jest*. 

---

**Jmulti** 227
The argument \( r \) is the vector of values for the distance \( r \) at which \( J_{IJ}(r) \) should be evaluated. It is also used to determine the breakpoints (in the sense of \texttt{hist}) for the computation of histograms of distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts. In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify \( r \). However, if it is specified, \( r \) must satisfy \( r[1] = 0 \), and \( \max(r) \) must be larger than the radius of the largest disc contained in the window. Furthermore, the successive entries of \( r \) must be finely spaced.

### Value

An object of class "fv" (see \texttt{fv.object}).

Essentially a data frame containing six numeric columns

- \( r \) the values of the argument \( r \) at which the function \( J_{IJ}(r) \) has been estimated
- \( rs \) the "reduced sample" or "border correction" estimator of \( J_{IJ}(r) \)
- \( km \) the spatial Kaplan-Meier estimator of \( J_{IJ}(r) \)
- \( han \) the Hanisch-style estimator of \( J_{IJ}(r) \)
- \( un \) the uncorrected estimate of \( J_{IJ}(r) \), formed by taking the ratio of uncorrected empirical estimators of \( 1 - G_{IJ}(r) \) and \( 1 - F_J(r) \), see \texttt{Gdot} and \texttt{Fest}.
- \( theo \) the theoretical value of \( J_{IJ}(r) \) for a marked Poisson process with the same estimated intensity, namely 1.

### Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

### References


### See Also

\texttt{Jcross}, \texttt{Jdot}, \texttt{Jest}

### Examples

```r
trees <- longleaf
Longleaf Pine data: marks represent diameter
Jm <- Jmulti(trees, marks(trees) <= 15, marks(trees) >= 25)
plot(Jm)
```
For a marked point pattern, estimate the inhomogeneous version of the multitype $J$ function.

Usage

```r
Jmulti.inhom(X, I, J,
lambda = NULL, lambdaI = NULL, lambdaJ = NULL,
lambdamin = NULL,
...,
r = NULL,
ReferenceMeasureMarkSetI = NULL,
ratio = FALSE)
```

Arguments

- **X**: The observed point pattern, from which an estimate of the inhomogeneous multitype $J$ function $J_{I,J}(r)$ will be computed. It must be a marked point pattern. See under Details.
- **I**: Subset index specifying the points of $X$ from which distances are measured, for the inhomogeneous $G$ function.
- **J**: Subset index specifying the points in $X$ to which distances are measured, for the inhomogeneous $G$ and $F$ functions.
- **lambda**: Optional. Values of the estimated intensity function. Either a vector giving the intensity values at the points of the pattern $X$, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm") or a function $(x,y)$ which can be evaluated to give the intensity value at any location.
- **lambdaI**: Optional. Values of the estimated intensity of the sub-process $X[I]$. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the points in $X[I]$, a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function $(x,y)$ which can be evaluated to give the intensity value at any location.
- **lambdaJ**: Optional. Values of the estimated intensity of the sub-process $X[J]$. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the points in $X[J]$, a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function $(x,y)$ which can be evaluated to give the intensity value at any location.
- **lambdamin**: Optional. The minimum possible value of the intensity over the spatial domain. A positive numerical value.
- **...**: Extra arguments passed to `as.mask` to control the pixel resolution for the computation.
vector of values for the argument $r$ at which the inhomogeneous $K$ function should be evaluated. Not normally given by the user; there is a sensible default.

Optional. The total measure of the mark set. A positive number.

Logical value indicating whether to save ratio information.

This function is the counterpart of \texttt{Jmulti} for inhomogeneous patterns. It is computed by evaluating the inhomogeneous $G$ function \texttt{GmultiInhom} and the inhomogeneous $F$ function \texttt{FmultiInhom} and computing the ratio $J = (1 - G)/(1 - F)$.

Object of class "fv" containing the estimate of the inhomogeneous multitype $J$ function.

Jonatan González and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.


\texttt{Jcross.inhom}, \texttt{Jdot.inhom} for special cases.

\texttt{GmultiInhom}, \texttt{FmultiInhom}, \texttt{Jmulti}.

\begin{verbatim}
X <- rescale(amacrine)
I <- (marks(X) == "on")
J <- (marks(X) == "off")
if(interactive() && require(spatstat.model)) {
  ## how to do it normally
  mod <- ppm(X ~ marks * x)
  lam <- fitted(mod, dataonly=TRUE)
  lmin <- min(predict(mod)[["off"]]) * 0.9
  dd <- NULL
} else {
  ## for package testing
  lam <- intensity(X)[as.integer(marks(X))]
  lmin <- intensity(X)[2] * 0.9
  dd <- 32
}
JM <- Jmulti.inhom(X, I, J, lambda=lam, lambdamin=lmin, dimyx=dd)
\end{verbatim}
**K3est**  

*K-function of a Three-Dimensional Point Pattern*

**Description**

Estimates the $K$-function from a three-dimensional point pattern.

**Usage**

```r
K3est(X, ...,
 rmax = NULL, nrval = 128,
 correction = c("translation", "isotropic"),
 ratio=FALSE)
```

**Arguments**

- **X**: Three-dimensional point pattern (object of class "pp3").
- **...**: Ignored.
- **rmax**: Optional. Maximum value of argument $r$ for which $K_3(r)$ will be estimated.
- **nrval**: Optional. Number of values of $r$ for which $K_3(r)$ will be estimated. A large value of nrval is required to avoid discretisation effects.
- **correction**: Optional. Character vector specifying the edge correction(s) to be applied. See Details.
- **ratio**: Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

**Details**

For a stationary point process $\Phi$ in three-dimensional space, the three-dimensional $K$ function is

$$K_3(r) = \frac{1}{\lambda} E(N(\Phi, x, r) | x \in \Phi)$$

where $\lambda$ is the intensity of the process (the expected number of points per unit volume) and $N(\Phi, x, r)$ is the number of points of $\Phi$, other than $x$ itself, which fall within a distance $r$ of $x$. This is the three-dimensional generalisation of Ripley’s $K$ function for two-dimensional point processes (Ripley, 1977).

The three-dimensional point pattern $X$ is assumed to be a partial realisation of a stationary point process $\Phi$. The distance between each pair of distinct points is computed. The empirical cumulative distribution function of these values, with appropriate edge corrections, is renormalised to give the estimate of $K_3(r)$.

The available edge corrections are:

"translation": the Ohser translation correction estimator (Ohser, 1983; Baddeley et al, 1993)

"isotropic": the three-dimensional counterpart of Ripley’s isotropic edge correction (Ripley, 1977; Baddeley et al, 1993).

Alternatively correction="all" selects all options.
Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame containing the function values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rana Moyeed.

References


See Also

`pp3` to create a three-dimensional point pattern (object of class "pp3").

`pcf3est, F3est, G3est` for other summary functions of a three-dimensional point pattern.

`Kest` to estimate the $K$-function of point patterns in two dimensions or other spaces.

Examples

```r
X <- rpoispp3(42)
Z <- K3est(X)
if(interactive()) plot(Z)
```

### kaplan.meier

**Kaplan-Meier Estimator using Histogram Data**

**Description**

Compute the Kaplan-Meier estimator of a survival time distribution function, from histogram data

**Usage**

```r
kaplan.meier(obs, nco, breaks, upperobs=0)
```

**Arguments**

- `obs`: vector of $n$ integers giving the histogram of all observations (censored or uncensored survival times)
- `nco`: vector of $n$ integers giving the histogram of uncensored observations (those survival times that are less than or equal to the censoring time)
- `breaks`: Vector of $n + 1$ breakpoints which were used to form both histograms.
- `upperobs`: Number of observations beyond the rightmost breakpoint, if any.
Details

This function is needed mainly for internal use in spatstat, but may be useful in other applications where you want to form the Kaplan-Meier estimator from a huge dataset.

Suppose $T_i$ are the survival times of individuals $i = 1, \ldots, M$ with unknown distribution function $F(t)$ which we wish to estimate. Suppose these times are right-censored by random censoring times $C_i$. Thus the observations consist of right-censored survival times $\hat{T}_i = \min(T_i, C_i)$ and non-censoring indicators $D_i = 1 \{ T_i \leq C_i \}$ for each $i$.

If the number of observations $M$ is large, it is efficient to use histograms. Form the histogram $\text{obs}$ of all observed times $\hat{T}_i$. That is, $\text{obs}[k]$ counts the number of values $\hat{T}_i$ in the interval $(\text{breaks}[k], \text{breaks}[k+1])$ for $k > 1$ and $[\text{breaks}[1], \text{breaks}[2])$ for $k = 1$. Also form the histogram $\text{nco}$ of all uncensored times, i.e. those $\hat{T}_i$ such that $D_i = 1$. These two histograms are the arguments passed to $\text{kaplan.meier}$.

The vectors $\text{km}$ and $\text{lambda}$ returned by $\text{kaplan.meier}$ are (histogram approximations to) the Kaplan-Meier estimator of $F(t)$ and its hazard rate $\lambda(t)$. Specifically, $\text{km}[k]$ is an estimate of $F(\text{breaks}[k+1])$, and $\text{lambda}[k]$ is an estimate of the average of $\lambda(t)$ over the interval $(\text{breaks}[k], \text{breaks}[k+1])$.

The histogram breaks must include 0. If the histogram breaks do not span the range of the observations, it is important to count how many survival times $\hat{T}_i$ exceed the rightmost breakpoint, and give this as the value $\text{upperobs}$.

Value

A list with two elements:

- $\text{km}$: Kaplan-Meier estimate of the survival time c.d.f. $F(t)$
- $\text{lambda}$: corresponding Nelson-Aalen estimate of the hazard rate $\lambda(t)$

These are numeric vectors of length $n$.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

reduced.sample, km.rs

**Kcross**

*Multitype K Function (Cross-type)*

**Description**

For a multitype point pattern, estimate the multitype $K$ function which counts the expected number of points of type $j$ within a given distance of a point of type $i$. 
Kcross

Usage

Kcross(X, i, j, r=NULL, breaks=NULL, correction, ...
..., ratio=FALSE, from, to )

Arguments

X
The observed point pattern, from which an estimate of the cross type K function
K_{ij}(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i
The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j
The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string).
Defaults to the second level of marks(X).

r
numeric vector. The values of the argument r at which the distribution function
K_{ij}(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

breaks
This argument is for internal use only.

correction
A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley", "translate", "translation", "periodic", "none"
or "best". It specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

... Ignored.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

from, to An alternative way to specify i and j respectively.

Details

This function Kcross and its companions Kdot and Kmulti are generalisations of the function Kest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
"colours" or "types". In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor.

The arguments i and j will be interpreted as levels of the factor X$marks. If i and j are missing,
they default to the first and second level of the marks factor, respectively.

The "cross-type" (type i to type j) K function of a stationary multitype point process X is defined
so that \( \lambda_j K_{ij}(r) \) equals the expected number of additional random points of type j within a distance
r of a typical point of type i in the process X. Here \( \lambda_j \) is the intensity of the type j points, i.e. the
expected number of points of type \( j \) per unit area. The function \( K_{ij} \) is determined by the second order moment properties of \( X \).

An estimate of \( K_{ij}(r) \) is a useful summary statistic in exploratory data analysis of a multitype point pattern. If the process of type \( i \) points were independent of the process of type \( j \) points, then \( K_{ij}(r) \) would equal \( \pi r^2 \). Deviations between the empirical \( K_{ij} \) curve and the theoretical curve \( \pi r^2 \) may suggest dependence between the points of types \( i \) and \( j \).

This algorithm estimates the distribution function \( K_{ij}(r) \) from the point pattern \( X \). It assumes that \( X \) can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in \( X \) as \( \text{Window}(X) \)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in \( \text{Kest} \), using the border correction.

The argument \( r \) is the vector of values for the distance \( r \) at which \( K_{ij}(r) \) should be evaluated. The values of \( r \) must be increasing nonnegative numbers and the maximum \( r \) value must not exceed the radius of the largest disc contained in the window.

The pair correlation function can also be applied to the result of \( \text{Kcross} \); see \( \text{pcf} \).

**Value**

An object of class "fv" (see \( \text{fv.object} \)).

Essentially a data frame containing numeric columns

- \( r \) the values of the argument \( r \) at which the function \( K_{ij}(r) \) has been estimated
- \( \text{theo} \) the theoretical value of \( K_{ij}(r) \) for a marked Poisson process, namely \( \pi r^2 \)

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( K_{ij}(r) \) obtained by the edge corrections named.

If \( \text{ratio=} \text{TRUE} \) then the return value also has two attributes called "numerator" and "denominator" which are "fv" objects containing the numerators and denominators of each estimate of \( K(r) \).

**Warnings**

The arguments \( i \) and \( j \) are always interpreted as levels of the factor \( X$marks \). They are converted to character strings if they are not already character strings. The value \( i=1 \) does not refer to the first level of the factor.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

**References**


See Also

*Kdot, Kest, Kmulti, pcf*

Examples

```r
amacrine cells data
K01 <- Kcross(amacrine, "off", "on")
plot(K01)

synthetic example: point pattern with marks 0 and 1
pp <- runifpoispp(50)
pp <- pp %mark% factor(sample(0:1, npoints(pp), replace=TRUE))
K <- Kcross(pp, "0", "1")
K <- Kcross(pp, 0, 1) # equivalent
```

---

**Kcross.inhom**

*Inhomogeneous Cross K Function*

**Description**

For a multitype point pattern, estimate the inhomogeneous version of the cross $K$ function, which counts the expected number of points of type $j$ within a given distance of a point of type $i$, adjusted for spatially varying intensity.

**Usage**

```
Kcross.inhom(X, i, j, lambdaI=NULL, lambdaJ=NULL, ..., r=NULL, breaks=NULL, correction = c("border", "isotropic", "Ripley", "translate"), sigma=NULL, varcov=NULL, lambdaIJ=NULL, lambdaX=NULL, update=TRUE, leaveoneout=TRUE)
```
Arguments

X The observed point pattern, from which an estimate of the inhomogeneous cross type $K$ function $K_{ij}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in $X$ from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of marks($X$).

j The type (mark value) of the points in $X$ to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of marks($X$).

lambdaI Optional. Values of the estimated intensity of the sub-process of points of type $i$. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the type $i$ points in $X$, a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function($x,y$) which can be evaluated to give the intensity value at any location.

lambdaJ Optional. Values of the the estimated intensity of the sub-process of points of type $j$. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the type $j$ points in $X$, a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function($x,y$) which can be evaluated to give the intensity value at any location.

r Optional. Numeric vector giving the values of the argument $r$ at which the cross $K$ function $K_{ij}(r)$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on $r$.

breaks This argument is for advanced use only.

correction A character vector containing any selection of the options "border", "bord.modif", "isotropic", "Ripley", "translate", "translation", "none" or "best". It specifies the edge correction(s) to be applied. Alternatively correction="all" selects all options.

... Ignored.

sigma Standard deviation of isotropic Gaussian smoothing kernel, used in computing leave-one-out kernel estimates of lambdaI, lambdaJ if they are omitted.

varcov Variance-covariance matrix of anisotropic Gaussian kernel, used in computing leave-one-out kernel estimates of lambdaI, lambdaJ if they are omitted. Incompatible with sigma.

lambdaIJ Optional. A matrix containing estimates of the product of the intensities lambdaI and lambdaJ for each pair of points of types $i$ and $j$ respectively.

lambdaX Optional. Values of the intensity for all points of $X$. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the points in $X$, a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function($x,y$) which can be evaluated to give the intensity value at any location. If present, this argument overrides both lambdaI and lambdaJ.

update Logical value indicating what to do when lambdaI, lambdaJ or lambdaX is a fitted point process model (class "ppm", "kppm" or "dppm"). If update=TRUE
(the default), the model will first be refitted to the data \( X \) (using \texttt{update.ppm} or \texttt{update.kppm}) before the fitted intensity is computed. If \texttt{update=FALSE}, the fitted intensity of the model will be computed without re-fitting it to \( X \).

\textbf{leaveoneout}  
Logical value (passed to \texttt{density.ppp} or \texttt{fitted.ppm}) specifying whether to use a leave-one-out rule when calculating the intensity.

\section*{Details}

This is a generalisation of the function \texttt{Kcross} to include an adjustment for spatially inhomogeneous intensity, in a manner similar to the function \texttt{Kinhom}.

The inhomogeneous cross-type \( K \) function is described by Møller and Waagepetersen (2003, pages 48-49 and 51-53).

Briefly, given a multitype point process, suppose the sub-process of points of type \( j \) has intensity function \( \lambda_j(u) \) at spatial locations \( u \). Suppose we place a mass of \( 1/\lambda_j(\zeta) \) at each point \( \zeta \) of type \( j \). Then the expected total mass per unit area is 1. The inhomogeneous “cross-type” \( K \) function \( K_{ij}^{inhom}(r) \) equals the expected total mass within a radius \( r \) of a point of the process of type \( i \).

If the process of type \( i \) points were independent of the process of type \( j \) points, then \( K_{ij}^{inhom}(r) \) would equal \( \pi r^2 \). Deviations between the empirical \( K_{ij} \) curve and the theoretical curve \( \pi r^2 \) suggest dependence between the points of types \( i \) and \( j \).

The argument \( X \) must be a point pattern (object of class \"ppp\") or any data that are acceptable to \texttt{as.ppp}. It must be a marked point pattern, and the mark vector \( X \$ \text{marks} \) must be a factor.

The arguments \( i \) and \( j \) will be interpreted as levels of the factor \( X \$ \text{marks} \). (Warning: this means that an integer value \( i=3 \) will be interpreted as the number 3, not the 3rd smallest level). If \( i \) and \( j \) are missing, they default to the first and second level of the marks factor, respectively.

The argument \( \lambda_I \) supplies the values of the intensity of the sub-process of points of type \( i \). It may be either

- \textbf{a pixel image} (object of class \"im\") which gives the values of the type \( i \) intensity at all locations in the window containing \( X \);

- \textbf{a numeric vector} containing the values of the type \( i \) intensity evaluated only at the data points of type \( i \). The length of this vector must equal the number of type \( i \) points in \( X \);

- \textbf{a function} which can be evaluated to give values of the intensity at any locations.

- \textbf{a fitted point process model} (object of class \"ppm\", \"kppm\" or \"dppm\") whose fitted trend can be used as the fitted intensity. (If \texttt{update=TRUE} the model will first be refitted to the data \( X \) before the trend is computed.)

\textbf{omitted:} if \( \lambda_I \) is omitted then it will be estimated using a leave-one-out kernel smoother.

If \( \lambda_I \) is omitted, then it will be estimated using a 'leave-one-out' kernel smoother, as described in Baddeley, Møller and Waagepetersen (2000). The estimate of \( \lambda_I \) for a given point is computed by removing the point from the point pattern, applying kernel smoothing to the remaining points using \texttt{density.ppp}, and evaluating the smoothed intensity at the point in question. The smoothing kernel bandwidth is controlled by the arguments \texttt{sigma} and \texttt{varcov}, which are passed to \texttt{density.ppp} along with any extra arguments.

Similarly \( \lambda_J \) should contain estimated values of the intensity of the sub-process of points of type \( j \). It may be either a pixel image, a function, a numeric vector, or omitted.
Alternatively if the argument \( \lambda X \) is given, then it specifies the intensity values for all points of \( X \), and the arguments \( \lambda I \), \( \lambda J \) will be ignored.

The optional argument \( \lambda IJ \) is for advanced use only. It is a matrix containing estimated values of the products of these two intensities for each pair of data points of types \( i \) and \( j \) respectively.

The argument \( r \) is the vector of values for the distance \( r \) at which \( K_{ij}(r) \) should be evaluated. The values of \( r \) must be increasing nonnegative numbers and the maximum \( r \) value must not exceed the radius of the largest disc contained in the window.

The argument correction chooses the edge correction as explained e.g. in \texttt{Kest}.

The pair correlation function can also be applied to the result of \texttt{Kcross.inhom}; see \texttt{pcf}.

\textbf{Value}

An object of class "fv" (see \texttt{fv.object}).

Essentially a data frame containing numeric columns

- \( r \) the values of the argument \( r \) at which the function \( K_{ij}(r) \) has been estimated
- \( \text{theo} \) the theoretical value of \( K_{ij}(r) \) for a marked Poisson process, namely \( \pi r^2 \)

Together with a column or columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( K_{ij}(r) \) obtained by the edge corrections named.

\textbf{Warnings}

The arguments \( i \) and \( j \) are always interpreted as levels of the factor \( X$marks \). They are converted to character strings if they are not already character strings. The value \( i=1 \) does \textbf{not} refer to the first level of the factor.

\textbf{Author(s)}

Adrian Baddeley &lt;Adrian.Baddeley@curtin.edu.au&gt;, Rolf Turner &lt;r.turner@auckland.ac.nz&gt; and Ege Rubak &lt;rubak@math.aau.dk&gt;.

\textbf{References}


\textbf{See Also}

\texttt{Kcross, Kinhom, Kdot.inhom, Kmulti.inhom, pcf}
Examples

# Lansing Woods data
woods <- lansing

ma <- split(woods)$maple
wh <- split(woods)$whiteoak

# method (1): estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdaW <- density.ppp(wh, sigma=0.15, at="points")
K <- Kcross.inhom(woods, "whiteoak", "maple", lambdaW, lambdaM)

# method (2): leave-one-out
K <- Kcross.inhom(woods, "whiteoak", "maple", sigma=0.15)

# method (3): fit parametric intensity model
if(require("spatstat.model")) {
  fit <- ppm(woods ~marks * polynom(x,y,2))
  # alternative (a): use fitted model as 'lambda' argument
  online <- interactive()
  K <- Kcross.inhom(woods, "whiteoak", "maple",
                      lambdaI=fit, lambdaJ=fit, update=online, leaveoneout=online)
  K <- Kcross.inhom(woods, "whiteoak", "maple",
                      lambdaX=fit, update=online, leaveoneout=online)
  # alternative (b): evaluate fitted intensities at data points
  # (these are the intensities of the sub-processes of each type)
  inten <- fitted(fit, dataonly=TRUE, leaveoneout=FALSE)
  # split according to types of points
  lambda <- split(inten, marks(woods))
  K <- Kcross.inhom(woods, "whiteoak", "maple",
                      lambda$whiteoak, lambda$maple)
}

# synthetic example: type A points have intensity 50,
# type B points have intensity 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
K <- Kcross.inhom(X, "A", "B",
                  lambdaI=as.im(50, Window(X)), lambdaJ=lamB)

Kdot

Multitype K Function (i-to-any)

Description
For a multitype point pattern, estimate the multitype $K$ function which counts the expected number of other points of the process within a given distance of a point of type $i$. 
Usage

Kdot(X, i, r=NULL, breaks=NULL, correction, ..., ratio=FALSE, from)

Arguments

X

The observed point pattern, from which an estimate of the multitype $K$ function $K_{i\bullet}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

i

The type (mark value) of the points in $X$ from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of marks($X$).

r

numeric vector. The values of the argument $r$ at which the distribution function $K_{i\bullet}(r)$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on $r$.

breaks

This argument is for internal use only.

correction

A character vector containing any selection of the options "border", "bord.modif", "isotropic", "Ripley", "translate", "translation", "periodic", "none" or "best". It specifies the edge correction(s) to be applied. Alternatively correction="all" selects all options.

... Ignored.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

from An alternative way to specify $i$.

Details

This function Kdot and its companions Kcross and Kmulti are generalisations of the function Kest to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible “colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point.

The argument $X$ must be a point pattern (object of class "ppp") or any data that are acceptable to as.ppp. It must be a marked point pattern, and the mark vector $X$marks must be a factor.

The argument $i$ will be interpreted as a level of the factor $X$marks. If $i$ is missing, it defaults to the first level of the marks factor, $i = \text{levels}(X\$\text{marks})[1]$.

The “type $i$ to any type” multitype $K$ function of a stationary multitype point process $X$ is defined so that $\lambda K_{i\bullet}(r)$ equals the expected number of additional random points within a distance $r$ of a typical point of type $i$ in the process $X$. Here $\lambda$ is the intensity of the process, i.e. the expected number of points of $X$ per unit area. The function $K_{i\bullet}$ is determined by the second order moment properties of $X$.

An estimate of $K_{i\bullet}(r)$ is a useful summary statistic in exploratory data analysis of a multitype point pattern. If the subprocess of type $i$ points were independent of the subprocess of points of all types
not equal to \(i\), then \(K_{i*}(r)\) would equal \(\pi r^2\). Deviations between the empirical \(K_{i*}\) curve and the theoretical curve \(\pi r^2\) may suggest dependence between types.

This algorithm estimates the distribution function \(K_{i*}(r)\) from the point pattern \(X\). It assumes that \(X\) can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in \(X\) as \(\text{Window}(X)\)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in \(\text{Kest}\), using the chosen edge correction(s).

The argument \(r\) is the vector of values for the distance \(r\) at which \(K_{i*}(r)\) should be evaluated. The values of \(r\) must be increasing nonnegative numbers and the maximum \(r\) value must not exceed the radius of the largest disc contained in the window.

The pair correlation function can also be applied to the result of \(\text{Kdot}\); see \(\text{pcf}\).

**Value**

An object of class "fv" (see \(\text{fv.object}\)). Essentially a data frame containing numeric columns

- \(r\) the values of the argument \(r\) at which the function \(K_{i*}(r)\) has been estimated
- \(\text{theo}\) the theoretical value of \(K_{i*}(r)\) for a marked Poisson process, namely \(\pi r^2\) together with a column or columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \(K_{i*}(r)\) obtained by the edge corrections named.

If \(\text{ratio=}\text{TRUE}\) then the return value also has two attributes called "numerator" and "denominator" which are "fv" objects containing the numerators and denominators of each estimate of \(K(r)\).

**Warnings**

The argument \(i\) is interpreted as a level of the factor \(X$marks\). It is converted to a character string if it is not already a character string. The value \(i=1\) does not refer to the first level of the factor.

The reduced sample estimator of \(K_{i*}\) is pointwise approximately unbiased, but need not be a valid distribution function; it may not be a nondecreasing function of \(r\).

**Author(s)**

Adrian Baddeley \(<\text{Adrian.Baddeley@curtin.edu.au}>\) and Rolf Turner \(<\text{r.turner@auckland.ac.nz}>\).

**References**


Kdot.inhom

Inhomogeneous Multitype K Dot Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the dot $K$ function, which counts the expected number of points of any type within a given distance of a point of type $i$, adjusted for spatially varying intensity.

Usage

Kdot.inhom(X, i, lambdaI=NULL, lambdadot=NULL, ..., r=NULL, breaks=NULL, correction = c("border", "isotropic", "Ripley", "translate"), sigma=NULL, varcov=NULL, lambdaIdot=NULL, lambdaX=NULL, update=TRUE, leaveoneout=TRUE)

Arguments

X

The observed point pattern, from which an estimate of the inhomogeneous dot type $K$ function $K_i^*(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

i

The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of marks(X).

Examples

# Lansing woods data: 6 types of trees
woods <- lansing

Kh. <- Kdot(woods, "hickory")
# diagnostic plot for independence between hickories and other trees
plot(Kh.)

# synthetic example with two marks "a" and "b"
pp <- runifpoispp(50)
pp <- pp %mark% factor(sample(c("a","b"), npoints(pp), replace=TRUE))
K <- Kdot(pp, "a")
Optional. Values of the estimated intensity of the sub-process of points of type \(i\). Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the type \(i\) points in \(X\), a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function \((x,y)\) which can be evaluated to give the intensity value at any location.

\(\hat{\lambda}_{\text{dot}}\)

Optional. Values of the estimated intensity of the entire point process. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the points in \(X\), a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function \((x,y)\) which can be evaluated to give the intensity value at any location.

\(\hat{\lambda}_{\text{Idot}}\)

Optional. A matrix containing estimates of the product of the intensities \(\hat{\lambda}_i\) and \(\hat{\lambda}_{\text{dot}}\) for each pair of points, the first point of type \(i\) and the second of any type.

\(\hat{\lambda}_X\)

Optional. Values of the intensity for all points of \(X\). Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the points in \(X\), a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function \((x,y)\) which can be evaluated to give the intensity value at any location. If present, this argument overrides both \(\hat{\lambda}_i\) and \(\hat{\lambda}_{\text{dot}}\).

\(\hat{\lambda}_I\)

Optional. Values of the estimated intensity of the sub-process of points of type \(i\). Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the type \(i\) points in \(X\), a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function \((x,y)\) which can be evaluated to give the intensity value at any location.

Optional. Values of the estimated intensity of the entire point process. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the points in \(X\), a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function \((x,y)\) which can be evaluated to give the intensity value at any location.

\(\hat{\lambda}_{\text{Idot}}\)

Optional. A matrix containing estimates of the product of the intensities \(\hat{\lambda}_i\) and \(\hat{\lambda}_{\text{dot}}\) for each pair of points, the first point of type \(i\) and the second of any type.

\(\hat{\lambda}_X\)

Optional. Values of the intensity for all points of \(X\). Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the points in \(X\), a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function \((x,y)\) which can be evaluated to give the intensity value at any location. If present, this argument overrides both \(\hat{\lambda}_i\) and \(\hat{\lambda}_{\text{dot}}\).

\(\hat{\lambda}_I\)

Optional. Values of the estimated intensity of the sub-process of points of type \(i\). Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the type \(i\) points in \(X\), a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function \((x,y)\) which can be evaluated to give the intensity value at any location.

\(\hat{\lambda}_{\text{dot}}\)

Optional. Values of the estimated intensity of the entire point process. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the points in \(X\), a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function \((x,y)\) which can be evaluated to give the intensity value at any location.

... Ignored.

\(r\)

Optional. Numeric vector giving the values of the argument \(r\) at which the dot \(K\) function \(K_{\bullet}(r)\) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \(r\).

\(\text{breaks}\)

This argument is for internal use only.

\(\text{correction}\)

A character vector containing any selection of the options "border", "bord.modif", "isotropic", "Ripley", "translate", "translation", "none" or "best". It specifies the edge correction(s) to be applied. Alternatively \(\text{correction}="all"\) selects all options.

\(\text{sigma}\)

Standard deviation of isotropic Gaussian smoothing kernel, used in computing leave-one-out kernel estimates of \(\hat{\lambda}_i\), \(\hat{\lambda}_{\text{dot}}\) if they are omitted.

\(\text{varcov}\)

Variance-covariance matrix of anisotropic Gaussian kernel, used in computing leave-one-out kernel estimates of \(\hat{\lambda}_i\), \(\hat{\lambda}_{\text{dot}}\) if they are omitted. Incompatible with \(\text{sigma}\).

\(\text{update}\)

Logical value indicating what to do when \(\hat{\lambda}_i\), \(\hat{\lambda}_{\text{dot}}\) or \(\hat{\lambda}_X\) is a fitted point process model (class "ppm", "kppm" or "dppm"). If \(\text{update}=\text{TRUE}\) (the default), the model will first be refitted to the data \(X\) (using \texttt{update.ppm} or \texttt{update.kppm}) before the fitted intensity is computed. If \(\text{update}=\text{FALSE}\), the fitted intensity of the model will be computed without re-fitting it to \(X\).

\(\text{leaveoneout}\)

Logical value (passed to \texttt{density.ppp} or \texttt{fitted.ppm}) specifying whether to use a leave-one-out rule when calculating the intensity.

\(\text{Details}\)

This is a generalisation of the function \texttt{Kdot} to include an adjustment for spatially inhomogeneous intensity, in a manner similar to the function \texttt{Kinhom}.
Briefly, given a multitype point process, consider the points without their types, and suppose this unmarked point process has intensity function \( \lambda(u) \) at spatial locations \( u \). Suppose we place a mass of \( 1/\lambda(\zeta) \) at each point \( \zeta \) of the process. Then the expected total mass per unit area is 1. The inhomogeneous “dot-type” \( K \) function \( K_{i \bullet}^{inhom}(r) \) equals the expected total mass within a radius \( r \) of a point of the process of type \( i \), discounting this point itself.

If the process of type \( i \) points were independent of the points of other types, then \( K_{i \bullet}^{inhom}(r) \) would equal \( \pi r^2 \). Deviations between the empirical \( K_i \bullet \) curve and the theoretical curve \( \pi r^2 \) suggest dependence between the points of types \( i \) and \( j \) for \( j \neq i \).

The argument \( X \) must be a point pattern (object of class "ppp") or any data that are acceptable to \texttt{as.ppp}. It must be a marked point pattern, and the mark vector \( X \$ \text{marks} \) must be a factor.

The argument \( i \) will be interpreted as a level of the factor \( X \$ \text{marks} \). (Warning: this means that an integer value \( i=3 \) will be interpreted as the number 3, not the 3rd smallest level). If \( i \) is missing, it defaults to the first level of the marks factor, \( i = \text{levels}(X \$ \text{marks})[1] \).

The argument \( \lambda_i \) supplies the values of the intensity of the sub-process of points of type \( i \). It may be either

- a pixel image (object of class "im") which gives the values of the type \( i \) intensity at all locations in the window containing \( X \);
- a numeric vector containing the values of the type \( i \) intensity evaluated only at the data points of type \( i \). The length of this vector must equal the number of type \( i \) points in \( X \);
- a function of the form \texttt{function(x,y)} which can be evaluated to give values of the intensity at any locations.
- a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be used as the fitted intensity. (If \texttt{update=FALSE} the model will first be refitted to the data \( X \) before the trend is computed.)

\texttt{omitted}: if \( \lambda_i \) is omitted then it will be estimated using a leave-one-out kernel smoother.

If \( \lambda_i \) is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described in Baddeley, Møller and Waagepetersen (2000). The estimate of \( \lambda_i \) for a given point is computed by removing the point from the point pattern, applying kernel smoothing to the remaining points using \texttt{density.ppp}, and evaluating the smoothed intensity at the point in question. The smoothing kernel bandwidth is controlled by the arguments \( \text{sigma} \) and \( \text{varcov} \), which are passed to \texttt{density.ppp} along with any extra arguments.

Similarly the argument \( \lambda_{i \bullet} \) should contain estimated values of the intensity of the entire point process. It may be either a pixel image, a numeric vector of length equal to the number of points in \( X \), a function, or omitted.

Alternatively if the argument \( \lambda_X \) is given, then it specifies the intensity values for all points of \( X \), and the arguments \( \lambda_i \), \( \lambda_{i \bullet} \) will be ignored. (The two arguments \( \lambda_i \), \( \lambda_{i \bullet} \) allow the user to specify two different methods for calculating the intensities of the two kinds of points, while \( \lambda_X \) ensures that the same method is used for both kinds of points.)

For advanced use only, the optional argument \( \text{lambdaIdot} \) is a matrix containing estimated values of the products of these two intensities for each pair of points, the first point of type \( i \) and the second of any type.

The argument \( r \) is the vector of values for the distance \( r \) at which \( K_{i \bullet}(r) \) should be evaluated. The values of \( r \) must be increasing nonnegative numbers and the maximum \( r \) value must not exceed the radius of the largest disc contained in the window.
The argument correction chooses the edge correction as explained e.g. in \texttt{Kest}.
The pair correlation function can also be applied to the result of \texttt{Kdot.inhom}; see \texttt{pcf}.

\textbf{Value}

An object of class "fv" (see \texttt{fv.object}).

Essentially a data frame containing numeric columns

- $r$: the values of the argument $r$ at which the function $K_{i*}(r)$ has been estimated
- \texttt{theo}: the theoretical value of $K_{i*}(r)$ for a marked Poisson process, namely $\pi r^2$

Together with a column or columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function $K_{i*}(r)$ obtained by the edge corrections named.

\textbf{Warnings}

The argument \texttt{i} is interpreted as a level of the factor \texttt{X}$\backslash$marks. It is converted to a character string if it is not already a character string. The value \texttt{i=1} does not refer to the first level of the factor.

\textbf{Author(s)}

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

\textbf{References}


\textbf{See Also}

\texttt{Kdot, Kinhom, Kcross.inhom, Kmulti.inhom, pcf}

\textbf{Examples}

```r
Lansing Woods data
woods <- lansing
woods <- woods[seq(1, npoints(woods), by=10)]
ma <- split(woods)$maple
lg <- unmark(woods)

Estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdadot <- density.ppp(lg, sigma=0.15, at="points")
K <- Kdot.inhom(woods, "maple", lambdaI=lambdaM,
 lambdadot=lambdadot)

Equivalent
K <- Kdot.inhom(woods, "maple", sigma=0.15)
```
# Fit model
if(require("spatstat.model")) {
  fit <- ppm(woods ~ marks * polynom(x,y,2))
  K <- Kdot.inhom(woods, "maple", lambdaX=fit,
                  update=FALSE, leaveoneout=FALSE)
}

# synthetic example: type A points have intensity 50,
# type B points have intensity 50 + 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
lamdot <- as.im(function(x,y) { 100 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
K <- Kdot.inhom(X, "B", lambdaI=lamB, lambdadot=lamdot)

---

**kernel.factor**

*Scale factor for density kernel*

**Description**

Returns a scale factor for the kernels used in density estimation for numerical data.

**Usage**

```r
kernel.factor(kernel = "gaussian")
```

**Arguments**

- `kernel` String name of the kernel. Options are "gaussian", "rectangular", "triangular", "epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching is used).

**Details**

Kernel estimation of a probability density in one dimension is performed by `density.default` using a kernel function selected from the list above.

This function computes a scale constant for the kernel. For the Gaussian kernel, this constant is equal to 1. Otherwise, the constant $c$ is such that the kernel with standard deviation 1 is supported on the interval $[-c, c]$.

For more information about these kernels, see `density.default`.

**Value**

A single number.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Martin Hazelton
See Also

density.default, dkernel, kernel.moment, kernel.squint

Examples

```r
kernel.factor("rect")
 # bandwidth for Epanechnikov kernel with half-width h=1
 h <- 1
 bw <- h/kernel.factor("epa")
```

**kernel.moment**

Moment of Smoothing Kernel

Description

Computes the complete or incomplete $m$th moment of a smoothing kernel.

Usage

```r
kernel.moment(m, r, kernel = "gaussian", mean=0, sd=1/kernel.factor(kernel))
```

Arguments

- `m`: Exponent (order of moment). An integer.
- `r`: Upper limit of integration for the incomplete moment. A numeric value or numeric vector. Set $r=\infty$ to obtain the complete moment.
- `kernel`: String name of the kernel. Options are "gaussian", "rectangular", "triangular", "epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching is used).
- `mean`, `sd`: Optional numerical values giving the mean and standard deviation of the kernel.

Details

Kernel estimation of a probability density in one dimension is performed by `density.default` using a kernel function selected from the list above. For more information about these kernels, see `density.default`.

The function `kernel.moment` computes the integral

$$\int_{-\infty}^{r} t^m k(t) dt$$

where $k(t)$ is the selected kernel, $r$ is the upper limit of integration, and $m$ is the exponent or order.

Note that, if `mean` and `sd` are not specified, the calculations assume that $k(t)$ is the standard form of the kernel, which has support $[-1,1]$ and standard deviation $sigma = 1/c$ where $c = kernel.factor(kernel)$.

The code uses the explicit analytic expressions when $m = 0, 1, 2$ and numerical integration otherwise.
### kernel.squint

**Value**

A single number, or a numeric vector of the same length as \( r \).

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Martin Hazelton.

**See Also**

density.default, dkernel, kernel.factor, kernel.squint

**Examples**

```r
kernel.moment(1, 0.1, "epa")
curve(kernel.moment(2, x, "epa"), from=-1, to=1)
```

<table>
<thead>
<tr>
<th>kernel.squint</th>
<th>Integral of Squared Kernel</th>
</tr>
</thead>
</table>

**Description**

Computes the integral of the squared kernel, for the kernels used in density estimation for numerical data.

**Usage**

```r
kernel.squint(kernel = "gaussian", bw=1)
```

**Arguments**

- `kernel` String name of the kernel. Options are "gaussian", "rectangular", "triangular", "epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching is used).
- `bw` Bandwidth (standard deviation) of the kernel.

**Details**

Kernel estimation of a probability density in one dimension is performed by density.default using a kernel function selected from the list above.

This function computes the integral of the squared kernel,

\[
R = \int_{-\infty}^{\infty} k(x)^2 \, dx
\]

where \( k(x) \) is the kernel with bandwidth \( bw \).
Value

A single number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk> and Martin Hazelton

See Also

density.default, dkernel, kernel.moment, kernel.factor

Examples

kernel.squint("gaussian", 3)

# integral of squared Epanechnikov kernel with half-width h=1
h <- 1
bw <- h/kernel.factor("epa")
kernel.squint("epa", bw)

Kest 

K-function

Description

Estimates Ripley’s reduced second moment function $K(r)$ from a point pattern in a window of arbitrary shape.

Usage

Kest(X, ..., r=NULL, rmax=NULL, breaks=NULL,
correction=c("border", "isotropic", "Ripley", "translate"),
nlarge=3000, domain=NULL, var.approx=FALSE, ratio=FALSE)

Arguments

X 
The observed point pattern, from which an estimate of $K(r)$ will be computed. An object of class "ppp", or data in any format acceptable to as.ppp().

... 
Ignored.

r 
Optional. Vector of values for the argument $r$ at which $K(r)$ should be evaluated. Users are advised not to specify this argument; there is a sensible default. If necessary, specify rmax.

rmax 
Optional. Maximum desired value of the argument $r$.

breaks 
This argument is for internal use only.
correction: Optional. A character vector containing any selection of the options "none", "border", "bord.modif", "isotropic", "Ripley", "translate", "translation", "rigid", "none", "periodic", "good" or "best". It specifies the edge correction(s) to be applied. Alternatively, correction="all" selects all options.

nlarge: Optional. Efficiency threshold. If the number of points exceeds nlarge, then only the border correction will be computed (by default), using a fast algorithm.

domain: Optional. Calculations will be restricted to this subset of the window. See Details.

var.approx: Logical. If TRUE, the approximate variance of $\hat{K}(r)$ under CSR will also be computed.

ratio: Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

**Details**

The $K$ function (variously called “Ripley’s K-function” and the “reduced second moment function”) of a stationary point process $X$ is defined so that $\lambda K(r)$ equals the expected number of additional random points within a distance $r$ of a typical random point of $X$. Here $\lambda$ is the intensity of the process, i.e. the expected number of points of $X$ per unit area. The $K$ function is determined by the second order moment properties of $X$.

An estimate of $K$ derived from a spatial point pattern dataset can be used in exploratory data analysis and formal inference about the pattern (Cressie, 1991; Diggle, 1983; Ripley, 1977, 1988). In exploratory analyses, the estimate of $K$ is a useful statistic summarising aspects of inter-point “dependence” and “clustering”. For inferential purposes, the estimate of $K$ is usually compared to the true value of $K$ for a completely random (Poisson) point process, which is $K(r) = \pi r^2$. Deviations between the empirical and theoretical $K$ curves may suggest spatial clustering or spatial regularity.

This routine Kest estimates the $K$ function of a stationary point process, given observation of the process inside a known, bounded window. The argument $X$ is interpreted as a point pattern object (of class "ppp", see ppp.object) and can be supplied in any of the formats recognised by as.ppp().

The estimation of $K$ is hampered by edge effects arising from the unobservability of points of the random pattern outside the window. An edge correction is needed to reduce bias (Baddeley, 1998; Ripley, 1988). The corrections implemented here are

- **border** the border method or “reduced sample” estimator (see Ripley, 1988). This is the least efficient (statistically) and the fastest to compute. It can be computed for a window of arbitrary shape.
- **isotropic/Ripley** Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is implemented for rectangular and polygonal windows (not for binary masks).
- **translate/translation** Translation correction (Ohser, 1983). Implemented for all window geometries, but slow for complex windows.
- **rigid** Rigid motion correction (Ohser and Stoyan, 1981). Implemented for all window geometries, but slow for complex windows.
- **none** Uncorrected estimate. An estimate of the $K$ function without edge correction. (i.e. setting $e_{ij} = 1$ in the equation below. This estimate is biased and should not be used for data analysis, unless you have an extremely large point pattern (more than 100,000 points).
periodic  Periodic (toroidal) edge correction. Defined only for rectangular windows.

best  Selects the best edge correction that is available for the geometry of the window. Currently this is Ripley’s isotropic correction for a rectangular or polygonal window, and the translation correction for masks.

good  Selects the best edge correction that can be computed in a reasonable time. This is the same as “best” for datasets with fewer than 3000 points; otherwise the selected edge correction is “border”, unless there are more than 100,000 points, when it is “none”.

The estimates of $K(r)$ are of the form

$$\hat{K}(r) = \frac{a}{n(n-1)} \sum_i \sum_j I(d_{ij} \leq r)e_{ij}$$

where $a$ is the area of the window, $n$ is the number of data points, and the sum is taken over all ordered pairs of points $i$ and $j$ in $X$. Here $d_{ij}$ is the distance between the two points, and $I(d_{ij} \leq r)$ is the indicator that equals 1 if the distance is less than or equal to $r$. The term $e_{ij}$ is the edge correction weight (which depends on the choice of edge correction listed above).

Note that this estimator assumes the process is stationary (spatially homogeneous). For inhomogeneous point patterns, see Kinhom.

If the point pattern $X$ contains more than about 3000 points, the isotropic and translation edge corrections can be computationally prohibitive. The computations for the border method are much faster, and are statistically efficient when there are large numbers of points. Accordingly, if the number of points in $X$ exceeds the threshold $n_{large}$, then only the border correction will be computed. Setting $n_{large} = \infty$ or correction=“best” will prevent this from happening. Setting $n_{large} = 0$ is equivalent to selecting only the border correction with correction=“border”.

If $X$ contains more than about 100,000 points, even the border correction is time-consuming. You may want to consider setting correction=“none” in this case. There is an even faster algorithm for the uncorrected estimate.

Approximations to the variance of $\hat{K}(r)$ are available, for the case of the isotropic edge correction estimator, assuming complete spatial randomness (Ripley, 1988; Lotwick and Silverman, 1982; Diggle, 2003, pp 51-53). If var.approx=TRUE, then the result of Kest also has a column named rip giving values of Ripley’s (1988) approximation to var($\hat{K}(r)$), and (if the window is a rectangle) a column named ls giving values of Lotwick and Silverman’s (1982) approximation.

If the argument domain is given, the calculations will be restricted to a subset of the data. In the formula for $K(r)$ above, the first point $i$ will be restricted to lie inside domain. The result is an approximately unbiased estimate of $K(r)$ based on pairs of points in which the first point lies inside domain and the second point is unrestricted. This is useful in bootstrap techniques. The argument domain should be a window (object of class “owin”) or something acceptable to as.owin. It must be a subset of the window of the point pattern $X$.

The estimator Kest ignores marks. Its counterparts for multitype point patterns are Kcross, Kdot, and for general marked point patterns see Kmulti.

Some writers, particularly Stoyan (1994, 1995) advocate the use of the “pair correlation function”

$$g(r) = \frac{K'(r)}{2\pi r}$$

where $K'(r)$ is the derivative of $K(r)$. See pcf on how to estimate this function.
Value

An object of class "fv", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}.

Essentially a data frame containing columns

- \texttt{r} the vector of values of the argument \texttt{r} at which the function \texttt{K} has been estimated
- \texttt{theo} the theoretical value \( K(r) = \pi r^2 \) for a stationary Poisson process

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( K(r) \) obtained by the edge corrections named.

If \texttt{var.approx=TRUE} then the return value also has columns \texttt{rip} and \texttt{ls} containing approximations to the variance of \( \hat{K}(r) \) under CSR.

If \texttt{ratio=TRUE} then the return value also has two attributes called "numerator" and "denominator" which are "fv" objects containing the numerators and denominators of each estimate of \( K(r) \).

Envelopes, significance bands and confidence intervals

To compute simulation envelopes for the \( K \)-function under CSR, use \texttt{envelope}.

To compute a confidence interval for the true \( K \)-function, use \texttt{varblock} or \texttt{lohboot}.

Warnings

The estimator of \( K(r) \) is approximately unbiased for each fixed \( r \), for point processes which do not have very strong interaction. (For point processes with a strong clustering interaction, the estimator is negatively biased; for point processes with a strong inhibitive interaction, the estimator is positively biased.)

Bias increases with \( r \) and depends on the window geometry. For a rectangular window it is prudent to restrict the \( r \) values to a maximum of \( 1/4 \) of the smaller side length of the rectangle (Ripley, 1977, 1988; Diggle, 1983). Bias may become appreciable for point patterns consisting of fewer than 15 points.

While \( K(r) \) is always a non-decreasing function, the estimator of \( K \) is not guaranteed to be non-decreasing. This is rarely a problem in practice, except for the border correction estimators when the number of points is small.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

localK to extract individual summands in the $K$ function.

pcf for the pair correlation.

Fest, Gest, Jest for alternative summary functions.

Kcross, Kdot, Kinhom, Kmulti for counterparts of the $K$ function for multitype point patterns.

reduced.sample for the calculation of reduced sample estimators.

Examples

```r
X <- runifpoint(50)
K <- Kest(X)
K <- Kest(cells, correction="isotropic")
plot(K)
plot(K, main="K function for cells")
plot the L function
plot(K, sqrt(iso/pi) ~ r)
plot(K, sqrt(./pi) ~ r, ylab="L(r)", main="L function for cells")
```

---

**Kest.fft**  
*K-function using FFT*

**Description**

Estimates the reduced second moment function $K(r)$ from a point pattern in a window of arbitrary shape, using the Fast Fourier Transform.

**Usage**

```r
Kest.fft(X, sigma, r=NULL, ..., breaks=NULL)
```
**Arguments**

- **X**: The observed point pattern, from which an estimate of $K(r)$ will be computed. An object of class "ppp", or data in any format acceptable to `as.ppp()`.
- **sigma**: Standard deviation of the isotropic Gaussian smoothing kernel.
- **r**: Optional. Vector of values for the argument $r$ at which $K(r)$ should be evaluated. There is a sensible default.
- **...**: Arguments passed to `as.mask` determining the spatial resolution for the FFT calculation.
- **breaks**: This argument is for internal use only.

**Details**

This is an alternative to the function `Kest` for estimating the $K$ function. It may be useful for very large patterns of points.

Whereas `Kest` computes the distance between each pair of points analytically, this function discretises the point pattern onto a rectangular pixel raster and applies Fast Fourier Transform techniques to estimate $K(t)$. The hard work is done by the function `Kmeasure`.

The result is an approximation whose accuracy depends on the resolution of the pixel raster. The resolution is controlled by the arguments ..., or by setting the parameter `npixel` in `spatstat.options`.

**Value**

An object of class "fv" (see `fv.object`). Essentially a data frame containing columns

- **r**: the vector of values of the argument $r$ at which the function $K$ has been estimated
- **border**: the estimates of $K(r)$ for these values of $r$
- **theo**: the theoretical value $K(r) = \pi r^2$ for a stationary Poisson process

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

**References**

See Also

Kest, Kmeasure, spatstat.options

Examples

pp <- runifpoint(10000)
Kpp <- Kest.fft(pp, 0.01)
plot(Kpp)

---

Kinhom

Inhomogeneous K-function

Description

Estimates the inhomogeneous $K$ function of a non-stationary point pattern.

Usage

Kinhom(X, lambda=NULL, ..., r = NULL, breaks = NULL,
correction=c("border", "bord.modif", "isotropic", "translate"),
renormalise=TRUE, normpower=1,
update=TRUE, leaveoneout=TRUE, nlarge = 1000,
lambda2=NULL, reciplambda=NULL, reciplambda2=NULL,
diagonal=TRUE, sigma=NULL, varcov=NULL, ratio=FALSE)

Arguments

X

The observed data point pattern, from which an estimate of the inhomogeneous $K$ function will be computed. An object of class "ppp" or in a format recognised by as.ppp()

lambda

Optional. Values of the estimated intensity function. Either a vector giving the intensity values at the points of the pattern $X$, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm" or "kppm") or a function(x,y) which can be evaluated to give the intensity value at any location.

...

Extra arguments. Ignored if lambda is present. Passed to density.ppp if lambda is omitted.

r

vector of values for the argument $r$ at which the inhomogeneous $K$ function should be evaluated. Not normally given by the user; there is a sensible default.
This argument is for internal use only.

- **correction**: A character vector containing any selection of the options "border", "bord.modif", "isotropic", "Ripley", "translate", "translation", "none" or "best". It specifies the edge correction(s) to be applied. Alternatively correction="all" selects all options.

- **renormalise**: Logical. Whether to renormalise the estimate. See Details.

- **normpower**: Integer (usually either 1 or 2). Normalisation power. See Details.

- **update**: Logical value indicating what to do when lambda is a fitted model (class "ppm", "kppm" or "dppm"). If update=TRUE (the default), the model will first be refitted to the data X (using update.ppm or update.kppm) before the fitted intensity is computed. If update=FALSE, the fitted intensity of the model will be computed without re-fitting it to X.

- **leaveoneout**: Logical value (passed to density.ppp or fitted.ppm) specifying whether to use a leave-one-out rule when calculating the intensity.

- **nlarge**: Optional. Efficiency threshold. If the number of points exceeds nlarge, then only the border correction will be computed, using a fast algorithm.

- **lambda2**: Advanced use only. Matrix containing estimates of the products $\lambda(x_i)\lambda(x_j)$ of the intensities at each pair of data points $x_i$ and $x_j$.

- **reciplambda**: Alternative to lambda. Values of the estimated reciprocal $1/\lambda$ of the intensity function. Either a vector giving the reciprocal intensity values at the points of the pattern X, a pixel image (object of class "im") giving the reciprocal intensity values at all locations, or a function(x,y) which can be evaluated to give the reciprocal intensity value at any location.

- **reciplambda2**: Advanced use only. Alternative to lambda2. A matrix giving values of the estimated reciprocal products $1/\lambda(x_i)\lambda(x_j)$ of the intensities at each pair of data points $x_i$ and $x_j$.

- **diagonal**: Do not use this argument.

- **sigma, varcov**: Optional arguments passed to density.ppp to control the smoothing bandwidth, when lambda is estimated by kernel smoothing.

- **ratio**: Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

**Details**

This computes a generalisation of the $K$ function for inhomogeneous point patterns, proposed by Baddeley, Møller and Waagepetersen (2000).

The “ordinary” $K$ function (variously known as the reduced second order moment function and Ripley’s $K$ function), is described under Kest. It is defined only for stationary point processes.

The inhomogeneous $K$ function $K_{inhom}(r)$ is a direct generalisation to nonstationary point processes. Suppose $x$ is a point process with non-constant intensity $\lambda(u)$ at each location $u$. Define $K_{inhom}(r)$ to be the expected value, given that $u$ is a point of $x$, of the sum of all terms $1/\lambda(x_j)$ over all points $x_j$ in the process separated from $u$ by a distance less than $r$. This reduces to the ordinary $K$ function if $\lambda(u)$ is constant. If $x$ is an inhomogeneous Poisson process with intensity function $\lambda(u)$, then $K_{inhom}(r) = \pi r^2$. 

Given a point pattern dataset, the inhomogeneous $K$ function can be estimated essentially by summing the values $1/(\lambda(x_i)\lambda(x_j))$ for all pairs of points $x_i, x_j$ separated by a distance less than $r$.

This allows us to inspect a point pattern for evidence of interpoint interactions after allowing for spatial inhomogeneity of the pattern. Values $K_{inhom}(r) > \pi r^2$ are suggestive of clustering.

The argument `lambda` should supply the (estimated) values of the intensity function $\lambda$. It may be either

- **a numeric vector** containing the values of the intensity function at the points of the pattern $X$.
- **a pixel image** (object of class "im") assumed to contain the values of the intensity function at all locations in the window.
- **a fitted point process model** (object of class "ppm", "kppm" or "dppm") whose fitted trend can be used as the fitted intensity. (If `update=TRUE` the model will first be refitted to the data $X$ before the trend is computed.)
- **a function** which can be evaluated to give values of the intensity at any locations.

**omitted:** if `lambda` is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If `lambda` is a numeric vector, then its length should be equal to the number of points in the pattern $X$. The value `lambda[i]` is assumed to be the (estimated) value of the intensity $\lambda(x_i)$ for the point $x_i$ of the pattern $X$. Each value must be a positive number; NA’s are not allowed.

If `lambda` is a pixel image, the domain of the image should cover the entire window of the point pattern. If it does not (which may occur near the boundary because of discretisation error), then the missing pixel values will be obtained by applying a Gaussian blur to `lambda` using `blur`, then looking up the values of this blurred image for the missing locations. (A warning will be issued in this case.)

If `lambda` is a function, then it will be evaluated in the form `lambda(x,y)` where $x$ and $y$ are vectors of coordinates of the points of $X$. It should return a numeric vector with length equal to the number of points in $X$.

If `lambda` is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described in Baddeley, Møller and Waagepetersen (2000). The estimate `lambda[i]` for the point $X[i]$ is computed by removing $X[i]$ from the point pattern, applying kernel smoothing to the remaining points using `density.ppp`, and evaluating the smoothed intensity at the point $X[i]$. The smoothing kernel bandwidth is controlled by the arguments `sigma` and `varcov`, which are passed to `density.ppp` along with any extra arguments.

Edge corrections are used to correct bias in the estimation of $K_{inhom}$. Each edge-corrected estimate of $K_{inhom}(r)$ is of the form

$$\hat{K}_{inhom}(r) = \frac{1}{A} \sum_i \sum_j \frac{1\{d_{ij} \leq r\}e(x_i,x_j,r)}{\lambda(x_i)\lambda(x_j)}$$

where $A$ is a constant denominator, $d_{ij}$ is the distance between points $x_i$ and $x_j$, and $e(x_i,x_j,r)$ is an edge correction factor. For the ‘border’ correction,

$$e(x_i,x_j,r) = \frac{1\{b_j > r\}}{\sum_j 1\{b_j > r\}/\lambda(x_j)}$$

where $b_i$ is the distance from $x_i$ to the boundary of the window. For the ‘modified border’ correction,

$$e(x_i,x_j,r) = \frac{1\{b_i > r\}}{\text{area}(W \ominus r)}$$
where $W \ominus r$ is the eroded window obtained by trimming a margin of width $r$ from the border of the original window. For the ‘translation’ correction,

$$e(x_i, x_j, r) = \frac{1}{\text{area}(W \cap (W + (x_j - x_i)))}$$

and for the ‘isotropic’ correction,

$$e(x_i, x_j, r) = \frac{1}{\text{area}(W) g(x_i, x_j)}$$

where $g(x_i, x_j)$ is the fraction of the circumference of the circle with centre $x_i$ and radius $||x_i - x_j||$ which lies inside the window.

If renormalise=TRUE (the default), then the estimates described above are multiplied by $c^{\text{normpower}}$ where $c = \text{area}(W)/\sum(1/\lambda(x_i))$. This rescaling reduces the variability and bias of the estimate in small samples and in cases of very strong inhomogeneity. The default value of normpower is 1 (for consistency with previous versions of spatstat) but the most sensible value is 2, which would correspond to rescaling the lambda values so that $\sum(1/\lambda(x_i)) = \text{area}(W)$.

If the point pattern $X$ contains more than about 1000 points, the isotropic and translation edge corrections can be computationally prohibitive. The computations for the border method are much faster, and are statistically efficient when there are large numbers of points. Accordingly, if the number of points in $X$ exceeds the threshold nlarge, then only the border correction will be computed. Setting nlarge=Inf or correction="best" will prevent this from happening. Setting nlarge=0 is equivalent to selecting only the border correction with correction="border".

The pair correlation function can also be applied to the result of Kinhom; see pcf.

**Value**

An object of class "fv" (see fv.object).

Essentially a data frame containing at least the following columns,

- $r$: the vector of values of the argument $r$ at which $K_{\text{inhom}}(r)$ has been estimated
- $\text{theo}$: vector of values of $\pi r^2$, the theoretical value of $K_{\text{inhom}}(r)$ for an inhomogeneous Poisson process

and containing additional columns according to the choice specified in the correction argument. The additional columns are named border, trans and iso and give the estimated values of $K_{\text{inhom}}(r)$ using the border correction, translation correction, and Ripley isotropic correction, respectively.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator" which are "fv" objects containing the numerators and denominators of each estimate of $K_{\text{inhom}}(r)$.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

**References**

See Also

Kest, pcf

Examples

# inhomogeneous pattern of maples
X <- unmark(split(lansing)$maple)

if(require("spatstat.model")) {
  # (1) intensity function estimated by model-fitting
  # Fit spatial trend: polynomial in x and y coordinates
  fit <- ppm(X, ~ polynom(x,y,2), Poisson())
  # (a) predict intensity values at points themselves,
  # obtaining a vector of lambda values
  lambda <- predict(fit, locations=X, type="trend")
  # inhomogeneous K function
  Ki <- Kinhom(X, lambda)
  plot(Ki)
  # (b) predict intensity at all locations,
  # obtaining a pixel image
  lambda <- predict(fit, type="trend")
  Ki <- Kinhom(X, lambda)
  plot(Ki)
}

# (2) intensity function estimated by heavy smoothing
Ki <- Kinhom(X, sigma=0.1)
plot(Ki)

# (3) simulated data: known intensity function
lamfun <- function(x,y) { 50 + 100 * x }
# inhomogeneous Poisson process
Y <- rpoispp(lamfun, 150, owin())
# inhomogeneous K function
Ki <- Kinhom(Y, lamfun)
plot(Ki)

# How to make simulation envelopes:
# Example shows method (2)
if(interactive()) {
  smo <- density.ppp(X, sigma=0.1)
  Ken <- envelope(X, Kinhom, nsim=99,
                  simulate=expression(rpoispp(smo)),
                  sigma=0.1, correction="trans")
  plot(Ken)
}

Kaplan-Meier and Reduced Sample Estimator using Histograms
Description

Compute the Kaplan-Meier and Reduced Sample estimators of a survival time distribution function, using histogram techniques.

Usage

\texttt{km.rs(o, cc, d, breaks)}

Arguments

- \texttt{o}: vector of observed survival times
- \texttt{cc}: vector of censoring times
- \texttt{d}: vector of non-censoring indicators
- \texttt{breaks}: Vector of breakpoints to be used to form histograms.

Details

This function is needed mainly for internal use in \texttt{spatstat}, but may be useful in other applications where you want to form the Kaplan-Meier estimator from a huge dataset.

Suppose $T_i$ are the survival times of individuals $i = 1, \ldots, M$ with unknown distribution function $F(t)$ which we wish to estimate. Suppose these times are right-censored by random censoring times $C_i$. Thus the observations consist of right-censored survival times $\tilde{T}_i = \min(T_i, C_i)$ and non-censoring indicators $D_i = 1\{T_i \leq C_i\}$ for each $i$.

The arguments to this function are vectors \texttt{o}, \texttt{cc}, \texttt{d} of observed values of $\tilde{T}_i$, $C_i$ and $D_i$ respectively. The function computes histograms and forms the reduced-sample and Kaplan-Meier estimates of $F(t)$ by invoking the functions \texttt{kaplan.meier} and \texttt{reduced.sample}. This is efficient if the lengths of \texttt{o}, \texttt{cc}, \texttt{d} (i.e. the number of observations) is large.

The vectors \texttt{km} and \texttt{hazard} returned by \texttt{kaplan.meier} are (histogram approximations to) the Kaplan-Meier estimator of $F(t)$ and its hazard rate $\lambda(t)$. Specifically, km[k] is an estimate of $F(\text{breaks[k+1]})$, and lambda[k] is an estimate of the average of $\lambda(t)$ over the interval (breaks[k], breaks[k+1]). This approximation is exact only if the survival times are discrete and the histogram breaks are fine enough to ensure that each interval (breaks[k], breaks[k+1]) contains only one possible value of the survival time.

The vector \texttt{rs} is the reduced-sample estimator, rs[k] being the reduced sample estimate of $F(\text{breaks[k+1]})$. This value is exact, i.e. the use of histograms does not introduce any approximation error in the reduced-sample estimator.

Value

A list with five elements

- \texttt{rs}: Reduced-sample estimate of the survival time c.d.f. $F(t)$
- \texttt{km}: Kaplan-Meier estimate of the survival time c.d.f. $F(t)$
- \texttt{hazard}: corresponding Nelson-Aalen estimate of the hazard rate $\lambda(t)$
- \texttt{r}: values of $t$ for which $F(t)$ is estimated
- \texttt{breaks}: the breakpoints vector
Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

reduced.sample, kaplan.meier

---

Kmark  
Mark-Weighted K Function

Description

Estimates the mark-weighted $K$ function of a marked point pattern.

Usage

Kmark(X, f = NULL, r = NULL,
correction = c("isotropic", "Ripley", "translate"), ..., 
f1 = NULL, normalise = TRUE, returnL = FALSE, fargs = NULL)
makercorrint(X, f = NULL, r = NULL,
correction = c("isotropic", "Ripley", "translate"), ..., 
f1 = NULL, normalise = TRUE, returnL = FALSE, fargs = NULL)

Arguments

X  
The observed point pattern. An object of class "ppp" or something acceptable to as.ppp.

f  
Optional. Test function $f$ used in the definition of the mark correlation function. An R function with at least two arguments. There is a sensible default.

r  
Optional. Numeric vector. The values of the argument $r$ at which the mark correlation function $k_f(r)$ should be evaluated. There is a sensible default.

correction  
A character vector containing any selection of the options "isotropic", "Ripley" or "translate". It specifies the edge correction(s) to be applied. Alternatively correction="all" selects all options.

...  
Ignored.

f1  
An alternative to $f$. If this argument is given, then $f$ is assumed to take the form $f(u, v) = f_1(u)f_1(v)$.

normalise  
If normalise=FALSE, compute only the numerator of the expression for the mark correlation.

returnL  
Compute the analogue of the K-function if returnL=FALSE or the analogue of the L-function if returnL=TRUE.

fargs  
Optional. A list of extra arguments to be passed to the function $f$ or $f1$. 
Details

The functions Kmark and markcorr are identical. (Eventually markcorr will be deprecated.)

The mark-weighted $K$ function $K_f(r)$ of a marked point process (Penttinen et al, 1992) is a generalisation of Ripley’s $K$ function, in which the contribution from each pair of points is weighted by a function of their marks. If the marks of the two points are $m_1, m_2$ then the weight is proportional to $f(m_1, m_2)$ where $f$ is a specified test function.

The mark-weighted $K$ function is defined so that

$$\lambda K_f(r) = \frac{C_f(r)}{E[f(M_1, M_2)]}$$

where

$$C_f(r) = E\left[\sum_{x \in X} f(m(u), m(x)) 10 < ||u - x|| \leq r \mid u \in X\right]$$

for any spatial location $u$ taken to be a typical point of the point process $X$. Here $||u - x||$ is the euclidean distance between $u$ and $x$, so that the sum is taken over all random points $x$ that lie within a distance $r$ of the point $u$. The function $C_f(r)$ is the unnormalised mark-weighted $K$ function. To obtain $K_f(r)$ we standardise $C_f(r)$ by dividing by $E[f(M_1, M_2)]$, the expected value of $f(M_1, M_2)$ when $M_1$ and $M_2$ are independent random marks with the same distribution as the marks in the point process.

Under the hypothesis of random labelling, the mark-weighted $K$ function is equal to Ripley’s $K$ function, $K_f(r) = K(r)$.

The mark-weighted $K$ function is sometimes called the mark correlation integral because it is related to the mark correlation function $k_f(r)$ and the pair correlation function $g(r)$ by

$$K_f(r) = 2\pi \int_0^r sk_f(s) g(s) \, ds$$

See markcorr for a definition of the mark correlation function.

Given a marked point pattern $X$, this command computes edge-corrected estimates of the mark-weighted $K$ function. If returnL=FALSE then the estimated function $K_f(r)$ is returned; otherwise the function

$$L_f(r) = \sqrt{K_f(r)/\pi}$$

is returned.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

- $r$: the values of the argument $r$ at which the mark correlation integral $K_f(r)$ has been estimated
- theo: the theoretical value of $K_f(r)$ when the marks attached to different points are independent, namely $\pi r^2$

Together with a column or columns named "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the mark-weighted $K$ function $K_f(r)$ obtained by the edge corrections named (if returnL=FALSE).
Kmeasure

Reduced Second Moment Measure

Description

Estimates the reduced second moment measure $\kappa$ from a point pattern in a window of arbitrary shape.

Usage

Kmeasure(X, sigma, edge=TRUE, ..., varcov=NULL)
Kmeasure

Arguments

- **X**: The observed point pattern, from which an estimate of \( \kappa \) will be computed. An object of class "ppp", or data in any format acceptable to `as.ppp()`.
- **sigma**: Standard deviation \( \sigma \) of the Gaussian smoothing kernel. Incompatible with `varcov`.
- **edge**: Logical value indicating whether an edge correction should be applied.
- **...**: Arguments passed to `as.mask` controlling the pixel resolution.
- **varcov**: Variance-covariance matrix of the Gaussian smoothing kernel. Incompatible with `sigma`.

Details

Given a point pattern dataset, this command computes an estimate of the reduced second moment measure \( \kappa \) of the point process. The result is a pixel image whose pixel values are estimates of the density of the reduced second moment measure.

The reduced second moment measure \( \kappa \) can be regarded as a generalisation of the more familiar \( K \)-function. An estimate of \( \kappa \) derived from a spatial point pattern dataset can be useful in exploratory data analysis. Its advantage over the \( K \)-function is that it is also sensitive to anisotropy and directional effects.

In a nutshell, the command `Kmeasure` computes a smoothed version of the Fry plot. As explained under `fryplot`, the Fry plot is a scatterplot of the vectors joining all pairs of points in the pattern. The reduced second moment measure is (essentially) defined as the average of the Fry plot over different realisations of the point process. The command `Kmeasure` effectively smooths the Fry plot of a dataset to obtain an estimate of the reduced second moment measure.

In formal terms, the reduced second moment measure \( \kappa \) of a stationary point process \( X \) is a measure defined on the two-dimensional plane such that, for a ‘typical’ point \( x \) of the process, the expected number of other points \( y \) of the process such that the vector \( y - x \) lies in a region \( A \), equals \( \lambda \kappa(A) \). Here \( \lambda \) is the intensity of the process, i.e. the expected number of points of \( X \) per unit area.

The \( K \)-function is a special case. The function value \( K(t) \) is the value of the reduced second moment measure for the disc of radius \( t \) centred at the origin; that is, \( K(t) = \kappa(b(0,t)) \).

The command `Kmeasure` computes an estimate of \( \kappa \) from a point pattern dataset \( X \), which is assumed to be a realisation of a stationary point process, observed inside a known, bounded window. Marks are ignored.

The algorithm approximates the point pattern and its window by binary pixel images, introduces a Gaussian smoothing kernel and uses the Fast Fourier Transform `fft` to form a density estimate of \( \kappa \). The calculation corresponds to the edge correction known as the “translation correction”.

The Gaussian smoothing kernel may be specified by either of the arguments `sigma` or `varcov`. If `sigma` is a single number, this specifies an isotropic Gaussian kernel with standard deviation `sigma` on each coordinate axis. If `sigma` is a vector of two numbers, this specifies a Gaussian kernel with standard deviation `sigma[1]` on the \( x \) axis, standard deviation `sigma[2]` on the \( y \) axis, and zero correlation between the \( x \) and \( y \) axes. If `varcov` is given, this specifies the variance-covariance matrix of the Gaussian kernel. There do not seem to be any well-established rules for selecting the smoothing kernel in this context.

The density estimate of \( \kappa \) is returned in the form of a real-valued pixel image. Pixel values are estimates of the normalised second moment density at the centre of the pixel. (The uniform Poisson
process would have values identically equal to 1.) The image x and y coordinates are on the same scale as vector displacements in the original point pattern window. The point x=0, y=0 corresponds to the ‘typical point’. A peak in the image near (0,0) suggests clustering; a dip in the image near (0,0) suggests inhibition; peaks or dips at other positions suggest possible periodicity.

If desired, the value of $\kappa(A)$ for a region $A$ can be estimated by computing the integral of the pixel image over the domain $A$, i.e. summing the pixel values and multiplying by pixel area, using \texttt{integral.im}. One possible application is to compute anisotropic counterparts of the $K$-function (in which the disc of radius $t$ is replaced by another shape). See Examples.

\textbf{Value}

A real-valued pixel image (an object of class "im", see \texttt{im.object}) whose pixel values are estimates of the density of the reduced second moment measure at each location.

\textbf{Warning}

Some writers use the term \textit{reduced second moment measure} when they mean the $K$-function. This has caused confusion.

As originally defined, the reduced second moment measure is a measure, obtained by modifying the second moment measure, while the $K$-function is a function obtained by evaluating this measure for discs of increasing radius. In \texttt{spatstat}, the $K$-function is computed by \texttt{Kest} and the reduced second moment measure is computed by \texttt{Kmeasure}.

\textbf{Author(s)}

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

\textbf{References}


\textbf{See Also}

\texttt{Kest, fryplot, spatstat.options, integral.im, im.object}

\textbf{Examples}

\begin{verbatim}
plot(Kmeasure(cells, 0.05))  # shows pronounced dip around origin consistent with strong inhibition
plot(Kmeasure(redwood, 0.03), col=grey(seq(1,0,length=32)))  # shows peaks at several places, reflecting clustering and periodicity
M <- Kmeasure(cells, 0.05)  # evaluate measure on a sector
W <- Window(M)
ang <- as.im(atan2, W)
rad <- as.im(function(x,y){sqrt(x^2+y^2)}, W)
sector <- solutionset(ang > 0 & ang < 1 & rad < 0.6)
\end{verbatim}
integral.im(M[sector, drop=FALSE])

Kmulti

Marked K-Function

Description

For a marked point pattern, estimate the multitype $K$ function which counts the expected number of points of subset $J$ within a given distance from a typical point in subset $I$.

Usage

Kmulti(X, I, J, r=NULL, breaks=NULL, correction, ..., rmax=NULL, ratio=FALSE)

Arguments

- **X**: The observed point pattern, from which an estimate of the multitype $K$ function $K_{IJ}(r)$ will be computed. It must be a marked point pattern. See under Details.
- **I**: Subset index specifying the points of $X$ from which distances are measured. See Details.
- **J**: Subset index specifying the points in $X$ to which distances are measured. See Details.
- **r**: numeric vector. The values of the argument $r$ at which the multitype $K$ function $K_{IJ}(r)$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on $r$. If necessary, specify rmax.
- **breaks**: This argument is for internal use only.
- **correction**: A character vector containing any selection of the options "border", "bord.modif", "isotropic", "Ripley", "translate", "translation", "periodic", "none" or "best". It specifies the edge correction(s) to be applied. Alternatively correction="all" selects all options.
- **...**: Ignored.
- **rmax**: Optional. Maximum desired value of the argument $r$.
- **ratio**: Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

Details

The function Kmulti generalises Kest (for unmarked point patterns) and Kdot and Kcross (for multitype point patterns) to arbitrary marked point patterns.

Suppose $X_I$, $X_J$ are subsets, possibly overlapping, of a marked point process. The multitype $K$ function is defined so that $\lambda_J K_{IJ}(r)$ equals the expected number of additional random points of $X_J$ within a distance $r$ of a typical point of $X_I$. Here $\lambda_J$ is the intensity of $X_J$ i.e. the expected number of points of $X_J$ per unit area. The function $K_{IJ}$ is determined by the second order moment properties of $X$. 
The argument \( X \) must be a point pattern (object of class "ppp") or any data that are acceptable to \as.ppp\.

The arguments \( I \) and \( J \) specify two subsets of the point pattern. They may be any type of subset indices, for example, logical vectors of length equal to npoints(\( X \)), or integer vectors with entries in the range 1 to npoints(\( X \)), or negative integer vectors.

Alternatively, \( I \) and \( J \) may be \textbf{functions} that will be applied to the point pattern \( X \) to obtain index vectors. If \( I \) is a function, then evaluating \( I(X) \) should yield a valid subset index. This option is useful when generating simulation envelopes using \envelope\.

The argument \( r \) is the vector of values for the distance \( r \) at which \( K_{IJ}(r) \) should be evaluated. It is also used to determine the breakpoints (in the sense of \texttt{hist}) for the computation of histograms of distances.

First-time users would be strongly advised not to specify \( r \). However, if it is specified, \( r \) must satisfy \( r[1] = 0 \), and \( \max(r) \) must be larger than the radius of the largest disc contained in the window.

This algorithm assumes that \( X \) can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in \( X \) as \texttt{Window(X)} ) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in \texttt{Kest}. The edge corrections implemented here are:

- **border** the border method or “reduced sample” estimator (see Ripley, 1988). This is the least efficient (statistically) and the fastest to compute. It can be computed for a window of arbitrary shape.
- **isotropic/Ripley** Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is currently implemented only for rectangular and polygonal windows.
- **translate** Translation correction (Ohser, 1983). Implemented for all window geometries.

The pair correlation function \texttt{pcf} can also be applied to the result of \texttt{Kmulti}.

**Value**

An object of class "fv" (see \texttt{fv.object}).

Essentially a data frame containing numeric columns

\[ r \] the values of the argument \( r \) at which the function \( K_{IJ}(r) \) has been estimated

\[ \text{theo} \] the theoretical value of \( K_{IJ}(r) \) for a marked Poisson process, namely \( \pi r^2 \)

Together with a column or columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( K_{IJ}(r) \) obtained by the edge corrections named.

If \texttt{ratio=TRUE} then the return value also has two attributes called "numerator" and "denominator" which are "fv" objects containing the numerators and denominators of each estimate of \( K(r) \).

**Warnings**

The function \( K_{IJ} \) is not necessarily differentiable.

The border correction (reduced sample) estimator of \( K_{IJ} \) used here is pointwise approximately unbiased, but need not be a nondecreasing function of \( r \), while the true \( K_{IJ} \) must be nondecreasing.
Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

See Also
Kcross, Kdot, Kest, pcf

Examples
# Longleaf Pine data: marks represent diameter
trees <- longleaf

K <- Kmulti(trees, marks(trees) <= 15, marks(trees) >= 25)
plot(K)
# functions determining subsets
f1 <- function(X) { marks(X) <= 15 }
f2 <- function(X) { marks(X) >= 15 }
K <- Kmulti(trees, f1, f2)

---

Kmulti.inhom Inhomogeneous Marked K-Function

Description
For a marked point pattern, estimate the inhomogeneous version of the multitype $K$ function which counts the expected number of points of subset $J$ within a given distance from a typical point in subset $I$, adjusted for spatially varying intensity.
Usage

Kmulti.inhom(X, I, J, lambdaI=NULL, lambdaJ=NULL,
  ..., r=NULL, breaks=NULL,
  correction=c("border", "isotropic", "Ripley", "translate"),
  lambdaIJ=NULL,
  sigma=NULL, varcov=NULL,
  lambdaX=NULL, update=TRUE, leaveoneout=TRUE)

Arguments

X
  The observed point pattern, from which an estimate of the inhomogeneous mul-
titype K function K_{IJ}(r) will be computed. It must be a marked point pattern.
  See under Details.

I
  Subset index specifying the points of X from which distances are measured. See
  Details.

J
  Subset index specifying the points in X to which distances are measured. See
  Details.

lambdaI
  Optional. Values of the estimated intensity of the sub-process X[I]. Either a
  pixel image (object of class "im"), a numeric vector containing the intensity
  values at each of the points in X[I], a fitted point process model (object of class
  "ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to
give the intensity value at any location.

lambdaJ
  Optional. Values of the estimated intensity of the sub-process X[J]. Either a
  pixel image (object of class "im"), a numeric vector containing the intensity
  values at each of the points in X[J], a fitted point process model (object of class
  "ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to
give the intensity value at any location.

... Ignored.

r
  Optional. Numeric vector. The values of the argument r at which the multitype
  K function K_{IJ}(r) should be evaluated. There is a sensible default. First-time
  users are strongly advised not to specify this argument. See below for important
  conditions on r.

breaks
  This argument is for internal use only.

correction
  A character vector containing any selection of the options "border", "bord.modif",
  "isotropic", "Ripley", "translate", "none" or "best". It specifies the
  edge correction(s) to be applied. Alternatively correction="all" selects all
  options.

lambdaIJ
  Optional. A matrix containing estimates of the product of the intensities lambdaI
  and lambdaJ for each pair of points, the first point belonging to subset I and the
  second point to subset J.

sigma, varcov
  Optional arguments passed to density.ppp to control the smoothing band-
  width, when lambda is estimated by kernel smoothing.

lambdaX
  Optional. Values of the intensity for all points of X. Either a pixel image (object
  of class "im"), a numeric vector containing the intensity values at each of the
points in $X$, a fitted point process model (object of class "ppm" or "kppm" or "dppm"), or a function($x,y$) which can be evaluated to give the intensity value at any location. If present, this argument overrides both $\lambda_I$ and $\lambda_J$.

**update** Logical value indicating what to do when $\lambda_I$, $\lambda_J$ or $\lambda_X$ is a fitted point process model (class "ppm", "kppm" or "dppm"). If update=TRUE (the default), the model will first be refitted to the data $X$ (using update.ppm or update.kppm) before the fitted intensity is computed. If update=FALSE, the fitted intensity of the model will be computed without re-fitting it to $X$.

**leaveoneout** Logical value (passed to density.ppp or fitted.ppm) specifying whether to use a leave-one-out rule when calculating the intensity.

**Details**

The function Kmulti.inhom is the counterpart, for spatially-inhomogeneous marked point patterns, of the multitype $K$ function Kmulti.

Suppose $X$ is a marked point process, with marks of any kind. Suppose $X_I$, $X_J$ are two sub-processes, possibly overlapping. Typically $X_I$ would consist of those points of $X$ whose marks lie in a specified range of mark values, and similarly for $X_J$. Suppose that $\lambda_I(u)$, $\lambda_J(u)$ are the spatially-varying intensity functions of $X_I$ and $X_J$ respectively. Consider all the pairs of points $(u,v)$ in the point process $X$ such that the first point $u$ belongs to $X_I$, the second point $v$ belongs to $X_J$, and the distance between $u$ and $v$ is less than a specified distance $r$. Give this pair $(u,v)$ the numerical weight $1/(\lambda_I(u)\lambda_J(u))$. Calculate the sum of these weights over all pairs of points as described. This sum (after appropriate edge-correction and normalisation) is the estimated inhomogeneous multitype $K$ function.

The argument $X$ must be a point pattern (object of class "ppp") or any data that are acceptable to as.ppp.

The arguments $I$ and $J$ specify two subsets of the point pattern. They may be any type of subset indices, for example, logical vectors of length equal to npoints($X$), or integer vectors with entries in the range 1 to npoints($X$), or negative integer vectors. Alternatively, $I$ and $J$ may be functions that will be applied to the point pattern $X$ to obtain index vectors. If $I$ is a function, then evaluating $I(X)$ should yield a valid subset index. This option is useful when generating simulation envelopes using envelope.

The argument $\lambda_I$ supplies the values of the intensity of the sub-process identified by index $I$. It may be either

- a pixel image (object of class "im") which gives the values of the intensity of $X[I]$ at all locations in the window containing $X$;
- a numeric vector containing the values of the intensity of $X[I]$ evaluated only at the data points of $X[I]$. The length of this vector must equal the number of points in $X[I]$.
- a function of the form function($x,y$) which can be evaluated to give values of the intensity at any locations.
- a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be used as the fitted intensity. (If update=TRUE the model will first be refitted to the data $X$ before the trend is computed.)

omitted: if $\lambda_I$ is omitted then it will be estimated using a leave-one-out kernel smoother.
If \( \lambda_I \) is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described in Baddeley, Møller and Waagepetersen (2000). The estimate of \( \lambda_I \) for a given point is computed by removing the point from the point pattern, applying kernel smoothing to the remaining points using \texttt{density.ppp}, and evaluating the smoothed intensity at the point in question. The smoothing kernel bandwidth is controlled by the arguments \texttt{sigma} and \texttt{varcov}, which are passed to \texttt{density.ppp} along with any extra arguments.

Similarly \( \lambda_J \) supplies the values of the intensity of the sub-process identified by index \( J \).

Alternatively if the argument \( \lambda_X \) is given, then it specifies the intensity values for all points of \( X \), and the arguments \( \lambda_I, \lambda_J \) will be ignored.

The argument \( r \) is the vector of values for the distance \( r \) at which \( K_{IJ}(r) \) should be evaluated. It is also used to determine the breakpoints (in the sense of \texttt{hist}) for the computation of histograms of distances.

First-time users would be strongly advised not to specify \( r \). However, if it is specified, \( r \) must satisfy \( r[1] = 0 \), and \( \max(r) \) must be larger than the radius of the largest disc contained in the window.

Biases due to edge effects are treated in the same manner as in \texttt{Kinhom}. The edge corrections implemented here are

- \texttt{border} the border method or “reduced sample” estimator (see Ripley, 1988). This is the least efficient (statistically) and the fastest to compute. It can be computed for a window of arbitrary shape.
- \texttt{isotropic/Ripley} Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is currently implemented only for rectangular windows.
- \texttt{translate} Translation correction (Ohser, 1983). Implemented for all window geometries.

The pair correlation function \texttt{pcf} can also be applied to the result of \texttt{Kmulti.inhom}.

### Value

An object of class "\texttt{fv}" (see \texttt{fv.object}).

Essentially a data frame containing numeric columns

- \( r \) the values of the argument \( r \) at which the function \( K_{IJ}(r) \) has been estimated
- \( \texttt{theo} \) the theoretical value of \( K_{IJ}(r) \) for a marked Poisson process, namely \( \pi r^2 \)

together with a column or columns named "\texttt{border}"", "\texttt{bord.modif}"", "\texttt{iso}" and/or "\texttt{trans}" according to the selected edge corrections. These columns contain estimates of the function \( K_{IJ}(r) \) obtained by the edge corrections named.

### Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

### References

See Also

Kmulti, Kdot.inhom, Kcross.inhom, pcf

Examples

```r
Finnish Pines data: marked by diameter and height
plot(finpines, which.marks="height")
II <- (marks(finpines)$height <= 2)
JJ <- (marks(finpines)$height > 3)
K <- Kmulti.inhom(finpines, II, JJ)
plot(K)

functions determining subsets
f1 <- function(X) { marks(X)$height <= 2 }
f2 <- function(X) { marks(X)$height > 3 }
K <- Kmulti.inhom(finpines, f1, f2)
```

---

**Kscaled**

*Locally Scaled K-function*

**Description**

Estimates the locally-rescaled $K$-function of a point process.

**Usage**

```
Kscaled(X, lambda=NULL, ..., r = NULL, breaks = NULL,
rmax = 2.5,
correction=c("border", "isotropic", "translate"),
renormalise=FALSE, normpower=1,
sigma=NULL, varcov=NULL)
Lscaled(...)
```

**Arguments**

- **X** The observed data point pattern, from which an estimate of the locally scaled $K$ function will be computed. An object of class "ppp" or in a format recognised by `as.ppp()`.
- **lambda** Optional. Values of the estimated intensity function. Either a vector giving the intensity values at the points of the pattern $X$, a pixel image (object of class "im") giving the intensity values at all locations, a `function(x,y)` which can be evaluated to give the intensity value at any location, or a fitted point process model (object of class "ppm").
- **...** Arguments passed from `Lscaled` to `Kscaled` and from `Kscaled` to `density.ppp` if `lambda` is omitted.
vector of values for the argument \( r \) at which the locally scaled \( K \) function should be evaluated. (These are rescaled distances.) Not normally given by the user; there is a sensible default.

This argument is for internal use only.

maximum value of the argument \( r \) that should be used. (This is the rescaled distance).

A character vector containing any selection of the options "border", "isotropic", "Ripley", "translate", "translation", "none" or "best". It specifies the edge correction(s) to be applied. Alternatively correction="all" selects all options.

Logical. Whether to renormalise the estimate. See Details.

Integer (usually either 1 or 2). Normalisation power. See Details.

Optional arguments passed to \( \text{density.ppp} \) to control the smoothing bandwidth, when \( \lambda \) is estimated by kernel smoothing.

\( K\text{scaled} \) computes an estimate of the \( K \) function for a locally scaled point process. \( L\text{scaled} \) computes the corresponding \( L \) function \( L(r) = \sqrt{K(r)/\pi} \).

Locally scaled point processes are a class of models for inhomogeneous point patterns, introduced by Hahn et al (2003). They include inhomogeneous Poisson processes, and many other models.

The template \( K \) function of a locally-scaled process is a counterpart of the "ordinary" Ripley \( K \) function, in which the distances between points of the process are measured on a spatially-varying scale (such that the locally rescaled process has unit intensity).

The template \( K \) function is an indicator of interaction between the points. For an inhomogeneous Poisson process, the theoretical template \( K \) function is approximately equal to \( K(r) = \pi r^2 \). Values \( K\text{scaled}(r) > \pi r^2 \) are suggestive of clustering.

\( K\text{scaled} \) computes an estimate of the template \( K \) function and \( L\text{scaled} \) computes the corresponding \( L \) function \( L(r) = \sqrt{K(r)/\pi} \).

The locally scaled interpoint distances are computed using an approximation proposed by Hahn (2007). The Euclidean distance between two points is multiplied by the average of the square roots of the intensity values at the two points.

The argument \( \lambda \) should supply the (estimated) values of the intensity function \( \lambda \). It may be either

a numeric vector containing the values of the intensity function at the points of the pattern \( X \).

a pixel image (object of class "im") assumed to contain the values of the intensity function at all locations in the window.

a function which can be evaluated to give values of the intensity at any locations.

omitted: if \( \lambda \) is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If \( \lambda \) is a numeric vector, then its length should be equal to the number of points in the pattern \( X \). The value \( \lambda[x_i] \) is assumed to be the (estimated) value of the intensity \( \lambda(x_i) \) for the point \( x_i \) of the pattern \( X \). Each value must be a positive number; NA’s are not allowed.
If \(\lambda\) is a pixel image, the domain of the image should cover the entire window of the point pattern. If it does not (which may occur near the boundary because of discretisation error), then the missing pixel values will be obtained by applying a Gaussian blur to \(\lambda\) using \texttt{blur}, then looking up the values of this blurred image for the missing locations. (A warning will be issued in this case.)

If \(\lambda\) is a function, then it will be evaluated in the form \(\lambda(x, y)\) where \(x\) and \(y\) are vectors of coordinates of the points of \(X\). It should return a numeric vector with length equal to the number of points in \(X\).

If \(\lambda\) is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described in Baddeley, Møller and Waagepetersen (2000). The estimate \(\lambda[i]\) for the point \(X[i]\) is computed by removing \(X[i]\) from the point pattern, applying kernel smoothing to the remaining points using \texttt{density.ppp}, and evaluating the smoothed intensity at the point \(X[i]\). The smoothing kernel bandwidth is controlled by the arguments \texttt{sigma} and \texttt{varcov}, which are passed to \texttt{density.ppp} along with any extra arguments.

If \texttt{renormalise=TRUE}, the estimated intensity \(\lambda\) is multiplied by \(c^{\text{normpower}/2}\) before performing other calculations, where \(c = \text{area}(W)/\sum[i](1/\lambda(x[i]))\). This renormalisation has about the same effect as in \texttt{Kinhom}, reducing the variability and bias of the estimate in small samples and in cases of very strong inhomogeneity.

Edge corrections are used to correct bias in the estimation of \(K_{\text{scaled}}\). First the interpoint distances are rescaled, and then edge corrections are applied as in \texttt{Kest}. See \texttt{Kest} for details of the edge corrections and the options for the argument \texttt{correction}.

The pair correlation function can also be applied to the result of \(K_{\text{scaled}}\); see \texttt{pcf} and \texttt{pcf.fv}.

\textbf{Value}

An object of class "fv" (see \texttt{fv.object}).

Essentially a data frame containing at least the following columns,

- \(r\) the vector of values of the argument \(r\) at which the pair correlation function \(g(r)\) has been estimated
- \texttt{theo} vector of values of \(\pi r^2\), the theoretical value of \(K_{\text{scaled}}(r)\) for an inhomogeneous Poisson process

and containing additional columns according to the choice specified in the \texttt{correction} argument. The additional columns are named \texttt{border}, \texttt{trans} and \texttt{iso} and give the estimated values of \(K_{\text{scaled}}(r)\) using the border correction, translation correction, and Ripley isotropic correction, respectively.

\textbf{Author(s)}

Ute Hahn, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

\textbf{References}


See Also

*Kest, pcf*

Examples

```r
X <- unmark(bronzefilter)
K <- Kscaled(X)
if(require("spatstat.model")) {
 fit <- ppm(X, ~x)
 lam <- predict(fit)
 K <- Kscaled(X, lam)
}
```

**Ksector**

*Sector K-function*

Description

A directional counterpart of Ripley’s *K* function, in which pairs of points are counted only when the vector joining the pair happens to lie in a particular range of angles.

Usage

```r
Ksector(X, begin = 0, end = 360, ..., units = c("degrees", "radians"), r = NULL, breaks = NULL, correction = c("border", "isotropic", "Ripley", "translate"), domain=NULL, ratio = FALSE, verbose=TRUE)
```

Arguments

- **X**: The observed point pattern, from which an estimate of $K(r)$ will be computed. An object of class "ppp", or data in any format acceptable to `as.ppp()`.
- **begin, end**: Numeric values giving the range of angles inside which points will be counted. Angles are measured in degrees (if `units="degrees"`, the default) or radians (if `units="radians"`) anti-clockwise from the positive x-axis.
- **...**: Ignored.
- **units**: Units in which the angles begin and end are expressed.
- **r**: Optional. Vector of values for the argument $r$ at which $K(r)$ should be evaluated. Users are advised not to specify this argument; there is a sensible default.
This argument is for internal use only.

Optional. A character vector containing any selection of the options "none", "border", "bord.modif", "isotropic", "Ripley", "translate", "translation", "none", "good" or "best". It specifies the edge correction(s) to be applied. Alternatively correction="all" selects all options.

Optional window. The first point $x_i$ of each pair of points will be constrained to lie in domain.

Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

Logical value indicating whether to print progress reports and warnings.

Details

This is a directional counterpart of Ripley’s $K$ function (see Kest) in which, instead of counting all pairs of points within a specified distance $r$, we count only the pairs $(x_i, x_j)$ for which the vector $x_j - x_i$ falls in a particular range of angles.

This can be used to evaluate evidence for anisotropy in the point pattern $X$.

Value

An object of class "fv" containing the estimated function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

Kest

Examples

K <- Ksector(swedishpines, 0, 90)
plot(K)

Description

Apply Laslett’s Transform to a spatial region, returning the original and transformed regions, and the original and transformed positions of the lower tangent points. This is a diagnostic for the Boolean model.
Usage

laslett(X, ..., verbose = FALSE, plotit = TRUE, discretise = FALSE,
       type=c("lower", "upper", "left", "right"))

Arguments

- **X**: Spatial region to be transformed. A window (object of class "owin") or a logical-valued pixel image (object of class "im").
- **...**: Graphics arguments to control the plot (passed to `plot.laslett` when `plotit=TRUE`) or arguments determining the pixel resolution (passed to `as.mask`).
- **verbose**: Logical value indicating whether to print progress reports.
- **plotit**: Logical value indicating whether to plot the result.
- **discretise**: Logical value indicating whether polygonal windows should first be converted to pixel masks before the Laslett transform is computed. This should be set to TRUE for very complicated polygons.
- **type**: Type of tangent points to be detected. This also determines the direction of contraction in the set transformation. Default is `type="lower"`.

Details

This function finds the lower tangent points of the spatial region X, then applies Laslett’s Transform to the space, and records the transformed positions of the lower tangent points.

Laslett’s transform is a diagnostic for the Boolean Model. A test of the Boolean model can be performed by applying a test of CSR to the transformed tangent points. See the Examples.

The rationale is that, if the region X was generated by a Boolean model with convex grains, then the lower tangent points of X, when subjected to Laslett’s transform, become a Poisson point process (Cressie, 1993, section 9.3.5; Molchanov, 1997; Barbour and Schmidt, 2001).

Intuitively, Laslett’s transform is a way to account for the fact that tangent points of X cannot occur inside X. It treats the interior of X as empty space, and collapses this empty space so that only the exterior of X remains. In this collapsed space, the tangent points are completely random.

Formally, Laslett’s transform is a random (i.e. data-dependent) spatial transformation which maps each spatial location (x, y) to a new location (x', y) at the same height y. The transformation is defined so that x' is the total uncovered length of the line segment from (0, y) to (x, y), that is, the total length of the parts of this segment that fall outside the region X.

In more colourful terms, suppose we use an abacus to display a pixellated version of X. Each wire of the abacus represents one horizontal line in the pixel image. Each pixel lying outside the region X is represented by a bead of the abacus; pixels inside X are represented by the absence of a bead. Next we find any beads which are lower tangent points of X, and paint them green. Then Laslett’s Transform is applied by pushing all beads to the left, as far as possible. The final locations of all the beads provide a new spatial region, inside which is the point pattern of tangent points (marked by the green-painted beads).

If `plotit=TRUE` (the default), a before-and-after plot is generated, showing the region X and the tangent points before and after the transformation. This plot can also be generated by calling `plot(a)` where a is the object returned by the function `laslett`. 
If the argument type is given, then this determines the type of tangents that will be detected, and also the direction of contraction in Laslett's transform. The computation is performed by first rotating $X$, applying Laslett's transform for lower tangent points, then rotating back. There are separate algorithms for polygonal windows and pixellated windows (binary masks). The polygonal algorithm may be slow for very complicated polygons. If this happens, setting discretise=TRUE will convert the polygonal window to a binary mask and invoke the pixel raster algorithm.

Value

A list, which also belongs to the class "laslett" so that it can immediately be printed and plotted. The list elements are:

oldX: the original dataset $X$;
TanOld: a point pattern, whose window is Frame($X$), containing the lower tangent points of $X$;
TanNew: a point pattern, whose window is the Laslett transform of Frame($X$), and which contains the Laslett-transformed positions of the tangent points;
Rect: a rectangular window, which is the largest rectangle lying inside the transformed set;
df: a data frame giving the locations of the tangent points before and after transformation.

Author(s)

Kassel Hingee and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References


See Also

plot.laslett

Examples

```r
a <- laslett(heather$coarse)
transformedHeather <- with(a, Window(TanNew))
plot(transformedHeather, invert=TRUE)

with(a, clarkevans.test(TanNew[Rect], correction="D", nsim=39))

X <- discs(runifrect(15) %mark% 0.2, npoly=16)
b <- laslett(X, type="left")
b
```
Lcross

Multitype L-function (cross-type)

Description
Calculates an estimate of the cross-type L-function for a multitype point pattern.

Usage
Lcross(X, i, j,..., from, to, correction)

Arguments
X The observed point pattern, from which an estimate of the cross-type L function \( L_{ij}(r) \) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of marks(X).

correction,... Arguments passed to Kcross.

from,to An alternative way to specify i and j respectively.

Details
The cross-type L-function is a transformation of the cross-type K-function,

\[
L_{ij}(r) = \sqrt{\frac{K_{ij}(r)}{\pi}}
\]

where \( K_{ij}(r) \) is the cross-type K-function from type i to type j. See Kcross for information about the cross-type K-function.

The command Lcross first calls Kcross to compute the estimate of the cross-type K-function, and then applies the square root transformation.

For a marked point pattern in which the points of type i are independent of the points of type j, the theoretical value of the L-function is \( L_{ij}(r) = r \). The square root also has the effect of stabilising the variance of the estimator, so that \( L_{ij} \) is more appropriate for use in simulation envelopes and hypothesis tests.
An object of class "fv", see `fv.object`, which can be plotted directly using `plot.fv`.

Essentially a data frame containing columns

- \( r \): the vector of values of the argument \( r \) at which the function \( L_{ij} \) has been estimated
- theo: the theoretical value \( L_{ij}(r) = r \) for a stationary Poisson process
together with columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( L_{ij} \) obtained by the edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`Kcross, Ldot, Lest`

Examples

```r
L <- Lcross.inhom(amacrine, "off", "on")
plot(L)
```

Description

For a multitype point pattern, estimate the inhomogeneous version of the cross-type \( L \) function.

Usage

```r
Lcross.inhom(X, i, j, ..., correction)
```

Arguments

- \( X \): The observed point pattern, from which an estimate of the inhomogeneous cross type \( L \) function \( L_{ij}(r) \) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.
- \( i \): The type (mark value) of the points in \( X \) from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of `marks(X)`.
- \( j \): The type (mark value) of the points in \( X \) to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of `marks(X)`.
- \( \ldots \): Other arguments passed to `Kcross.inhom`. 
Details

This is a generalisation of the function \texttt{Lcross} to include an adjustment for spatially inhomogeneous intensity, in a manner similar to the function \texttt{Linhom}.

All the arguments are passed to \texttt{Kcross.inhom}, which estimates the inhomogeneous multitype K function \( K_{ij}(r) \) for the point pattern. The resulting values are then transformed by taking \( L(r) = \sqrt{K(r)/\pi} \).

Value

An object of class "fv" (see \texttt{fv.object}). Essentially a data frame containing numeric columns

- \( r \) the values of the argument \( r \) at which the function \( L_{ij}(r) \) has been estimated
- \( \text{theo} \) the theoretical value of \( L_{ij}(r) \) for a marked Poisson process, identically equal to \( r \)

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( L_{ij}(r) \) obtained by the edge corrections named.

Warnings

The arguments \( i \) and \( j \) are always interpreted as levels of the factor \( X \$\text{marks} \). They are converted to character strings if they are not already character strings. The value \( i=1 \) does not refer to the first level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

\texttt{Lcross}, \texttt{Linhom}, \texttt{Kcross.inhom}

Examples

```r
Lansing Woods data
woods <- lansing
ma <- split(woods)$maple
wh <- split(woods)$whiteoak

method (1): estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdaW <- density.ppp(wh, sigma=0.15, at="points")
```
L <- Lcross.inhom(woods, "whiteoak", "maple", lambdaW, lambdaM)

# method (2): fit parametric intensity model
if(require("spatstat.model")) {
  fit <- ppm(woods ~marks * polynom(x,y,2))
  # evaluate fitted intensities at data points
  # (these are the intensities of the sub-processes of each type)
  inten <- fitted(fit, dataonly=TRUE)
  # split according to types of points
  lambda <- split(inten, marks(woods))
  L <- Lcross.inhom(woods, "whiteoak", "maple",
                   lambda$whiteoak, lambda$maple)
}

# synthetic example: type A points have intensity 50,
# type B points have intensity 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
L <- Lcross.inhom(X, "A", "B",
                   lambdaI=as.im(50, Window(X)), lambdaJ=lamB)

---

**Ldot**

*Multitype L-function (i-to-any)*

**Description**

Calculates an estimate of the multitype L-function (from type i to any type) for a multitype point pattern.

**Usage**

Ldot(X, i, ..., from, correction)

**Arguments**

- **X**  
The observed point pattern, from which an estimate of the dot-type $L$ function $L_{ij}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

- **i**  
The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of marks(X).

- **from**  
An alternative way to specify i.

- **correction, ...**  
Arguments passed to Kdot.
Details

This command computes

\[ L_{i\bullet}(r) = \sqrt{\frac{K_{i\bullet}(r)}{\pi}} \]

where \( K_{i\bullet}(r) \) is the multitype \( K \)-function from points of type \( i \) to points of any type. See \( \text{Kdot} \) for information about \( K_{i\bullet}(r) \).

The command \( \text{Ldot} \) first calls \( \text{Kdot} \) to compute the estimate of the \( i \)-to-any \( K \)-function, and then applies the square root transformation.

For a marked Poisson point process, the theoretical value of the \( L \)-function is \( L_{i\bullet}(r) = r \). The square root also has the effect of stabilising the variance of the estimator, so that \( L_{i\bullet} \) is more appropriate for use in simulation envelopes and hypothesis tests.

Value

An object of class "fv", see \( \text{fv.object} \), which can be plotted directly using \( \text{plot.fv} \).

Essentially a data frame containing columns

- \( r \) the vector of values of the argument \( r \) at which the function \( L_{i\bullet} \) has been estimated
- \( \text{theo} \) the theoretical value \( L_{i\bullet}(r) = r \) for a stationary Poisson process

Together with columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( L_{i\bullet} \) obtained by the edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\( \text{Kdot, Lcross, Lest} \)

Examples

\begin{verbatim}
L <- Ldot(amacrine, "off") plot(L)
\end{verbatim}
Inhomogeneous Multitype L Dot Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the dot $L$ function.

Usage

Ldot.inhom(X, i, ..., correction)

Arguments

X
The observed point pattern, from which an estimate of the inhomogeneous cross type $L$ function $L_{i\bullet}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

i
The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of marks(X).

correction,...
Other arguments passed to Kdot.inhom.

Details

This a generalisation of the function Ldot to include an adjustment for spatially inhomogeneous intensity, in a manner similar to the function Linhom.

All the arguments are passed to Kdot.inhom, which estimates the inhomogeneous multitype $K$ function $K_{i\bullet}(r)$ for the point pattern. The resulting values are then transformed by taking $L(r) = \sqrt{K(r)/\pi}$.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

<table>
<thead>
<tr>
<th>r</th>
<th>the values of the argument $r$ at which the function $L_{i\bullet}(r)$ has been estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>theo</td>
<td>the theoretical value of $L_{i\bullet}(r)$ for a marked Poisson process, identical to $r$.</td>
</tr>
</tbody>
</table>

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function $L_{i\bullet}(r)$ obtained by the edge corrections named.

Warnings

The argument $i$ is interpreted as a level of the factor X$\text{marks}$. It is converted to a character string if it is not already a character string. The value $i=1$ does not refer to the first level of the factor.
Lest

Description

Calculates an estimate of the $L$-function (Besag’s transformation of Ripley’s $K$-function) for a spatial point pattern.

Usage

Lest(X, ..., correction)
Arguments

The observed point pattern, from which an estimate of \( L(r) \) will be computed. An object of class "ppp", or data in any format acceptable to \texttt{as.ppp()}. Other arguments passed to \texttt{Kest} to control the estimation procedure.

Details

This command computes an estimate of the \( L \)-function for the spatial point pattern \( X \). The \( L \)-function is a transformation of Ripley’s \( K \)-function,

\[
L(r) = \sqrt{\frac{K(r)}{\pi}}
\]

where \( K(r) \) is the \( K \)-function.

See \texttt{Kest} for information about Ripley’s \( K \)-function. The transformation to \( L \) was proposed by Besag (1977).

The command \texttt{Lest} first calls \texttt{Kest} to compute the estimate of the \( K \)-function, and then applies the square root transformation.

For a completely random (uniform Poisson) point pattern, the theoretical value of the \( L \)-function is \( L(r) = r \). The square root also has the effect of stabilising the variance of the estimator, so that \( L(r) \) is more appropriate for use in simulation envelopes and hypothesis tests.

See \texttt{Kest} for the list of arguments.

Value

An object of class "fv", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}.

Essentially a data frame containing columns

- \( r \) the vector of values of the argument \( r \) at which the function \( L \) has been estimated
- \( \text{theo} \) the theoretical value \( L(r) = r \) for a stationary Poisson process

Together with columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( L(r) \) obtained by the edge corrections named.

Variance approximations

If the argument \texttt{var.approx=TRUE} is given, the return value includes columns \texttt{rip} and \texttt{ls} containing approximations to the variance of \( \hat{L}(r) \) under CSR. These are obtained by the delta method from the variance approximations described in \texttt{Kest}.

Author(s)

Adrian Baddeley \texttt{<Adrian.Baddeley@curtin.edu.au>} and Rolf Turner \texttt{<r.turner@auckland.ac.nz>}

References

See Also

Kest, pcf

Examples

L <- Lest(cells)
plot(L, main="L function for cells")
Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

- \( r \) the vector of values of the argument \( r \) at which the function \( L \) has been estimated
- \( \text{theo} \) the theoretical value \( L(r) = r \) for a stationary Poisson process

Together with columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( L(r) \) obtained by the edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

Kest, Lest, Kinhom, pcf

Examples

```r
X <- japanesepines
L <- Linhom(X, sigma=0.1)
plot(L, main="Inhomogeneous L function for Japanese Pines")
```

Description

Computes the neighbourhood density function, a local version of the \( K \)-function or \( L \)-function, defined by Getis and Franklin (1987).

Usage

```r
localK(X, ..., rmax = NULL, correction = "Ripley", verbose = TRUE, rvalue=NULL)
localL(X, ..., rmax = NULL, correction = "Ripley", verbose = TRUE, rvalue=NULL)
```
Arguments

- **X**: A point pattern (object of class "ppp").
- **rmax**: Optional. Maximum desired value of the argument r.
- **correction**: String specifying the edge correction to be applied. Options are "none", "translate", "translation", "Ripley", "isotropic" or "best". Only one correction may be specified.
- **verbose**: Logical flag indicating whether to print progress reports during the calculation.
- **rvalue**: Optional. A single value of the distance argument r at which the function L or K should be computed.

Details

The command `localK` computes the **neighbourhood density function**, a local version of the L-function (Besag’s transformation of Ripley’s K-function) that was proposed by Getis and Franklin (1987). The command `localK` computes the corresponding local analogue of the K-function.

Given a spatial point pattern X, the neighbourhood density function \( L_i(r) \) associated with the \( i \)th point in X is computed by

\[
L_i(r) = \sqrt{\frac{a}{(n-1)\pi} \sum_j e_{ij}}
\]

where the sum is over all points \( j \neq i \) that lie within a distance r of the \( i \)th point, \( a \) is the area of the observation window, \( n \) is the number of points in X, and \( e_{ij} \) is an edge correction term (as described in `Kest`). The value of \( L_i(r) \) can also be interpreted as one of the summands that contributes to the global estimate of the L function.

By default, the function \( L_i(r) \) or \( K_i(r) \) is computed for a range of r values for each point i. The results are stored as a function value table (object of class "fv") with a column of the table containing the function estimates for each point of the pattern X.

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only be computed for this value of r, and the results will be returned as a numeric vector, with one entry of the vector for each point of the pattern X.

Inhomogeneous counterparts of `localK` and `localL` are computed by `localKinhom` and `localLinhom`.

Value

If rvalue is given, the result is a numeric vector of length equal to the number of points in the point pattern.

If rvalue is absent, the result is an object of class "fv", see `fv.object`, which can be plotted directly using `plot.fv`. Essentially a data frame containing columns

- **r**: the vector of values of the argument r at which the function K has been estimated
- **theo**: the theoretical value \( K(r) = \pi r^2 \) or \( L(r) = r \) for a stationary Poisson process together with columns containing the values of the neighbourhood density function for each point in the pattern. Column 1 corresponds to the 1th point. The last two columns contain the r and theo values.
localKcross

Local Multitype K Function (Cross-Type)

Description

for a multitype point pattern, computes the cross-type version of the local K function.

Usage

localKcross(X, from, to, ..., rmax = NULL, correction = "Ripley", verbose = TRUE, rvalue=NULL)
localLCross(X, from, to, ..., rmax = NULL, correction = "Ripley")
Arguments

\textbf{X} 
A multitype point pattern (object of class "ppp" with marks which are a factor).

Further arguments passed from \texttt{localLcross} to \texttt{localKcross}.

\textbf{rmax} 
Optional. Maximum desired value of the argument \(r\).

\textbf{from} 
Type of points from which distances should be measured. A single value; one of the possible levels of \texttt{marks(X)}, or an integer indicating which level.

\textbf{to} 
Type of points to which distances should be measured. A single value; one of the possible levels of \texttt{marks(X)}, or an integer indicating which level.

\textbf{correction} 
String specifying the edge correction to be applied. Options are "none", "translate", "translation", "Ripley", "isotropic" or "best". Only one correction may be specified.

\textbf{verbose} 
Logical flag indicating whether to print progress reports during the calculation.

\textbf{rvalue} 
Optional. A single value of the distance argument \(r\) at which the function \(L\) or \(K\) should be computed.

Details

Given a multitype spatial point pattern \(X\), the local cross-type \(K\) function \texttt{localKcross} is the local version of the multitype \(K\) function \texttt{Kcross}. Recall that \(Kcross(X, \texttt{from}, \texttt{to})\) is a sum of contributions from all pairs of points in \(X\) where the first point belongs to \texttt{from} and the second point belongs to type \texttt{to}. The local cross-type \(K\) function is defined for each point \(X[i]\) that belongs to type \texttt{from}, and it consists of all the contributions to the cross-type \(K\) function that originate from point \(X[i]\):

\[ K_{i, \text{from}, \text{to}}(r) = \sqrt{\frac{a}{(n-1)\pi} \sum_j e_{ij}} \]

where the sum is over all points \(j \neq i\) belonging to type \texttt{to}, that lie within a distance \(r\) of the \texttt{i}th point, \(a\) is the area of the observation window, \(n\) is the number of points in \(X\), and \(e_{ij}\) is an edge correction term (as described in \texttt{Kest}). The value of \(K_{i, \text{from}, \text{to}}(r)\) can also be interpreted as one of the summands that contributes to the global estimate of the \texttt{Kcross} function.

By default, the function \(K_{i, \text{from}, \text{to}}(r)\) is computed for a range of \(r\) values for each point \(i\) belonging to type \texttt{from}. The results are stored as a function value table (object of class "fv") with a column of the table containing the function estimates for each point of the pattern \(X\) belonging to type \texttt{from}.

Alternatively, if the argument \texttt{rvalue} is given, and it is a single number, then the function will only be computed for this value of \(r\), and the results will be returned as a numeric vector, with one entry of the vector for each point of the pattern \(X\) belonging to type \texttt{from}.

The local cross-type \(L\) function \texttt{localLcross} is computed by applying the transformation \(L(r) = \sqrt{K(r)/(2\pi)}\).

Value

If \texttt{rvalue} is given, the result is a numeric vector of length equal to the number of points in the point pattern that belong to type \texttt{from}.

If \texttt{rvalue} is absent, the result is an object of class "fv", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}. Essentially a data frame containing columns
$r$ the vector of values of the argument $r$ at which the function $K$ has been estimated
theo the theoretical value $K(r) = \pi r^2$ or $L(r) = r$ for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point in the pattern. Column $i$ corresponds to the $i$th point of type from. The last two columns contain the $r$ and theo values.

**Author(s)**
Ege Rubak <rubak@math.aau.dk> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

**See Also**
Kcross, Lcross, localK, localL.
Inhomogeneous counterparts of localK and localL are computed by localKcross.inhom and localLinhom.

**Examples**
```
X <- amacrine

compute all the local Lcross functions
L <- localLcross(X)

plot all the local Lcross functions against r
plot(L, main="local Lcross functions for amacrine", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

compute the values of L(r) for r = 0.1 metres
L12 <- localLcross(X, rvalue=0.1)
```

---

**localKcross.inhom**

**Inhomogeneous Multitype K Function**

**Description**
Computes spatially-weighted versions of the the local multitype $K$-function or $L$-function.

**Usage**
```
localKcross.inhom(X, from, to, lambdaFrom=NULL, lambdaTo=NULL, ..., rmax = NULL, correction = "Ripley", sigma=NULL, varcov=NULL, localLcross.inhom(X, from, to, lambdaFrom=NULL, lambdaTo=NULL, ..., rmax = NULL)
```
Arguments

**X**  
A point pattern (object of class "ppp").

**from**  
Type of points from which distances should be measured. A single value; one of the possible levels of marks(X), or an integer indicating which level.

**to**  
Type of points to which distances should be measured. A single value; one of the possible levels of marks(X), or an integer indicating which level.

**lambdaFrom,lambdaTo**  
Optional. Values of the estimated intensity function for the points of type from and to, respectively. Each argument should be either a vector giving the intensity values at the required points, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm") or a function(x,y) which can be evaluated to give the intensity value at any location.

...  
Extra arguments. Ignored if lambda is present. Passed to density.ppp if lambda is omitted.

**rmax**  
Optional. Maximum desired value of the argument r.

**correction**  
String specifying the edge correction to be applied. Options are "none", "translate", "Ripley", "translation", "isotropic" or "best". Only one correction may be specified.

**sigma, varcov**  
Optional arguments passed to density.ppp to control the kernel smoothing procedure for estimating lambdaFrom and lambdaTo, if they are missing.

**lambdaX**  
Optional. Values of the estimated intensity function for all points of X. Either a vector giving the intensity values at each point of X, a pixel image (object of class "im") giving the intensity values at all locations, a list of pixel images giving the intensity values at all locations for each type of point, or a fitted point process model (object of class "ppm") or a function(x,y) or function(x,y,m) which can be evaluated to give the intensity value at any location.

**update**  
Logical value indicating what to do when lambdaFrom, lambdaTo or lambdaX is a fitted model (class "ppm", "kppm" or "dppm"). If update=TRUE (the default), the model will first be refitted to the data X (using update.ppm or update.kppm) before the fitted intensity is computed. If update=FALSE, the fitted intensity of the model will be computed without re-fitting it to X.

**leaveoneout**  
Logical value (passed to density.ppp or fitted.ppm) specifying whether to use a leave-one-out rule when calculating the intensity.

Details

The functions localKcross.inhom and localLcross.inhom are inhomogeneous or weighted versions of the local multitype $K$ and $L$ functions implemented in localKcross and localLcross.

Given a multitype spatial point pattern $X$, and two designated types from and to, the local multitype $K$ function is defined for each point $X[i]$ that belongs to type from, and is computed by

$$K_i(r) = \sqrt{\frac{1}{\pi} \sum_j \frac{e_{ij}}{\lambda_j}}$$
where the sum is over all points \( j \neq i \) of type to that lie within a distance \( r \) of the \( i \)th point, \( \lambda_j \) is the estimated intensity of the point pattern at the point \( j \), and \( c_{ij} \) is an edge correction term (as described in \texttt{Kest})

The function \( K_i(r) \) is computed for a range of \( r \) values for each point \( i \). The results are stored as a function value table (object of class \texttt{"fv"}) with a column of the table containing the function estimates for each point of the pattern \( X \) of type \texttt{from}.

The corresponding \( L \) function \( L_i(r) \) is computed by applying the transformation \[ L(r) = \sqrt{\frac{K(r)}{2\pi}}. \]

Value

An object of class \texttt{"fv"}, see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}. Essentially a data frame containing columns

- \( r \) the vector of values of the argument \( r \) at which the function \( K \) has been estimated
- \texttt{theo} the theoretical value \( K(r) = \pi r^2 \) or \( L(r) = r \) for a stationary Poisson process

... together with columns containing the values of the neighbourhood density function for each point in the pattern of type \texttt{from}. The last two columns contain the \( r \) and \texttt{theo} values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

\texttt{Kinhom}, \texttt{Linhom}, \texttt{localK}, \texttt{localL}.

Examples

```r
X <- amacrine

compute all the local L functions
L <- localLcross.inhom(X)

plot all the local L functions against r
plot(L, main=\"local L functions for ponderosa\", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)
```
*localKdot*  

*Local Multitype K Function (Dot-Type)*

**Description**

For a multitype point pattern, computes the dot-type version of the local K function.

**Usage**

```r
localKdot(X, from, ..., rmax = NULL, correction = "Ripley", verbose = TRUE, rvalue=NULL)
localLdot(X, from, ..., rmax = NULL, correction = "Ripley")
```

**Arguments**

- `X` A multitype point pattern (object of class "ppp" with marks which are a factor).
- `...` Further arguments passed from `localLdot` to `localKdot`.
- `rmax` Optional. Maximum desired value of the argument `r`.
- `from` Type of points from which distances should be measured. A single value; one of the possible levels of marks(`X`), or an integer indicating which level.
- `correction` String specifying the edge correction to be applied. Options are "none", "translate", "translation", "Ripley", "isotropic" or "best". Only one correction may be specified.
- `verbose` Logical flag indicating whether to print progress reports during the calculation.
- `rvalue` Optional. A single value of the distance argument `r` at which the function L or K should be computed.

**Details**

Given a multitype spatial point pattern `X`, the local dot-type `K` function `localKdot` is the local version of the multitype `K` function `Kdot`. Recall that `Kdot(X, from)` is a sum of contributions from all pairs of points in `X` where the first point belongs to `from`. The local dot-type `K` function is defined for each point `X[i]` that belongs to type `from`, and it consists of all the contributions to the dot-type `K` function that originate from point `X[i]`:

\[
K_{i, \text{from}, \text{to}}(r) = \sqrt{\frac{a}{(n-1)\pi}} \sum_j e_{ij}
\]

where the sum is over all points `j \neq i` that lie within a distance `r` of the `i`th point, `a` is the area of the observation window, `n` is the number of points in `X`, and `e_{ij}` is an edge correction term (as described in `Kest`). The value of `K_{i, \text{from}}(r)` can also be interpreted as one of the summands that contributes to the global estimate of the `Kdot` function.

By default, the function `K_{i, \text{from}}(r)` is computed for a range of `r` values for each point `i` belonging to type `from`. The results are stored as a function value table (object of class "fv") with a column of the table containing the function estimates for each point of the pattern `X` belonging to type `from`.

---

**Note:**

- The correct function name is `localKdot`, not `localKdot`. The usage and arguments are correct as per the R documentation. The details section provides the correct mathematical formulation for the local dot-type `K` function, ensuring the text is self-contained and accurately reflects the function's behavior.
Alternatively, if the argument \texttt{rvalue} is given, and it is a single number, then the function will only be computed for this value of \( r \), and the results will be returned as a numeric vector, with one entry of the vector for each point of the pattern \( X \) belonging to type \texttt{from}.

The local dot-type \( L \) function \texttt{localLdot} is computed by applying the transformation \( L(r) = \sqrt{K(r)/(2\pi)} \).

**Value**

If \texttt{rvalue} is given, the result is a numeric vector of length equal to the number of points in the point pattern that belong to type \texttt{from}.

If \texttt{rvalue} is absent, the result is an object of class "fv", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}. Essentially a data frame containing columns

- \( r \): the vector of values of the argument \( r \) at which the function \( K \) has been estimated
- \texttt{theo}: the theoretical value \( K(r) = \pi r^2 \) or \( L(r) = r \) for a stationary Poisson process

- together with columns containing the values of the neighbourhood density function for each point in the pattern. Column \( i \) corresponds to the \( i \)th point of type \texttt{from}. The last two columns contain the \( r \) and \texttt{theo} values.

**Author(s)**

Ege Rubak <rubak@math.aau.dk> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

**See Also**

\texttt{Kdot, Ldot, localK, localL}.

**Examples**

\begin{verbatim}
X <- amacrine

# compute all the local Ldot functions
L <- localLdot(X)

# plot all the local Ldot functions against r
plot(L, main="local Ldot functions for amacrine", legend=FALSE)

# plot only the local L function for point number 7
plot(L, iso007 ~ r)

# compute the values of L(r) for r = 0.1 metres
L12 <- localLdot(X, rvalue=0.1)
\end{verbatim}
localKinhom

**Inhomogeneous Neighbourhood Density Function**

**Description**

Computes spatially-weighted versions of the local $K$-function or $L$-function.

**Usage**

```r
localKinhom(X, lambda, ..., rmax = NULL,
correction = "Ripley", verbose = TRUE, rvalue=NULL,
sigma = NULL, varcov = NULL, update=TRUE, leaveoneout=TRUE)
localLinhom(X, lambda, ..., rmax = NULL,
correction = "Ripley", verbose = TRUE, rvalue=NULL,
sigma = NULL, varcov = NULL, update=TRUE, leaveoneout=TRUE)
```

**Arguments**

- **X**: A point pattern (object of class "ppp").
- **lambda**: Optional. Values of the estimated intensity function. Either a vector giving the intensity values at the points of the pattern X, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm" or "kppm" or "dppm") or a function(x,y) which can be evaluated to give the intensity value at any location.
- **...**: Extra arguments. Ignored if lambda is present. Passed to `density.ppp` if lambda is omitted.
- **rmax**: Optional. Maximum desired value of the argument $r$.
- **correction**: String specifying the edge correction to be applied. Options are "none", "translate", "Ripley", "translation", "isotropic" or "best". Only one correction may be specified.
- **verbose**: Logical flag indicating whether to print progress reports during the calculation.
- **rvalue**: Optional. A single value of the distance argument $r$ at which the function $L$ or $K$ should be computed.
- **sigma, varcov**: Optional arguments passed to `density.ppp` to control the kernel smoothing procedure for estimating lambda, if lambda is missing.
- **leaveoneout**: Logical value (passed to `density.ppp` or `fitted.ppm`) specifying whether to use a leave-one-out rule when calculating the intensity.
- **update**: Logical value indicating what to do when lambda is a fitted model (class "ppm", "kppm" or "dppm"). If `update=TRUE` (the default), the model will first be refitted to the data X (using `update.ppm` or `update.kppm`) before the fitted intensity is computed. If `update=FALSE`, the fitted intensity of the model will be computed without re-fitting it to X.
Details

The functions `localKinhom` and `localLinhom` are inhomogeneous or weighted versions of the
neighbourhood density function implemented in `localK` and `localL`.

Given a spatial point pattern \( X \), the inhomogeneous neighbourhood density function \( L_i(r) \) associated with the \( i \)th point in \( X \) is computed by

\[
L_i(r) = \sqrt{\frac{1}{\pi} \sum_j e_{ij} \lambda_j}
\]

where the sum is over all points \( j \neq i \) that lie within a distance \( r \) of the \( i \)th point, \( \lambda_j \) is the estimated intensity of the point pattern at the point \( j \), and \( e_{ij} \) is an edge correction term (as described in `Kest`).

The value of \( L_i(r) \) can also be interpreted as one of the summands that contributes to the global estimate of the inhomogeneous L function (see `Linhom`).

By default, the function \( L_i(r) \) or \( K_i(r) \) is computed for a range of \( r \) values for each point \( i \). The results are stored as a function value table (object of class "fv") with a column of the table containing the function estimates for each point of the pattern \( X \).

Alternatively, if the argument `rvalue` is given, and it is a single number, then the function will only be computed for this value of \( r \), and the results will be returned as a numeric vector, with one entry of the vector for each point of the pattern \( X \).

Value

If `rvalue` is given, the result is a numeric vector of length equal to the number of points in the point pattern.

If `rvalue` is absent, the result is an object of class "fv", see `fv.object`, which can be plotted directly using `plot.fv`. Essentially a data frame containing columns

- \( r \) the vector of values of the argument \( r \) at which the function \( K \) has been estimated
- \( \text{theo} \) the theoretical value \( K(r) = \pi r^2 \) or \( L(r) = r \) for a stationary Poisson process together with columns containing the values of the neighbourhood density function for each point in the pattern. Column \( i \) corresponds to the \( i \)th point. The last two columns contain the \( r \) and `theo` values.

Author(s)

Mike Kuhn, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`Kin`. `Lin`. `localK`. `localL`.

Examples

```r
X <- ponderosa

compute all the local L functions
```
L <- localLinhom(X)

# plot all the local L functions against r
plot(L, main="local L functions for ponderosa", legend=FALSE)

# plot only the local L function for point number 7
plot(L, iso007 ~ r)

# compute the values of L(r) for r = 12 metres
L12 <- localL(X, rvalue=12)

localpcf

Local pair correlation function

Description

Computes individual contributions to the pair correlation function from each data point.

Usage

localpcf(X, ..., delta=NULL, rmax=NULL, nr=512, stoyan=0.15, rvalue=NULL)

localpcfinhom(X, ..., delta=NULL, rmax=NULL, nr=512, stoyan=0.15,
lambda=NULL, sigma=NULL, varcov=NULL,
update=TRUE, leaveoneout=TRUE, rvalue=NULL)

Arguments

X
A point pattern (object of class "ppp").
delta
Smoothing bandwidth for pair correlation. The halfwidth of the Epanechnikov kernel.
rmax
Optional. Maximum value of distance r for which pair correlation values g(r) should be computed.

nr
Optional. Number of values of distance r for which pair correlation g(r) should be computed.
stoyan
Optional. The value of the constant c in Stoyan’s rule of thumb for selecting the smoothing bandwidth delta.

lambda
Optional. Values of the estimated intensity function, for the inhomogeneous pair correlation. Either a vector giving the intensity values at the points of the pattern X, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm", "kppm" or "dppm") or a function(x,y) which can be evaluated to give the intensity value at any location.

sigma,varcov,...
These arguments are ignored by localpcf but are passed by localpcfinhom (when lambda=NULL) to the function density.ppp to control the kernel smoothing estimation of lambda.
leaveoneout Logical value (passed to `density.ppp` or `fitted.ppm`) specifying whether to use a leave-one-out rule when calculating the intensity.

update Logical value indicating what to do when `lambda` is a fitted model (class "ppm", "kppm" or "dppm"). If `update=TRUE` (the default), the model will first be refitted to the data `X` (using `update.ppm` or `update.kppm`) before the fitted intensity is computed. If `update=FALSE`, the fitted intensity of the model will be computed without re-fitting it to `X`.

rvalue Optional. A single value of the distance argument `r` at which the local pair correlation should be computed.

Details

`localpcf` computes the contribution, from each individual data point in a point pattern `X`, to the empirical pair correlation function of `X`. These contributions are sometimes known as LISA (local indicator of spatial association) functions based on pair correlation.

`localpcfinhom` computes the corresponding contribution to the inhomogeneous empirical pair correlation function of `X`.

Given a spatial point pattern `X`, the local pcf `g_i(r)` associated with the `i`th point in `X` is computed by

\[ g_i(r) = \frac{a}{2\pi n} \sum_j k(d_{i,j} - r) \]

where the sum is over all points `j \neq i`, `a` is the area of the observation window, `n` is the number of points in `X`, and `d_{i,j}` is the distance between points `i` and `j`. Here `k` is the Epanechnikov kernel,

\[ k(t) = \frac{3}{4\delta} \max(0, 1 - t^2 / \delta^2) \]

Edge correction is performed using the border method (for the sake of computational efficiency): the estimate `g_i(r)` is set to `NA` if `r > b_i`, where `b_i` is the distance from point `i` to the boundary of the observation window.

The smoothing bandwidth `\delta` may be specified. If not, it is chosen by Stoyan’s rule of thumb `\delta = c/\hat{\lambda}` where `\hat{\lambda} = n/a` is the estimated intensity and `c` is a constant, usually taken to be 0.15. The value of `c` is controlled by the argument `stoyan`.

For `localpcfinhom`, the optional argument `lambda` specifies the values of the estimated intensity function. If `lambda` is given, it should be either a numeric vector giving the intensity values at the points of the pattern `X`, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm", "kppm" or "dppm") or a function(`x,y`) which can be evaluated to give the intensity value at any location. If `lambda` is not given, then it will be estimated using a leave-one-out kernel density smoother as described in `pcfinhom`.

Alternatively, if the argument `rvalue` is given, and it is a single number, then the function will only be computed for this value of `r`, and the results will be returned as a numeric vector, with one entry of the vector for each point of the pattern `X`.

Value

An object of class "fv", see `fv.object`, which can be plotted directly using `plot.fv`. Essentially a data frame containing columns
$r$  
the vector of values of the argument $r$ at which the function $K$ has been estimated.

theo  
the theoretical value $K(r) = \pi r^2$ or $L(r) = r$ for a stationary Poisson process.

Together with columns containing the values of the local pair correlation function for each point in the pattern. Column $i$ corresponds to the $i$th point. The last two columns contain the $r$ and theo values.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also
localK, localKinhom, pcf, pcfinhom

Examples

```r
X <- ponderosa
g <- localpcf(X, stoyan=0.5)
colo <- c(rep("grey", npoints(X)), "blue")
a <- plot(g, main=c("local pair correlation functions", "Ponderosa pines"),
 legend=FALSE, col=colo, lty=1)

plot only the local pair correlation function for point number 7
plot(g, est007 ~ r)

Extract the local pair correlation at distance 15 metres, for each point
g15 <- localpcf(X, rvalue=15, stoyan=0.5)
g15[1:10]

Check that the value for point 7 agrees with the curve for point 7:
points(15, g15[7], col="red")

Inhomogeneous

GI <- localpcfinhom(X, stoyan=0.5)
a <- plot(GI, main=c("inhomogeneous local pair correlation functions", "Ponderosa pines"),
 legend=FALSE, col=colo, lty=1)
```

loboott

Bootstrap Confidence Bands for Summary Function

Description
Computes a bootstrap confidence band for a summary function of a point process.
Usage

lohboot(X,
    fun=c("pcf", "Kest", "Lest", "pcfinhom", "Kinhom", "Linhom",
      "Kcross", "Lcross", "Kdot", "Ldot",
      "Kcross.inhom", "Lcross.inhom"),
    ..., block=FALSE, global=FALSE, basicboot=FALSE, Vcorrection=FALSE,
    confidence=0.95, nx = 4, ny = nx, nsim=200, type=7)

Arguments

X A point pattern (object of class "ppp").

fun Name of the summary function for which confidence intervals are desired: one of the strings "pcf", "Kest", "Lest", "pcfinhom", "Kinhom" "Linhom", "Kcross", "Lcross", "Kdot", "Ldot", "Kcross.inhom" or "Lcross.inhom". Alternatively, the function itself; it must be one of the functions listed here.

... Arguments passed to the corresponding local version of the summary function (see Details).

block Logical value indicating whether to use Loh's block bootstrap as originally proposed. Default is FALSE for consistency with older code. See Details.

global Logical. If FALSE (the default), pointwise confidence intervals are constructed. If TRUE, a global (simultaneous) confidence band is constructed.

basicboot Logical value indicating whether to use the so-called basic bootstrap confidence interval. See Details.

Vcorrection Logical value indicating whether to use a variance correction when fun="Kest" or fun="Kinhom". See Details.

confidence Confidence level, as a fraction between 0 and 1.

nx, ny Integers. If block=TRUE, divide the window into nx*ny rectangles.

nsim Number of bootstrap simulations.

type Integer. Type of quantiles. Argument passed to quantile.default controlling the way the quantiles are calculated.

Details

This algorithm computes confidence bands for the true value of the summary function fun using the bootstrap method of Loh (2008) and a modification described in Baddeley, Rubak, Turner (2015).

If fun="pcf", for example, the algorithm computes a pointwise (100 * confidence)% confidence interval for the true value of the pair correlation function for the point process, normally estimated by pcf. It starts by computing the array of local pair correlation functions, localpcf, of the data pattern X. This array consists of the contributions to the estimate of the pair correlation function from each data point.

If block=FALSE, these contributions are resampled nsim times with replacement as described in Baddeley, Rubak, Turner (2015); from each resampled dataset the total contribution is computed, yielding nsim random pair correlation functions.
If `block=TRUE`, the calculation is performed as originally proposed by Loh (2008, 2010). The (bounding box of the) window is divided into $n_x \times n_y$ rectangles (blocks). The average contribution of a block is obtained by averaging the contribution of each point included in the block. Then, the average contributions on each block are resampled $nsim$ times with replacement as described in Loh (2008) and Loh (2010); from each resampled dataset the total contribution is computed, yielding $nsim$ random pair correlation functions. Notice that for non-rectangular windows any blocks not fully contained in the window are discarded before doing the resampling, so the effective number of blocks may be substantially smaller than $n_x \times n_y$ in this case.

The pointwise $\alpha/2$ and $1 - \alpha/2$ quantiles of these functions are computed, where $\alpha = 1 - \text{confidence}$. The average of the local functions is also computed as an estimate of the pair correlation function.

There are several ways to define a bootstrap confidence interval. If `basicbootstrap=TRUE`, the so-called basic confidence bootstrap interval is used as described in Loh (2008).

It has been noticed in Loh (2010) that when the intensity of the point process is unknown, the bootstrap error estimate is larger than it should be. When the $K$ function is used, an adjustment procedure has been proposed in Loh (2010) that is used if `Vcorrection=TRUE`. In this case, the basic confidence bootstrap interval is implicitly used.

To control the estimation algorithm, use the arguments ..., which are passed to the local version of the summary function, as shown below:

<table>
<thead>
<tr>
<th><code>fun</code></th>
<th><code>local version</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pcf</code></td>
<td><code>localpcf</code></td>
</tr>
<tr>
<td><code>Kest</code></td>
<td><code>localK</code></td>
</tr>
<tr>
<td><code>Lest</code></td>
<td><code>localL</code></td>
</tr>
<tr>
<td><code>pcfinhom</code></td>
<td><code>localpcfinhom</code></td>
</tr>
<tr>
<td><code>Kinhom</code></td>
<td><code>localKinhom</code></td>
</tr>
<tr>
<td><code>Linhom</code></td>
<td><code>localLinhom</code></td>
</tr>
<tr>
<td><code>Kcross</code></td>
<td><code>localKcross</code></td>
</tr>
<tr>
<td><code>Lcross</code></td>
<td><code>localLcross</code></td>
</tr>
<tr>
<td><code>Kdot</code></td>
<td><code>localKdot</code></td>
</tr>
<tr>
<td><code>Ldot</code></td>
<td><code>localLdot</code></td>
</tr>
<tr>
<td><code>Kcross.inhom</code></td>
<td><code>localKcross.inhom</code></td>
</tr>
<tr>
<td><code>Lcross.inhom</code></td>
<td><code>localLcross.inhom</code></td>
</tr>
</tbody>
</table>

For `fun="Lest"`, the calculations are first performed as if `fun="Kest"`, and then the square-root transformation is applied to obtain the $L$-function. Similarly for `fun="Linhom", "Lcross", "Ldot", "Lcross.inhom"`.

Note that the confidence bands computed by `lohboot(fun="pcf")` may not contain the estimate of the pair correlation function computed by `pcf`, because of differences between the algorithm parameters (such as the choice of edge correction) in `localpcf` and `pcf`. If you are using `lohboot`, the appropriate point estimate of the pair correlation itself is the pointwise mean of the local estimates, which is provided in the result of `lohboot` and is shown in the default plot.

If the confidence bands seem unbelievably narrow, this may occur because the point pattern has a hard core (the true pair correlation function is zero for certain values of distance) or because of an optical illusion when the function is steeply sloping (remember the width of the confidence bands should be measured vertically).
An alternative to \texttt{lohboot} is \texttt{varblock}.

\textbf{Value}

A function value table (object of class "fv") containing columns giving the estimate of the summary function, the upper and lower limits of the bootstrap confidence interval, and the theoretical value of the summary function for a Poisson process.

\textbf{Author(s)}

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>, and Ege Rubak <rubak@math.aau.dk> and Christophe Biscio.

\textbf{References}


\textbf{See Also}

Summary functions \texttt{Kest}, \texttt{pcf}, \texttt{Kinhom}, \texttt{pcfinhom}, \texttt{localK}, \texttt{localpcf}, \texttt{localKinhom}, \texttt{localpcfinhom}, \texttt{localKcross}, \texttt{localKdot}, \texttt{localLcross}, \texttt{localLdot}, \texttt{localKcross.inhom}, \texttt{localLcross.inhom}.

See \texttt{varblock} for an alternative bootstrap technique.

\textbf{Examples}

```r
p <- lohboot(simdat, stoyan=0.5)
g <- lohboot(simdat, stoyan=0.5, block=TRUE)
g
plot(g)
```

\textbf{markconnect} \hspace{1cm} \textit{Mark Connection Function}

\textbf{Description}

Estimate the marked connection function of a multitype point pattern.

\textbf{Usage}

```r
markconnect(X, i, j, r=NULL,
 correction=c("isotropic", "Ripley", "translate"),
 method="density", ..., normalise=FALSE)
```
Arguments

- **X**: The observed point pattern. An object of class "ppp" or something acceptable to `as.ppp`.
- **i**: Number or character string identifying the type (mark value) of the points in `X` from which distances are measured.
- **j**: Number or character string identifying the type (mark value) of the points in `X` to which distances are measured.
- **r**: numeric vector. The values of the argument `r` at which the mark connection function `p_{ij}(r)` should be evaluated. There is a sensible default.
- **correction**: A character vector containing any selection of the options "isotropic", "Ripley" or "translate". It specifies the edge correction(s) to be applied.
- **method**: A character vector indicating the user's choice of density estimation technique to be used. Options are "density", "loess", "sm" and "smrep".
- **...**: Arguments passed to `markcorr`, or passed to the density estimation routine (`density`, `loess` or `sm.density`) selected by `method`.
- **normalise**: If TRUE, normalise the pair connection function by dividing it by \( p_i p_j \), the estimated probability that randomly-selected points will have marks `i` and `j`.

Details

The mark connection function `p_{ij}(r)` of a multitype point process `X` is a measure of the dependence between the types of two points of the process a distance `r` apart.

Informally `p_{ij}(r)` is defined as the conditional probability, given that there is a point of the process at a location `u` and another point of the process at a location `v` separated by a distance `||u - v|| = r`, that the first point is of type `i` and the second point is of type `j`. See Stoyan and Stoyan (1994).

If the marks attached to the points of `X` are independent and identically distributed, then `p_{ij}(r) \equiv p_i p_j` where `p_i` denotes the probability that a point is of type `i`. Values larger than this, `p_{ij}(r) > p_i p_j`, indicate positive association between the two types, while smaller values indicate negative association.

The argument `X` must be a point pattern (object of class "ppp") or any data that are acceptable to `as.ppp`. It must be a multitype point pattern (a marked point pattern with factor-valued marks).

The argument `r` is the vector of values for the distance `r` at which `p_{ij}(r)` is estimated. There is a sensible default.

This algorithm assumes that `X` can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in `X` as `Window(X)`) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in `Kest`. The edge corrections implemented here are

- **isotropic/Ripley**: Ripley's isotropic correction (see Ripley, 1988; Ohser, 1983). This is implemented only for rectangular and polygonal windows (not for binary masks) and is slow for complicated polygons.
- **translate**: Translation correction (Ohser, 1983). Implemented for all window geometries.
- **none**: No edge correction.
The option `correction = "none"` should only be used if the number of data points is extremely large (otherwise an edge correction is needed to correct bias).

Note that the estimator assumes the process is stationary (spatially homogeneous).

The mark connection function is estimated using density estimation techniques. The user can choose between

- "density" which uses the standard kernel density estimation routine `density`, and works only for evenly-spaced \( r \) values;
- "loess" which uses the function `loess` in the package `modreg`;
- "sm" which uses the function `sm.density` in the package `sm` and is extremely slow;
- "smrep" which uses the function `sm.density` in the package `sm` and is relatively fast, but may require manual control of the smoothing parameter \( h \text{mult} \).

**Value**

An object of class "fv" (see `fv.object`).

Essentially a data frame containing numeric columns

- \( r \): the values of the argument \( r \) at which the mark connection function \( p_{ij}(r) \) has been estimated
- \( \text{theo} \): the theoretical value of \( p_{ij}(r) \) when the marks attached to different points are independent

Together with a column or columns named "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( p_{ij}(r) \) obtained by the edge corrections named.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

Multitype pair correlation `pcf` for `markcorr` and multitype K-functions `Kcross`, `Kdot`.

Use `alltypes` to compute the mark connection functions between all pairs of types.

Mark correlation `markcorr` and mark variogram `markvario` for numeric-valued marks.
Examples

# Hughes' amacrine data
# Cells marked as 'on'/'off'
M <- markconnect(amacrine, "on", "off")
plot(M)

# Compute for all pairs of types at once
plot(alltypes(amacrine, markconnect))

markcorr  Mark Correlation Function

Description

Estimate the marked correlation function of a marked point pattern.

Usage

markcorr(X, f = function(m1, m2) { m1 * m2}, r=NULL,
correction=c("isotropic", "Ripley", "translate"),
method="density", ..., weights=NULL,
f1=NULL, normalise=TRUE, fargs=NULL, internal=NULL)

Arguments

X  The observed point pattern. An object of class "ppp" or something acceptable to as.ppp.
f  Optional. Test function \( f \) used in the definition of the mark correlation function. An \( R \) function with at least two arguments. There is a sensible default.
r  Optional. Numeric vector. The values of the argument \( r \) at which the mark correlation function \( k_f(r) \) should be evaluated. There is a sensible default.
correction  A character vector containing any selection of the options "isotropic", "Ripley", "translate", "translation", "none" or "best". It specifies the edge correction(s) to be applied. Alternatively correction="all" selects all options.
method  A character vector indicating the user's choice of density estimation technique to be used. Options are "density", "loess", "sm" and "smrep".
...  Arguments passed to the density estimation routine (density, loess or sm.density) selected by method.
weights  Optional. Numeric weights for each data point in \( X \). A numeric vector, a pixel image, or a function \( (x, y) \). Alternatively, an expression to be evaluated to yield the weights; the expression may involve the variables \( x, y, marks \) representing the coordinates and marks of \( X \).
f1  An alternative to \( f \). If this argument is given, then \( f \) is assumed to take the form \( f(u, v) = f_1(u)f_1(v) \).
normalise  If normalise=FALSE, compute only the numerator of the expression for the mark correlation.

fargs  Optional. A list of extra arguments to be passed to the function f or f1.

internal  Do not use this argument.

Details

By default, this command calculates an estimate of Stoyan’s mark correlation \( k_{mm}(r) \) for the point pattern.

Alternatively if the argument f or f1 is given, then it calculates Stoyan’s generalised mark correlation \( k_f(r) \) with test function \( f \).

Theoretical definitions are as follows (see Stoyan and Stoyan (1994, p. 262)):

- For a point process \( X \) with numeric marks, Stoyan’s mark correlation function \( k_{mm}(r) \), is

\[
k_{mm}(r) = \frac{E_{0u}[M(0)M(u)]}{E[M, M']}
\]

where \( E_{0u} \) denotes the conditional expectation given that there are points of the process at the locations 0 and \( u \) separated by a distance \( r \), and where \( M(0), M(u) \) denote the marks attached to these two points. On the denominator, \( M, M' \) are random marks drawn independently from the marginal distribution of marks, and \( E \) is the usual expectation.

- For a multitype point process \( X \), the mark correlation is

\[
k_{mm}(r) = \frac{P_{0u}[M(0)M(u)]}{P[M = M']}
\]

where \( P \) and \( P_{0u} \), denote the probability and conditional probability.

- The *generalised* mark correlation function \( k_f(r) \) of a marked point process \( X \), with test function \( f \), is

\[
k_f(r) = \frac{E_{0u}[f(M(0), M(u))]}{E[f(M, M')]}\]

The test function \( f \) is any function \( f(m_1, m_2) \) with two arguments which are possible marks of the pattern, and which returns a nonnegative real value. Common choices of \( f \) are: for continuous nonnegative real-valued marks,

\[
f(m_1, m_2) = m_1 m_2
\]

for discrete marks (multitype point patterns),

\[
f(m_1, m_2) = 1(m_1 = m_2)
\]

and for marks taking values in \([0, 2\pi)\),

\[
f(m_1, m_2) = \sin(m_1 - m_2)
\]

Note that \( k_f(r) \) is not a “correlation” in the usual statistical sense. It can take any nonnegative real value. The value 1 suggests “lack of correlation”: if the marks attached to the points of \( X \)
are independent and identically distributed, then \( k_f(r) \equiv 1 \). The interpretation of values larger or smaller than 1 depends on the choice of function \( f \).

The argument \( X \) must be a point pattern (object of class "ppp") or any data that are acceptable to \texttt{as.ppp}. It must be a marked point pattern.

The argument \( f \) determines the function to be applied to pairs of marks. It has a sensible default, which depends on the kind of marks in \( X \). If the marks are numeric values, then \( f \leftarrow \text{function}(m1, m2) \{ m1 \times m2 \} \) computes the product of two marks. If the marks are a factor (i.e. if \( X \) is a multitype point pattern) then \( f \leftarrow \text{function}(m1, m2) \{ m1 == m2 \} \) yields the value 1 when the two marks are equal, and 0 when they are unequal. These are the conventional definitions for numerical marks and multitype points respectively.

The argument \( f \) may be specified by the user. It must be an \texttt{R} function, accepting two arguments \( m1 \) and \( m2 \) which are vectors of equal length containing mark values (of the same type as the marks of \( X \)). (It may also take additional arguments, passed through \texttt{fargs}). It must return a vector of numeric values of the same length as \( m1 \) and \( m2 \). The values must be non-negative, and \texttt{NA} values are not permitted.

Alternatively the user may specify the argument \( f1 \) instead of \( f \). This indicates that the test function \( f \) should take the form \( f(u, v) = f1(u) \times f1(v) \) where \( f1(u) \) is given by the argument \( f1 \). The argument \( f1 \) should be an \texttt{R} function with at least one argument. (It may also take additional arguments, passed through \texttt{fargs}).

The argument \( r \) is the vector of values for the distance \( r \) at which \( k_f(r) \) is estimated.

This algorithm assumes that \( X \) can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in \( X \) as \texttt{Window(X)} \) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in \texttt{Kest}. The edge corrections implemented here are

- \textbf{isotropic/Ripley} Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is implemented only for rectangular and polygonal windows (not for binary masks).
- \textbf{translate} Translation correction (Ohser, 1983). Implemented for all window geometries, but slow for complex windows.

Note that the estimator assumes the process is stationary (spatially homogeneous).

The numerator and denominator of the mark correlation function (in the expression above) are estimated using density estimation techniques. The user can choose between

- "density" which uses the standard kernel density estimation routine \texttt{density}, and works only for evenly-spaced \( r \) values;
- "loess" which uses the function \texttt{loess} in the package \texttt{modreg};
- "sm" which uses the function \texttt{sm.density} in the package \texttt{sm} and is extremely slow;
- "smrep" which uses the function \texttt{sm.density} in the package \texttt{sm} and is relatively fast, but may require manual control of the smoothing parameter \( h_{mult} \).

If \texttt{normalise=FALSE} then the algorithm will compute only the numerator

\[
 c_f(r) = E_{0u} f(M(0), M(u))
\]

of the expression for the mark correlation function. In this case, negative values of \( f \) are permitted.
Value

A function value table (object of class "fv") or a list of function value tables, one for each column of marks.

An object of class "fv" (see fv.object) is essentially a data frame containing numeric columns

- \( r \) the values of the argument \( r \) at which the mark correlation function \( k_f(r) \) has been estimated
- \( \text{theo} \) the theoretical value of \( k_f(r) \) when the marks attached to different points are independent, namely 1

together with a column or columns named "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the mark correlation function \( k_f(r) \) obtained by the edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References


See Also

Mark variogram markvario for numeric marks.
Mark connection function markconnect and multitype K-functions Kcross, Kdot for factor-valued marks.
Mark cross-correlation function markcrosscorr for point patterns with several columns of marks. Kmark to estimate a cumulative function related to the mark correlation function.

Examples

```r
CONTINUOUS-VALUED MARKS:
(1) Spruces
marks represent tree diameter
mark correlation function
ms <- markcorr(spruces)
plot(ms)
(2) simulated data with independent marks
X <- rpoispp(100)
X <- X %mark% runif(npoints(X))
Xc <- markcorr(X)
plot(Xc)
```
# MULTITYPE DATA:
# Hughes' amacrine data
# Cells marked as 'on'/'off'
X <- if(interactive()) amacrine else amacrine[c(FALSE, TRUE)]
# (3) Kernel density estimate with Epanecnikov kernel
# (as proposed by Stoyan & Stoyan)
M <- markcorr(X, function(m1,m2) {m1==m2},
              correction="translate", method="density",
              kernel="epanechnikov")
# Note: kernel="epanechnikov" comes from help(density)
# (4) Same again with explicit control over bandwidth
M <- markcorr(X,
              correction="translate", method="density",
              kernel="epanechnikov", bw=0.02)
# see help(density) for correct interpretation of 'bw'

# weighted mark correlation
X <- if(interactive()) betacells else betacells[c(TRUE,FALSE)]
Y <- subset(X, select=type)
a <- marks(X)$area
v <- markcorr(Y, weights=a)

markcrosscorr

Mark Cross-Correlation Function

Description

Given a spatial point pattern with several columns of marks, this function computes the mark correlation function between each pair of columns of marks.

Usage

markcrosscorr(X, r = NULL,
              correction = c("isotropic", "Ripley", "translate"),
              method = "density", ..., normalise = TRUE, Xname = NULL)

Arguments

X

The observed point pattern. An object of class "ppp" or something acceptable to as.ppp.

r

Optional. Numeric vector. The values of the argument r at which the mark correlation function \( k_f(r) \) should be evaluated. There is a sensible default.

correction

A character vector containing any selection of the options "isotropic", "Ripley", "translate", "translation", "none" or "best". It specifies the edge correction(s) to be applied. Alternatively correction = "all" selects all options.
method

A character vector indicating the user’s choice of density estimation technique to be used. Options are "density", "loess", "sm" and "smrep".

normalise

If normalise=FALSE, compute only the numerator of the expression for the mark correlation.

Xname

Optional character string name for the dataset X.

Details

First, all columns of marks are converted to numerical values. A factor with \( m \) possible levels is converted to \( m \) columns of dummy (indicator) values.

Next, each pair of columns is considered, and the mark cross-correlation is defined as

\[
k_{mm}(r) = \frac{E_{0u}[M_i(0)M_j(u)]}{E[M_i, M_j]}
\]

where \( E_{0u} \) denotes the conditional expectation given that there are points of the process at the locations \( 0 \) and \( u \) separated by a distance \( r \). On the numerator, \( M_i(0) \) and \( M_j(u) \) are the marks attached to locations \( 0 \) and \( u \) respectively in the \( i \)th and \( j \)th columns of marks respectively. On the denominator, \( M_i \) and \( M_j \) are independent random values drawn from the \( i \)th and \( j \)th columns of marks, respectively, and \( E \) is the usual expectation.

Note that \( k_{mm}(r) \) is not a “correlation” in the usual statistical sense. It can take any nonnegative real value. The value 1 suggests “lack of correlation”: if the marks attached to the points of \( X \) are independent and identically distributed, then \( k_{mm}(r) \equiv 1 \).

The argument \( X \) must be a point pattern (object of class "ppp") or any data that are acceptable to \texttt{as.ppp}. It must be a marked point pattern.

The cross-correlations are estimated in the same manner as for \texttt{markcorr}.

Value

A function array (object of class "fasp") containing the mark cross-correlation functions for each possible pair of columns of marks.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

\texttt{markcorr}
Examples

# The dataset 'betacells' has two columns of marks:
#  'type' (factor)
#  'area' (numeric)
if(interactive()) plot(betacells)
plot(markcrosscorr(betacells))

Mark-Mark Scatter Plot

Description

Generates the mark-mark scatter plot of a point pattern.

Usage

markmarkscatter(X, rmax, ..., col = NULL, symap = NULL, transform=I, jit=FALSE)

Arguments

X A point pattern (object of class "ppp", "pp3", "lpp" or "ppx") with numeric marks.
rmax Maximum distance between pairs of points which contribute to the plot.
... Additional arguments passed to plot.ppp to control the scatterplot.
transform Optional. A function which should be applied to the mark values.
jit Logical value indicating whether mark values should be randomly perturbed using jitter.
col Optional. A vector of colour values, or a colourmap to be used to portray the pairwise distance values. Ignored if symap is given.
symap Optional. A symbolmap to be used to portray the pairwise distance values. Overrides col.

Details

The mark-mark scatter plot (Ballani et al, 2019) is a scatterplot of the mark values of all pairs of distinct points in X which are closer than the distance rmax. The dots in the scatterplot are coloured according to the pairwise distance between the two spatial points. The plot is augmented by three curves explained by Ballani et al (2019).

If the marks only take a few different values, then it is usually appropriate to apply random perturbation (jitter) to the mark values, by setting jit=TRUE.

Value

Null.
marktable

Author(s)
Adrian Baddeley (coded from the description in Ballani et al.)

References

Examples
markmarkscatter(longleaf, 10)
markmarkscatter(spruces, 10, jit=TRUE)

marktable
Tabulate Marks in Neighbourhood of Every Point in a Point Pattern

Description
Visit each point in a multitype point pattern, find the neighbouring points, and compile a frequency table of the marks of these neighbour points.

Usage
marktable(X, R, N, exclude=TRUE, collapse=FALSE)

Arguments

<table>
<thead>
<tr>
<th>X</th>
<th>A multitype point pattern. An object of class &quot;ppp&quot;, &quot;lpp&quot;, &quot;pp3&quot; or &quot;ppx&quot;, with marks which are a factor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Neighbourhood radius. Incompatible with N.</td>
</tr>
<tr>
<td>N</td>
<td>Number of neighbours of each point. Incompatible with R.</td>
</tr>
<tr>
<td>exclude</td>
<td>Logical. If exclude=TRUE, the neighbours of a point do not include the point itself. If exclude=FALSE, a point belongs to its own neighbourhood.</td>
</tr>
<tr>
<td>collapse</td>
<td>Logical. If collapse=FALSE (the default) the results for each point are returned as separate rows of a table. If collapse=TRUE, the results are aggregated according to the type of point.</td>
</tr>
</tbody>
</table>

Details
This algorithm visits each point in the point pattern X, inspects all the neighbouring points within a radius R of the current point (or the N nearest neighbours of the current point), and compiles a frequency table of the marks attached to the neighbours.

The dataset X must be a multitype point pattern, that is, marks(X) must be a factor.
If `collapse=FALSE` (the default), the result is a two-dimensional contingency table with one row for each point in the pattern, and one column for each possible mark value. The \([i, j]\) entry in the table gives the number of neighbours of point \(i\) that have mark \(j\).

If `collapse=TRUE`, this contingency table is aggregated according to the type of point, so that the result is a contingency table with one row and one column for each possible mark value. The \([i, j]\) entry in the table gives the number of neighbours of a point with mark \(i\) that have mark \(j\).

To perform more complicated calculations on the neighbours of every point, use `markstat` or `applynbd`.

**Value**

A contingency table (object of class "table"). If `collapse=FALSE`, the table has one row for each point in \(X\), and one column for each possible mark value. If `collapse=TRUE`, the table has one row and one column for each possible mark value.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`markstat`, `applynbd`, `Kcross`, `ppp.object`, `table`

**Examples**

```r
head(marktable(amacrine, 0.1))
head(marktable(amacrine, 0.1, exclude=FALSE))
marktable(amacrine, N=1, collapse=TRUE)
```
Arguments

X
The observed point pattern. An object of class "ppp" or something acceptable to as.ppp. It must have marks which are numeric.

correction
A character vector containing any selection of the options "isotropic", "Ripley" or "translate". It specifies the edge correction(s) to be applied.

r
numeric vector. The values of the argument r at which the mark variogram γ(r) should be evaluated. There is a sensible default.

method
A character vector indicating the user's choice of density estimation technique to be used. Options are "density", "loess", "sm" and "smrep".

... Other arguments passed to markcorr, or passed to the density estimation routine (density, loess or sm.density) selected by method.

normalise
If TRUE, normalise the variogram by dividing it by the estimated mark variance.

Details

The mark variogram γ(r) of a marked point process X is a measure of the dependence between the marks of two points of the process a distance r apart. It is informally defined as

\[ γ(r) = E\left[\frac{1}{2}(M_1 - M_2)^2\right] \]

where E[] denotes expectation and M_1, M_2 are the marks attached to two points of the process a distance r apart.

The mark variogram of a marked point process is analogous, but not equivalent, to the variogram of a random field in geostatistics. See Waelder and Stoyan (1996).

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the mark variogram γ(r) has been estimated

theo the theoretical value of γ(r) when the marks attached to different points are independent; equal to the sample variance of the marks

together with a column or columns named "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function γ(r) obtained by the edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>
References


See Also

Mark correlation function `markcorr` for numeric marks.

Mark connection function `markconnect` and multitype K-functions `Kcross`, `Kdot` for factor-valued marks.

Examples

```r
Longleaf Pine data
marks represent tree diameter
Subset of this large pattern
swcorner <- owin(c(0,100),c(0,100))
sub <- longleaf[, swcorner]
mark correlation function
mv <- markvario(sub)
plot(mv)
```

S3 Group Generic Methods for Function Arrays

Description

These are group generic methods for objects of class "fasp", which allows for usual mathematical functions and operators to be applied directly to function arrays. See Details for a list of implemented functions.

Usage

```r
S3 methods for group generics have prototypes:
Math(x, ...)
Ops(e1, e2)
Complex(z)
Summary(..., na.rm=FALSE, drop=TRUE)
```
Arguments

- `x, z, e1, e2` objects of class "fasp".
- `...` further arguments passed to methods.
- `na.rm` Logical value specifying whether missing values should be removed.

Details

Below is a list of mathematical functions and operators which are defined for objects of class "fasp". The methods are implemented using `eval.fasp`, which tries to harmonise the functions via `harmonise.fv` if they aren't compatible to begin with.

1. Group "Math":
   - `abs, sign, sqrt, floor, ceiling, trunc, round, signif`
   - `exp, log, expm1, log1p, cos, sin, tan, cospi, sinpi, tanpi, acos, asin, atan, cosh, sinh, tanh, acosh, asinh, tanh`
   - `lgamma, gamma, digamma, trigamma`
   - `cumsum, cumprod, cummax, cummin`

2. Group "Ops":
   - `"+", "-", "/", "/", "+", "/", "+/\"`
   - `"&", "|", "]!"
   - `"==", ")!=", "]<", "]<\", "]<=", "]>"`

3. Group "Summary":
   - `all, any`
   - `sum, prod`
   - `min, max`
   - `range`

4. Group "Complex":
   - `Arg, Conj, Im, Mod, Re`

For the Ops group, one of the arguments is permitted to be a single atomic value, or a function table, instead of a function array.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

`eval.fasp` for evaluating expressions involving function arrays.
Examples

```r
convert array of K functions to array of L functions
K <- alltypes(amacrine, "K")
L <- sqrt(K/pi)
```

Description

These are group generic methods for objects of class "fv", which allows for usual mathematical functions and operators to be applied directly to function tables. See Details for a list of implemented functions.

Usage

```r
S3 methods for group generics have prototypes:
Math(x, ...)
Ops(e1, e2)
Complex(z)
Summary(..., na.rm=FALSE, drop=TRUE)
```

Arguments

- `x, z, e1, e2` objects of class "fv".
- `...` further arguments passed to methods.
- `na.rm` Logical value specifying whether missing values should be removed.

Details

Below is a list of mathematical functions and operators which are defined for objects of class "fv". The methods are implemented using `eval.fv`, which tries to harmonise the functions via `harmonise.fv` if they aren’t compatible to begin with.

1. Group "Math":

   - `abs, sign, sqrt,
     floor, ceiling, trunc,
     round, signif`
   - `exp, log, expm1, log1p,
     cos, sin, tan,
     cospi, sinpi, tanpi,
     acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh`
• lgamma, gamma, digamma, trigamma
• cumsum, cumprod, cummax, cummin

2. Group "Ops":
   • "+", "-", "*", "/", "^", "%%", "%/%"
   • "&", "|", "!

3. Group "Summary":
   • all, any
   • sum, prod
   • min, max
   • range

4. Group "Complex":
   • Arg, Conj, Im, Mod, Re

For the Ops group, one of the arguments is permitted to be a single atomic value instead of a function table.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also
eval.fv for evaluating expressions involving function tables.

Examples

```r
Convert K function to L function
K <- Kest(cells)
L <- sqrt(K/pi)
Manually calculate J function
FR <- Fest(redwood)
GR <- Gest(redwood)
suppressWarnings(JR <- (1-GR)/(1-FR))
```

Description
These are methods for the class "rho2hat".
Usage

## S3 method for class 'rho2hat'
plot(x, ..., do.points=FALSE)

## S3 method for class 'rho2hat'
print(x, ...)

## S3 method for class 'rho2hat'
predict(object, ..., relative=FALSE)

Arguments

x, object  An object of class "rho2hat".
...
Arguments passed to other methods.
do.points  Logical value indicating whether to plot the observed values of the covariates at the data points.
relative  Logical value indicating whether to compute the estimated point process intensity (relative=FALSE) or the relative risk (relative=TRUE) in the case of a relative risk estimate.

Details

These functions are methods for the generic commands `print`, `predict` and `plot` for the class "rho2hat".

An object of class "rho2hat" is an estimate of the intensity of a point process, as a function of two given spatial covariates. See `rho2hat`.

The method `plot.rho2hat` displays the estimated function $\rho$ using `plot.fv`, and optionally adds a `rug` plot of the observed values of the covariate. In this plot the two axes represent possible values of the two covariates.

The method `predict.rho2hat` computes a pixel image of the intensity $\rho(Z_1(u), Z_2(u))$ at each spatial location $u$, where $Z_1(u)$ and $Z_2(u)$ are the two spatial covariates.

Value

For `predict.rho2hat` the value is a pixel image (object of class "im"). For other functions, the value is `NULL`.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

`rho2hat`
Examples

```r
r2 <- with(bei.extra, rho2hat(bei, elev, grad))
r2
plot(r2)
plot(predict(r2))
```

Description

These are methods for the class "rhohat".

Usage

```r
S3 method for class 'rhohat'
print(x, ...)

S3 method for class 'rhohat'
plot(x, ..., do.rug=TRUE)

S3 method for class 'rhohat'
predict(object, ..., relative=FALSE,
 what=c("rho", "lo", "hi", "se"))

S3 method for class 'rhohat'
simulate(object, nsim=1, ..., drop=TRUE)
```

Arguments

- `x, object`: An object of class "rhohat" representing a smoothed estimate of the intensity function of a point process.
- `...`: Arguments passed to other methods.
- `do.rug`: Logical value indicating whether to plot the observed values of the covariate as a rug plot along the horizontal axis.
- `relative`: Logical value indicating whether to compute the estimated point process intensity (`relative=FALSE`) or the relative risk (`relative=TRUE`) in the case of a relative risk estimate.
- `nsim`: Number of simulations to be generated.
- `drop`: Logical value indicating what to do when `nsim`=1. If `drop=TRUE` (the default), a point pattern is returned. If `drop=FALSE`, a list of length 1 containing a point pattern is returned.
- `what`: Optional character string (partially matched) specifying which value should be calculated: either the function estimate (`what="rho"`, the default), the lower or upper end of the confidence interval (`what="lo"` or `what="hi"`) or the standard error (`what="se"`).
Details

These functions are methods for the generic commands print, plot, predict and simulate for the class "rhohat".

An object of class "rhohat" is an estimate of the intensity of a point process, as a function of a given spatial covariate. See rhohat.

The method plot.rhohat displays the estimated function $\rho$ using plot.fv, and optionally adds a rug plot of the observed values of the covariate.

The method predict.rhohat computes a pixel image of the intensity $\rho(Z(u))$ at each spatial location $u$, where $Z$ is the spatial covariate.

The method simulate.rhohat invokes predict.rhohat to determine the predicted intensity, and then simulates a Poisson point process with this intensity.

Value

For predict.rhohat the value is a pixel image (object of class "im" or "linim"). For simulate.rhohat the value is a point pattern (object of class "ppp" or "lpp"). For other functions, the value is NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

rhohat

Examples

```r
X <- rpoispp(function(x,y){exp(3+3*x)})
rho <- rhohat(X, function(x,y){x})
rho
plot(rho)
Y <- predict(rho)
plot(Y)
plot(simulate(rho), add=TRUE)
#
if(require("spatstat.model")) {
 fit <- ppm(X, ~x)
rho <- rhohat(fit, "y")
 opa <- par(mfrow=c(1,2))
predict(rho))
 plot(predict(rho, relative=TRUE))
 par(opa)
 plot(predict(rho, what="se"))
}
```
Methods for Spatially Sampled Functions

Description

Methods for various generic commands, for the class "ssf" of spatially sampled functions.

Usage

```r
S3 method for class 'ssf'
marks(x, ...)

S3 replacement method for class 'ssf'
marks(x, ...) <- value

S3 method for class 'ssf'
unmark(X)

S3 method for class 'ssf'
as.im(X, ...)

S3 method for class 'ssf'
as.function(x, ...)

S3 method for class 'ssf'
as.ppp(X, ...)

S3 method for class 'ssf'
print(x, ..., brief=FALSE)

S3 method for class 'ssf'
summary(object, ...)

S3 method for class 'ssf'
range(x, ...)

S3 method for class 'ssf'
min(x, ...)

S3 method for class 'ssf'
max(x, ...)

S3 method for class 'ssf'
integral(f, domain=NULL, ..., weights=attr(f, "weights"))
```

Arguments

- `x,X,f,object`: A spatially sampled function (object of class "ssf").
... Arguments passed to the default method.

brief Logical value controlling the amount of detail printed.

domain Optional. Domain of integration. An object of class "owin" or "tess".

Details

An object of class "ssf" represents a function (real- or vector-valued) that has been sampled at a finite set of points.

The commands documented here are methods for this class, for the generic commands marks, marks<-, unmark, as.im, as.function, as.ppp, print, summary, range, min, max and integral.

Value

marks returns a matrix.

marks(x) <- value returns an object of class "ssf".

as.owin returns a window (object of class "owin").

as.ppp and unmark return a point pattern (object of class "ppp").

as.function returns a function(x,y) of class "funxy".

print returns NULL.

summary returns an object of class "summary.ssf" which has a print method.

range returns a numeric vector of length 2. min and max return a single numeric value.

integral returns a numeric or complex value, vector, or matrix. integral(f) returns a numeric or complex value (if f had numeric or complex values) or a numeric vector (if f had vector values). If domain is a tessellation then integral(f, domain) returns a numeric or complex vector with one entry for each tile (if f had numeric or complex values) or a numeric matrix with one row for each tile (if f had vector values).

Author(s)

Adrian Baddeley

See Also

ssf

Examples

g <- distfun(cells[1:4])
X <- rsyst(Window(cells), 10)
f <- ssf(X, g(X))
f
summary(f)
marks(f)
miplot

\begin{verbatim}
as.ppp(f)
as.im(f)
integral(f)
integral(f, quadrats(Window(f), 3))
\end{verbatim}

---

**miplot**  
*Morisita Index Plot*

**Description**
Displays the Morisita Index Plot of a spatial point pattern.

**Usage**

\[
\text{miplot}(X, \ldots)
\]

**Arguments**

- **X**: A point pattern (object of class "ppp") or something acceptable to \texttt{as.ppp}.
- **\ldots**: Optional arguments to control the appearance of the plot.

**Details**
Morisita (1959) defined an index of spatial aggregation for a spatial point pattern based on quadrat counts. The spatial domain of the point pattern is first divided into \( Q \) subsets (quadrats) of equal size and shape. The numbers of points falling in each quadrat are counted. Then the Morisita Index is computed as

\[ MI = Q \frac{\sum_{i=1}^{Q} n_i(n_i - 1)}{N(N - 1)} \]

where \( n_i \) is the number of points falling in the \( i \)-th quadrat, and \( N \) is the total number of points. If the pattern is completely random, \( MI \) should be approximately equal to 1. Values of \( MI \) greater than 1 suggest clustering.

The \textit{Morisita Index plot} is a plot of the Morisita Index \( MI \) against the linear dimension of the quadrats. The point pattern dataset is divided into \( 2 \times 2 \) quadrats, then \( 3 \times 3 \) quadrats, etc, and the Morisita Index is computed each time. This plot is an attempt to discern different scales of dependence in the point pattern data.

**Value**
None.

**Author(s)**
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>
References


See Also

quadratcount

Examples

miplot(longleaf)
opa <- par(mfrow=c(2,3))
plot(cells)
plot(japanesepines)
plot(redwood)
miplot(cells)
miplot(japanesepines)
miplot(redwood)
par(opa)

nnclean

Nearest Neighbour Clutter Removal

Description

Detect features in a 2D or 3D spatial point pattern using nearest neighbour clutter removal.

Usage

nnclean(X, k, ...)

## S3 method for class 'ppp'
nnclean(X, k, ...,
 edge.correct = FALSE, wrap = 0.1,
 convergence = 0.001, plothist = FALSE,
 verbose = TRUE, maxit = 50)

## S3 method for class 'pp3'
nnclean(X, k, ...,
 convergence = 0.001, plothist = FALSE,
 verbose = TRUE, maxit = 50)

Arguments

X A two-dimensional spatial point pattern (object of class "ppp") or a three-dimensional point pattern (object of class "pp3").

k Degree of neighbour: k=1 means nearest neighbour, k=2 means second nearest, etc.
... Arguments passed to `hist.default` to control the appearance of the histogram, if `plothist=TRUE`.

define
edge.correct Logical flag specifying whether periodic edge correction should be performed (only implemented in 2 dimensions).

width Numeric value specifying the relative size of the margin in which data will be replicated for the periodic edge correction (if `edge.correct=TRUE`). A fraction of window width and window height.

convergence Relative tolerance threshold for testing convergence of EM algorithm.

maxit Maximum number of iterations for EM algorithm.

plothist Logical flag specifying whether to plot a diagnostic histogram of the nearest neighbour distances and the fitted distribution.

verbose Logical flag specifying whether to print progress reports.

Details

Byers and Raftery (1998) developed a technique for recognising features in a spatial point pattern in the presence of random clutter.

For each point in the pattern, the distance to the kth nearest neighbour is computed. Then the E-M algorithm is used to fit a mixture distribution to the kth nearest neighbour distances. The mixture components represent the feature and the clutter. The mixture model can be used to classify each point as belong to one or other component.

The function `nnclean` is generic, with methods for two-dimensional point patterns (class "ppp") and three-dimensional point patterns (class "pp3") currently implemented.

The result is a point pattern (2D or 3D) with two additional columns of marks:

- **class** A factor, with levels "noise" and "feature", indicating the maximum likelihood classification of each point.

- **prob** Numeric vector giving the estimated probabilities that each point belongs to a feature.

The object also has extra information stored in attributes: "theta" contains the fitted parameters of the mixture model, "info" contains information about the fitting procedure, and "hist" contains the histogram structure returned from `hist.default` if `plothist = TRUE`.

Value

An object of the same kind as X, obtained by attaching marks to the points of X.

The object also has attributes, as described under Details.

Author(s)

Original by Simon Byers and Adrian Raftery. Adapted for `spatstat` by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

See Also

nndist, split.ppp, cut.ppp

Examples

# shapley galaxy cluster
X <- nnclean(shapley, k=17, plothist=TRUE)
plot(X, which.marks=1, chars=c(".", "*"), cols=1:2,
     main="Shapley data, cluster and noise")
plot(X, which.marks=2, cols=function(x)hsv(0.2+0.8*(1-x),1,1),
     main="Shapley data, probability of cluster")
Y <- split(X, un=TRUE)
plot(Y, chars="*", cex=0.5)
marks(X) <- marks(X)$prob
plot(cut(X, breaks=3), chars=c(".", "+", "+"), cols=1:3)

nncorr

Nearest-Neighbour Correlation Indices of Marked Point Pattern

Description

Computes nearest-neighbour correlation indices of a marked point pattern, including the nearest-neighbour mark product index (default case of nncorr), the nearest-neighbour mark index (nnmean), and the nearest-neighbour variogram index (nnvario).

Usage

nncorr(X,
   f = function(m1, m2) { m1 * m2 },
   k = 1,
   ...,
   use = "all.obs", method = c("pearson", "kendall", "spearman"),
   denominator=NULL, na.action="warn")

nnmean(X, k=1, na.action="warn")

nnvario(X, k=1, na.action="warn")

Arguments

X
f
k
... use,method

The observed point pattern. An object of class "ppp".
Function f used in the definition of the nearest neighbour correlation. There is a sensible default that depends on the type of marks of X.
Integer. The k-th nearest neighbour of each point will be used.
Extra arguments passed to f.
Arguments passed to the standard correlation function cor.
Details

The nearest neighbour correlation index $\bar{n}_f$ of a marked point process $X$ is a number measuring the dependence between the mark of a typical point and the mark of its nearest neighbour.

The command \texttt{nncorr} computes the nearest neighbour correlation index based on any test function $f$ provided by the user. The default behaviour of \texttt{nncorr} is to compute the nearest neighbour mark product index. The commands \texttt{nnmean} and \texttt{nnvario} are convenient abbreviations for other special choices of $f$.

In the default case, \texttt{nncorr(X)} computes three different versions of the nearest-neighbour correlation index: the unnormalised, normalised, and classical correlations.

**unnormalised:** The unnormalised nearest neighbour correlation (Stoyan and Stoyan, 1994, section 14.7) is defined as

$$\bar{n}_f = E[f(M, M^*)]$$

where $E[]$ denotes mean value, $M$ is the mark attached to a typical point of the point process, and $M^*$ is the mark attached to its nearest neighbour (i.e. the nearest other point of the point process).

Here $f$ is any function $f(m_1, m_2)$ with two arguments which are possible marks of the pattern, and which returns a nonnegative real value. Common choices of $f$ are: for continuous real-valued marks,

$$f(m_1, m_2) = m_1 m_2$$

for discrete marks (multitype point patterns),

$$f(m_1, m_2) = 1(m_1 = m_2)$$

and for marks taking values in $[0, 2\pi)$,

$$f(m_1, m_2) = \sin(m_1 - m_2)$$

For example, in the second case, the unnormalised nearest neighbour correlation $\bar{n}_f$ equals the proportion of points in the pattern which have the same mark as their nearest neighbour.

Note that $\bar{n}_f$ is not a “correlation” in the usual statistical sense. It can take values greater than 1.

**normalised:** We can define a normalised nearest neighbour correlation by

$$\bar{m}_f = \frac{E[f(M, M^*)]}{E[f(M, M^\prime)]}$$

where again $M$ is the mark attached to a typical point, $M^*$ is the mark attached to its nearest neighbour, and $M^\prime$ is an independent copy of $M$ with the same distribution. This normalisation is also not a “correlation” in the usual statistical sense, but is normalised so that the value 1 suggests “lack of correlation”: if the marks attached to the points of $X$ are independent and identically distributed, then $\bar{m}_f = 1$. The interpretation of values larger or smaller than 1 depends on the choice of function $f$. 

**classical**: Finally if the marks of \(X\) are real numbers, we can also compute the classical correlation, that is, the correlation coefficient of the two random variables \(M\) and \(M^*\). The classical correlation has a value between \(-1\) and \(1\). Values close to \(-1\) or \(1\) indicate strong dependence between the marks.

In the default case where \(f\) is not given, \(\text{nncorr}(X)\) computes

- If the marks of \(X\) are real numbers, the unnormalised and normalised versions of the nearest-neighbour product index \(E[MM^*]\), and the classical correlation between \(M\) and \(M^*\).
- If the marks of \(X\) are factor valued, the unnormalised and normalised versions of the nearest-neighbour equality index \(P[M = M^*]\).

The wrapper functions \(\text{nnmean}\) and \(\text{nnvario}\) compute the correlation indices for two special choices of the function \(f(m_1, m_2)\). They are defined only when the marks are numeric.

- \(\text{nnmean}\) computes the correlation indices for \(f(m_1, m_2) = m_1\). The unnormalised index is simply the mean value of the mark of the neighbour of a typical point, \(E[M^*]\), while the normalised index is \(E[M^*]/E[M]\), the ratio of the mean mark of the neighbour of a typical point to the mean mark of a typical point.
- \(\text{nnvario}\) computes the correlation indices for \(f(m_1, m_2) = (1/2)(m_1 - m_2)^2\).

The argument \(X\) must be a point pattern (object of class "ppp") and must be a marked point pattern. (The marks may be a data frame, containing several columns of mark variables; each column is treated separately.)

If the argument \(f\) is given, it must be a function, accepting two arguments \(m_1\) and \(m_2\) which are vectors of equal length containing mark values (of the same type as the marks of \(X\)). It must return a vector of numeric values of the same length as \(m_1\) and \(m_2\). The values must be non-negative.

The arguments \(use\) and \(method\) control the calculation of the classical correlation using \(\text{cor}\), as explained in the help file for \(\text{cor}\).

Other arguments may be passed to \(f\) through the \(...\) argument.

This algorithm assumes that \(X\) can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in \(X\) as \(\text{Window}(X)\)) may have arbitrary shape. Biases due to edge effects are treated using the ‘border method’ edge correction.

**Value**

Labelled vector of length 2 or 3 containing the unnormalised and normalised nearest neighbour correlations, and the classical correlation if appropriate. Alternatively a matrix with 2 or 3 rows, containing this information for each mark variable.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>

**References**

Examples

\texttt{nnmean(finpines)}
\texttt{nnvario(finpines)}
\texttt{nnccor(finpines)}
# heights of neighbouring trees are slightly negatively correlated
\texttt{nnccor(amacrine)}
# neighbouring cells are usually of different type

\begin{verbatim}
nndensity.ppp

Estimate Intensity of Point Pattern Using Nearest Neighbour Distances

\end{verbatim}

Description

Estimates the intensity of a point pattern using the distance from each spatial location to the kth nearest data point.

Usage

\texttt{nndensity(x, \ldots)}

## S3 method for class 'ppp'
\texttt{nndensity(x, k, \ldots, verbose = TRUE)}

Arguments

\begin{itemize}
\item \texttt{x} A point pattern (object of class "ppp") or some other spatial object.
\item \texttt{k} Integer. The distance to the kth nearest data point will be computed. There is a sensible default.
\item \texttt{\ldots} Arguments passed to \texttt{nnmap} and \texttt{as.mask} controlling the pixel resolution.
\item \texttt{verbose} Logical. If TRUE, print the value of k when it is automatically selected. If FALSE, remain silent.
\end{itemize}

Details

This function computes a quick estimate of the intensity of the point process that generated the point pattern \texttt{x}.

For each spatial location \(s\), let \(d(s)\) be the distance from \(s\) to the \(k\)-th nearest point in the dataset \(x\). If the data came from a homogeneous Poisson process with intensity \(\lambda\), then \(\pi d(s)^2\) would follow a negative exponential distribution with mean \(1/\lambda\), and the maximum likelihood estimate of \(\lambda\) would be \(1/(\pi d(s)^2)\). This is the estimate computed by \texttt{nndensity}, apart from an edge effect correction.


This estimator of intensity is relatively fast to compute, and is spatially adaptive (so that it can handle wide variation in the intensity function). However, it implicitly assumes the points are independent, so it does not perform well if the pattern is strongly clustered or strongly inhibited.
In normal use, the value of \( k \) should be at least 3. (Theoretically the estimator has infinite expected value if \( k = 1 \), and infinite variance if \( k = 2 \). The computed intensity estimate will have infinite peaks around each data point if \( k = 1 \).) The default value of \( k \) is the square root of the number of points in \( x \), which seems to work well in many cases.

The window of \( x \) is digitised using \texttt{as.mask} and the values \( d(s) \) are computed using \texttt{nnmap}. To control the pixel resolution, see \texttt{as.mask}.

\textbf{Value}

A pixel image (object of class "im") giving the estimated intensity of the point process at each spatial location. Pixel values are intensities (number of points per unit area).

\textbf{Author(s)}

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

\textbf{References}


\textbf{See Also}

density.ppp, intensity for alternative estimates of point process intensity.

\textbf{Examples}

\begin{verbatim}
plot(nndensity(swedishpines))
\end{verbatim}
Arguments

X
Point pattern (object of class "ppp").

... Arguments passed to circdensity to control the kernel smoothing, if cumulative=FALSE.

cumulative Logical value specifying whether to estimate the probability density (cumulative=FALSE, the default) or the cumulative distribution function (cumulative=TRUE).

correction Character vector specifying edge correction or corrections. Options are "none", "bord.modif", "good" and "best". Alternatively correction="all" selects all options.

k Integer. The kth nearest neighbour will be used.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

unit Unit in which the angles should be expressed. Either "degree" or "radian".

domain Optional window. The first point \(x_i\) of each pair of points will be constrained to lie in domain.

Details

This algorithm considers each point in the pattern X and finds its nearest neighbour (or kth nearest neighbour). The direction of the arrow joining the data point to its neighbour is measured, as an angle in degrees or radians, anticlockwise from the x axis.

If cumulative=FALSE (the default), a kernel estimate of the probability density of the angles is calculated using circdensity. This is the function \(\vartheta(\phi)\) defined in Illian et al (2008), equation (4.5.3), page 253.

If cumulative=TRUE, then the cumulative distribution function of these angles is calculated.

In either case the result can be plotted as a rose diagram by rose, or as a function plot by plot.fv.

The algorithm gives each observed direction a weight, determined by an edge correction, to adjust for the fact that some interpoint distances are more likely to be observed than others. The choice of edge correction or corrections is determined by the argument correction.

It is also possible to calculate an estimate of the probability density from the cumulative distribution function, by numerical differentiation. Use deriv.fv with the argument Dperiodic=TRUE.

Value

A function value table (object of class "fv") containing the estimates of the probability density or the cumulative distribution function of angles, in degrees (if unit="degree") or radians (if unit="radian").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>
References


See Also

pairorient

Examples

```r
rose(nnorient(redwood, adjust=0.6), col="grey")
plot(CDF <- nnorient(redwood, cumulative=TRUE))
```

---

**pairMean**

Mean of a Function of Interpoint Distance

Description

Computes the mean value, or the double integral, of a specified function of the distance between two independent random points in a given window or windows.

Usage

```r
pairMean(fun, W, V = NULL, ..., normalise = TRUE)
```

Arguments

- `fun`: A function in the R language which takes one argument.
- `W`: A window (object of class "owin") containing the first random point.
- `V`: Optional. Another window containing the second random point. Defaults to `W`.
- `...`: Further optional arguments passed to `distcdf` to determine the pixel resolution for the calculation and the probability distributions of the random points.
- `normalise`: Logical value specifying whether to calculate the mean value (`normalise=TRUE`, the default) or the double integral (`normalise=FALSE`).

Details

This command computes the mean value of $f(T)$ where $T$ is the Euclidean distance $T = \|X_1 - X_2\|$ between two independent random points $X_1$ and $X_2$.

In the simplest case, the command `pairMean(fun, W)`, the random points are assumed to be uniformly distributed in the same window $W$. Alternatively the two random points may be uniformly distributed in two different windows $W$ and $V$. Other options are described in `distcdf`.

The algorithm uses `distcdf` to compute the cumulative distribution function of $T$, and `stieltjes` to compute the mean value of $f(T)$.

If `normalise=TRUE` (the default) the result is the mean value of $f(T)$. If `normalise=FALSE` the result is the double integral.
**Value**

A single numeric value.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

**See Also**

distcdf

**Examples**

```r
pairMean(function(d) { d^2 }, disc())
```

---

**pairorient**  
*Point Pair Orientation Distribution*

**Description**

Computes the distribution of the orientation of vectors joining pairs of points at a particular range of distances.

**Usage**

```r
pairorient(X, r1, r2, ..., cumulative=FALSE,
correction, ratio = FALSE,
unit=c("degree", "radian"), domain=NULL)
```

**Arguments**

- **X**  
  Point pattern (object of class "ppp").
- **r1, r2**  
  Minimum and maximum values of distance to be considered.
- **...**  
  Arguments passed to `circdensity` to control the kernel smoothing, if cumulative=FALSE.
- **cumulative**  
  Logical value specifying whether to estimate the probability density (cumulative=FALSE, the default) or the cumulative distribution function (cumulative=TRUE).
- **correction**  
  Character vector specifying edge correction or corrections. Options are "none", "isotropic", "translate", "border", "bord.modif", "good" and "best". Alternatively correction="all" selects all options. The default is to compute all edge corrections except "none".
- **ratio**  
  Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.
- **unit**  
  Unit in which the angles should be expressed. Either "degree" or "radian".
- **domain**  
  Optional window. The first point $x_i$ of each pair of points will be constrained to lie in `domain`.
Details

This algorithm considers all pairs of points in the pattern \( X \) that lie more than \( r_1 \) and less than \( r_2 \) units apart. The direction of the arrow joining the points is measured, as an angle in degrees or radians, anticlockwise from the \( x \) axis.

If \( \text{cumulative}=\text{FALSE} \) (the default), a kernel estimate of the probability density of the orientations is calculated using \texttt{circdensity}.

If \( \text{cumulative}=\text{TRUE} \), then the cumulative distribution function of these directions is calculated. This is the function \( O_{r_1,r_2}(\phi) \) defined in Stoyan and Stoyan (1994), equation (14.53), page 271.

In either case the result can be plotted as a rose diagram by \texttt{rose}, or as a function plot by \texttt{plot.fv}.

The algorithm gives each observed direction a weight, determined by an edge correction, to adjust for the fact that some interpoint distances are more likely to be observed than others. The choice of edge correction or corrections is determined by the argument \texttt{correction}. See the help for \texttt{Kest} for details of edge corrections, and explanation of the options available. The choice \texttt{correction}="none" is not recommended; it is included for demonstration purposes only. The default is to compute all corrections except "none".

It is also possible to calculate an estimate of the probability density from the cumulative distribution function, by numerical differentiation. Use \texttt{deriv.fv} with the argument \texttt{Dperiodic=TRUE}.

Value

A function value table (object of class "fv") containing the estimates of the probability density or the cumulative distribution function of angles, in degrees (if \texttt{unit="degree"}) or radians (if \texttt{unit="radian"}).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References


See Also

\texttt{Kest}, \texttt{Ksector}, \texttt{nnorient}

Examples

\begin{verbatim}
rose(pairorient(redwood, 0.05, 0.15, sigma=8), col="grey")
plot(CDF <- pairorient(redwood, 0.05, 0.15, cumulative=TRUE))
plot(f <- deriv(CDF, spar=0.6, Dperiodic=TRUE))
\end{verbatim}
pairs.im

Scatterplot Matrix for Pixel Images

Description

Produces a scatterplot matrix of the pixel values in two or more pixel images.

Usage

## S3 method for class 'im'
pairs(..., plot=TRUE, drop=TRUE)

Arguments

... Any number of arguments, each of which is either a pixel image (object of class "im") or a named argument to be passed to pairs.default. Alternatively, a single argument which is a list of pixel images.
plot Logical. If TRUE, the scatterplot matrix is plotted.
drop Logical value specifying whether pixel values that are NA should be removed from the data frame that is returned by the function. This does not affect the plot.

Details

This is a method for the generic function pairs for the class of pixel images.

It produces a square array of plot panels, in which each panel shows a scatterplot of the pixel values of one image against the corresponding pixel values of another image.

At least two of the arguments ... should be pixel images (objects of class "im"). Their spatial domains must overlap, but need not have the same pixel dimensions.

First the pixel image domains are intersected, and converted to a common pixel resolution. Then the corresponding pixel values of each image are extracted. Then pairs.default is called to plot the scatterplot matrix.

Any arguments in ... which are not pixel images will be passed to pairs.default to control the plot.

The return value of pairs.im is a data frame, returned invisibly. The data frame has one column for each image. Each row contains the pixel values of the different images for one pixel in the raster. If drop=TRUE (the default), any row which contains NA is deleted. The plot is not affected by the value of drop.

Value

Invisible. A data.frame containing the corresponding pixel values for each image. The return value also belongs to the class plotpairsim which has a plot method, so that it can be re-plotted.
**Image or Contour Plots**

Since the scatterplots may show very dense concentrations of points, it may be useful to set `panel=panel.image` or `panel=panel.contour` to draw a colour image or contour plot of the kernel-smoothed density of the scatterplot in each panel. The argument `panel` is passed to `pairs.default`. See the help for `panel.image` and `panel.contour`.

**Low Level Control of Graphics**

To control the appearance of the individual scatterplot panels, see `pairs.default`, `points` or `par`. To control the plotting symbol for the points in the scatterplot, use the arguments `pch`, `col`, `bg` as described under `points` (because the default panel plotter is the function `points`). To suppress the tick marks on the plot axes, type `par(xaxt="n", yaxt="n")` before calling `pairs`.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

**See Also**

`pairs`, `pairs.default`, `panel.contour`, `panel.image`, `plot.im`, `cov.im`, `im`, `par`

**Examples**

```r
X <- density(rpoispp(30))
Y <- density(rpoispp(40))
Z <- density(rpoispp(30))
p <- pairs(X, Y, Z)
p
plot(p)
```

**Description**

These functions can be passed to `pairs` or `coplot` to determine what kind of plotting is done in each panel of a multi-panel graphical display.

**Usage**

```r
panel.contour(x, y, ..., sigma = NULL)
panel.image(x, y, ..., sigma = NULL)
panel.histogram(x, ...)
```
Arguments

x, y                  Coordinates of points in a scatterplot.
...

sigma                Bandwidth of kernel smoother, on a scale where x and y range between 0 and 1.

Details

These functions can serve as one of the arguments panel, lower.panel, upper.panel, diag.panel passed to graphics commands like pairs or coplot, to determine what kind of plotting is done in each panel of a multi-panel graphical display. In particular they work with pairs.im.

The functions panel.contour and panel.contour are suitable for the off-diagonal plots which involve two datasets x and y. They first rescale x and y to the unit square, then apply kernel smoothing with bandwidth sigma using density.ppp. Then panel.contour draws a contour plot while panel.image draws a colour image.

The function panel.histogram is suitable for the diagonal plots which involve a single dataset x. It displays a histogram of the data.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

pairs.im, pairs.default, panel.smooth

Examples

```r
pairs(bei.extra,
 panel = panel.contour,
 diag.panel = panel.histogram)
with(bei.extra,
 pairs(grad, elev,
 panel = panel.image,
 diag.panel = panel.histogram))
pairs(marks(finpines), panel=panel.contour, diag.panel=panel.histogram)
```
**Pair Correlation Function**

**Description**

Estimate the pair correlation function.

**Usage**

```r
pcf(X, ...)
```

**Arguments**

- `X`: Either the observed data point pattern, or an estimate of its $K$ function, or an array of multitype $K$ functions (see Details).
- `...`: Other arguments passed to the appropriate method.

**Details**

The pair correlation function of a stationary point process is

$$g(r) = \frac{K'(r)}{2\pi r}$$

where $K'(r)$ is the derivative of $K(r)$, the reduced second moment function (aka “Ripley’s $K$ function”) of the point process. See `Kest` for information about $K(r)$. For a stationary Poisson process, the pair correlation function is identically equal to 1. Values $g(r) < 1$ suggest inhibition between points; values greater than 1 suggest clustering.

We also apply the same definition to other variants of the classical $K$ function, such as the multitype $K$ functions (see `Kcross, Kdot`) and the inhomogeneous $K$ function (see `Kinhom`). For all these variants, the benchmark value of $K(r) = \pi r^2$ corresponds to $g(r) = 1$.

This routine computes an estimate of $g(r)$ either directly from a point pattern, or indirectly from an estimate of $K(r)$ or one of its variants.

This function is generic, with methods for the classes "ppp", "fv" and "fasp".

If `X` is a point pattern (object of class "ppp") then the pair correlation function is estimated using a traditional kernel smoothing method (Stoyan and Stoyan, 1994). See `pcf.ppp` for details.

If `X` is a function value table (object of class "fv"), then it is assumed to contain estimates of the $K$ function or one of its variants (typically obtained from `Kest` or `Kinhom`). This routine computes an estimate of $g(r)$ using smoothing splines to approximate the derivative. See `pcf.fv` for details.

If `X` is a function value array (object of class "fasp"), then it is assumed to contain estimates of several $K$ functions (typically obtained from `Kmulti` or `alltypes`). This routine computes an estimate of $g(r)$ for each cell in the array, using smoothing splines to approximate the derivatives. See `pcf.fasp` for details.
Value

Either a function value table (object of class "fv", see \texttt{fv.object}) representing a pair correlation function, or a function array (object of class "fasp", see \texttt{fasp.object}) representing an array of pair correlation functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

References


See Also

\texttt{pcf.ppp, pcf.fv, pcf.fasp, Kest, Kinhom, Kcross, Kdot, Kmulti, alltypes}

Examples

\begin{verbatim}
# ppp object
X <- simdat
p <- pcf(X)
plot(p)

# fv object
K <- Kest(X)
p2 <- pcf(K, spar=0.8, method="b")
plot(p2)

# multitype pattern; fasp object
amaK <- alltypes(amacrine, "K")
amap <- pcf(amaK, spar=1, method="b")
plot(amap)
\end{verbatim}

\begin{knitrout}
\small\ttoutput
pcf.fasp Pair Correlation Function obtained from array of K functions
\end{knitrout}

Description

Estimates the (bivariate) pair correlation functions of a point pattern, given an array of (bivariate) K functions.

Usage

\begin{verbatim}
## S3 method for class 'fasp'
pcf(X, ..., method="c")
\end{verbatim}
Arguments

\(X\)  
An array of multitype \(K\) functions (object of class "fasp").

...  
Arguments controlling the smoothing spline function \textit{smooth.spline}.

\texttt{method}  
Letter "a", "b", "c" or "d" indicating the method for deriving the pair correlation function from the \(K\) function.

Details

The pair correlation function of a stationary point process is

\[
g(r) = \frac{K'(r)}{2\pi r}
\]

where \(K'(r)\) is the derivative of \(K(r)\), the reduced second moment function (aka “Ripley’s \(K\) function”) of the point process. See \texttt{Kest} for information about \(K(r)\). For a stationary Poisson process, the pair correlation function is identically equal to 1. Values \(g(r) < 1\) suggest inhibition between points; values greater than 1 suggest clustering.

We also apply the same definition to other variants of the classical \(K\) function, such as the multitype \(K\) functions (see \texttt{Kcross}, \texttt{Kdot}) and the inhomogeneous \(K\) function (see \texttt{Kinhom}). For all these variants, the benchmark value of \(K(r) = \pi r^2\) corresponds to \(g(r) = 1\).

This routine computes an estimate of \(g(r)\) from an array of estimates of \(K(r)\) or its variants, using smoothing splines to approximate the derivatives. It is a method for the generic function \texttt{pcf}.

The argument \(X\) should be a function array (object of class "fasp", see \texttt{fasp.object}) containing several estimates of \(K\) functions. This should have been obtained from \texttt{alltypes} with the argument \texttt{fun="K"}.

The smoothing spline operations are performed by \texttt{smooth.spline} and \texttt{predict.smooth.spline} from the \texttt{mgcv} library. Four numerical methods are available:

- "a" apply smoothing to \(K(r)\), estimate its derivative, and plug in to the formula above;
- "b" apply smoothing to \(Y(r) = \frac{K(r)}{2\pi r}\) constraining \(Y(0) = 0\), estimate the derivative of \(Y\), and solve;
- "c" apply smoothing to \(Z(r) = \frac{K(r)}{\pi r^2}\) constraining \(Z(0) = 1\), estimate its derivative, and solve.
- "d" apply smoothing to \(V(r) = \sqrt{K(r)}\), estimate its derivative, and solve.

Method "c" seems to be the best at suppressing variability for small values of \(r\). However it effectively constrains \(g(0) = 1\). If the point pattern seems to have inhibition at small distances, you may wish to experiment with method "b" which effectively constrains \(g(0) = 0\). Method "a" seems comparatively unreliable.

Useful arguments to control the splines include the smoothing tradeoff parameter \texttt{spar} and the degrees of freedom \texttt{df}. See \texttt{smooth.spline} for details.

Value

A function array (object of class "fasp", see \texttt{fasp.object}) representing an array of pair correlation functions. This can be thought of as a matrix \(Y\) each of whose entries \(Y[i,j]\) is a function value table (class "fv") representing the pair correlation function between points of type \(i\) and points of type \(j\).
Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also
Kest, Kinhom, Kcross, Kdot, Kmulti, alltypes, smooth.spline, predict.smooth.spline

Examples
# multitype point pattern
KK <- alltypes(amacrine, "K")
p <- pcf.fasp(KK, spar=0.5, method="b")
plot(p)
# strong inhibition between points of the same type

pcf.fv  pair correlation function obtained from k function

Description
Estimates the pair correlation function of a point pattern, given an estimate of the K function.

Usage
## S3 method for class 'fv'
pcf(X, ..., method="c")

Arguments
X  An estimate of the K function or one of its variants. An object of class "fv".
... Arguments controlling the smoothing spline function smooth.spline.
method Letter "a", "b", "c" or "d" indicating the method for deriving the pair correlation function from the K function.
Details

The pair correlation function of a stationary point process is

\[ g(r) = \frac{K'(r)}{2\pi r} \]

where \( K'(r) \) is the derivative of \( K(r) \), the reduced second moment function (aka “Ripley’s K function”) of the point process. See \texttt{Kest} for information about \( K(r) \). For a stationary Poisson process, the pair correlation function is identically equal to 1. Values \( g(r) < 1 \) suggest inhibition between points; values greater than 1 suggest clustering.

We also apply the same definition to other variants of the classical \( K \) function, such as the multitype \( K \) functions (see \texttt{Kcross, Kdot}) and the inhomogeneous \( K \) function (see \texttt{Kinhom}). For all these variants, the benchmark value of \( K(r) = \pi r^2 \) corresponds to \( g(r) = 1 \).

This routine computes an estimate of \( g(r) \) from an estimate of \( K(r) \) or its variants, using smoothing splines to approximate the derivative. It is a method for the generic function \texttt{pcf} for the class “fv”.

The argument \( X \) should be an estimated \( K \) function, given as a function value table (object of class “fv”, see \texttt{fv.object}). This object should be the value returned by \texttt{Kest, Kcross, Kmulti} or \texttt{Kinhom}.

The smoothing spline operations are performed by \texttt{smooth.spline} and \texttt{predict.smooth.spline} from the \texttt{modreg} library. Four numerical methods are available:

- "a" apply smoothing to \( K(r) \), estimate its derivative, and plug in to the formula above;
- "b" apply smoothing to \( Y(r) = \frac{K(r)}{2\pi r} \) constraining \( Y(0) = 0 \), estimate the derivative of \( Y \), and solve;
- "c" apply smoothing to \( Z(r) = \frac{K(r)}{\pi r^2} \) constraining \( Z(0) = 1 \), estimate its derivative, and solve.
- "d" apply smoothing to \( V(r) = \sqrt{K(r)} \), estimate its derivative, and solve.

Method "c" seems to be the best at suppressing variability for small values of \( r \). However it effectively constrains \( g(0) = 1 \). If the point pattern seems to have inhibition at small distances, you may wish to experiment with method "b" which effectively constrains \( g(0) = 0 \). Method "a" seems comparatively unreliable.

Useful arguments to control the splines include the smoothing tradeoff parameter \texttt{spar} and the degrees of freedom \texttt{df}. See \texttt{smooth.spline} for details.

Value

A function value table (object of class "fv", see \texttt{fv.object}) representing a pair correlation function.

Essentially a data frame containing (at least) the variables

- \( r \) the vector of values of the argument \( r \) at which the pair correlation function \( g(r) \) has been estimated
- \( pcf \) vector of values of \( g(r) \)
pcf.ppp

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

See Also
pcf, pcf.ppp, Kest, Kinhom, Kcross, Kdot, Kmulti, alltypes, smooth.spline, predict.smooth.spline

Examples

```r
univariate point pattern
X <- simdat

K <- Kest(X)
p <- pcf.fv(K, spar=0.5, method="b")
plot(p, main="pair correlation function for simdat")
indicates inhibition at distances r < 0.3
```

Usage

```r
S3 method for class 'ppp'
pcf(X, ..., r = NULL, kernel="epanechnikov", bw=NULL, stoyan=0.15, correction=c("translate", "Ripley"), divisor = c("r", "d"), var.approx = FALSE, domain=NULL, ratio=FALSE, close=NULL)
```
Arguments

- **X**: A point pattern (object of class "ppp").
- **r**: Vector of values for the argument $r$ at which $g(r)$ should be evaluated. There is a sensible default.
- **kernel**: Choice of smoothing kernel, passed to \texttt{density.default}.
- **bw**: Bandwidth for smoothing kernel, passed to \texttt{density.default}. Either a single numeric value giving the standard deviation of the kernel, or a character string specifying a bandwidth selection rule recognised by \texttt{density.default}. If \texttt{bw} is missing or NULL, the default value is computed using Stoyan’s rule of thumb: see Details.
- **...**: Other arguments passed to the kernel density estimation function \texttt{density.default}.
- **stoyan**: Coefficient for Stoyan’s bandwidth selection rule; see Details.
- **correction**: Edge correction. A character vector specifying the choice (or choices) of edge correction. See Details.
- **divisor**: Choice of divisor in the estimation formula: either "r" (the default) or "d". See Details.
- **var.approx**: Logical value indicating whether to compute an analytic approximation to the variance of the estimated pair correlation.
- **domain**: Optional. Calculations will be restricted to this subset of the window. See Details.
- **ratio**: Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.
- **close**: Advanced use only. Precomputed data. See section on Advanced Use.

Details

The pair correlation function $g(r)$ is a summary of the dependence between points in a spatial point process. The best intuitive interpretation is the following: the probability $p(r)$ of finding two points at locations $x$ and $y$ separated by a distance $r$ is equal to

$$p(r) = \lambda^2 g(r) \, dx \, dy$$

where $\lambda$ is the intensity of the point process. For a completely random (uniform Poisson) process, $p(r) = \lambda^2 \, dx \, dy$ so $g(r) = 1$. Formally, the pair correlation function of a stationary point process is defined by

$$g(r) = \frac{K'(r)}{2\pi r}$$

where $K'(r)$ is the derivative of $K(r)$, the reduced second moment function (aka “Ripley’s $K$ function”) of the point process. See \texttt{Kest} for information about $K(r)$.

For a stationary Poisson process, the pair correlation function is identically equal to 1. Values $g(r) < 1$ suggest inhibition between points; values greater than 1 suggest clustering.

This routine computes an estimate of $g(r)$ by kernel smoothing.

- If divisor="r" (the default), then the standard kernel estimator (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of Stoyan and Stoyan (1994) are followed exactly.
• If divisor="d" then a modified estimator is used (Guan, 2007): the contribution from an interpoint distance \(d_{ij}\) to the estimate of \(g(r)\) is divided by \(d_{ij}\) instead of dividing by \(r\). This usually improves the bias of the estimator when \(r\) is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects associated with the boundary of the spatial window):

• If correction="translate" or correction="translation" then the translation correction is used. For divisor="r" the translation-corrected estimate is given in equation (15.15), page 284 of Stoyan and Stoyan (1994).

• If correction="Ripley" or correction="isotropic" then Ripley’s isotropic edge correction is used. For divisor="r" the isotropic-corrected estimate is given in equation (15.18), page 285 of Stoyan and Stoyan (1994).

• If correction="none" then no edge correction is used, that is, an uncorrected estimate is computed.

Multiple corrections can be selected. The default is correction=c("translate", "Ripley"). Alternatively correction="all" selects all options; correction="best" selects the option which has the best statistical performance; correction="good" selects the option which is the best compromise between statistical performance and speed of computation.

The choice of smoothing kernel is controlled by the argument kernel which is passed to density.default. The default is the Epanechnikov kernel, recommended by Stoyan and Stoyan (1994, page 285).

The bandwidth of the smoothing kernel can be controlled by the argument bw. Bandwidth is defined as the standard deviation of the kernel; see the documentation for density.default. For the Epanechnikov kernel with half-width \(h\), the argument bw is equivalent to \(h/\sqrt{5}\).

Stoyan and Stoyan (1994, page 285) recommend using the Epanechnikov kernel with support \([-h, h]\] chosen by the rule of thumb \(h = c/\sqrt{\lambda}\), where \(\lambda\) is the (estimated) intensity of the point process, and \(c\) is a constant in the range from 0.1 to 0.2. See equation (15.16). If bw is missing or NULL, then this rule of thumb will be applied. The argument stoyan determines the value of \(c\). The smoothing bandwidth that was used in the calculation is returned as an attribute of the final result.

The argument \(r\) is the vector of values for the distance \(r\) at which \(g(r)\) should be evaluated. There is a sensible default. If it is specified, \(r\) must be a vector of increasing numbers starting from \(r[1] = 0\), and \(\max(r)\) must not exceed half the diameter of the window.

If the argument domain is given, estimation will be restricted to this region. That is, the estimate of \(g(r)\) will be based on pairs of points in which the first point lies inside domain and the second point is unrestricted. The argument domain should be a window (object of class "owin") or something acceptable to as.owin. It must be a subset of the window of the point pattern \(X\).

To compute a confidence band for the true value of the pair correlation function, use lohboot.

If var.approx = TRUE, the variance of the estimate of the pair correlation will also be calculated using an analytic approximation (Illian et al, 2008, page 234) which is valid for stationary point processes which are not too clustered. This calculation is not yet implemented when the argument domain is given.

Value

A function value table (object of class "fv"). Essentially a data frame containing the variables
the vector of values of the argument \( r \) at which the pair correlation function \( g(r) \) has been estimated.

theo vector of values equal to 1, the theoretical value of \( g(r) \) for the Poisson process.
	rans vector of values of \( g(r) \) estimated by translation correction.

iso vector of values of \( g(r) \) estimated by Ripley isotropic correction.

\( v \) vector of approximate values of the variance of the estimate of \( g(r) \) as required.

If \( \text{ratio=TRUE} \) then the return value also has two attributes called "numerator" and "denominator" which are "fv" objects containing the numerators and denominators of each estimate of \( g(r) \).

The return value also has an attribute "bw" giving the smoothing bandwidth that was used.

**Advanced Use**

To perform the same computation using several different bandwidths \( bw \), it is efficient to use the argument \( close \). This should be the result of \( \text{closepairs(X, rmax)} \) for a suitably large value of \( rmax \), namely \( rmax >= \max(r) + 3 \times bw \).

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk> and Martin Hazelton.

**References**


**See Also**

\( \text{Kest, pcf, density.default, bw.stoyan, bw.pcf, lohboot} \).

**Examples**

\[
X \leftarrow \text{simdat}
\]

\[
p \leftarrow \text{pcf(X)}
\]

\[
\text{plot(p, main="pair correlation function for X")}
\]

# indicates inhibition at distances \( r < 0.3 \)

\[
pd \leftarrow \text{pcf(X, divisor="d")}
\]

# compare estimates

\[
\text{plot(p, cbind(iso, theo) ~ r, col=c("blue", "red"),}
\]

...
# calculate approximate variance and show POINTWISE confidence bands
pv <- pcf(X, var.approx=TRUE)
plot(pv, cbind(iso, iso+2*sqrt(v), iso-2*sqrt(v)) ~ r)

pcf3est

Pair Correlation Function of a Three-Dimensional Point Pattern

Description
Estimates the pair correlation function from a three-dimensional point pattern.

Usage
pcf3est(X, ..., rmax = NULL, nrval = 128,
correction = c("translation", "isotropic"),
delta=NULL, adjust=1, biascorrect=TRUE)

Arguments

X
Three-dimensional point pattern (object of class "pp3").

...  
Ignored.

rmax
Optional. Maximum value of argument \( r \) for which \( g_3(r) \) will be estimated.

nrval
Optional. Number of values of \( r \) for which \( g_3(r) \) will be estimated.

correction
Optional. Character vector specifying the edge correction(s) to be applied. See Details.

delta
Optional. Half-width of the Epanechnikov smoothing kernel.

adjust
Optional. Adjustment factor for the default value of \( \delta \).

biascorrect
Logical value. Whether to correct for underestimation due to truncation of the kernel near \( r = 0 \).

Details
For a stationary point process \( \Phi \) in three-dimensional space, the pair correlation function is

\[
g_3(r) = \frac{K'_3(r)}{4\pi r^2}
\]

where \( K'_3 \) is the derivative of the three-dimensional \( K \)-function (see K3est).

The three-dimensional point pattern \( X \) is assumed to be a partial realisation of a stationary point process \( \Phi \). The distance between each pair of distinct points is computed. Kernel smoothing is applied to these distance values (weighted by an edge correction factor) and the result is renormalised to give the estimate of \( g_3(r) \).

The available edge corrections are:
"translation": the Ohser translation correction estimator (Ohser, 1983; Baddeley et al, 1993)
"isotropic": the three-dimensional counterpart of Ripley’s isotropic edge correction (Ripley, 1977; Baddeley et al, 1993).

Kernel smoothing is performed using the Epanechnikov kernel with half-width \( \delta \). If \( \delta \) is missing, the default is to use the rule-of-thumb \( \delta = 0.26/\lambda^{1/3} \) where \( \lambda = n/v \) is the estimated intensity, computed from the number \( n \) of data points and the volume \( v \) of the enclosing box. This default value of \( \delta \) is multiplied by the factor \( \text{adjust} \).

The smoothing estimate of the pair correlation \( g_3(r) \) is typically an underestimate when \( r \) is small, due to truncation of the kernel at \( r = 0 \). If \( \text{biascorrect}=\text{TRUE} \), the smoothed estimate is approximately adjusted for this bias. This is advisable whenever the dataset contains a sufficiently large number of points.

Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame containing the function values.

Additionally the value of \( \delta \) is returned as an attribute of this object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rana Moyeed.

References


See Also

pp3 to create a three-dimensional point pattern (object of class "pp3").
F3est, G3est, K3est for other summary functions of a three-dimensional point pattern.
pcf to estimate the pair correlation function of point patterns in two dimensions or other spaces.

Examples

```r
X <- rpoispp3(250)
Z <- pcf3est(X)
Zbias <- pcf3est(X, biascorrect=FALSE)
if(interactive()) {
 opa <- par(mfrow=c(1,2))
 plot(Z, ylim.covers=c(0, 1.2))
 plot(Zbias, ylim.covers=c(0, 1.2))
 par(opa)
```
pcfcross

Multitype pair correlation function (cross-type)

Description

Calculates an estimate of the cross-type pair correlation function for a multitype point pattern.

Usage

pcfcross(X, i, j, ..., 
  r = NULL, 
  kernel = "epanechnikov", bw = NULL, stoyan = 0.15, 
  correction = c("isotropic", "Ripley", "translate"), 
  divisor = c("r", "d"), 
  ratio = FALSE)

Arguments

X The observed point pattern, from which an estimate of the cross-type pair correlation function \( g_{ij}(r) \) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor).

i The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of \text{marks}(X).

j The type (mark value) of the points in X to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of \text{marks}(X).

... Ignored.

r Vector of values for the argument \( r \) at which \( g(r) \) should be evaluated. There is a sensible default.

kernel Choice of smoothing kernel, passed to \text{density.default}.

bw Bandwidth for smoothing kernel, passed to \text{density.default}.

stoyan Coefficient for default bandwidth rule; see Details.

correction Choice of edge correction.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See Details.

ratio Logical. If \text{TRUE}, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.
Details

The cross-type pair correlation function is a generalisation of the pair correlation function \( pcf \) to multitype point patterns.

For two locations \( x \) and \( y \) separated by a distance \( r \), the probability \( p(r) \) of finding a point of type \( i \) at location \( x \) and a point of type \( j \) at location \( y \) is

\[
p(r) = \lambda_i \lambda_j g_{i,j}(r) \, dx \, dy
\]

where \( \lambda_i \) is the intensity of the points of type \( i \). For a completely random Poisson marked point process, \( p(r) = \lambda_i \lambda_j \) so \( g_{i,j}(r) = 1 \). Indeed for any marked point pattern in which the points of type \( i \) are independent of the points of type \( j \), the theoretical value of the cross-type pair correlation is \( g_{i,j}(r) = 1 \).

For a stationary multitype point process, the cross-type pair correlation function between marks \( i \) and \( j \) is formally defined as

\[
g_{i,j}(r) = \frac{K'_{i,j}(r)}{2\pi r}
\]

where \( K'_{i,j} \) is the derivative of the cross-type \( K \) function \( K_{i,j}(r) \) of the point process. See \texttt{Kest} for information about \( K(r) \).

The command \texttt{pcfcross} computes a kernel estimate of the cross-type pair correlation function between marks \( i \) and \( j \).

- If \texttt{divisor="r"} (the default), then the multitype counterpart of the standard kernel estimator (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of Stoyan and Stoyan (1994) are followed exactly.

- If \texttt{divisor="d"} then a modified estimator is used: the contribution from an interpoint distance \( d_{ij} \) to the estimate of \( g(r) \) is divided by \( d_{ij} \) instead of dividing by \( r \). This usually improves the bias of the estimator when \( r \) is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects associated with the boundary of the spatial window): \texttt{correction="translate"} is the Ohser-Stoyan translation correction, and \texttt{correction="isotropic"} or \texttt{"Ripley"} is Ripley's isotropic correction.

The choice of smoothing kernel is controlled by the argument \texttt{kernel} which is passed to \texttt{density.default}. The default is the Epanechnikov kernel.

The bandwidth of the smoothing kernel can be controlled by the argument \texttt{bw}. Its precise interpretation is explained in the documentation for \texttt{density.default}. For the Epanechnikov kernel with support \([-h, h]\), the argument \texttt{bw} is equivalent to \( h/\sqrt{5} \).

If \texttt{bw} is not specified, the default bandwidth is determined by Stoyan’s rule of thumb (Stoyan and Stoyan, 1994, page 285) applied to the points of type \( j \). That is, \( h = c/\sqrt{\lambda} \), where \( \lambda \) is the (estimated) intensity of the point process of type \( j \), and \( c \) is a constant in the range from 0.1 to 0.2. The argument \texttt{stoyan} determines the value of \( c \).

The companion function \texttt{pcfdot} computes the corresponding analogue of \texttt{Kdot}. 

An object of class "fv", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}.

Essentially a data frame containing columns

- \texttt{r}: the vector of values of the argument \texttt{r} at which the function \(g_{i,j}\) has been estimated
- \texttt{theo}: the theoretical value \(g_{i,j}(r) = 1\) for independent marks.

Together with columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \(g_{i,j}\) obtained by the edge corrections named.

\textbf{Author(s)}

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

\textbf{See Also}

Mark connection function \texttt{markconnect}.
Multitype pair correlation \texttt{pcfdot}, \texttt{pcfmulti}.
Pair correlation \texttt{pcf.ppp}.
\texttt{Kcross}

\textbf{Examples}

```r
p <- pcfcross(amacrine, "off", "on")
p <- pcfcross(amacrine, "off", "on", stoyan=0.1)
plot(p)
```

\texttt{pcfcross.inhom} \hspace{1cm} \textit{Inhomogeneous Multitype Pair Correlation Function (Cross-Type)}

\textbf{Description}

Estimates the inhomogeneous cross-type pair correlation function for a multitype point pattern.

\textbf{Usage}

\begin{verbatim}
pcfcross.inhom(X, i, j, lambdaI = NULL, lambdaJ = NULL, ..., 
r = NULL, breaks = NULL, 
kernel="epanechnikov", bw=NULL, adjust.bw = 1, stoyan=0.15, 
correction = c("isotropic", "Ripley", "translate"), 
sigma = NULL, adjust.sigma = 1, varcov = NULL)
\end{verbatim}
Arguments

\[ X \]
The observed point pattern, from which an estimate of the inhomogeneous cross-type pair correlation function \( g_{ij}(r) \) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor).

\[ i \]
The type (mark value) of the points in \( X \) from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of \texttt{marks}(X).

\[ j \]
The type (mark value) of the points in \( X \) to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of \texttt{marks}(X).

\[ \lambda_i \]
Optional. Values of the estimated intensity function of the points of type \( i \). Either a vector giving the intensity values at the points of type \( i \), a pixel image (object of class "im") giving the intensity values at all locations, or a function \( (x,y) \) which can be evaluated to give the intensity value at any location.

\[ \lambda_j \]
Optional. Values of the estimated intensity function of the points of type \( j \). A numeric vector, pixel image or function \( (x,y) \).

\[ r \]
Vector of values for the argument \( r \) at which \( g_{ij}(r) \) should be evaluated. There is a sensible default.

\[ \text{breaks} \]
This argument is for internal use only.

\[ \text{kernel} \]
Choice of one-dimensional smoothing kernel, passed to \texttt{density.default}.

\[ \text{bw} \]
Bandwidth for one-dimensional smoothing kernel, passed to \texttt{density.default}.

\[ \text{adjust.bw} \]
Numeric value. \texttt{bw} will be multiplied by this value.

\[ \ldots \]
Other arguments passed to the one-dimensional kernel density estimation function \texttt{density.default}.

\[ \text{stoyan} \]
Bandwidth coefficient; see Details.

\[ \text{correction} \]
Choice of edge correction.

\[ \text{sigma}, \text{varcov} \]
Optional arguments passed to \texttt{density.ppp} to control the smoothing bandwidth, when \( \lambda_i \) or \( \lambda_j \) is estimated by spatial kernel smoothing.

\[ \text{adjust.sigma} \]
Numeric value. \texttt{sigma} will be multiplied by this value.

Details

The inhomogeneous cross-type pair correlation function \( g_{ij}(r) \) is a summary of the dependence between two types of points in a multitype spatial point process that does not have a uniform density of points.

The best intuitive interpretation is the following: the probability \( p(r) \) of finding two points, of types \( i \) and \( j \) respectively, at locations \( x \) and \( y \) separated by a distance \( r \) is equal to

\[
p(r) = \lambda_i(x)\lambda_j(y)g(r) \, dx \, dy
\]

where \( \lambda_i \) is the intensity function of the process of points of type \( i \). For a multitype Poisson point process, this probability is \( p(r) = \lambda_i(x)\lambda_j(y) \) so \( g_{ij}(r) = 1 \).

The command \texttt{pcfcross.inhom} estimates the inhomogeneous pair correlation using a modified version of the algorithm in \texttt{pcf.ppp}. The arguments \texttt{bw} and \texttt{adj.bw} control the degree of one-dimensional smoothing of the estimate of pair correlation.
If the arguments $\lambda_i$ and/or $\lambda_j$ are missing or null, they will be estimated from $X$ by spatial kernel smoothing using a leave-one-out estimator, computed by `density.ppp`. The arguments `sigma`, `varcov` and `adjust.sigma` control the degree of spatial smoothing.

**Value**

A function value table (object of class "fv"). Essentially a data frame containing the variables

- `r`: the vector of values of the argument $r$ at which the inhomogeneous cross-type pair correlation function $g_{ij}(r)$ has been estimated
- `theo`: vector of values equal to 1, the theoretical value of $g_{ij}(r)$ for the Poisson process
- `trans`: vector of values of $g_{ij}(r)$ estimated by translation correction
- `iso`: vector of values of $g_{ij}(r)$ estimated by Ripley isotropic correction

as required.

**Author(s)**

Adrian Baddeley &lt;Adrian.Baddeley@curtin.edu.au&gt; and Rolf Turner &lt;r.turner@auckland.ac.nz&gt;

**See Also**

`pcf.ppp`, `pcfinhom`, `pcfcross`, `pcfdot.inhom`

**Examples**

```r
plot(pcf.cross.inhom(amacrine, "on", "off", stoyan=0.1),
 legendpos="bottom")
```

**Description**

Calculates an estimate of the multitype pair correlation function (from points of type $i$ to points of any type) for a multitype point pattern.

**Usage**

```r
pcfdot(X, i, ..., r = NULL,
 kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
 correction = c("isotropic", "Ripley", "translate"),
 divisor = c("r", "d"),
 ratio=FALSE)
```
Arguments

X The observed point pattern, from which an estimate of the dot-type pair correlation function \( g_{i*}(r) \) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor).

i The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of `marks(X)`.

... Ignored.

r Vector of values for the argument \( r \) at which \( g(r) \) should be evaluated. There is a sensible default.

ekern Choice of smoothing kernel, passed to `density.default`.
bw Bandwidth for smoothing kernel, passed to `density.default`.
stoyan Coefficient for default bandwidth rule; see Details.
correction Choice of edge correction.
divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See Details.
ratio Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

Details

This is a generalisation of the pair correlation function `pcf` to multitype point patterns.

For two locations \( x \) and \( y \) separated by a nonzero distance \( r \), the probability \( p(r) \) of finding a point of type \( i \) at location \( x \) and a point of any type at location \( y \) is

\[
p(r) = \lambda_i \lambda g_{i*}(r) \, dx \, dy
\]

where \( \lambda \) is the intensity of all points, and \( \lambda_i \) is the intensity of the points of type \( i \). For a completely random Poisson marked point process, \( p(r) = \lambda_i \lambda \) so \( g_{i*}(r) = 1 \).

For a stationary multitype point process, the type-\( i \)-to-any-type pair correlation function between marks \( i \) and \( j \) is formally defined as

\[
g_{i*}(r) = \frac{K'_{i*}(r)}{2\pi r}
\]

where \( K'_{i*} \) is the derivative of the type-\( i \)-to-any-type \( K \) function \( K_{i*}(r) \) of the point process. See `Kdot` for information about \( K_{i*}(r) \).

The command `pcfdot` computes a kernel estimate of the multitype pair correlation function from points of type \( i \) to points of any type.

- If `divisor="r"` (the default), then the multitype counterpart of the standard kernel estimator (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of Stoyan and Stoyan (1994) are followed exactly.
- If `divisor="d"` then a modified estimator is used: the contribution from an interpoint distance \( d_{ij} \) to the estimate of \( g(r) \) is divided by \( d_{ij} \) instead of dividing by \( r \). This usually improves the bias of the estimator when \( r \) is close to zero.
There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects associated with the boundary of the spatial window): correction="translate" is the Ohser-Stoyan translation correction, and correction="isotropic" or "Ripley" is Ripley's isotropic correction.

The choice of smoothing kernel is controlled by the argument kernel which is passed to density. The default is the Epanechnikov kernel.

The bandwidth of the smoothing kernel can be controlled by the argument bw. Its precise interpretation is explained in the documentation for density.default. For the Epanechnikov kernel with support \([-h, h]\], the argument bw is equivalent to \(h/\sqrt{5}\).

If bw is not specified, the default bandwidth is determined by Stoyan's rule of thumb (Stoyan and Stoyan, 1994, page 285). That is, \(h = c/\sqrt{\lambda}\), where \(\lambda\) is the (estimated) intensity of the unmarked point process, and \(c\) is a constant in the range from 0.1 to 0.2. The argument stoyan determines the value of \(c\).

The companion function pcfcross computes the corresponding analogue of Kcross.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

- \(r\): the vector of values of the argument \(r\) at which the function \(g_{i\bullet}\) has been estimated
- theo: the theoretical value \(g_{i\bullet}(r) = 1\) for independent marks.

Together with columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \(g_{i,j}\) obtained by the edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Mark connection function markconnect.
Multitype pair correlation pcf, pcf.ppp.
Pair correlation pcf.pcf.ppp.
Kdot

Examples

```r
p <- pcf espos, "on")
p <- pcf espos, "on", stoyan=0.1)
plot(p)
```
Description

Estimates the inhomogeneous multitype pair correlation function (from type \(i\) to any type) for a multitype point pattern.

Usage

```r
pcfdot.inhom(X, i, lambdaI = NULL, lambdadot = NULL, ...,
 r = NULL, breaks = NULL,
 kernel="epanechnikov", bw=NULL, adjust.bw=1, stoyan=0.15,
 correction = c("isotropic", "Ripley", "translate"),
 sigma = NULL, adjust.sigma = 1, varcov = NULL)
```

Arguments

- **X**: The observed point pattern, from which an estimate of the inhomogeneous multitype pair correlation function \(g_{i\bullet}(r)\) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor).
- **i**: The type (mark value) of the points in \(X\) from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of `marks(X)`.
- **lambdaI**: Optional. Values of the estimated intensity function of the points of type \(i\). Either a vector giving the intensity values at the points of type \(i\), a pixel image (object of class "im") giving the intensity values at all locations, or a function \((x,y)\) which can be evaluated to give the intensity value at any location.
- **lambdadot**: Optional. Values of the estimated intensity function of the point pattern \(X\). A numeric vector, pixel image or function \((x,y)\).
- **r**: Vector of values for the argument \(r\) at which \(g_{i\bullet}(r)\) should be evaluated. There is a sensible default.
- **breaks**: This argument is for internal use only.
- **kernel**: Choice of one-dimensional smoothing kernel, passed to `density.default`.
- **bw**: Bandwidth for one-dimensional smoothing kernel, passed to `density.default`.
- **adjust.bw**: Numeric value. \(bw\) will be multiplied by this value.
- **...**: Other arguments passed to the one-dimensional kernel density estimation function `density.default`.
- **stoyan**: Bandwidth coefficient; see Details.
- **correction**: Choice of edge correction.
- **sigma, varcov**: Optional arguments passed to `density.ppp` to control the smoothing bandwidth, when `lambdaI` and/or `lambdadot` is estimated by spatial kernel smoothing.
- **adjust.sigma**: Numeric value. \(sigma\) will be multiplied by this value.
Details

The inhomogeneous multitype (type \(i\) to any type) pair correlation function \(g_{i*}(r)\) is a summary of the dependence between different types of points in a multitype spatial point process that does not have a uniform density of points.

The best intuitive interpretation is the following: the probability \(p(r)\) of finding a point of type \(i\) at location \(x\) and another point of any type at location \(y\), where \(x\) and \(y\) are separated by a distance \(r\), is equal to

\[
p(r) = \lambda_i(x)\lambda(y) g(r) \, dx \, dy
\]

where \(\lambda_i\) is the intensity function of the process of points of type \(i\), and where \(\lambda\) is the intensity function of the points of all types. For a multitype Poisson point process, this probability is \(p(r) = \lambda_i(x)\lambda(y)\) so \(g_{i*}(r) = 1\).

The command `pcfdot.inhom` estimates the inhomogeneous multitype pair correlation using a modified version of the algorithm in `pcf.ppp`. The arguments `bw` and `adjust.bw` control the degree of one-dimensional smoothing of the estimate of pair correlation.

If the arguments `lambdaI` and/or `lambdadot` are missing or null, they will be estimated from \(X\) by spatial kernel smoothing using a leave-one-out estimator, computed by `density.ppp`. The arguments `sigma`, `varcov` and `adjust.sigma` control the degree of spatial smoothing.

Value

A function value table (object of class "fv"). Essentially a data frame containing the variables

- \(r\) the vector of values of the argument \(r\) at which the inhomogeneous multitype pair correlation function \(g_{i*}(r)\) has been estimated
- `theo` vector of values equal to 1, the theoretical value of \(g_{i*}(r)\) for the Poisson process
- `trans` vector of values of \(g_{i*}(r)\) estimated by translation correction
- `iso` vector of values of \(g_{i*}(r)\) estimated by Ripley isotropic correction

as required.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`pcf.ppp`, `pcfinhom`, `pcfdot`, `pcfcross.inhom`

Examples

```r
plot(pcfdot.inhom(amacrine, "on", stoyan=0.1), legendpos="bottom")
```
Inhomogeneous Pair Correlation Function

Description
Estimates the inhomogeneous pair correlation function of a point pattern using kernel methods.

Usage
```
pcfinhom(X, lambda = NULL, ..., r = NULL,
 kernel = "epanechnikov",
 bw = NULL, adjust.bw=1, stoyan = 0.15,
 correction = c("translate", "Ripley"),
 divisor = c("r", "d"),
 renormalise = TRUE, normpower=1,
 update = TRUE, leaveoneout = TRUE,
 reciplambda = NULL,
 sigma = NULL, adjust.sigma = 1,
 varcov = NULL, close=NULL)
```

Arguments
- **X**: A point pattern (object of class "ppp").
- **lambda**: Optional. Values of the estimated intensity function. Either a vector giving the intensity values at the points of the pattern X, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm", "kppm" or "dppm") or a function(x,y) which can be evaluated to give the intensity value at any location.
- **r**: Vector of values for the argument r at which \( g(r) \) should be evaluated. There is a sensible default.
- **kernel**: Choice of smoothing kernel, passed to \texttt{density.default}.
- **bw**: Bandwidth for one-dimensional smoothing kernel, passed to \texttt{density.default}. Either a single numeric value, or a character string specifying a bandwidth selection rule recognised by \texttt{density.default}. If bw is missing or NULL, the default value is computed using Stoyan’s rule of thumb: see \texttt{bw.stoyan}.
- **adjust.bw**: Numeric value. bw will be multiplied by this value.
- **...**: Other arguments passed to the kernel density estimation function \texttt{density.default}.
- **stoyan**: Coefficient for Stoyan’s bandwidth selection rule; see \texttt{bw.stoyan}.
- **correction**: Character string or character vector specifying the choice of edge correction. See \texttt{Kest} for explanation and options.
- **divisor**: Choice of divisor in the estimation formula: either "r" (the default) or "d". See \texttt{pcf.ppp}.
- **renormalise**: Logical. Whether to renormalise the estimate. See Details.
- **normpower**: Integer (usually either 1 or 2). Normalisation power. See Details.
**update** Logical. If `lambda` is a fitted model (class "ppm", "kppm" or "dppm") and `update=TRUE` (the default), the model will first be refitted to the data `X` (using `update.ppm` or `update.kppm`) before the fitted intensity is computed. If `update=FALSE`, the fitted intensity of the model will be computed without refitting it to `X`.

**leaveoneout** Logical value (passed to `density.ppp` or `fitted.ppm`) specifying whether to use a leave-one-out rule when calculating the intensity.

**reciplambda** Alternative to `lambda`. Values of the estimated reciprocal $1/\lambda$ of the intensity function. Either a vector giving the reciprocal intensity values at the points of the pattern `X`, a pixel image (object of class "im") giving the reciprocal intensity values at all locations, or a function(x,y) which can be evaluated to give the reciprocal intensity value at any location.

**sigma, varcov** Optional arguments passed to `density.ppp` to control the smoothing bandwidth, when `lambda` is estimated by kernel smoothing.

**adjust.sigma** Numeric value. `sigma` will be multiplied by this value.

**close** Advanced use only. Precomputed data. See section on Advanced Use.

### Details

The inhomogeneous pair correlation function $g_{inhom}(r)$ is a summary of the dependence between points in a spatial point process that does not have a uniform density of points.

The best intuitive interpretation is the following: the probability $p(r)$ of finding two points at locations $x$ and $y$ separated by a distance $r$ is equal to

$$p(r) = \lambda(x)\lambda(y)g(r)$$

where $\lambda$ is the intensity function of the point process. For a Poisson point process with intensity function $\lambda$, this probability is $p(r) = \lambda(x)\lambda(y)$ so $g_{inhom}(r) = 1$.

The inhomogeneous pair correlation function is related to the inhomogeneous $K$ function through

$$g_{inhom}(r) = \frac{K'_{inhom}(r)}{2\pi r}$$

where $K'_{inhom}(r)$ is the derivative of $K_{inhom}(r)$, the inhomogeneous $K$ function. See `Kinhom` for information about $K_{inhom}(r)$.

The command `pcfinhom` estimates the inhomogeneous pair correlation using a modified version of the algorithm in `pcf.ppp`.

If `renormalise=TRUE` (the default), then the estimates are multiplied by $c^{\text{normpower}}$ where $c = \text{area}(W)/\sum(1/\lambda(x_i))$. This rescaling reduces the variability and bias of the estimate in small samples and in cases of very strong inhomogeneity. The default value of `normpower` is 1 but the most sensible value is 2, which would correspond to rescaling the `lambda` values so that $\sum(1/\lambda(x_i)) = \text{area}(W)$.

### Value

A function value table (object of class "fv"). Essentially a data frame containing the variables
the vector of values of the argument \( r \) at which the inhomogeneous pair correlation function \( g_{\text{inhom}}(r) \) has been estimated

theo vector of values equal to 1, the theoretical value of \( g_{\text{inhom}}(r) \) for the Poisson process

trans vector of values of \( g_{\text{inhom}}(r) \) estimated by translation correction

iso vector of values of \( g_{\text{inhom}}(r) \) estimated by Ripley isotropic correction

as required.

Advanced Use

To perform the same computation using several different bandwidths \( bw \), it is efficient to use the argument close. This should be the result of \texttt{closepairs}(\( X, rmax \)) for a suitably large value of \( rmax \), namely \( rmax \geq \max(r) + 3 \times bw \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

\texttt{pcf}, \texttt{pcf.ppp}, \texttt{bw.stoyan}, \texttt{bw.pcf}, \texttt{Kinhom}

Examples

\begin{verbatim}
X <- residualspaper$Fig4b
online <- interactive()
if(!online) {
    ## reduce size of dataset
    X <- X[c(FALSE, TRUE)]
}
plot(pcfinhom(X, stoyan=0.2, sigma=0.1))
if(require("spatstat.model")) {
    if(online) {
        fit <- ppm(X ~ polynom(x,y,2))
    } else {
        ## simpler model, faster computation
        fit <- ppm(X ~ x)
    }
    plot(pcfinhom(X, lambda=fit, normpower=2))
}
\end{verbatim}
pcfmulti

Marked pair correlation function

Description

For a marked point pattern, estimate the multitype pair correlation function using kernel methods.

Usage

pcfmulti(X, I, J, ..., r = NULL,
kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
correction = c("translate", "Ripley"),
divisor = c("r", "d"),
Iname = "points satisfying condition I",
Jname = "points satisfying condition J",
ratio = FALSE)

Arguments

X The observed point pattern, from which an estimate of the cross-type pair correlation function \( g_{ij}(r) \) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor).

I Subset index specifying the points of \( X \) from which distances are measured.

J Subset index specifying the points in \( X \) to which distances are measured.

... Ignored.

r Vector of values for the argument \( r \) at which \( g(r) \) should be evaluated. There is a sensible default.

kernel Choice of smoothing kernel, passed to \texttt{density.default}.

bw Bandwidth for smoothing kernel, passed to \texttt{density.default}.

stoyan Coefficient for default bandwidth rule.

correction Choice of edge correction.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d".

Iname,Jname Optional. Character strings describing the members of the subsets \( I \) and \( J \).

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

Details

This is a generalisation of \texttt{pcfcheck} to arbitrary collections of points.

The algorithm measures the distance from each data point in subset \( I \) to each data point in subset \( J \), excluding identical pairs of points. The distances are kernel-smoothed and renormalised to form a pair correlation function.
• If divisor="r" (the default), then the multitype counterpart of the standard kernel estimator (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of Stoyan and Stoyan (1994) are followed exactly.

• If divisor="d" then a modified estimator is used: the contribution from an interpoint distance \(d_{ij}\) to the estimate of \(g(r)\) is divided by \(d_{ij}\) instead of dividing by \(r\). This usually improves the bias of the estimator when \(r\) is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects associated with the boundary of the spatial window): correction="translate" is the Ohser-Stoyan translation correction, and correction="isotropic" or "Ripley" is Ripley's isotropic correction.

The arguments I and J specify two subsets of the point pattern \(X\). They may be any type of subset indices, for example, logical vectors of length equal to npoints \((X)\), or integer vectors with entries in the range 1 to npoints \((X)\), or negative integer vectors. Alternatively, I and J may be functions that will be applied to the point pattern \(X\) to obtain index vectors. If I is a function, then evaluating I(X) should yield a valid subset index. This option is useful when generating simulation envelopes using envelope.

The choice of smoothing kernel is controlled by the argument kernel which is passed to density. The default is the Epanechnikov kernel.

The bandwidth of the smoothing kernel can be controlled by the argument bw. Its precise interpretation is explained in the documentation for density.default. For the Epanechnikov kernel with support \([-h, h]\), the argument bw is equivalent to \(h/\sqrt{5}\).

If bw is not specified, the default bandwidth is determined by Stoyan’s rule of thumb (Stoyan and Stoyan, 1994, page 285) applied to the points of type \(j\). That is, \(h = c/\sqrt{\lambda}\), where \(\lambda\) is the (estimated) intensity of the point process of type \(j\), and \(c\) is a constant in the range from 0.1 to 0.2. The argument stoyan determines the value of \(c\).

Value
An object of class "fv".

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
pcf, pcf.ppp.

Examples
adult <- (marks(longleaf) >= 30)
juvenile <- !adult
p <- pcfmulti(longleaf, adult, juvenile)
Description

Plot the result of Berman's test of goodness-of-fit

Usage

## S3 method for class 'bermantest'
plot(x, ..., lwd=par("lwd"), col=par("col"), lty=par("lty"), lwd0=lwd, col0=2, lty0=2)

Arguments

x Object to be plotted. An object of class "bermantest" produced by berman.test.

... extra arguments that will be passed to the plotting function plot.ecdf.

col,lwd,lty The width, colour and type of lines used to plot the empirical distribution curve.

col0,lwd0,lty0 The width, colour and type of lines used to plot the predicted (null) distribution curve.

Details

This is the plot method for the class "bermantest". An object of this class represents the outcome of Berman's test of goodness-of-fit of a spatial Poisson point process model, computed by berman.test.

For the $Z_1$ test (i.e. if x was computed using berman.test(,which="Z1")), the plot displays the two cumulative distribution functions that are compared by the test: namely the empirical cumulative distribution function of the covariate at the data points, $F$, and the predicted cumulative distribution function of the covariate under the model, $F_0$, both plotted against the value of the covariate. Two vertical lines show the mean values of these two distributions. If the model is correct, the two curves should be close; the test is based on comparing the two vertical lines.

For the $Z_2$ test (i.e. if x was computed using berman.test(,which="Z2")), the plot displays the empirical cumulative distribution function of the values $U_i = F_0(Y_i)$ where $Y_i$ is the value of the covariate at the $i$-th data point. The diagonal line with equation $y = x$ is also shown. Two vertical lines show the mean of the values $U_i$ and the value $1/2$. If the model is correct, the two curves should be close. The test is based on comparing the two vertical lines.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.
Plot a Spatial Distribution Test

Description

Plot the result of a spatial distribution test computed by `cdf.test`.

Usage

```r
S3 method for class 'cdftest'
plot(x, ...,
 style=c("cdf", "PP", "QQ"),
 lwd=par("lwd"), col=par("col"), lty=par("lty"),
 lwd0=lwd, col0=2, lty0=2,
 do.legend)
```

Arguments

- `x` Object to be plotted. An object of class "cdftest" produced by a method for `cdf.test`.
... extra arguments that will be passed to the plotting function plot.default.

style  Style of plot. See Details.

col, lwd, lty  The width, colour and type of lines used to plot the empirical curve (the empirical distribution, or PP plot or QQ plot).

col0, lwd0, lty0  The width, colour and type of lines used to plot the reference curve (the predicted distribution, or the diagonal).

do.legend  Logical value indicating whether to add an explanatory legend. Applies only when style="cdf".

Details

This is the plot method for the class "cdftest". An object of this class represents the outcome of a spatial distribution test, computed by cdf.test, and based on either the Kolmogorov-Smirnov, Cramér-von Mises or Anderson-Darling test.

If style="cdf" (the default), the plot displays the two cumulative distribution functions that are compared by the test: namely the empirical cumulative distribution function of the covariate at the data points, and the predicted cumulative distribution function of the covariate under the model, both plotted against the value of the covariate. The Kolmogorov-Smirnov test statistic (for example) is the maximum vertical separation between the two curves.

If style="PP" then the P-P plot is drawn. The x coordinates of the plot are cumulative probabilities for the covariate under the model. The y coordinates are cumulative probabilities for the covariate at the data points. The diagonal line y = x is also drawn for reference. The Kolmogorov-Smirnov test statistic is the maximum vertical separation between the P-P plot and the diagonal reference line.

If style="QQ" then the Q-Q plot is drawn. The x coordinates of the plot are quantiles of the covariate under the model. The y coordinates are quantiles of the covariate at the data points. The diagonal line y = x is also drawn for reference. The Kolmogorov-Smirnov test statistic cannot be read off the Q-Q plot.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

cdf.test

Examples

op <- options(useFancyQuotes=FALSE)
plot(cdf.test(cells, "x"))
if(require("spatstat.model")) {
# synthetic data: nonuniform Poisson process
X <- rpoispp(function(x,y) { 100 * exp(x) }, win=square(1))

# fit uniform Poisson process
fit0 <- ppm(X ~1)

# test covariate = x coordinate
xcoord <- function(x,y) { x }

# test wrong model
k <- cdf.test(fit0, xcoord)

# plot result of test
plot(k, lwd0=3)
plot(k, style="PP")
plot(k, style="QQ")

options(op)

---

plot.envelope

Plot a Simulation Envelope

Description

Plot method for the class "envelope".

Usage

```r
S3 method for class 'envelope'
plot(x, ..., main)
```

Arguments

- `x` An object of class "envelope", containing the variables to be plotted or variables from which the plotting coordinates can be computed.
- `main` Main title for plot.
- `...` Extra arguments passed to `plot.fv`.

Details

This is the plot method for the class "envelope" of simulation envelopes. Objects of this class are created by the command `envelope`.

This plot method is currently identical to `plot.fv`.
Its default behaviour is to shade the region between the upper and lower envelopes in a light grey colour. To suppress the shading and plot the upper and lower envelopes as curves, set `shade=NULL`. To change the colour of the shading, use the argument `shadecol` which is passed to `plot.fv`.

See `plot.fv` for further information on how to control the plot.

Value

Either `NULL`, or a data frame giving the meaning of the different line types and colours.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`envelope`, `plot.fv`

Examples

```r
E <- envelope(cells, Kest, nsim=19)
plot(E)
plot(E, sqrt(./pi) ~ r)
```

Description

Plots an array of summary functions, usually associated with a point pattern, stored in an object of class "fasp". A method for `plot`.

Usage

```r
S3 method for class 'fasp'
plot(x, formule=NULL, ...,
 subset=NULL, title=NULL, banner=TRUE,
 transpose=FALSE,
 samex=FALSE, samey=FALSE,
 mar.panel=NULL,
 outerlabels=TRUE, cex.outerlabels=1.25,
 legend=FALSE)
```

plot.fasp  Plot a Function Array
Arguments

**x**
An object of class "fasp" representing a function array.

**formule**
A formula or list of formulae indicating what variables are to be plotted against what variable. Each formula is either an R language formula object, or a string that can be parsed as a formula. If `formule` is a list, its \( k^{th} \) component should be applicable to the \((i,j)^{th}\) plot where \(x$which[i,j]=k\). If the formula is left as NULL, then `plot.fasp` attempts to use the component `default.formula` of \(x\). If that component is NULL as well, it gives up.

...  
Arguments passed to `plot.fv` to control the individual plot panels.

**subset**
A logical vector, or a vector of indices, or an expression or a character string, or a list of such, indicating a subset of the data to be included in each plot. If `subset` is a list, its \(k^{th}\) component should be applicable to the \((i,j)^{th}\) plot where \(x$which[i,j]=k\).

**title**
Overall title for the plot.

**banner**
Logical. If `TRUE`, the overall title is plotted. If `FALSE`, the overall title is not plotted and no space is allocated for it.

**transpose**
Logical. If `TRUE`, rows and columns will be exchanged.

**samex**, **samey**
Logical values indicating whether all individual plot panels should have the same x axis limits and the same y axis limits, respectively. This makes it easier to compare the plots.

**mar.panel**
Vector of length 4 giving the value of the graphics parameter `mar` controlling the size of plot margins for each individual plot panel. See `par`.

**outerlabels**
Logical. If `TRUE`, the row and column names of the array of functions are plotted in the margins of the array of plot panels. If `FALSE`, each individual plot panel is labelled by its row and column name.

**cex.outerlabels**
Character expansion factor for row and column labels of array.

**legend**
Logical flag determining whether to plot a legend in each panel.

Details

An object of class "fasp" represents an array of summary functions, usually associated with a point pattern. See `fasp.object` for details. Such an object is created, for example, by `alltypes`.

The function `plot.fasp` is a method for `plot`. It calls `plot.fv` to plot the individual panels.

For information about the interpretation of the arguments `formule` and `subset`, see `plot.fv`.

Arguments that are often passed through ... include `col` to control the colours of the different lines in a panel, and `lty` and `lwd` to control the line type and line width of the different lines in a panel. The argument `shade` can also be used to display confidence intervals or significance bands as filled grey shading. See `plot.fv`.

The argument `title`, if present, will determine the overall title of the plot. If it is absent, it defaults to `x$title`. Titles for the individual plot panels will be taken from `x$titles`.

Value

None.
Warnings

(Each component of) the subset argument may be a logical vector (of the same length as the vectors of data which are extracted from x), or a vector of indices, or an expression such as expression(r <= 0.2), or a text string, such as "r <= 0.2". Attempting a syntax such as subset = r <= 0.2 (without wrapping r <= 0.2 either in quote marks or in expression()) will cause this function to fall over.

Variables referred to in any formula must exist in the data frames stored in x. What the names of these variables are will of course depend upon the nature of x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

alltypes, plot.fv, fasp.object

Examples

if(interactive()) {
  X.G <- alltypes(amacrine, "G")
  plot(X.G)
  plot(X.G, subset = "r <= 0.2")
  plot(X.G, formule = asin(sqrt(cbind(km, theo))) ~ asin(sqrt(theo)))
  plot(X.G, fo = cbind(km, theo) - theo - r, subset = "theo <= 0.9")
}

plot.fv

Description

Plot method for the class "fv".

Usage

## S3 method for class 'fv'
plot(x, fmla, ..., subset=NULL, lty=NULL, col=NULL, lwd=NULL, 
  xlim= NULL, ylim= NULL, xlab= NULL, ylab= NULL, ylim.covers=NULL, 
  legend=!add, legendpos= "topleft", legendavoid= missing(legendpos), 
  legendmath= TRUE, legendargs= list(),
  shade=fvnames(x, ".s"), shadecol= "grey",
  add= FALSE, log= "",
  mathfont= c("italic", "plain", "bold", "bolditalic"),
  limitsonly= FALSE)
Arguments

x 
An object of class "fv", containing the variables to be plotted or variables from which the plotting coordinates can be computed.

fmla 
an R language formula determining which variables or expressions are plotted. Either a formula object, or a string that can be parsed as a formula. See Details.

subset 
(optional) subset of rows of the data frame that will be plotted.

lty 
(optional) numeric vector of values of the graphical parameter lty controlling the line style of each plot.

col 
(optional) numeric vector of values of the graphical parameter col controlling the colour of each plot.

lwd 
(optional) numeric vector of values of the graphical parameter lwd controlling the line width of each plot.

xlim 
(optional) range of x axis

ylim 
(optional) range of y axis

xlab 
(optional) label for x axis

ylab 
(optional) label for y axis

... 
Extra arguments passed to plot.default.

ylim.covers 
Optional vector of y values that must be included in the y axis. For example ylim.covers=0 will ensure that the y axis includes the origin.

legend 
Logical flag or NULL. If legend=TRUE, the algorithm plots a legend in the top left corner of the plot, explaining the meaning of the different line types and colours.

legendpos 
The position of the legend. Either a character string keyword (see legend for keyword options) or a pair of coordinates in the format list(x,y). Alternatively if legendpos="float", a location will be selected inside the plot region, avoiding the graphics.

legendavoid 
Whether to avoid collisions between the legend and the graphics. Logical value. If TRUE, the code will check for collisions between the legend box and the graphics, and will override legendpos if a collision occurs. If FALSE, the value of legendpos is always respected.

legendmath 
Logical. If TRUE, the legend will display the mathematical notation for each curve. If FALSE, the legend text is the identifier (column name) for each curve.

legendargs 
Named list containing additional arguments to be passed to legend controlling the appearance of the legend.

shade 
A character vector giving the names of two columns of x, or another type of index that identifies two columns. When the corresponding curves are plotted, the region between the curves will be shaded in light grey. The object x may or may not contain two columns which are designated as boundaries for shading; they are identified by fvnames(x, ".s"). The default is to shade between these two curves if they exist. To suppress this behaviour, set shade=NULL.

shadecol 
The colour to be used in the shade plot. A character string or an integer specifying a colour.

add 
Logical. Whether the plot should be added to an existing plot
log
A character string which contains "x" if the x axis is to be logarithmic, "y" if the y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.

mathfont
Character string. The font to be used for mathematical expressions in the axis labels and the legend.

limitsonly
Logical. If FALSE, plotting is performed normally. If TRUE, no plotting is performed at all; just the x and y limits of the plot are computed and returned.

Details
This is the plot method for the class "fv".
An object of class "fv" is a convenient way of storing several different statistical estimates of a summary function; see \texttt{fv.object}. The default behaviour, executed by \texttt{plot(x)}, displays these different estimates as curves with different colours and line styles, and plots a legend explaining them.
The use of the argument \texttt{fmla} is like \texttt{plot.formula}, but offers some extra functionality.
The left and right hand sides of \texttt{fmla} are evaluated, and the results are plotted against each other (the left side on the y axis against the right side on the x axis).
The left and right hand sides of \texttt{fmla} may be the names of columns of the data frame \texttt{x}, or expressions involving these names. If a variable in \texttt{fmla} is not the name of a column of \texttt{x}, the algorithm will search for an object of this name in the environment where \texttt{plot.fv} was called, and then in the enclosing environment, and so on.
Multiple curves may be specified by a single formula of the form \texttt{cbind(y1,y2,...,yn) ~ x}, where \texttt{x},\texttt{y1},\texttt{y2},...,\texttt{yn} are expressions involving the variables in the data frame. Each of the variables \texttt{y1},\texttt{y2},...,\texttt{yn} in turn will be plotted against \texttt{x}. See the examples.
Convenient abbreviations which can be used in the formula are

\begin{itemize}
  \item the symbol . which represents all the columns in the data frame that will be plotted by default;
  \item the symbol .x which represents the function argument;
  \item the symbol .y which represents the recommended value of the function.
\end{itemize}

For further information, see \texttt{fvnames}.
The value returned by this plot function indicates the meaning of the line types and colours in the plot. It can be used to make a suitable legend for the plot if you want to do this by hand. See the examples.
The argument shade can be used to display critical bands or confidence intervals. If it is not \texttt{NULL}, then it should be a subset index for the columns of \texttt{x}, that identifies exactly 2 columns. When the corresponding curves are plotted, the region between the curves will be shaded in light grey. See the Examples.
The default values of lty, col and lwd can be changed using \texttt{spatstat.options("plot.fv")}.
Use \texttt{type = "n"} to create the plot region and draw the axes without plotting any data.
Use \texttt{limitsonly=TRUE} to suppress all plotting and just compute the x and y limits. This can be used to calculate common x and y scales for several plots.
To change the kind of parenthesis enclosing the explanatory text about the unit of length, use \texttt{spatstat.options('units.paren')}
Value

Invisible: either NULL, or a data frame giving the meaning of the different line types and colours.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv.object, Kest

Examples

K <- Kest(cells)
# K is an object of class "fv"

plot(K, iso ~ r)  # plots iso against r
plot(K, sqrt(iso/pi) ~ r)  # plots sqrt(iso/r) against r
plot(K, cbind(iso,theo) ~ r)  # plots iso against r AND theo against r
plot(K, . ~ r)  # plots all available estimates of K against r
plot(K, sqrt(./pi) ~ r)  # plots all estimates of L-function
# L(r) = sqrt(K(r)/pi)
plot(K, cbind(iso,theo) ~ r, col=c(2,3))
# plots iso against r in colour 2
# and theo against r in colour 3
plot(K, iso ~ r, subset=quote(r < 0.2))
# plots iso against r for r < 10

# Can't remember the names of the columns? No problem..
plot(K, sqrt(./pi) ~ .x)

# making a legend by hand
v <- plot(K, . ~ r, legend=FALSE)
legend("topleft", legend=v$meaning, lty=v$lty, col=v$col)

# significance bands
KE <- envelope(cells, Kest, nsim=19)
plot(KE, shade=c("hi", "lo"))

# how to display two functions on a common scale
Kr <- Kest(redwood)
a <- plot(K, limitsonly=TRUE)
b <- plot(Kr, limitsonly=TRUE)
xlim <- range(a$xlim, b$xlim)
ylim <- range(a$ylim, b$ylim)
opa <- par(mfrow=c(1,2))
### plot.laslett

**Description**

Plot the result of Laslett’s Transform.

**Usage**

```r
S3 method for class 'laslett'
plot(x, ...,
 Xpars = list(box = TRUE, col = "grey"),
 pointpars = list(pch = 3, cols = "blue"),
 rectpars = list(lty = 3, border = "green"))
```

**Arguments**

- `x` Object of class "laslett" produced by `laslett` representing the result of Laslett’s transform.
- `...` Additional plot arguments passed to `plot.solist`.
- `Xpars` A list of plot arguments passed to `plot.owin` or `plot.im` to display the original region `X` before transformation.
- `pointpars` A list of plot arguments passed to `plot.ppp` to display the tangent points.
- `rectpars` A list of plot arguments passed to `plot.owin` to display the maximal rectangle.

**Details**

This is the plot method for the class "laslett".

The function `laslett` applies Laslett’s Transform to a spatial region `X` and returns an object of class "laslett" representing the result of the transformation. The result is plotted by this method.

The plot function `plot.solist` is used to align the before-and-after pictures. See `plot.solist` for further options to control the plot.

**Value**

None.

**Author(s)**

Kassel Hingee and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.
See Also

laslett

Examples

b <- laslett(heather$coarse, plotit=FALSE)
plot(b, main="Heather Data")

plot.quadrattest
Display the result of a quadrat counting test.

Description

Given the result of a quadrat counting test, graphically display the quadrats that were used, the observed and expected counts, and the residual in each quadrat.

Usage

## S3 method for class 'quadrattest'
plot(x, ..., textargs=list())

Arguments

x
Object of class "quadrattest" containing the result of quadrat.test.

... Additional arguments passed to plot.tess to control the display of the quadrats.

textargs List of additional arguments passed to text.default to control the appearance of the text.

Details

This is the plot method for objects of class "quadrattest". Such an object is produced by quadrat.test and represents the result of a $\chi^2$ test for a spatial point pattern.

The quadrats are first plotted using plot.tess. Then in each quadrat, the observed and expected counts and the Pearson residual are displayed as text using text.default. Observed count is displayed at top left; expected count at top right; and Pearson residual at bottom.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>
plot.scan.test

See Also

quadrat.test, plot.tess, text.default, plot.quadratcount

Examples

plot(quadrat.test(swedishpines, 3))

---

plot.scan.test

Plot Result of Scan Test

Description

Computes or plots an image showing the likelihood ratio test statistic for the scan test, or the optimal circle radius.

Usage

## S3 method for class 'scan.test'
plot(x, ..., what=c("statistic", "radius"),
     do.window = TRUE)

## S3 method for class 'scan.test'
as.im(X, ..., what=c("statistic", "radius"))

Arguments

x, X Result of a scan test. An object of class "scan.test" produced by scan.test.
...
what Character string indicating whether to produce an image of the (profile) likelihood ratio test statistic (what="statistic", the default) or an image of the optimal value of circle radius (what="radius").
do.window Logical value indicating whether to plot the original window of the data as well.

Details

These functions extract, and plot, the spatially-varying value of the likelihood ratio test statistic which forms the basis of the scan test.

If the test result X was based on circles of the same radius r, then as.im(X) is a pixel image of the likelihood ratio test statistic as a function of the position of the centre of the circle.

If the test result X was based on circles of several different radii r, then as.im(X) is a pixel image of the profile (maximum value over all radii r) likelihood ratio test statistic as a function of the position of the centre of the circle, and as.im(X, what="radius") is a pixel image giving for each location u the value of r which maximised the likelihood ratio test statistic at that location.

The plot method plots the corresponding image.
Value

The value of `as.im.scan.test` is a pixel image (object of class "im"). The value of `plot.scan.test` is NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`scan.test`, `scanLRTS`

Examples

```r
online <- interactive()
Nsim <- if(online) 19 else 2
r <- if(online) seq(0.04, 0.1, by=0.01) else c(0.05, 0.1)
a <- scan.test(redwood, r=r, method="poisson", nsim=Nsim)
plot(a)
as.im(a)
plot(a, what="radius")
```

---

plot.ssf

__Plot a Spatially Sampled Function__

Description

Plot a spatially sampled function object.

Usage

```r
S3 method for class 'ssf'
plot(x, ...,
 how = c("smoothed", "nearest", "points"),
 style = c("image", "contour", "imagecontour"),
 sigma = NULL, contourargs=list())

S3 method for class 'ssf'
image(x, ...)

S3 method for class 'ssf'
contour(x, ..., main, sigma = NULL)
```
Arguments

x Spatially sampled function (object of class "ssf").

... Arguments passed to image.default or plot.ppp to control the plot.

how Character string determining whether to display the function values at the data points (how="points"), a smoothed interpolation of the function (how="smoothed"), or the function value at the nearest data point (how="nearest").

style Character string indicating whether to plot the smoothed function as a colour image, a contour map, or both.

countourargs Arguments passed to contour.default to control the contours, if style="contour" or style="imagecontour".

sigma Smoothing bandwidth for smooth interpolation.

main Optional main title for the plot.

Details

These are methods for the generic plot, image and contour for the class "ssf".

An object of class "ssf" represents a function (real- or vector-valued) that has been sampled at a finite set of points.

For plot.ssf there are three types of display. If how="points" the exact function values will be displayed as circles centred at the locations where they were computed. If how="smoothed" (the default) these values will be kernel-smoothed using Smooth.ppp and displayed as a pixel image. If how="nearest" the values will be interpolated by nearest neighbour interpolation using nnmark and displayed as a pixel image.

For image.ssf and contour.ssf the values are kernel-smoothed before being displayed.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References


See Also

ssf
Examples

    a <- ssf(cells, nndist(cells, k=1:3))
    plot(a, how="points")
    plot(a, how="smoothed")
    plot(a, how="nearest")

plot.studpermutest

Plot a Studentised Permutation Test

Description

Plot the result of the studentised permutation test.

Usage

    # S3 method for class 'studpermutest'
    plot(x, fmla, ..., 
         lty = NULL, col = NULL, lwd = NULL,
         lty.theo = NULL, col.theo = NULL, lwd.theo = NULL,
         lwd.mean = if (meanonly) 1 else NULL,
         lty.mean = lty, col.mean = col,
         separately = FALSE, meanonly = FALSE,
         main = if (meanonly) "group means" else NULL,
         xlim = NULL, ylim = NULL, ylab = NULL,
         legend = !add, legendpos = "topleft", lbox = FALSE, add = FALSE)

Arguments

x

An object of class "studpermutest" generated by studpermu.test and representing the result of a studentised permutation test for spatial point pattern data.

fmla

Plot formula used in plot.fv.

... Additional graphical arguments passed to plot.fv.

lty, col, lwd

Line type, colour, and line width of the curves plotting the summary function for each point pattern in the original data. Either a single value or a vector of length equal to the number of point patterns.

lty.theo, col.theo, lwd.theo

Line type, colour, and line width of the curve representing the theoretical value of the summary function.

lty.mean, col.mean, lwd.mean

Line type, colour, and line width (as a multiple of lwd) of the curve representing the group mean of the summary function.

separately

Logical value indicating whether to plot each group of data in a separate panel.

meanonly

Logical value indicating whether to plot only the group means of the summary function.
plot.studpermutest

main Character string giving a main title for the plot.
xlim,ylim Numeric vectors of length 2 giving the limits for the $x$ and $y$ coordinates of the plot or plots.
ylab Character string or expression to be used for the label on the $y$ axis.
legend Logical value indicating whether to plot a legend explaining the meaning of each curve.
legendpos Position of legend. See plot.fv.
lbox Logical value indicating whether to plot a box around the plot.
add Logical value indicating whether the plot should be added to the existing plot (add=TRUE) or whether a new frame should be created (add=FALSE, the default).

Details

This is the plot method for objects of class "studpermutest" which represent the result of a studentised permutation test applied to several point patterns. The test is performed by studpermu.test.

The plot shows the summary functions for each point pattern, coloured according to group. Optionally it can show the different groups in separate plot panels, or show only the group means in a single panel.

Value

Null.

Author(s)

Ute Hahn.

Modified for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

studpermu.test

Examples

np <- if(interactive()) 99 else 19
testpyramidal <- studpermu.test(pyramidal, Neurons ~ group, nperm=np)
plot(testpyramidal)
plot(testpyramidal, meanonly=TRUE)
plot(testpyramidal, col.theo=8, lwd.theo=4, lty.theo=1)
plot(testpyramidal, . ~ pi * r^2)
op <- par(mfrow=c(1,3))
plot(testpyramidal, separately=TRUE)
plot(testpyramidal, separately=TRUE, col=2, lty=1, lwd.mean=2, col.mean=4)
par(op)
**Description**

Pool the data from several objects of the same class.

**Usage**

\[\text{pool}(...)\]

**Arguments**

\[\ldots\]  
Objects of the same type.

**Details**

The function \text{pool} is generic. There are methods for several classes, listed below.

\text{pool} is used to combine the data from several objects of the same type, and to compute statistics based on the combined dataset. It may be used to pool the estimates obtained from replicated datasets. It may also be used in high-performance computing applications, when the objects \ldots have been computed on different processors or in different batch runs, and we wish to combine them.

**Value**

An object of the same class as the arguments \ldots

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>  
and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

\[\text{pool.envelope}, \text{pool.fasp}, \text{pool.rat}, \text{pool.fv}\]
**Pool Data from a List of Objects**

**Description**

Pool the data from the objects in a list.

**Usage**

```r
S3 method for class 'anylist'
pool(x, ...)
```

**Arguments**

- `x`  
  A list, belonging to the class "anylist", containing objects that can be pooled.

- `...`  
  Optional additional objects which can be pooled with the elements of `x`.

**Details**

The function `pool` is generic. Its purpose is to combine data from several objects of the same type (typically computed from different datasets) into a common, pooled estimate.

The function `pool.anylist` is the method for the class "anylist". It is used when the objects to be pooled are given in a list `x`.

Each of the elements of the list `x`, and each of the subsequent arguments `...` if provided, must be an object of the same class.

**Value**

An object of the same class as each of the entries in `x`.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

**See Also**

- `anylist`, `pool`.

**Examples**

```r
Keach <- anylapply(waterstriders, Kest, ratio=TRUE, correction="iso")
K <- pool(Keach)
```
Pool Data from Several Envelopes

Description

Pool the simulation data from several simulation envelopes (objects of class "envelope") and compute a new envelope.

Usage

## S3 method for class 'envelope'
pool(..., savefuns=FALSE, savepatterns=FALSE)

Arguments

... Objects of class "envelope".

savefuns Logical flag indicating whether to save all the simulated function values.

savepatterns Logical flag indicating whether to save all the simulated point patterns.

Details

The function pool is generic. This is the method for the class "envelope" of simulation envelopes. It is used to combine the simulation data from several simulation envelopes and to compute an envelope based on the combined data.

Each of the arguments ... must be an object of class "envelope". These envelopes must be compatible, in that they are envelopes for the same function, and were computed using the same options.

- In normal use, each envelope object will have been created by running the command envelope with the argument savefuns=TRUE. This ensures that each object contains the simulated data (summary function values for the simulated point patterns) that were used to construct the envelope.
  The simulated data are extracted from each object and combined. A new envelope is computed from the combined set of simulations.

- Alternatively, if each envelope object was created by running envelope with VARIANCE=TRUE, then the saved functions are not required.
  The sample means and sample variances from each envelope will be pooled. A new envelope is computed from the pooled mean and variance.

Warnings or errors will be issued if the envelope objects ... appear to be incompatible. Apart from these basic checks, the code is not smart enough to decide whether it is sensible to pool the data.

To modify the envelope parameters or the type of envelope that is computed, first pool the envelope data using pool.envelope, then use envelope.envelope to modify the envelope parameters.

Value

An object of class "envelope".
Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

envelope, envelope.envelope, pool, pool.fasp

Examples

E1 <- envelope(cells, Kest, nsim=10, savefuns=TRUE)
E2 <- envelope(cells, Kest, nsim=20, savefuns=TRUE)
pool(E1, E2)

V1 <- envelope(E1, VARIANCE=TRUE)
V2 <- envelope(E2, VARIANCE=TRUE)
pool(V1, V2)

pool.fasp

Pool Data from Several Function Arrays

Description

Pool the simulation data from several function arrays (objects of class "fasp") and compute a new function array.

Usage

## S3 method for class 'fasp'
pool(...)

Arguments

...          Objects of class "fasp".

Details

The function pool is generic. This is the method for the class "fasp" of function arrays. It is used to combine the simulation data from several arrays of simulation envelopes and to compute a new array of envelopes based on the combined data.

Each of the arguments ... must be a function array (object of class "fasp") containing simulation envelopes. This is typically created by running the command alltypes with the arguments envelope=TRUE and savefuns=TRUE. This ensures that each object is an array of simulation envelopes, and that each envelope contains the simulated data (summary function values) that were used to construct the envelope.

The simulated data are extracted from each object and combined. A new array of envelopes is computed from the combined set of simulations.
Warnings or errors will be issued if the objects ... appear to be incompatible. However, the code is not smart enough to decide whether it is sensible to pool the data.

Value

An object of class "fasp".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fasp, alltypes, pool.envelope, pool

Examples

A1 <- alltypes(amacrine,"K",nsim=9,envelope=TRUE,savefuns=TRUE)
A2 <- alltypes(amacrine,"K",nsim=10,envelope=TRUE,savefuns=TRUE)
pool(A1, A2)

Description

Combine several summary functions into a single function.

Usage

## S3 method for class 'fv'
pool(..., weights=NULL, relabel=TRUE, variance=TRUE)

Arguments

... Objects of class "fv".
weights Optional numeric vector of weights for the functions.
relabel Logical value indicating whether the columns of the resulting function should be labelled to show that they were obtained by pooling.
variance Logical value indicating whether to compute the sample variance and related terms.

Details

The function pool is generic. This is the method for the class "fv" of summary functions. It is used to combine several estimates of the same function into a single function.

Each of the arguments ... must be an object of class "fv". They must be compatible, in that they are estimates of the same function, and were computed using the same options.

The sample mean and sample variance of the corresponding estimates will be computed.
**Value**

An object of class "fv".

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

**See Also**

pool, pool.anylist, pool.rat

**Examples**

```r
K <- lapply(waterstriders, Kest, correction="iso")
Kall <- pool(K[[1]], K[[2]], K[[3]])
Kall <- pool(as.anylist(K))
plot(Kall, cbind(pooliso, pooltheo) ~ r,
 shade=c("loiso", "hiiso"),
 main="Pooled K function of waterstriders")
```

---

**pool.quadrattest**  
*Pool Several Quadrat Tests*

**Description**

Pool several quadrat tests into a single quadrat test.

**Usage**

```r
S3 method for class 'quadrattest'
pool(..., df=NULL, df.est=NULL, nsim=1999,
 Xname=NULL, CR=NULL)
```

**Arguments**

- `...`: Any number of objects, each of which is a quadrat test (object of class "quadrattest").
- `df`: Optional. Number of degrees of freedom of the test statistic. Relevant only for \(\chi^2\) tests. Incompatible with `df.est`.
- `df.est`: Optional. The number of fitted parameters, or the number of degrees of freedom lost by estimation of parameters. Relevant only for \(\chi^2\) tests. Incompatible with `df`.
- `nsim`: Number of simulations, for Monte Carlo test.
- `Xname`: Optional. Name of the original data.
- `CR`: Optional. Numeric value of the Cressie-Read exponent \(CR\) overriding the value used in the tests.
Details

The function `pool` is generic. This is the method for the class "quadrat.test".

An object of class "quadrat.test" represents a χ² test or Monte Carlo test of goodness-of-fit for a point process model, based on quadrat counts. Such objects are created by the command `quadrat.test`.

Each of the arguments ... must be an object of class "quadrat.test". They must all be the same type of test (chi-squared test or Monte Carlo test, conditional or unconditional) and must all have the same type of alternative hypothesis.

The test statistic of the pooled test is the Pearson X² statistic taken over all cells (quadrats) of all tests. The p value of the pooled test is then computed using either a Monte Carlo test or a χ² test.

For a pooled χ² test, the number of degrees of freedom of the combined test is computed by adding the degrees of freedom of all the tests (equivalent to assuming the tests are independent) unless it is determined by the arguments df or df.est. The resulting p value is computed to obtain the pooled test.

For a pooled Monte Carlo test, new simulations are performed to determine the pooled Monte Carlo p value.

Value

Another object of class "quadrat.test".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`pool`, `quadrat.test`

Examples

```r
Y <- split(humberside)
test1 <- quadrat.test(Y[[1]])
test2 <- quadrat.test(Y[[2]])
pool(test1, test2, Xname="Humberside")
```

---

**pool.rat**

*Pool Data from Several Ratio Objects*

Description

Pool the data from several ratio objects (objects of class "rat") and compute a pooled estimate.
Usage

```r
S3 method for class 'rat'
pool(..., weights=NULL, relabel=TRUE, variance=TRUE)
```

Arguments

- `...` : Objects of class "rat".
- `weights` : Numeric vector of weights.
- `relabel` : Logical value indicating whether the result should be relabelled to show that it was obtained by pooling.
- `variance` : Logical value indicating whether to compute the sample variance and related terms.

Details

The function `pool` is generic. This is the method for the class "rat" of ratio objects. It is used to combine several estimates of the same quantity when each estimate is a ratio.

Each of the arguments `...` must be an object of class "rat" representing a ratio object (basically a numerator and a denominator; see `rat`). We assume that these ratios are all estimates of the same quantity.

If the objects are called $R_1, \ldots, R_n$ and if $R_i$ has numerator $Y_i$ and denominator $X_i$, so that notionally $R_i = Y_i/X_i$, then the pooled estimate is the ratio-of-sums estimator

$$ R = \frac{\sum_i Y_i}{\sum_i X_i}. $$

The standard error of $R$ is computed using the delta method as described in Baddeley et al. (1993) or Cochran (1977, pp 154, 161).

If the argument `weights` is given, it should be a numeric vector of length equal to the number of objects to be pooled. The pooled estimator is the ratio-of-sums estimator

$$ R = \frac{\sum_i w_i Y_i}{\sum_i w_i X_i}, $$

where $w_i$ is the $i$th weight.

This calculation is implemented only for certain classes of objects where the arithmetic can be performed.

This calculation is currently implemented only for objects which also belong to the class "fv" (function value tables). For example, if `Kest` is called with argument `ratio=TRUE`, the result is a suitable object (belonging to the classes "rat" and "fv").

Warnings or errors will be issued if the ratio objects `...` appear to be incompatible. However, the code is not smart enough to decide whether it is sensible to pool the data.

Value

An object of the same class as the input.
Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

See Also
rat, pool, pool.fv, Kest

Examples
K1 <- Kest(runifpoint(42), ratio=TRUE, correction="iso")
K2 <- Kest(runifpoint(42), ratio=TRUE, correction="iso")
K3 <- Kest(runifpoint(42), ratio=TRUE, correction="iso")
K <- pool(K1, K2, K3)
plot(K, pooliso ~ r, shade=c("hiiso", "loiso"))

PPversion

Transform a Function into its P-P or Q-Q Version

Description
Given a function object \( f \) containing both the estimated and theoretical versions of a summary function, these operations combine the estimated and theoretical functions into a new function. When plotted, the new function gives either the P-P plot or Q-Q plot of the original \( f \).

Usage

PPversion(f, theo = "theo", columns = ".")

QQversion(f, theo = "theo", columns = ".")

Arguments

- \( f \) The function to be transformed. An object of class "fv".
- \( \text{theo} \) The name of the column of \( f \) that should be treated as the theoretical value of the function.
- \( \text{columns} \) Character vector, specifying the columns of \( f \) to which the transformation will be applied. Either a vector of names of columns of \( f \), or one of the abbreviations recognised by \texttt{fvnames}.
Details

The argument \( f \) should be an object of class "fv", containing both empirical estimates \( \hat{f}(r) \) and a theoretical value \( f_0(r) \) for a summary function.

The P–P version of \( f \) is the function \( g(x) = \hat{f}(f_0^{-1}(x)) \) where \( f_0^{-1} \) is the inverse function of \( f_0 \). A plot of \( g(x) \) against \( x \) is equivalent to a plot of \( \hat{f}(r) \) against \( f_0(r) \) for all \( r \). If \( f \) is a cumulative distribution function (such as the result of \( \text{Fest} \) or \( \text{Gest} \)) then this is a P–P plot, a plot of the observed versus theoretical probabilities for the distribution. The diagonal line \( y = x \) corresponds to perfect agreement between observed and theoretical distribution.

The Q–Q version of \( f \) is the function \( h(x) = f_0^{-1}(\hat{f}(x)) \). If \( f \) is a cumulative distribution function, a plot of \( h(x) \) against \( x \) is a Q–Q plot, a plot of the observed versus theoretical quantiles of the distribution. The diagonal line \( y = x \) corresponds to perfect agreement between observed and theoretical distribution. Another straight line corresponds to the situation where the observed variable is a linear transformation of the theoretical variable. For a point pattern \( X \), the Q–Q version of \( \text{Kest}(X) \) is essentially equivalent to \( \text{Lest}(X) \).

Value

Another object of class "fv".

Author(s)

Tom Lawrence and Adrian Baddeley.

Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

\( \text{plot.fv} \)

Examples

```r
opa <- par(mar=0.1+c(5,5,4,2))
G <- Gest(redwoodfull)
plot(PPversion(G))
plot(QQversion(G))
par(opa)
```

`quadrat.test`  
Dispersion Test for Spatial Point Pattern Based on Quadrat Counts

Description

Performs a test of Complete Spatial Randomness for a given point pattern, based on quadrat counts. Alternatively performs a goodness-of-fit test of a fitted inhomogeneous Poisson model. By default performs chi-squared tests; can also perform Monte Carlo based tests.
Usage

quadrat.test(X, ...)

## S3 method for class 'ppp'
quadrat.test(X, nx=5, ny=nx,
  alternative=c("two.sided", "regular", "clustered"),
  method=c("Chisq", "MonteCarlo"),
  conditional=TRUE, CR=1,
  lambda=NULL, df.est=NULL,
  ...,
  xbreaks=NULL, ybreaks=NULL, tess=NULL, nsim=1999)

## S3 method for class 'quadratcount'
quadrat.test(X,
  alternative=c("two.sided", "regular", "clustered"),
  method=c("Chisq", "MonteCarlo"),
  conditional=TRUE, CR=1,
  lambda=NULL, df.est=NULL,
  ...,
  nsim=1999)

Arguments

X
A point pattern (object of class "ppp") to be subjected to the goodness-of-fit test. Alternatively a fitted point process model (object of class "ppm" or "slrm") to be tested. Alternatively X can be the result of applying quadratcount to a point pattern.

nx, ny
Numbers of quadrats in the x and y directions. Incompatible with xbreaks and ybreaks.

alternative
Character string (partially matched) specifying the alternative hypothesis.

method
Character string (partially matched) specifying the test to use: either method="Chisq" for the chi-squared test (the default), or method="MonteCarlo" for a Monte Carlo test.

conditional
Logical. Should the Monte Carlo test be conducted conditionally upon the observed number of points of the pattern? Ignored if method="Chisq".

CR
Optional. Numerical value. The exponent for the Cressie-Read test statistic. See Details.

lambda
Optional. Pixel image (object of class "im") or function (class "funxy") giving the predicted intensity of the point process.

df.est
Optional. Advanced use only. The number of fitted parameters, or the number of degrees of freedom lost by estimation of parameters.

...
Ignored.

xbreaks
Optional. Numeric vector giving the x coordinates of the boundaries of the quadrats. Incompatible with nx.
quadrat.test

ybbreaks
  Optional. Numeric vector giving the y coordinates of the boundaries of the quadrats. Incompatible with ny.

tess
  Tessellation (object of class "tess" or something acceptable to as.tess) determining the quadrats. Incompatible with nx, ny, xbreaks, ybreaks.

nsim
  The number of simulated samples to generate when method="MonteCarlo".

Details

These functions perform $\chi^2$ tests or Monte Carlo tests of goodness-of-fit for a point process model, based on quadrat counts.

The function quadrat.test is generic, with methods for point patterns (class "ppp"), split point patterns (class "splitppp"), point process models (class "ppm" or "slrm") and quadrat count tables (class "quadratcount").

- if X is a point pattern, we test the null hypothesis that the data pattern is a realisation of Complete Spatial Randomness (the uniform Poisson point process). Marks in the point pattern are ignored. (If lambda is given then the null hypothesis is the Poisson process with intensity lambda.)

- if X is a split point pattern, then for each of the component point patterns (taken separately) we test the null hypotheses of Complete Spatial Randomness. See quadrat.test.splitppp for documentation.

- If X is a fitted point process model, then it should be a Poisson point process model. The data to which this model was fitted are extracted from the model object, and are treated as the data point pattern for the test. We test the null hypothesis that the data pattern is a realisation of the (inhomogeneous) Poisson point process specified by X.

In all cases, the window of observation is divided into tiles, and the number of data points in each tile is counted, as described in quadratcount. The quadrats are rectangular by default, or may be regions of arbitrary shape specified by the argument tess. The expected number of points in each quadrat is also calculated, as determined by CSR (in the first case) or by the fitted model (in the second case). Then the Pearson $X^2$ statistic

$$X^2 = \sum ((\text{observed} - \text{expected})^2/\text{expected})$$

is computed.

If method="Chisq" then a $\chi^2$ test of goodness-of-fit is performed by comparing the test statistic to the $\chi^2$ distribution with $m - k$ degrees of freedom, where m is the number of quadrats and k is the number of fitted parameters (equal to 1 for quadrat.test.ppp). The default is to compute the two-sided $p$-value, so that the test will be declared significant if $X^2$ is either very large or very small. One-sided $p$-values can be obtained by specifying the alternative. An important requirement of the $\chi^2$ test is that the expected counts in each quadrat be greater than 5.

If method="MonteCarlo" then a Monte Carlo test is performed, obviating the need for all expected counts to be at least 5. In the Monte Carlo test, nsim random point patterns are generated from the null hypothesis (either CSR or the fitted point process model). The Pearson $X^2$ statistic is computed as above. The $p$-value is determined by comparing the $X^2$ statistic for the observed point pattern, with the values obtained from the simulations. Again the default is to compute the two-sided $p$-value.
If `conditional` is `TRUE` then the simulated samples are generated from the multinomial distribution with the number of “trials” equal to the number of observed points and the vector of probabilities equal to the expected counts divided by the sum of the expected counts. Otherwise the simulated samples are independent Poisson counts, with means equal to the expected counts.

If the argument `CR` is given, then instead of the Pearson $X^2$ statistic, the Cressie-Read (1984) power divergence test statistic

$$2nI = \frac{2}{CR(CR + 1)} \sum_i \left[ \left( \frac{X_i}{E_i} \right)^C - 1 \right]$$

is computed, where $X_i$ is the $i$th observed count and $E_i$ is the corresponding expected count. The value $CR=1$ gives the Pearson $X^2$ statistic; $CR=0$ gives the likelihood ratio test statistic $G^2$; $CR=-1/2$ gives the Freeman-Tukey statistic $T^2$; $CR=-1$ gives the modified likelihood ratio test statistic $GM^2$; and $CR=-2$ gives Neyman’s modified statistic $NM^2$. In all cases the asymptotic distribution of this test statistic is the same $\chi^2$ distribution as above.

The return value is an object of class "htest". Printing the object gives comprehensible output about the outcome of the test.

The return value also belongs to the special class "quadrat.test". Plotting the object will display the quadrats, annotated by their observed and expected counts and the Pearson residuals. See the examples.

Value

An object of class "htest". See `chisq.test` for explanation.

The return value is also an object of the special class "quadrat.test", and there is a plot method for this class. See the examples.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

`quadrat.test.splitppp`, `quadratcount`, `quadrats`, `quadratresample`, `chisq.test`, `cdf.test`.

To test a Poisson point process model against a specific alternative, use `anova.ppm`.

Examples

```r
quadrat.test(simdat)
quadrat.test(simdat, 4, 3)
quadrat.test(simdat, alternative="regular")quadrat.test(simdat, alternative="clustered")
```
## Likelihood ratio test
quadrat.test(simdat, CR=0)

## Power divergence tests
quadrat.test(simdat, CR=-1)$p.value
quadrat.test(simdat, CR=-2)$p.value

# Using Monte Carlo p-values
quadrat.test(swedishpines)  # Get warning, small expected values.
Nsim <- if(interactive()) 4999 else 9
quadrat.test(swedishpines, method="M", nsim=Nsim)
quadrat.test(swedishpines, method="M", nsim=Nsim, conditional=FALSE)

# quadrat counts
qS <- quadratcount(simdat, 4, 3)
quadrat.test(qS)

te <- quadrat.test(simdat, 4)
residuals(te)  # Pearson residuals

plot(te)

plot(simdat, pch="+", cols="green", lwd=2)
plot(te, add=TRUE, col="red", cex=1.4, lty=2, lwd=3)

sublab <- eval(substitute(expression(p[chi^2]==z),
list(z=signif(te$p.value,3))))
title(sub=sublab, cex.sub=3)

# quadrats of irregular shape
B <- dirichlet(runifpoint(6, Window(simdat)))
qB <- quadrat.test(simdat, tess=B)
plot(simdat, main="quadrat.test(simdat, tess=B)", pch="+")
plot(qB, add=TRUE, col="red", lwd=2, cex=1.2)

---

**quadrat.test.splitppp**  
Dispersion Test of CSR for Split Point Pattern Based on Quadrat Counts

**Description**

Performs a test of Complete Spatial Randomness for each of the component patterns in a split point pattern, based on quadrat counts. By default performs chi-squared tests; can also perform Monte Carlo based tests.

**Usage**

```r
S3 method for class 'splitppp'
quadrat.test(X, ..., df=NULL, df.est=NULL, Xname=NULL)
```
Arguments

X A split point pattern (object of class "splitppp"), each component of which will be subjected to the goodness-of-fit test.

... Arguments passed to quadrat.test.ppp.

df, df.est, Xname Arguments passed to pool.quadrattest.

Details

The function quadrat.test is generic, with methods for point patterns (class "ppp"), split point patterns (class "splitppp") and point process models (class "ppm").

If X is a split point pattern, then for each of the component point patterns (taken separately) we test the null hypotheses of Complete Spatial Randomness, then combine the result into a single test.

The method quadrat.test.ppp is applied to each component point pattern. Then the results are pooled using pool.quadrattest to obtain a single test.

Value

An object of class "quadrattest" which can be printed and plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quadrat.test, quadratcount, quadrats, quadratresample, chisq.test, cdf.test.

To test a Poisson point process model against a specific Poisson alternative, use anova.ppm.

Examples

qH <- quadrat.test(split(humberside), 2, 3)
plot(qH)
qH

quantile.density

Quantiles of a Density Estimate

Description

Given a kernel estimate of a probability density, compute quantiles.

Usage

## S3 method for class 'density'
quantile(x, probs = seq(0, 1, 0.25), names = TRUE,
... , warn = TRUE)
Arguments

- \texttt{x} Object of class "density" computed by a method for \texttt{density}
- \texttt{probs} Numeric vector of probabilities for which the quantiles are required.
- \texttt{names} Logical value indicating whether to attach names (based on \texttt{probs}) to the result.
- ... Ignored.
- \texttt{warn} Logical value indicating whether to issue a warning if the density estimate \texttt{x} had to be renormalised because it was computed in a restricted interval.

Details

This function calculates quantiles of the probability distribution whose probability density has been estimated and stored in the object \texttt{x}. The object \texttt{x} must belong to the class "density", and would typically have been obtained from a call to the function \texttt{density}.

The probability density is first normalised so that the total probability is equal to 1. A warning is issued if the density estimate was restricted to an interval (i.e. if \texttt{x} was created by a call to \texttt{density} which included either of the arguments from and to).

Next, the density estimate is numerically integrated to obtain an estimate of the cumulative distribution function \( F(x) \). Then for each desired probability \( p \), the algorithm finds the corresponding quantile \( q \).

The quantile \( q \) corresponding to probability \( p \) satisfies \( F(q) = p \) up to the resolution of the grid of values contained in \texttt{x}. The quantile is computed from the right, that is, \( q \) is the smallest available value of \texttt{x} such that \( F(x) \geq p \).

Value

A numeric vector containing the quantiles.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

\texttt{quantile,quantile.ewcdf,quantile.im,CDF}.

Examples

```r
dd <- density(runif(10))
quantile(dd)
```
radcumint  

Radial Cumulative Integral

Description

Compute the cumulative integral of an image over increasing radial distances from the origin.

Usage

radcumint(X, ..., origin, Xname, result = c("fv", "im"))

Arguments

X  A pixel image (object of class "im") with numerical or logical values.

...  Ignored.

origin  Optional. Origin about which the rotations should be performed. Either a numeric vector or a character string as described in the help for shift.owin.

Xname  Optional name for X to be used in the function labels.

result  Character string specifying the kind of result required: either a function object or a pixel image.

Details

This command computes, for each possible distance \( r \), the integral of the pixel values lying inside the disc of radius \( r \) centred at the origin.

If result="fv" (the default) the result is a function object \( f \) of class "fv". For each value of radius \( r \), the function value \( f(r) \) is the integral of \( X \) over the disc of radius \( r \).

If result="im" the result is a pixel image, with the same dimensions as \( X \). At a given pixel, the result is equal to \( f(r) \) where \( r \) is the distance from the given pixel to the origin. That is, at any given pixel, the resulting value is the integral of \( X \) over the disc centred at the origin whose boundary passes through the given pixel.

Value

An object of class "fv" or "im", with the same coordinate units as \( X \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

rotmean, spatialcdf
Examples

    D <- density(redwood)
    plot(radcumint(D))
    plot(radcumint(D, result="im"))

---

rat  

Ratio object

Description

Stores the numerator, denominator, and value of a ratio as a single object.

Usage

rat(ratio, numerator, denominator, check = TRUE)

Arguments

  ratio, numerator, denominator
    Three objects belonging to the same class.
  check
    Logical. Whether to check that the objects are compatible.

Details

The class "rat" is a simple mechanism for keeping track of the numerator and denominator when calculating a ratio. Its main purpose is simply to signal that the object is a ratio.

The function rat creates an object of class "rat" given the numerator, the denominator and the ratio. No calculation is performed; the three objects are simply stored together.

The arguments ratio, numerator, denominator can be objects of any kind. They should belong to the same class. It is assumed that the relationship

\[ \text{ratio} = \frac{\text{numerator}}{\text{denominator}} \]

holds in some version of arithmetic. However, no calculation is performed.

By default the algorithm checks whether the three arguments ratio, numerator, denominator are compatible objects, according to compatible.

The result is equivalent to ratio except for the addition of extra information.

Value

An object equivalent to the object ratio except that it also belongs to the class "rat" and has additional attributes numerator and denominator.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.
See Also

compatible, pool

rectcontact

Contact Distribution Function using Rectangular Structuring Element

Description

Computes an estimate of the contact distribution function of a set, using a rectangular structuring element.

Usage

rectcontact(X, ..., asp = 1, npasses=4,
eps = NULL, r = NULL, breaks = NULL, correction = c("rs", "km"))

Arguments

X Logical-valued image. The TRUE values in the image determine the spatial region whose contact distribution function should be estimated.
...

Ignored.

asp Aspect ratio for the rectangular metric. A single positive number. See rectdistmap for explanation.

npasses Number of passes to perform in the distance algorithm. A positive integer. See rectdistmap for explanation.

eps Pixel size, if the image should be converted to a finer grid.

r Optional vector of distance values. Do Not Use This.

breaks Do Not Use This.

correction Character vector specifying the edge correction.

Details

To be written.

Value

Object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

Hest
Examples

```r
make an image which is TRUE/FALSE inside/outside the letter R
V <- letterR
Frame(V) <- grow.rectangle(Frame(V), 0.5)
Z <- as.im(V, value=TRUE, na.replace=FALSE)
analyse
plot(rectcontact(Z))
```

---

reduced.sample

### Reduced Sample Estimator using Histogram Data

#### Description

Compute the Reduced Sample estimator of a survival time distribution function, from histogram data.

#### Usage

```r
reduced.sample(nco, cen, ncc, show=FALSE, uppercen=0)
```

#### Arguments

- `nco`: vector of counts giving the histogram of uncensored observations (those survival times that are less than or equal to the censoring time).
- `cen`: vector of counts giving the histogram of censoring times.
- `ncc`: vector of counts giving the histogram of censoring times for the uncensored observations only.
- `uppercen`: number of censoring times greater than the rightmost histogram breakpoint (if there are any).
- `show`: Logical value controlling the amount of detail returned by the function value (see below).

#### Details

This function is needed mainly for internal use in `spatstat`, but may be useful in other applications where you want to form the reduced sample estimator from a huge dataset.

Suppose \( T_i \) are the survival times of individuals \( i = 1, \ldots, M \) with unknown distribution function \( F(t) \) which we wish to estimate. Suppose these times are right-censored by random censoring times \( C_i \). Thus the observations consist of right-censored survival times \( \tilde{T}_i = \min(T_i, C_i) \) and non-censoring indicators \( D_i = 1 \{ T_i \leq C_i \} \) for each \( i \).

If the number of observations \( M \) is large, it is efficient to use histograms. Form the histogram `cen` of all censoring times \( C_i \). That is, \( \text{obs}[k] \) counts the number of values \( C_i \) in the interval \([\text{breaks}[k], \text{breaks}[k+1]]\) for \( k > 1 \) and \([\text{breaks}[1], \text{breaks}[2]]\) for \( k = 1 \). Also form the histogram `nco` of all uncensored times, i.e. those \( \tilde{T}_i \) such that \( D_i = 1 \), and the histogram of all censoring times for which the survival time is uncensored, i.e. those \( C_i \) such that \( D_i = 1 \). These three histograms are the arguments passed to `kaplan.meier`.
The return value \( rs \) is the reduced-sample estimator of the distribution function \( F(t) \). Specifically, \( rs[k] \) is the reduced sample estimate of \( F(\text{breaks}[k+1]) \). The value is exact, i.e. the use of histograms does not introduce any approximation error.

Note that, for the results to be valid, either the histogram breaks must span the censoring times, or the number of censoring times that do not fall in a histogram cell must have been counted in \( \text{uppercen} \).

**Value**

If \( \text{show} = \text{FALSE} \), a numeric vector giving the values of the reduced sample estimator. If \( \text{show} = \text{TRUE} \), a list with three components which are vectors of equal length,

\[
\begin{align*}
rs & \quad \text{Reduced sample estimate of the survival time c.d.f. } F(t) \\
\text{numerator} & \quad \text{numerator of the reduced sample estimator} \\
\text{denominator} & \quad \text{denominator of the reduced sample estimator}
\end{align*}
\]

**Author(s)**

Adrian Baddeley &lt;Adrian.Baddeley@curtin.edu.au&gt;  
and Rolf Turner &lt;r.turner@auckland.ac.nz&gt;

**See Also**

`kaplan.meier`, `km.rs`

---

**Description**

If the designated file does not yet exist, evaluate the expression and save the results in the file. If the file already exists, re-load the results from the file.

**Usage**

```r
reload.or.compute(filename, expr, objects = NULL,
context = parent.frame(),
destination = parent.frame(),
force = FALSE, verbose = TRUE)
```
reload.or.compute

Arguments

filename  Name of data file. A character string.
expr      R language expression to be evaluated.
objects   Optional character vector of names of objects to be saved in filename after evaluating expr, or names of objects that should be present in filename when loaded.
context   Environment containing objects that are mentioned in expr (other than objects in the global environment).
destination Environment into which the resulting objects should be assigned.
force     Logical value indicating whether to perform the computation in any case.
verbose   Logical value indicating whether to print a message indicating whether the data were recomputed or reloaded from the file.

Details

This facility is useful for saving, and later re-loading, the results of time-consuming computations. It would typically be used in an R script file or an Sweave document.

If the file called filename does not yet exist, then expr will be evaluated and the results will be saved in filename. The optional argument objects specifies which results should be saved to the file: the default is to save all objects that were created by evaluating the expression.

If the file called filename already exists, then it will be loaded. The optional argument objects specifies the names of objects that should be present in the file; a warning is issued if any of them are missing.

The resulting objects can be assigned into any desired destination. The default behaviour is equivalent to evaluating expr in the current environment.

If force=TRUE then expr will be evaluated (regardless of whether the file already exists or not) and the results will be saved in filename, overwriting any previously-existing file with that name. This is a convenient way to force the code to re-compute everything in an R script file or Sweave document.

Value

Character vector (invisible) giving the names of the objects computed or loaded.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

Examples

## Demonstration using a temporary file
## (For real applications, use a permanent file in your own filespace)
myfile <- paste0(tempdir(), .Platform$file.sep, "mydata.rda")
reload.or.compute(myfile, {
    # some very long computation ending with ..
    x <- 42

}}
Description
Generic command to estimate the spatially-varying probability of each type of point, or the ratios of such probabilities.

Usage
relrisk(X, ...)

Arguments
X Either a point pattern (class "ppp") or a fitted point process model (class "ppm") from which the probabilities will be estimated.
...
Additional arguments appropriate to the method.

Details
In a point pattern containing several different types of points, we may be interested in the spatially-varying probability of each possible type, or the relative risks which are the ratios of such probabilities.

The command relrisk is generic and can be used to estimate relative risk in different ways.

The function relrisk.ppp is the method for point pattern datasets. It computes nonparametric estimates of relative risk by kernel smoothing.

The function relrisk.ppm is the method for fitted point process models (class "ppm"). It computes parametric estimates of relative risk, using the fitted model.

Value
A pixel image, or a list of pixel images, or a numeric vector or matrix, containing the requested estimates of relative risk.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also
relrisk.ppp, relrisk.ppm.
Description

Given a multitype point pattern, this function estimates the spatially-varying probability of each type of point, or the ratios of such probabilities, using kernel smoothing. The default smoothing bandwidth is selected by cross-validation.

Usage

```r
S3 method for class 'ppp'
relrisk(X, sigma = NULL, ...,
at = c("pixels", "points"),
weights = NULL, varcov = NULL,
relative=FALSE,
adjust=1, edge=TRUE, diggle=FALSE,
se=FALSE, wtype=c("value", "multiplicity"),
casecontrol=TRUE, control=1, case, fudge=0)
```

Arguments

- `X`: A multitype point pattern (object of class "ppp" which has factor valued marks).
- `sigma`: Optional. The numeric value of the smoothing bandwidth (the standard deviation of isotropic Gaussian smoothing kernel). Alternatively `sigma` may be a function which can be used to select a different bandwidth for each type of point. See Details.
- `...`: Arguments passed to `bw.relrisk` to select the bandwidth, or passed to `density.ppp` to control the pixel resolution.
- `at`: Character string specifying whether to compute the probability values at a grid of pixel locations (at="pixels") or only at the points of X (at="points").
- `weights`: Optional. Weights for the data points of X. A numeric vector, an expression, or a pixel image.
- `relative`: Logical. If FALSE (the default) the algorithm computes the probabilities of each type of point. If TRUE, it computes the relative risk, the ratio of probabilities of each type relative to the probability of a control.
- `adjust`: Optional. Adjustment factor for the bandwidth `sigma`.
- `edge`: Logical value indicating whether to apply edge correction.
- `diggle`: Logical. If TRUE, use the Jones-Diggle improved edge correction, which is more accurate but slower to compute than the default correction.
- `se`: Logical value indicating whether to compute standard errors as well.
wtype
Character string (partially matched) specifying how the weights should be interpreted for the calculation of standard error. See Details.

casecontrol
Logical. Whether to treat a bivariate point pattern as consisting of cases and controls, and return only the probability or relative risk of a case. Ignored if there are more than 2 types of points. See Details.

case
Integer, or character string, identifying which mark value corresponds to a case (rather than a control) in a bivariate point pattern. This is an alternative to the argument control in a bivariate point pattern. Ignored if there are more than 2 types of points.

Details
The command relrisk is generic and can be used to estimate relative risk in different ways.

This function relrisk.ppp is the method for point pattern datasets. It computes nonparametric estimates of relative risk by kernel smoothing.

If \( X \) is a bivariate point pattern (a multitype point pattern consisting of two types of points) then by default, the points of the first type (the first level of \( \text{marks}(X) \)) are treated as controls or non-events, and points of the second type are treated as cases or events. Then by default this command computes the spatially-varying probability of a case, i.e. the probability \( p(u) \) that a point at spatial location \( u \) will be a case. If relative=TRUE, it computes the spatially-varying relative risk of a case relative to a control, \( r(u) = p(u)/(1 - p(u)) \).

If \( X \) is a multitype point pattern with \( m > 2 \) types, or if \( X \) is a bivariate point pattern and casecontrol=FALSE, then by default this command computes, for each type \( j \), a nonparametric estimate of the spatially-varying probability of an event of type \( j \). This is the probability \( p_j(u) \) that a point at spatial location \( u \) will belong to type \( j \). If relative=TRUE, the command computes the relative risk of an event of type \( j \) relative to a control, \( r_j(u) = p_j(u)/p_k(u) \), where events of type \( k \) are treated as controls. The argument control determines which type \( k \) is treated as a control.

If at = "pixels" the calculation is performed for every spatial location \( u \) on a fine pixel grid, and the result is a pixel image representing the function \( p(u) \) or a list of pixel images representing the functions \( p_j(u) \) or \( r_j(u) \) for \( j = 1, \ldots, m \). An infinite value of relative risk (arising because the probability of a control is zero) will be returned as NA.

If at = "points" the calculation is performed only at the data points \( x_i \). By default the result is a vector of values \( p(x_i) \) giving the estimated probability of a case at each data point, or a matrix of values \( p_j(x_i) \) giving the estimated probability of each possible type \( j \) at each data point. If relative=TRUE then the relative risks \( r(x_i) \) or \( r_j(x_i) \) are returned. An infinite value of relative risk (arising because the probability of a control is zero) will be returned as Inf.

Estimation is performed by a simple Nadaraja-Watson type kernel smoother (Diggle, 2003). The smoothing bandwidth can be specified in any of the following ways:

- \( \sigma \) is a single numeric value, giving the standard deviation of the isotropic Gaussian kernel.
• `sigma` is a numeric vector of length 2, giving the standard deviations in the \( x \) and \( y \) directions of a Gaussian kernel.

• `varcov` is a 2 by 2 matrix giving the variance-covariance matrix of the Gaussian kernel.

• `sigma` is a function which selects the bandwidth. Bandwidth selection will be applied \textit{separately to each type of point}. An example of such a function is `bw.diggle`.

• `sigma` and `varcov` are both missing or null. Then a \textbf{common} smoothing bandwidth `sigma` will be selected by cross-validation using `bw.relrisk`.

• An infinite smoothing bandwidth, `sigma=Inf`, is permitted and yields a constant estimate of relative risk.

If `se=TRUE` then standard errors will also be computed, based on asymptotic theory, \textit{assuming a Poisson process}.

The optional argument `weights` may provide numerical weights for the points of \( X \). It should be a numeric vector of length equal to `npoints(X)`.

The argument `weights` can also be an expression. It will be evaluated in the data frame as `as.data.frame(X)` to obtain a vector of weights. The expression may involve the symbols `x` and `y` representing the Cartesian coordinates, and the symbol `marks` representing the mark values.

The argument `weights` can also be a pixel image (object of class \texttt{"im"}). numerical weights for the data points will be extracted from this image (by looking up the pixel values at the locations of the data points in \( X \)).

\textbf{Value}

If `se=FALSE` (the default), the format is described below. If `se=TRUE`, the result is a list of two entries, `estimate` and `SE`, each having the format described below.

If \( X \) consists of only two types of points, and if `casecontrol=TRUE`, the result is a pixel image (if `at="pixels"`) or a vector (if `at="points"`). The pixel values or vector values are the probabilities of a case if `relative=FALSE`, or the relative risk of a case (probability of a case divided by the probability of a control) if `relative=TRUE`.

If \( X \) consists of more than two types of points, or if `casecontrol=FALSE`, the result is:

• (if `at="pixels"`) a list of pixel images, with one image for each possible type of point. The result also belongs to the class \texttt{"solist"} so that it can be printed and plotted.

• (if `at="points"`) a matrix of probabilities, with rows corresponding to data points \( x_i \), and columns corresponding to types \( j \).

The pixel values or matrix entries are the probabilities of each type of point if `relative=FALSE`, or the relative risk of each type (probability of each type divided by the probability of a control) if `relative=TRUE`.

If `relative=FALSE`, the resulting values always lie between 0 and 1. If `relative=TRUE`, the results are either non-negative numbers, or the values \texttt{Inf} or \texttt{NA}.

\textbf{Standard error}

If `se=TRUE`, the standard error of the estimate will also be calculated. The calculation assumes a Poisson point process.
If weights are given, then the calculation of standard error depends on the interpretation of the weights. This is controlled by the argument \texttt{wtype}.

- If \texttt{wtype}="\texttt{value}" (the default), the weights are interpreted as numerical values observed at the data locations. Roughly speaking, standard errors are proportional to the absolute values of the weights.

- If \texttt{wtype}="\texttt{multiplicity}" the weights are interpreted as multiplicities so that a weight of 2 is equivalent to having a pair of duplicated points at the data location. Roughly speaking, standard errors are proportional to the square roots of the weights. Negative weights are not permitted.

The default rule is now \texttt{wtype}="\texttt{value}" but previous versions of \texttt{relrisk.ppp} (in \texttt{spatstat.explore} versions 3.1-0 and earlier) effectively used \texttt{wtype}="\texttt{multiplicity}".

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

**References**


**See Also**

There is another method \texttt{relrisk.ppm} for point process models which computes parametric estimates of relative risk, using the fitted model.

See also \texttt{bw.relrisk}, \texttt{density.ppp}, \texttt{Smooth.ppp}, \texttt{eval.im}

**Examples**

```r
p.oak <- relrisk(urkiola, 20)
if(interactive()) {
 plot(p.oak, main="proportion of oak")
 plot(eval.im(p.oak > 0.3), main="More than 30 percent oak")
 plot(split(lansing), main="Lansing Woods")
 p.lan <- relrisk(lansing, 0.05, se=TRUE)
 plot(p.lan$estimate, main="Lansing Woods species probability")
 plot(p.lan$SE, main="Lansing Woods standard error")
 wh <- im.apply(p.lan$estimate, which.max)
 types <- levels(marks(lansing))
 wh <- eval.im(types[wh])
 plot(wh, main="Most common species")
}
```
rho2hat

Smoothed Relative Density of Pairs of Covariate Values

Description

Given a point pattern and two spatial covariates \( Z_1 \) and \( Z_2 \), construct a smooth estimate of the relative risk of the pair \((Z_1, Z_2)\).

Usage

\[ \text{rho2hat}(\text{object}, \text{cov1, cov2, ...}, \text{method} = \text{c("ratio", "reweight")}) \]

Arguments

- **object**: A point pattern (object of class "ppp"), a quadrature scheme (object of class "quad") or a fitted point process model (object of class "ppm").
- **cov1, cov2**: The two covariates. Each argument is either a function(x,y) or a pixel image (object of class "im") providing the values of the covariate at any location, or one of the strings "x" or "y" signifying the Cartesian coordinates.
- **...**: Additional arguments passed to \( \text{density.ppp} \) to smooth the scatterplots.
- **method**: Character string determining the smoothing method. See Details.

Details

This is a bivariate version of \( \text{rhohat} \).

If object is a point pattern, this command produces a smoothed version of the scatterplot of the values of the covariates \( \text{cov1} \) and \( \text{cov2} \) observed at the points of the point pattern.

The covariates \( \text{cov1, cov2} \) must have continuous values.

If object is a fitted point process model, suppose \( X \) is the original data point pattern to which the model was fitted. Then this command assumes \( X \) is a realisation of a Poisson point process with intensity function of the form

\[ \lambda(u) = \rho(Z_1(u), Z_2(u)) \kappa(u) \]

where \( \kappa(u) \) is the intensity of the fitted model object, and \( \rho(z_1, z_2) \) is a function to be estimated.

The algorithm computes a smooth estimate of the function \( \rho \).

The method determines how the density estimates will be combined to obtain an estimate of \( \rho(z_1, z_2) \):

- If method="ratio", then \( \rho(z_1, z_2) \) is estimated by the ratio of two density estimates. The numerator is a (rescaled) density estimate obtained by smoothing the points \( (Z_1(y_i), Z_2(y_i)) \) obtained by evaluating the two covariate \( Z_1, Z_2 \) at the data points \( y_i \). The denominator is a density estimate of the reference distribution of \( (Z_1, Z_2) \).
- If method="reweight", then \( \rho(z_1, z_2) \) is estimated by applying density estimation to the points \( (Z_1(y_i), Z_2(y_i)) \) obtained by evaluating the two covariate \( Z_1, Z_2 \) at the data points \( y_i \), with weights inversely proportional to the reference density of \( (Z_1, Z_2) \).
A pixel image (object of class "im"). Also belongs to the special class "rho2hat" which has a plot method.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

See Also
rhohat, methods.rho2hat

Examples
attach(bei.extra)
plot(rho2hat(bei, elev, grad))
if(require("spatstat.model")) {
  fit <- ppm(bei ~elev, covariates=bei.extra)
  plot(rho2hat(fit, elev, grad))
  plot(rho2hat(fit, elev, grad, method="reweight"))
}

---

**rhohat** Nonparametric Estimate of Intensity as Function of a Covariate

**Description**
Computes a nonparametric estimate of the intensity of a point process, as a function of a (continuous) spatial covariate.

**Usage**
rhohat(object, covariate, ...)

## S3 method for class 'ppp'
rhohat(object, covariate, ..., baseline=NULL, weights=NULL, method=c("ratio", "reweight", "transform"), horvitz=FALSE, smoother=c("kernel", "local", "decreasing", "increasing", "mountain", "valley", "piecewise"),...
## S3 method for class 'quad'
rhohat(object, covariate, ..., 
  baseline=NULL, weights=NULL, 
  method=c("ratio", "reweight", "transform"), 
  horvitz=FALSE, 
  smoother=c("kernel", "local", "decreasing", "increasing", "mountain", "valley", "piecewise"), 
  subset=NULL, 
  do.CI=TRUE, jitterfactor=1, interpolate=TRUE, 
  dimyx=NULL, eps=NULL, 
  rule.eps = c("adjust.eps", "grow.frame", "shrink.frame"), 
  n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL, 
  bwref=bw, 
  covname, confidence=0.95, positiveCI, breaks=NULL)

### Arguments

- **object**: A point pattern (object of class "ppp" or "lpp"), a quadrature scheme (object of class "quad") or a fitted point process model (object of class "ppm", "slrm" or "lppm").

- **covariate**: Either a function(x,y) or a pixel image (object of class "im") providing the values of the covariate at any location. Alternatively one of the strings "x" or "y" signifying the Cartesian coordinates.

- **weights**: Optional weights attached to the data points. Either a numeric vector of weights for each data point, or a pixel image (object of class "im") or a function(x,y) providing the weights.

- **baseline**: Optional baseline for intensity function. A function(x,y) or a pixel image (object of class "im") providing the values of the baseline at any location.

- **method**: Character string determining the estimation method. See Details.

- **horvitz**: Logical value indicating whether to use Horvitz-Thompson weights. See Details.

- **smoother**: Character string determining the smoothing algorithm and the type of curve that will be estimated. See Details.

- **subset**: Optional. A spatial window (object of class "owin") specifying a subset of the data, from which the estimate should be calculated.
do.CI  Logical value specifying whether to calculate standard errors and confidence bands.

jitter  Logical value. If jitter=TRUE (the default), the values of the covariate at the data points will be jittered (randomly perturbed by adding a small amount of noise) using the function jitter. If jitter=FALSE, the covariate values at the data points will not be altered. See the section on Randomisation and discretisation.

jitterfactor  Numeric value controlling the scale of noise added to the covariate values at the data points when jitter=TRUE. Passed to the function jitter as the argument factor.

interpolate  Logical value specifying whether to use spatial interpolation to obtain the values of the covariate at the data points, when the covariate is a pixel image (object of class "im"). If interpolate=FALSE, the covariate value for each data point is simply the value of the covariate image at the pixel centre that is nearest to the data point. If interpolate=TRUE, the covariate value for each data point is obtained by interpolating the nearest pixel values using interp.im.

dimyx,eps,rule.eps  Arguments controlling the pixel resolution at which the covariate will be evaluated. See Details.

bw  Smoothing bandwidth or bandwidth rule (passed to density.default).

adjust  Smoothing bandwidth adjustment factor (passed to density.default).

n, from, to  Arguments passed to density.default to control the number and range of values at which the function will be estimated.

bwref  Optional. An alternative value of bw to use when smoothing the reference density (the density of the covariate values observed at all locations in the window).

...  Additional arguments passed to density.default or locfit.

covname  Optional. Character string to use as the name of the covariate.

confidence  Confidence level for confidence intervals. A number between 0 and 1.

positiveCI  Logical value. If TRUE, confidence limits are always positive numbers; if FALSE, the lower limit of the confidence interval may sometimes be negative. Default is FALSE if smoother="kernel" and TRUE if smoother="local". See Details.

breaks  Breakpoints for the piecewise-constant function computed when smoother='piecewise'. Either a vector of numeric values specifying the breakpoints, or a single integer specifying the number of equally-spaced breakpoints. There is a sensible default.

Details

This command estimates the relationship between point process intensity and a given spatial covariate. Such a relationship is sometimes called a resource selection function (if the points are organisms and the covariate is a descriptor of habitat) or a prospectivity index (if the points are mineral deposits and the covariate is a geological variable). This command uses nonparametric methods which do not assume a particular form for the relationship.
If object is a point pattern, and baseline is missing or null, this command assumes that object
is a realisation of a point process with intensity function $\lambda(u)$ of the form

$$\lambda(u) = \rho(Z(u))$$

where $Z$ is the spatial covariate function given by covariate, and $\rho(z)$ is the resource selection
function or prospectivity index. A nonparametric estimator of the function $\rho(z)$ is computed.

If object is a point pattern, and baseline is given, then the intensity function is assumed to be

$$\lambda(u) = \rho(Z(u))B(u)$$

where $B(u)$ is the baseline intensity at location $u$. A nonparametric estimator of the relative inten-
sity $\rho(z)$ is computed.

If object is a fitted point process model, suppose $X$ is the original data point pattern to which the
model was fitted. Then this command assumes $X$ is a realisation of a Poisson point process with
intensity function of the form

$$\lambda(u) = \rho(Z(u))\kappa(u)$$

where $\kappa(u)$ is the intensity of the fitted model object. A nonparametric estimator of the relative
intensity $\rho(z)$ is computed.

The nonparametric estimation procedure is controlled by the arguments smoother, method and
horvitz.

The argument smoother selects the type of estimation technique.

- If smoother="kernel" (the default), the nonparametric estimator is a kernel smoothing es-
timator of $\rho(z)$ (Guan, 2008; Baddeley et al, 2012). The estimated function $\rho(z)$ will be a
smooth function of $z$ which takes nonnegative values. If do.CI=TRUE (the default), confi-
dence bands are also computed, assuming a Poisson point process. See the section on Smooth
estimates.

- If smoother="local", the nonparametric estimator is a local regression estimator of $\rho(z)$
(Baddeley et al, 2012) obtained using local likelihood. The estimated function $\rho(z)$ will be a
smooth function of $z$. If do.CI=TRUE (the default), confidence bands are also computed,
assuming a Poisson point process. See the section on Smooth estimates.

- If smoother="increasing", we assume that $\rho(z)$ is an increasing function of $z$, and use the
nonparametric maximum likelihood estimator of $\rho(z)$ described by Sager (1982). The estimated function will be a step function, that is increasing as a function of $z$. Confidence bands are not computed. See the section on Monotone estimates.

- If smoother="decreasing", we assume that $\rho(z)$ is a decreasing function of $z$, and use the
nonparametric maximum likelihood estimator of $\rho(z)$ described by Sager (1982). The estimated function will be a step function, that is decreasing as a function of $z$. Confidence bands are not computed. See the section on Monotone estimates.

- If smoother="mountain", we assume that $\rho(z)$ is a function with an inverted U shape, with a
single peak at a value $z_0$, so that $\rho(z)$ is an increasing function of $z$ for $z < z_0$ and a decreasing
function of $z$ for $z > z_0$. We compute the nonparametric maximum likelihood estimator.
The estimated function will be a step function, which is increasing and then decreasing as a
function of $z$. Confidence bands are not computed. See the section on Unimodal estimates.
• If smoother="valley", we assume that $\rho(z)$ is a function with a U shape, with a single minimum at a value $z_0$, so that $\rho(z)$ is a decreasing function of $z$ for $z < z_0$ and an increasing function of $z$ for $z > z_0$. We compute the nonparametric maximum likelihood estimator. The estimated function will be a step function, which is decreasing and then increasing as a function of $z$. Confidence bands are not computed. See the section on Unimodal estimates.

• If smoother="piecewise", the estimate of $\rho(z)$ is piecewise constant. The range of covariate values is divided into several intervals (ranges or bands). The endpoints of these intervals are the breakpoints, which may be specified by the argument breaks; there is a sensible default. The estimate of $\rho(z)$ takes a constant value on each interval. The estimate of $\rho(z)$ in each interval of covariate values is simply the average intensity (number of points per unit area) in the relevant sub-region. If do.CI=TRUE (the default), confidence bands are computed assuming a Poisson process.

See Baddeley (2018) for a comparison of these estimation techniques (except for "mountain" and "valley").

If the argument weights is present, then the contribution from each data point $X[i]$ to the estimate of $\rho$ is multiplied by weights[i].

If the argument subset is present, then the calculations are performed using only the data inside this spatial region.

This technique assumes that covariate has continuous values. It is not applicable to covariates with categorical (factor) values or discrete values such as small integers. For a categorical covariate, use intensity.quadratcount applied to the result of quadratcount(X, tess=covariate).

The argument covariate should be a pixel image, or a function, or one of the strings "x" or "y" signifying the cartesian coordinates. It will be evaluated on a fine grid of locations, with spatial resolution controlled by the arguments dimyx, eps, rule.eps which are passed to as.mask.

**Value**

A function value table (object of class "fv") containing the estimated values of $\rho$ (and confidence limits) for a sequence of values of $Z$. Also belongs to the class "rhohat" which has special methods for print, plot and predict.

**Smooth estimates**

Smooth estimators of $\rho(z)$ were proposed by Baddeley and Turner (2005) and Baddeley et al (2012). Similar estimators were proposed by Guan (2008) and in the literature on relative distributions (Handcock and Morris, 1999).

The estimated function $\rho(z)$ will be a smooth function of $z$.

The smooth estimation procedure involves computing several density estimates and combining them. The algorithm used to compute density estimates is determined by smoother:

• If smoother="kernel", the smoothing procedure is based on fixed-bandwidth kernel density estimation, performed by density.default.

• If smoother="local", the smoothing procedure is based on local likelihood density estimation, performed by locfit.

The argument method determines how the density estimates will be combined to obtain an estimate of $\rho(z)$:
- If `method="ratio"`, then $\rho(z)$ is estimated by the ratio of two density estimates. The numerator is a (rescaled) density estimate obtained by smoothing the values $Z(y_i)$ of the covariate $Z$ observed at the data points $y_i$. The denominator is a density estimate of the reference distribution of $Z$. See Baddeley et al (2012), equation (8). This is similar but not identical to an estimator proposed by Guan (2008).

- If `method="reweight"`, then $\rho(z)$ is estimated by applying density estimation to the values $Z(y_i)$ of the covariate $Z$ observed at the data points $y_i$, with weights inversely proportional to the reference density of $Z$. See Baddeley et al (2012), equation (9).

- If `method="transform"`, the smoothing method is variable-bandwidth kernel smoothing, implemented by applying the Probability Integral Transform to the covariate values, yielding values in the range $[0, 1]$, and back-transforming. See Baddeley et al (2012), equation (10).

If `horvitz=TRUE`, then the calculations described above are modified by using Horvitz-Thompson weighting. The contribution to the numerator from each data point is weighted by the reciprocal of the baseline value or fitted intensity value at that data point; and a corresponding adjustment is made to the denominator.

Pointwise confidence intervals for the true value of $\rho(z)$ are also calculated for each $z$, and will be plotted as grey shading. The confidence intervals are derived using the central limit theorem, based on variance calculations which assume a Poisson point process. If `positiveCI=FALSE`, the lower limit of the confidence interval may sometimes be negative, because the confidence intervals are based on a normal approximation to the estimate of $\rho(z)$. If `positiveCI=TRUE`, the confidence limits are always positive, because the confidence interval is based on a normal approximation to the estimate of $\log(\rho(z))$. For consistency with earlier versions, the default is `positiveCI=FALSE` for `smoother="kernel"` and `positiveCI=TRUE` for `smoother="local"`.

### Monotone estimates

The nonparametric maximum likelihood estimator of a monotone function $\rho(z)$ was described by Sager (1982). This method assumes that $\rho(z)$ is either an increasing function of $z$, or a decreasing function of $z$. The estimated function will be a step function, increasing or decreasing as a function of $z$.

This estimator is chosen by specifying `smoother="increasing"` or `smoother="decreasing"`. The argument `method` is ignored this case.

To compute the estimate of $\rho(z)$, the algorithm first computes several primitive step-function estimates, and then takes the maximum of these primitive functions.

If `smoother="decreasing"`, each primitive step function takes the form $\rho(z) = \lambda$ when $z \leq t$, and $\rho(z) = 0$ when $z > t$, where and $\lambda$ is a primitive estimate of intensity based on the data for $Z \leq t$. The jump location $t$ will be the value of the covariate $Z$ at one of the data points. The primitive estimate $\lambda$ is the average intensity (number of points divided by area) for the region of space where the covariate value is less than or equal to $t$.

If `horvitz=TRUE`, then the calculations described above are modified by using Horvitz-Thompson weighting. The contribution to the numerator from each data point is weighted by the reciprocal of the baseline value or fitted intensity value at that data point; and a corresponding adjustment is made to the denominator.

Confidence intervals are not available for the monotone estimators.
Unimodal estimators

If smoother="valley" then we estimate a U-shaped function. A function $\rho(z)$ is U-shaped if it is decreasing when $z < z_0$ and increasing when $z > z_0$, where $z_0$ is called the critical value. The nonparametric maximum likelihood estimate of such a function can be computed by profiling over $z_0$. The algorithm considers all possible candidate values of the critical value $z_0$, and estimates the function $\rho(z)$ separately on the left and right of $z_0$ using the monotone estimators described above. These function estimates are combined into a single function, and the Poisson point process likelihood is computed. The optimal value of $z_0$ is the one which maximises the Poisson point process likelihood.

If smoother="mountain" then we estimate a function which has an inverted U shape. A function $\rho(z)$ is inverted-U-shaped if it is increasing when $z < z_0$ and decreasing when $z > z_0$. The nonparametric maximum likelihood estimate of such a function can be computed by profiling over $z_0$ using the same technique *mutatis mutandis*.

Confidence intervals are not available for the unimodal estimators.

Randomisation

By default, rhohat adds a small amount of random noise to the data. This is designed to suppress the effects of discretisation in pixel images.

This strategy means that rhohat does not produce exactly the same result when the computation is repeated. If you need the results to be exactly reproducible, set jitter=FALSE.

By default, the values of the covariate at the data points will be randomly perturbed by adding a small amount of noise using the function jitter. To reduce this effect, set jitterfactor to a number smaller than 1. To suppress this effect entirely, set jitter=FALSE.

Author(s)

Smoothing algorithm by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ya-Mei Chang, Yong Song, and Rolf Turner <r.turner@auckland.ac.nz>.

Nonparametric maximum likelihood algorithm by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References


See Also

*rho2hat, methods.rhohat, parres.*

See *ppm* for a parametric method for the same problem.

Examples

```r
X <- rpoispp(function(x,y){exp(3+3*x)})
rho <- rhohat(X, "x")
rho <- rhohat(X, function(x,y){x})
plot(rho)
curve(exp(3+3*x), lty=3, col=4, lwd=2, add=TRUE)

rhoB <- rhohat(X, "x", method="reweight")
rhoC <- rhohat(X, "x", method="transform")

rhoI <- rhohat(X, "x", smoother="increasing")
rhoM <- rhohat(X, "x", smoother="mountain")

plot(rhoI, add=TRUE, .y ~ .x, col=6)
legend("top", lty=c(3, 1), col=c(4, 6), lwd=c(2, 1),
legend=c("true", "increasing"))
```

---

roc

*Receiver Operating Characteristic*

Description

Computes the Receiver Operating Characteristic curve for a point pattern or a fitted point process model.

Usage

```r
roc(X, ...)
```

# S3 method for class 'ppp'
roc(X, covariate, ..., high = TRUE)
Arguments

X Point pattern (object of class "ppp" or "lpp") or fitted point process model (object of class "ppm", "kppm", "slrm" or "lppm").

covariate Spatial covariate. Either a function(x,y), a pixel image (object of class "im"), or one of the strings "x" or "y" indicating the Cartesian coordinates.

high Logical value indicating whether the threshold operation should favour high or low values of the covariate.

... Arguments passed to as.mask controlling the pixel resolution for calculations.

Details

This command computes Receiver Operating Characteristic curve. The area under the ROC is computed by auc.

For a point pattern X and a covariate Z, the ROC is a plot showing the ability of the covariate to separate the spatial domain into areas of high and low density of points. For each possible threshold \( z \), the algorithm calculates the fraction \( a(z) \) of area in the study region where the covariate takes a value greater than \( z \), and the fraction \( b(z) \) of data points for which the covariate value is greater than \( z \). The ROC is a plot of \( b(z) \) against \( a(z) \) for all thresholds \( z \).

For a fitted point process model, the ROC shows the ability of the fitted model intensity to separate the spatial domain into areas of high and low density of points. The ROC is not a diagnostic for the goodness-of-fit of the model (Lobo et al, 2007).

(For spatial logistic regression models (class "slrm") replace “intensity” by “probability of presence” in the text above.)

Value

Function value table (object of class "fv") which can be plotted to show the ROC curve.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References


See Also

auc

Examples

plot(roc(swedishpines, "x"))
Description

Plots a rose diagram (rose of directions), the analogue of a histogram or density plot for angular data.

Usage

rose(x, ...)

## Default S3 method:
rose(x, breaks = NULL, ..., 
weights=NULL, 
nclass = NULL, 
unit = c("degree", "radian"), 
start=0, clockwise=FALSE, 
main)

## S3 method for class 'histogram'
rose(x, ..., 
unit = c("degree", "radian"), 
start=0, clockwise=FALSE, 
main, labels=TRUE, at=NULL, do.plot = TRUE)

## S3 method for class 'density'
rose(x, ..., 
unit = c("degree", "radian"), 
start=0, clockwise=FALSE, 
main, labels=TRUE, at=NULL, do.plot = TRUE)

## S3 method for class 'fv'
rose(x, ..., 
unit = c("degree", "radian"), 
start=0, clockwise=FALSE, 
main, labels=TRUE, at=NULL, do.plot = TRUE)

Arguments

x Data to be plotted. A numeric vector containing angles, or a histogram object containing a histogram of angular values, or a density object containing a smooth density estimate for angular data, or an fv object giving a function of an angular argument.

breaks, nclass Arguments passed to hist to determine the histogram breakpoints.
... Additional arguments passed to `polygon` controlling the appearance of the plot (or passed from `rose.default` to `hist` to control the calculation of the histogram).

`unit` The unit in which the angles are expressed.

`start` The starting direction for measurement of angles, that is, the spatial direction which corresponds to a measured angle of zero. Either a character string giving a compass direction ("N" for north, "S" for south, "E" for east, or "W" for west) or a number giving the angle from the horizontal (East) axis to the starting direction. For example, if `unit="degree"` and `clockwise=FALSE`, then `start=90` and `start="N"` are equivalent. The default is to measure angles anti-clockwise from the horizontal axis (East direction).

`clockwise` Logical value indicating whether angles increase in the clockwise direction (`clockwise=TRUE`) or anti-clockwise, counter-clockwise direction (`clockwise=FALSE`, the default).

`weights` Optional vector of numeric weights associated with `x`.

`main` Optional main title for the plot.

`labels` Either a logical value indicating whether to plot labels next to the tick marks, or a vector of labels for the tick marks.

`at` Optional vector of angles at which tick marks should be plotted. Set `at=numeric(0)` to suppress tick marks.

`do.plot` Logical value indicating whether to really perform the plot.

**Details**

A rose diagram or rose of directions is the analogue of a histogram or bar chart for data which represent angles in two dimensions. The bars of the bar chart are replaced by circular sectors in the rose diagram.

The function `rose` is generic, with a default method for numeric data, and methods for histograms and function tables.

If `x` is a numeric vector, it must contain angular values in the range 0 to 360 (if `unit="degree"`) or in the range 0 to `2 * pi` (if `unit="radian"`). A histogram of the data will first be computed using `hist`. Then the rose diagram of this histogram will be plotted by `rose.histogram`.

If `x` is an object of class "histogram" produced by the function `hist`, representing the histogram of angular data, then the rose diagram of the densities (rather than the counts) in this histogram object will be plotted.

If `x` is an object of class "density" produced by `circdensity` or `density.default`, representing a kernel smoothed density estimate of angular data, then the rose diagram of the density estimate will be plotted.

If `x` is a function value table (object of class "fv") then the argument of the function will be interpreted as an angle, and the value of the function will be interpreted as the radius.

By default, angles are interpreted using the mathematical convention where the zero angle is the horizontal x axis, and angles increase anti-clockwise. Other conventions can be specified using the arguments `start` and `clockwise`. Standard compass directions are obtained by setting `unit="degree", start="N"` and `clockwise=TRUE`. 
Value

A window (class "owin") containing the plotted region.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

fv, hist, circdensity, density.default.

Examples

ang <- runif(1000, max=360)
rose(ang, col="grey")
rose(ang, col="grey", start="N", clockwise=TRUE)

Description

Compute the average pixel value over all rotations of the image about the origin, as a function of
distance from the origin.

Usage

rotmean(X, ..., origin, padzero=TRUE, Xname, result=c("fv", "im"), adjust=1)

Arguments

X A pixel image.
... Ignored.
origin Optional. Origin about which the rotations should be performed. Either a nu-
meric vector or a character string as described in the help for shift.owin.
padzero Logical. If TRUE (the default), the value of X is assumed to be zero outside
the window of X. If FALSE, the value of X is taken to be undefined outside the
window of X.
Xname Optional name for X to be used in the function labels.
result Character string specifying the kind of result required: either a function object
or a pixel image.
adjust Adjustment factor for bandwidth used in kernel smoothing.
Details

This command computes, for each possible distance \( r \), the average pixel value of the pixels lying at distance \( r \) from the origin. Kernel smoothing is used to obtain a smooth function of \( r \).

If result="fv" (the default) the result is a function object of class "fv" giving the mean pixel value of \( X \) as a function of distance from the origin.

If result="im" the result is a pixel image, with the same dimensions as \( X \), giving the mean value of \( X \) over all pixels lying at the same distance from the origin as the current pixel.

If padzero=TRUE (the default), the value of \( X \) is assumed to be zero outside the window of \( X \). The rotational mean at a given distance \( r \) is the average value of the image \( X \) over the entire circle of radius \( r \), including zero values outside the window if the circle lies partly outside the window.

If padzero=FALSE, the value of \( X \) is taken to be undefined outside the window of \( X \). The rotational mean is the average of the \( X \) values over the subset of the circle of radius \( r \) that lies entirely inside the window.

Value

An object of class "fv" or "im", with the same coordinate units as \( X \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

radcumint

Examples

```r
online <- interactive()
resolution <- if(online) 128 else 32
Z <- setcov(square(1), dimyx=resolution)
f <- rotmean(Z)
if(online) {
 plot(rotmean(Z))
 plot(rotmean(Z, result="im"))
}
```

scan.test  

Spatial Scan Test

Description

Performs the Spatial Scan Test for clustering in a spatial point pattern, or for clustering of one type of point in a bivariate spatial point pattern.
Usage

```r
scan.test(X, r, ...,
method = c("poisson", "binomial"),
nsim = 19,
baseline = NULL,
case = 2,
alternative = c("greater", "less", "two.sided"),
verbose = TRUE)
```

Arguments

- **X**: A point pattern (object of class "ppp").
- **r**: Radius of circle to use. A single number or a numeric vector.
- **...**: Optional. Arguments passed to `as.mask` to determine the spatial resolution of the computations.
- **method**: Either "poisson" or "binomial" specifying the type of likelihood.
- **nsim**: Number of simulations for computing Monte Carlo p-value.
- **baseline**: Baseline for the Poisson intensity, if `method="poisson"`. A pixel image or a function.
- **case**: Which type of point should be interpreted as a case, if `method="binomial"`. Integer or character string.
- **alternative**: Alternative hypothesis: "greater" if the alternative postulates that the mean number of points inside the circle will be greater than expected under the null.
- **verbose**: Logical. Whether to print progress reports.

Details

The spatial scan test (Kulldorf, 1997) is applied to the point pattern `X`.

In a nutshell,

- If `method="poisson"` then a significant result would mean that there is a circle of radius `r`, located somewhere in the spatial domain of the data, which contains a significantly higher than expected number of points of `X`. That is, the pattern `X` exhibits spatial clustering.
- If `method="binomial"` then `X` must be a bivariate (two-type) point pattern. By default, the first type of point is interpreted as a control (non-event) and the second type of point as a case (event). A significant result would mean that there is a circle of radius `r` which contains a significantly higher than expected number of cases. That is, the cases are clustered together, conditional on the locations of all points.

Following is a more detailed explanation.

- If `method="poisson"` then the scan test based on Poisson likelihood is performed (Kulldorf, 1997). The dataset `X` is treated as an unmarked point pattern. By default (if `baseline` is not specified) the null hypothesis is complete spatial randomness CSR (i.e. a uniform Poisson process). The alternative hypothesis is a Poisson process with one intensity $\beta_1$ inside some circle of radius `r` and another intensity $\beta_0$ outside the circle. If `baseline` is given, then it
should be a pixel image or a function(x,y). The null hypothesis is an inhomogeneous Poisson process with intensity proportional to baseline. The alternative hypothesis is an inhomogeneous Poisson process with intensity beta1 * baseline inside some circle of radius r, and beta0 * baseline outside the circle.

- If method="binomial" then the scan test based on binomial likelihood is performed (Kulldorf, 1997). The dataset X must be a bivariate point pattern, i.e. a multitype point pattern with two types. The null hypothesis is that all permutations of the type labels are equally likely. The alternative hypothesis is that some circle of radius r has a higher proportion of points of the second type, than expected under the null hypothesis.

The result of scan.test is a hypothesis test (object of class "htest") which can be plotted to report the results. The component p.value contains the p-value.

The result of scan.test can also be plotted (using the plot method for the class "scan.test"). The plot is a pixel image of the Likelihood Ratio Test Statistic (2 times the log likelihood ratio) as a function of the location of the centre of the circle. This pixel image can be extracted from the object using as.im.scan.test. The Likelihood Ratio Test Statistic is computed by scanLRTS.

Value

An object of class "htest" (hypothesis test) which also belongs to the class "scan.test". Printing this object gives the result of the test. Plotting this object displays the Likelihood Ratio Test Statistic as a function of the location of the centre of the circle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

plot.scan.test, as.im.scan.test, relrisk, scanLRTS

Examples

nsim <- if(interactive()) 19 else 2
rr <- if(interactive()) seq(0.5, 1, by=0.1) else c(0.5, 1)
scan.test(redwood, 0.1 * rr, method="poisson", nsim=nsim)
scan.test(chorley, rr, method="binomial", case="larynx", nsim=nsim)
Description

Calculate the Likelihood Ratio Test Statistic for the Scan Test, at each spatial location.

Usage

scanLRTS(X, r, ...,
method = c("poisson", "binomial"),
baseline = NULL, case = 2,
alternative = c("greater", "less", "two.sided"),
saveopt = FALSE,
Xmask = NULL)

Arguments

X
A point pattern (object of class "ppp").
r
Radius of circle to use. A single number or a numeric vector.

... Optional. Arguments passed to as.mask to determine the spatial resolution of the computations.

method
Either "poisson" or "binomial" specifying the type of likelihood.

baseline
Baseline for the Poisson intensity, if method="poisson". A pixel image or a function.

case
Which type of point should be interpreted as a case, if method="binomial". Integer or character string.

alternative
Alternative hypothesis: "greater" if the alternative postulates that the mean number of points inside the circle will be greater than expected under the null.

saveopt
Logical value indicating to save the optimal value of r at each location.

Xmask
Internal use only.

Details

This command computes, for all spatial locations u, the Likelihood Ratio Test Statistic \( \Lambda(u) \) for a test of homogeneity at the location \( u \), as described below. The result is a pixel image giving the values of \( \Lambda(u) \) at each pixel.

The maximum value of \( \Lambda(u) \) over all locations \( u \) is the scan statistic, which is the basis of the scan test performed by scan.test.

- If method="poisson" then the test statistic is based on Poisson likelihood. The dataset X is treated as an unmarked point pattern. By default (if baseline is not specified) the null hypothesis is complete spatial randomness CSR (i.e. a uniform Poisson process). At the spatial location \( u \), the alternative hypothesis is a Poisson process with one intensity \( \beta_1 \) inside
the circle of radius \( r \) centred at \( u \), and another intensity \( \beta_0 \) outside the circle. If baseline is given, then it should be a pixel image or a function \( (x, y) \). The null hypothesis is an inhomogeneous Poisson process with intensity proportional to baseline. The alternative hypothesis is an inhomogeneous Poisson process with intensity \( \beta_1 \times \text{baseline} \) inside the circle, and \( \beta_0 \times \text{baseline} \) outside the circle.

- If method="binomial" then the test statistic is based on binomial likelihood. The dataset \( X \) must be a bivariate point pattern, i.e. a multitype point pattern with two types. The null hypothesis is that all permutations of the type labels are equally likely. The alternative hypothesis is that the circle of radius \( r \) centred at \( u \) has a higher proportion of points of the second type, than expected under the null hypothesis.

If \( r \) is a vector of more than one value for the radius, then the calculations described above are performed for every value of \( r \). Then the maximum over \( r \) is taken for each spatial location \( u \). The resulting pixel value of scanLRTS at a location \( u \) is the profile maximum of the Likelihood Ratio Test Statistic, that is, the maximum of the Likelihood Ratio Test Statistic for circles of all radii, centred at the same location \( u \).

If you have already performed a scan test using scan.test, the Likelihood Ratio Test Statistic can be extracted from the test result using the function as.im.scan.test.

Value

A pixel image (object of class "im") whose pixel values are the values of the (profile) Likelihood Ratio Test Statistic at each spatial location.

Warning: window size

Note that the result of scanLRTS is a pixel image on a larger window than the original window of \( X \). The expanded window contains the centre of any circle of radius \( r \) that has nonempty intersection with the original window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

scan.test, as.im.scan.test

Examples

```r
plot(scanLRTS(redwood, 0.1, method="poisson"))
sc <- scanLRTS(chorley, 1, method="binomial", case="larynx")
plot(sc)
scanstatchorley <- max(sc)
```
**sdr**

_Sufficient Dimension Reduction_

**Description**

Given a point pattern and a set of predictors, find a minimal set of new predictors, each constructed as a linear combination of the original predictors.

**Usage**

```r
sdr(X, covariates, ...)
```

## S3 method for class 'ppp'

```r
sdr(X, covariates,
 method = c("DR", "NNIR", "SAVE", "SIR", "TSE"),
 Dim1 = 1, Dim2 = 1, predict=FALSE, ...)
```

**Arguments**

- **X**
  A point pattern (object of class "ppp").

- **covariates**
  A list of pixel images (objects of class "im") to serve as predictor variables.

- **method**
  Character string indicating which method to use. See Details.

- **Dim1**
  Dimension of the first order Central Intensity Subspace (applicable when `method` is "DR", "NNIR", "SAVE" or "TSE").

- **Dim2**
  Dimension of the second order Central Intensity Subspace (applicable when `method="TSE"`).

- **predict**
  Logical value indicating whether to compute the new predictors as well.

- **...**
  Additional arguments (ignored by `sdr.ppp`).

**Details**

Given a point pattern $X$ and predictor variables $Z_1, \ldots, Z_p$, Sufficient Dimension Reduction methods (Guan and Wang, 2010) attempt to find a minimal set of new predictor variables, each constructed by taking a linear combination of the original predictors, which explain the dependence of $X$ on $Z_1, \ldots, Z_p$. The methods do not assume any particular form of dependence of the point pattern on the predictors. The predictors are assumed to be Gaussian random fields.

Available methods are:

- `method="DR"` directional regression
- `method="NNIR"` nearest neighbour inverse regression
- `method="SAVE"` sliced average variance estimation
- `method="SIR"` sliced inverse regression
- `method="TSE"` two-step estimation
The result includes a matrix $B$ whose columns are estimates of the basis vectors of the space of new predictors. That is, the $j$th column of $B$ expresses the $j$th new predictor as a linear combination of the original predictors.

If `predict=TRUE`, the new predictors are also evaluated. They can also be evaluated using `sdrPredict`.

Value

A list with components $B$, $M$ or $B, M_1, M_2$ where $B$ is a matrix whose columns are estimates of the basis vectors for the space, and $M$ or $M_1, M_2$ are matrices containing estimates of the kernel.

If `predict=TRUE`, the result also includes a component $Y$ which is a list of pixel images giving the values of the new predictors.

Author(s)

Matlab original by Yongtao Guan, translated to R by Suman Rakshit.

References


See Also

`sdrPredict` to compute the new predictors from the coefficient matrix.

dimhat to estimate the subspace dimension.

subspaceDistance

Examples

```r
A <- sdr(bei, bei.extra, predict=TRUE)
A
Y1 <- A$Y[[1]]
plot(Y1)
points(bei, pch=".", cex=2)
investigate likely form of dependence
plot(rhohat(bei, Y1))
```

---

**sdPredict**

*Compute Predictors from Sufficient Dimension Reduction*

**Description**

Given the result of a Sufficient Dimension Reduction method, compute the new predictors.

**Usage**

`sdrPredict(covariates, B)`
Arguments

covariates     A list of pixel images (objects of class "im").

B     Either a matrix of coefficients for the covariates, or the result of a call to \texttt{sdr}.

Details

This function assumes that \texttt{sdr} has already been used to find a minimal set of predictors based on the covariates. The argument \(B\) should be either the result of \texttt{sdr} or the coefficient matrix returned as one of the results of \texttt{sdr}. The columns of this matrix define linear combinations of the covariates. This function evaluates those linear combinations, and returns a list of pixel images containing the new predictors.

Value

A list of pixel images (objects of class "im") with one entry for each column of \(B\).

Author(s)

Adrian Baddeley \textless{}Adrian.Baddeley@curtin.edu.au\textgreater{}

See Also

\texttt{sdr}

Examples

\begin{verbatim}
A <- sdr(bei, bei.extra)
Y <- sdrPredict(bei.extra, A)
Y
\end{verbatim}

segregation.test \hspace{1cm} Test of Spatial Segregation of Types

Description

Performs a Monte Carlo test of spatial segregation of the types in a multitype point pattern.

Usage

segregation.test(X, ...)

## S3 method for class 'ppp'
segregation.test(X, ..., nsim = 19,
               permute = TRUE, verbose = TRUE, Xname)
Arguments

- **X**: Multitype point pattern (object of class "ppp" with factor-valued marks).
- **...**: Additional arguments passed to `relrisk.ppp` to control the smoothing parameter or bandwidth selection.
- **nsim**: Number of simulations for the Monte Carlo test.
- **permute**: Argument passed to `rlabell`. If TRUE (the default), randomisation is performed by randomly permuting the labels of X. If FALSE, randomisation is performing by resampling the labels with replacement.
- **verbose**: Logical value indicating whether to print progress reports.
- **Xname**: Optional character string giving the name of the dataset X.

Details

The Monte Carlo test of spatial segregation of types, proposed by Kelsall and Diggle (1995) and Diggle et al (2005), is applied to the point pattern X. The test statistic is

\[ T = \sum_i \sum_m (\hat{p}(m | x_i) - \bar{p}_m)^2 \]

where \( \hat{p}(m | x_i) \) is the leave-one-out kernel smoothing estimate of the probability that the \( i \)-th data point has type \( m \), and \( \bar{p}_m \) is the average fraction of data points which are of type \( m \). The statistic \( T \) is evaluated for the data and for \( nsim \) randomised versions of X, generated by randomly permuting or resampling the marks.

Note that, by default, automatic bandwidth selection will be performed separately for each randomised pattern. This computation can be very time-consuming but is necessary for the test to be valid in most conditions. A short-cut is to specify the value of the smoothing bandwidth sigma as shown in the examples.

Value

An object of class "htest" representing the result of the test.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References


See Also

- `relrisk`
Examples

```r
segregation.test(hyytiala, 5)

if(interactive()) segregation.test(hyytiala, hmin=0.05)
```

---

**Data Sharpening of Point Pattern**

**Description**

Performs Choi-Hall data sharpening of a spatial point pattern.

**Usage**

```r
sharpen(X,
S3 method for class 'ppp'
sharpen(X, sigma=NULL,
 varcov=NULL, edgecorrect=FALSE)
```

**Arguments**

- `X`: A marked point pattern (object of class "ppp").
- `sigma`: Standard deviation of isotropic Gaussian smoothing kernel.
- `varcov`: Variance-covariance matrix of anisotropic Gaussian kernel. Incompatible with `sigma`.
- `edgecorrect`: Logical value indicating whether to apply edge effect bias correction.
- `...`: Arguments passed to `density.ppp` to control the pixel resolution of the result.

**Details**

Choi and Hall (2001) proposed a procedure for *data sharpening* of spatial point patterns. This procedure is appropriate for earthquake epicentres and other point patterns which are believed to exhibit strong concentrations of points along a curve. Data sharpening causes such points to concentrate more tightly along the curve.

If the original data points are $X_1, \ldots, X_n$ then the sharpened points are

$$
\hat{X}_i = \frac{\sum_j X_j k(X_j - X_i)}{\sum_j k(X_j - X_i)}
$$

where $k$ is a smoothing kernel in two dimensions. Thus, the new point $\hat{X}_i$ is a vector average of the nearby points $X[j]$.

The function `sharpen` is generic. It currently has only one method, for two-dimensional point patterns (objects of class "ppp").

If `sigma` is given, the smoothing kernel is the isotropic two-dimensional Gaussian density with standard deviation `sigma` in each axis. If `varcov` is given, the smoothing kernel is the Gaussian density with variance-covariance matrix `varcov`. 
The data sharpening procedure tends to cause the point pattern to contract away from the boundary of the window. That is, points \(X_i\) that lie 'quite close to the edge of the window of the point pattern tend to be displaced inward. If edgecorrect=TRUE then the algorithm is modified to correct this vector bias.

Value

A point pattern (object of class "ppp") in the same window as the original pattern \(X\), and with the same marks as \(X\).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

References


See Also

density.ppp, Smooth.ppp.

Examples

```r
X <- unmark(shapley)
Y <- sharpen(X, sigma=0.5)
Z <- sharpen(X, sigma=0.5, edgecorrect=TRUE)
opa <- par(mar=rep(0.2, 4))
plot(solist(X, Y, Z), main= " ",
 main.panel=c("data", "sharpen", "sharpen, correct"),
 pch=" ", equal.scales=TRUE, mar.panel=0.2)
par(opa)
```

---

**Smooth**

**Spatial smoothing of data**

Description

Generic function to perform spatial smoothing of spatial data.

Usage

```r
Smooth(X, ...)
```
Arguments

X Some kind of spatial data

Details

This generic function calls an appropriate method to perform spatial smoothing on the spatial dataset X.

Methods for this function include

- Smooth.ppp for point patterns
- Smooth.msr for measures
- Smooth.fv for function value tables

Value

An object containing smoothed values of the input data, in an appropriate format. See the documentation for the methods.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Smooth.ppp, Smooth.im, Smooth.msr, Smooth.fv.

---

Smooth.fv  Apply Smoothing to Function Values

Description

Applies smoothing to the values in selected columns of a function value table.

Usage

```r
S3 method for class 'fv'
Smooth(X, which = "*", ...,
 method=c("smooth.spline", "loess"),
 xinterval=NULL)
```
Arguments

- **X**
  Values to be smoothed. A function value table (object of class "fv", see `fv.object`).

- **which**
  Character vector identifying which columns of the table should be smoothed. Either a vector containing names of columns, or one of the wildcard strings "+" or "." explained below.

- **...**
  Extra arguments passed to `smooth.spline` or `loess` to control the smoothing.

- **method**
  Smoothing algorithm. A character string, partially matched to either "smooth.spline" or "loess".

- **xinterval**
  Optional. Numeric vector of length 2 specifying a range of \( x \) values. Smoothing will be performed only on the part of the function corresponding to this range.

Details

The command `Smooth.fv` applies smoothing to the function values in a function value table (object of class "fv").

`Smooth.fv` is a method for the generic function `Smooth`.

The smoothing is performed either by `smooth.spline` or by `loess`.

Smoothing is applied to every column (or to each of the selected columns) of function values in turn, using the function argument as the \( x \) coordinate and the selected column as the \( y \) coordinate. The original function values are then replaced by the corresponding smooth interpolated function values.

The optional argument `which` specifies which of the columns of function values in \( x \) will be smoothed. The default (indicated by the wildcard `which="*"`) is to smooth all function values, i.e., all columns except the function argument. Alternatively `which="."` designates the subset of function values that are displayed in the default plot. Alternatively `which` can be a character vector containing the names of columns of \( x \).

If the argument `xinterval` is given, then smoothing will be performed only in the specified range of \( x \) values.

Value

Another function value table (object of class "fv") of the same format.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`Smooth`, `with.fv`, `fv.object`, `smooth.spline`, `smooth.spline`

Examples

```r
G <- Gest(cells)
plot(G)
plot(Smooth(G, df=9), add=TRUE)
```
Spatial smoothing of observations at irregular points

Description

Performs spatial smoothing of numeric values observed at a set of irregular locations. Uses kernel smoothing and least-squares cross-validated bandwidth selection.

Usage

```r
S3 method for class 'ppp'
Smooth(X, sigma=NULL,
 ..., weights = rep(1, npoints(X)),
 at = "pixels", leaveoneout=TRUE,
 adjust = 1, varcov = NULL,
 edge = TRUE, diggle = FALSE,
 kernel = "gaussian",
 scalekernel = is.character(kernel),
 se = FALSE,
 loctype = c("random", "fixed"),
 wtype = c("multiplicity", "importance"),
 geometric = FALSE)

markmean(X, ...)
markvar(X, sigma=NULL, ..., weights=NULL, varcov=NULL)
```

Arguments

- **X** A marked point pattern (object of class "ppp").
- **sigma** Smoothing bandwidth. A single positive number, a numeric vector of length 2, or a function that selects the bandwidth automatically. See `density.ppp`.
- **...** Further arguments passed to `bw.smoothppp` and `density.ppp` to control the kernel smoothing and the pixel resolution of the result.
- **weights** Optional weights attached to the observations. A numeric vector, a function(x,y), a pixel image, or an expression. See `density.ppp`.
- **at** String specifying whether to compute the smoothed values at a grid of pixel locations (at="pixels") or only at the points of X (at="points").
- **leaveoneout** Logical value indicating whether to compute a leave-one-out estimator. Applicable only when at="points".
- **edge**, **diggle** Arguments passed to `density.ppp` to determine the edge correction.
- **adjust** Optional. Adjustment factor for the bandwidth sigma.
- **varcov** Variance-covariance matrix. An alternative to sigma. See `density.ppp`. 
kernel
The smoothing kernel. A character string specifying the smoothing kernel (current options are "gaussian", "epanechnikov", "quartic" or "disc"), or a pixel image (object of class "im") containing values of the kernel, or a function(x,y) which yields values of the kernel.

scalekernel
Logical value. If scalekernel=TRUE, then the kernel will be rescaled to the bandwidth determined by sigma and varcov: this is the default behaviour when kernel is a character string. If scalekernel=FALSE, then sigma and varcov will be ignored: this is the default behaviour when kernel is a function or a pixel image.

se
Logical value specifying whether to calculate standard errors. This calculation is experimental.

loctype
Character string (partially matched) specifying whether the point locations are assumed to be fixed or random, in the calculation of standard error. Experimental.

wtype
Character string (partially matched) specifying whether the weights should be interpreted as multiplicities or as importance weights, in the calculation of standard error. Experimental.

geometric
Logical value indicating whether to perform geometric mean smoothing instead of arithmetic mean smoothing. See Details.

Details
The function Smooth.ppp performs spatial smoothing of numeric values observed at a set of irregular locations. The functions markmean and markvar are wrappers for Smooth.ppp which compute the spatially-varying mean and variance of the marks of a point pattern.

Smooth.ppp is a method for the generic function Smooth for the class "ppp" of point patterns. Thus you can type simply Smooth(X).

Smoothing is performed by kernel weighting, using the Gaussian kernel by default. If the observed values are \(v_1, \ldots, v_n\) at locations \(x_1, \ldots, x_n\) respectively, then the smoothed value at a location \(u\) is (ignoring edge corrections)

\[
g(u) = \frac{\sum_i k(u - x_i) v_i}{\sum_i k(u - x_i)}
\]

where \(k\) is the kernel (a Gaussian kernel by default). This is known as the Nadaraya-Watson smoother (Nadaraya, 1964, 1989; Watson, 1964). By default, the smoothing kernel bandwidth is chosen by least squares cross-validation (see below).

The argument \(X\) must be a marked point pattern (object of class "ppp", see ppp.object). The points of the pattern are taken to be the observation locations \(x_i\), and the marks of the pattern are taken to be the numeric values \(v_i\) observed at these locations.

The marks are allowed to be a data frame (in Smooth.ppp and markmean). Then the smoothing procedure is applied to each column of marks.

The numerator and denominator are computed by density.ppp. The arguments \(\ldots\) control the smoothing kernel parameters and determine whether edge correction is applied. The smoothing kernel bandwidth can be specified by either of the arguments sigma or varcov which are passed to density.ppp. If neither of these arguments is present, then by default the bandwidth is selected by least squares cross-validation, using bw.smoothppp.
The optional argument weights allows numerical weights to be applied to the data. If a weight \( w_i \) is associated with location \( x_i \), then the smoothed function is (ignoring edge corrections)

\[
g(u) = \frac{\sum_i k(u - x_i)v_i w_i}{\sum_i k(u - x_i)w_i}
\]

If geometric=TRUE then geometric mean smoothing is performed instead of arithmetic mean smoothing. The mark values must be non-negative numbers. The logarithm of the mark values is computed; these logarithmic values are kernel-smoothed as described above; then the exponential function is applied to the smoothed values.

An alternative to kernel smoothing is inverse-distance weighting, which is performed by \text{idw}.

\textbf{Value}

\textit{If \textbf{X} has a single column of marks:}

- If at="pixels" (the default), the result is a pixel image (object of class "im"). Pixel values are values of the interpolated function.
- If at="points", the result is a numeric vector of length equal to the number of points in \textbf{X}. Entries are values of the interpolated function at the points of \textbf{X}.

\textit{If \textbf{X} has a data frame of marks:}

- If at="pixels" (the default), the result is a named list of pixel images (object of class "im"). There is one image for each column of marks. This list also belongs to the class "solist", for which there is a plot method.
- If at="points", the result is a data frame with one row for each point of \textbf{X}, and one column for each column of marks. Entries are values of the interpolated function at the points of \textbf{X}.

The return value has attributes "sigma" and "varcov" which report the smoothing bandwidth that was used.

\textbf{Very small bandwidth}

If the chosen bandwidth sigma is very small, kernel smoothing is mathematically equivalent to nearest-neighbour interpolation; the result will be computed by \text{nnmark}. This is unless at="points" and leaveoneout=FALSE, when the original mark values are returned.

\textbf{Author(s)}

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

\textbf{References}


Smooth.ssf

Smooth a Spatially Sampled Function

Description

Applies kernel smoothing to a spatially sampled function.

Usage

## S3 method for class 'ssf'
Smooth(X, ...)

Arguments

X Object of class "ssf".
... Arguments passed to Smooth.ppp to control the smoothing.

Details

An object of class "ssf" represents a real-valued or vector-valued function that has been evaluated or sampled at an irregular set of points.

The function values will be smoothed using a Gaussian kernel.

Value

A pixel image or a list of pixel images.

See Also

Smooth, density.ppp, bw.smoothppp, nnmark, ppp.object, im.object.

See idw for inverse-distance weighted smoothing.

To perform interpolation, see also the akima package.

Examples

# Longleaf data - tree locations, marked by tree diameter
# Local smoothing of tree diameter (automatic bandwidth selection)
Z <- Smooth(longleaf)
# Kernel bandwidth sigma=5
plot(Smooth(longleaf, 5))
# mark variance
plot(markvar(longleaf, sigma=5))
# data frame of marks: trees marked by diameter and height
plot(Smooth(finpines, sigma=2))
head(Smooth(finpines, sigma=2, at="points"))
Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also
ssf, Smooth.ppp

Examples

f <- ssf(redwood, nndist(redwood))
Smooth(f, sigma=0.1)

Smoothfun.ppp

Smooth Interpolation of Marks as a Spatial Function

Description
Perform spatial smoothing of numeric values observed at a set of irregular locations, and return the result as a function of spatial location.

Usage

Smoothfun(X, ...)

## S3 method for class 'ppp'
Smoothfun(X, sigma = NULL, ..., weights = NULL, edge = TRUE, diggle = FALSE)

Arguments

X Marked point pattern (object of class "ppp").
sigma Smoothing bandwidth, or bandwidth selection function, passed to Smooth.ppp.
... Additional arguments passed to Smooth.ppp.
weights Optional vector of weights associated with the points of X.
edge, diggle Logical arguments controlling the edge correction. Arguments passed to Smooth.ppp.

Details

The commands Smoothfun and Smooth both perform kernel-smoothed spatial interpolation of numeric values observed at irregular spatial locations. The difference is that Smooth returns a pixel image, containing the interpolated values at a grid of locations, while Smoothfun returns a function(x,y) which can be used to compute the interpolated value at any spatial location. For purposes such as model-fitting it is more accurate to use SmoothFun to interpolate data.
Value
A function with arguments x, y. The function also belongs to the class "Smoothfun" which has methods for print and as.im. It also belongs to the class "funxy" which has methods for plot, contour and persp.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also
Smooth

Examples
f <- Smoothfun(longleaf)
f
f(120, 80)
plot(f)

spatcov

Estimate the Spatial Covariance Function of a Random Field

Description
Given a pixel image, calculate an estimate of the spatial covariance function. Given two pixel images, calculate an estimate of their spatial cross-covariance function.

Usage
spatcov(X, Y=X, ..., correlation=FALSE, isotropic = TRUE, clip = TRUE, pooling=TRUE)

Arguments
X A pixel image (object of class "im").
Y Optional. Another pixel image.
correlation Logical value specifying whether to standardise so that the spatial correlation function is returned.
isotropic Logical value specifying whether to assume the covariance is isotropic, so that the result is a function of the lag distance.
clip Logical value specifying whether to restrict the results to the range of spatial lags where the estimate is reliable.
pooling Logical value specifying the estimation method when isotropic=TRUE.
... Ignored.
spatcov

Details

In normal usage, only the first argument X is given. Then the pixel image X is treated as a realisation of a stationary random field, and its spatial covariance function is estimated. Alternatively if Y is given, then X and Y are assumed to be jointly stationary random fields, and their spatial cross-covariance function is estimated.

For any random field X, the spatial covariance is defined for any two spatial locations u and v by

\[ C(u, v) = \text{cov}(X(u), X(v)) \]

where \( X(u) \) and \( X(v) \) are the values of the random field at those locations. Here \( \text{cov} \) denotes the statistical covariance, defined for any random variables \( A \) and \( B \) by \( \text{cov}(A, B) = E(AB) - E(A)E(B) \) where \( E(A) \) denotes the expected value of \( A \).

If the random field is assumed to be stationary (at least second-order stationary) then the spatial covariance \( C(u, v) \) depends only on the lag vector \( v - u \):

\[ C(u, v) = C_2(v - u) \]

\[ C(u, v) = C_2(v - u) \]

where \( C_2 \) is a function of a single vector argument.

If the random field is stationary and isotropic, then the spatial covariance depends only on the lag distance \( \|v - u\| \):

\[ C_2(v - u) = C_1(\|v - u\|) \]

where \( C_1 \) is a function of distance.

The function spatcov computes estimates of the covariance function \( C_1 \) or \( C_2 \) as follows:

- If \( \text{isotropic} = \text{FALSE} \), an estimate of the covariance function \( C_2 \) is computed, assuming the random field is stationary, using the naive moment estimator, \( C_2 = \text{imcov}(X-\text{mean}(X))/\text{setcov}(\text{Window}(X)) \). The result is a pixel image.
- If \( \text{isotropic} = \text{TRUE} \) (the default) an estimate of the covariance function \( C_1 \) is computed, assuming the random field is stationary and isotropic.
  - When \( \text{pooling} = \text{FALSE} \), the estimate of \( C_1 \) is the rotational average of the naive estimate of \( C_2 \).
  - When \( \text{pooling} = \text{TRUE} \) (the default), the estimate of \( C_1 \) is the ratio of the rotational averages of the numerator and denominator which form the naive estimate of \( C_2 \).

The result is a function object (class "fv").

If the argument Y is given, it should be a pixel image compatible with X. An estimate of the spatial cross-covariance function between X and Y will be computed.

Value

If \( \text{isotropic} = \text{TRUE} \) (the default), the result is a function value table (object of class "fv") giving the estimated values of the covariance function or spatial correlation function for a sequence of values of the spatial lag distance \( r \).

If \( \text{isotropic} = \text{FALSE} \), the result is a pixel image (object of class "im") giving the estimated values of the spatial covariance function or spatial correlation function for a grid of values of the spatial lag vector.
Spatial Cumulative Distribution Function

Description

Compute the spatial cumulative distribution function of a spatial covariate, optionally using spatially-varying weights.

Usage

spatialcdf(Z, weights = NULL, normalise = FALSE, ..., W = NULL, Zname = NULL)

Arguments

Z Spatial covariate. A pixel image or a function(x,y,...)
weights Spatial weighting for different locations. A pixel image, a function(x,y,...), a window, a constant value, or a fitted point process model (object of class "ppm" or "kppm").
normalise Logical. Whether the weights should be normalised so that they sum to 1.
... Arguments passed to as.mask to determine the pixel resolution, or extra arguments passed to Z if it is a function.
W Optional window (object of class "owin") defining the spatial domain.
Zname Optional character string for the name of the covariate Z used in plots.

Examples

if(offline <- !interactive()) op <- spatstat.options(npixel=32)

D <- density(cells)
plot(spatcov(D))
if(offline) spatstat.options(op)
Details

If \texttt{weights} is missing or NULL, it defaults to 1. The values of the covariate \( Z \) are computed on a grid of pixels. The weighted cumulative distribution function of \( Z \) values is computed, taking each value with weight equal to the pixel area. The resulting function \( F \) is such that \( F(t) \) is the area of the region of space where \( Z \leq t \).

If \texttt{weights} is a pixel image or a function, then the values of \texttt{weights} and of the covariate \( Z \) are computed on a grid of pixels. The weights are multiplied by the pixel area. Then the weighted empirical cumulative distribution function of \( Z \) values is computed using \texttt{ewcdf}. The resulting function \( F \) is such that \( F(t) \) is the total weight (or weighted area) of the region of space where \( Z \leq t \).

If \texttt{weights} is a fitted point process model, then it should be a Poisson process. The fitted intensity of the model, and the value of the covariate \( Z \), are evaluated at the quadrature points used to fit the model. The weights are multiplied by the weights of the quadrature points. Then the weighted empirical cumulative distribution of \( Z \) values is computed using \texttt{ewcdf}. The resulting function \( F \) is such that \( F(t) \) is the expected number of points in the point process that will fall in the region of space where \( Z \leq t \).

If \texttt{normalise=TRUE}, the function is normalised so that its maximum value equals 1, so that it gives the cumulative fraction of weight or cumulative fraction of points.

The result can be printed, plotted, and used as a function.

Value

A cumulative distribution function object belonging to the classes \"spatialcdf\", \"ewcdf\", \"ecdf\" (only if \texttt{normalise=TRUE}) and \"stepfun\".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

\texttt{ewcdf}, \texttt{cdf.test}

Examples

```r
with(bei.extra, {
 plot(spatialcdf(grad))
 if(require("spatstat.model")) {
 fit <- ppm(bei ~ elev)
 plot(spatialcdf(grad, predict(fit)))
 A <- spatialcdf(grad, fit)
 A(0.1)
 }
})

plot(spatialcdf("x", W=letterR))
```
ssf  Spatially Sampled Function

Description
Create an object that represents a spatial function which has been evaluated or sampled at an irregular set of points.

Usage
ssf(loc, val)

Arguments
loc  The spatial locations at which the function has been evaluated. A point pattern (object of class "ppp").
val  The function values at these locations. A numeric vector with one entry for each point of loc, or a data frame with one row for each point of loc.

Details
An object of class "ssf" represents a real-valued or vector-valued function that has been evaluated or sampled at an irregular set of points. An example would be a spatial covariate that has only been measured at certain locations.

An object of this class also inherits the class "ppp", and is essentially the same as a marked point pattern, except for the class membership which enables it to be handled in a different way.

There are methods for plot, print etc; see plot.ssf and methods.ssf.

Use unmark to extract only the point locations, and marks.ssf to extract only the function values.

Value
Object of class "ssf".

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also
plot.ssf, methods.ssf, Smooth.ssf, with.ssf, [.ssf.

Examples
ssf(cells, nndist(cells, k=1:3))
Description

Computes the Stieltjes integral of a function $f$ with respect to a function $M$.

Usage

stieltjes(f, M, ...)

Arguments

- **f**: The integrand. A function in the R language.
- **M**: The cumulative function against which $f$ will be integrated. An object of class "fv" or "stepfun".
- **...**: Additional arguments passed to $f$.

Details

This command computes the Stieltjes integral

$$ I = \int f(x) dM(x) $$

of a real-valued function $f(x)$ with respect to a nondecreasing function $M(x)$.

One common use of the Stieltjes integral is to find the mean value of a random variable from its cumulative distribution function $F(x)$. The mean value is the Stieltjes integral of $f(x) = x$ with respect to $F(x)$.

The argument $f$ should be a function in the R language. It should accept a numeric vector argument $x$ and should return a numeric vector of the same length.

The argument $M$ should be either a step function (object of class "stepfun") or a function value table (object of class "fv", see fv.object). Objects of class "stepfun" are returned by ecdf, ewcdf, spatialcdfs and other utilities. Objects of class "fv" are returned by the commands Kest, Gest, etc.

Value

A list containing the value of the Stieltjes integral computed using each of the versions of the function $M$.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.
stienen

See Also

fv.object, Gest

Examples

# estimate cdf of nearest neighbour distance in redwood data
G <- Gest(redwood)
# compute estimate of mean nearest neighbour distance
stieltjes(function(x){x}, G)
# estimated probability of a distance in the interval [0.1,0.2]
stieltjes(function(x,a,b){ (x >= a) & (x <= b)}, G, a=0.1, b=0.2)

# stepfun example
H <- spatialcdf(bei.extra$elev, normalise=TRUE)
stieltjes(function(x){x}, H)

Description

Draw the Stienen diagram of a point pattern, or compute the region covered by the Stienen diagram.

Usage

stienen(X, ..., bg = "grey", border = list(bg = NULL))
stienenSet(X, edge=TRUE)

Arguments

X
Point pattern (object of class "ppp").

... Arguments passed to plot.ppp to control the plot.

bg Fill colour for circles.

border Either a list of arguments passed to plot.ppp to control the display of circles at
the border of the diagram, or the value FALSE indicating that the border circles
should not be plotted.

edge Logical value indicating whether to include the circles at the border of the dia-
gram.

Details

The Stienen diagram of a point pattern (Stienen, 1982) is formed by drawing a circle around each
point of the pattern, with diameter equal to the nearest-neighbour distance for that point. These
circles do not overlap. If two points are nearest neighbours of each other, then the corresponding
circles touch.

stienenSet(X) computes the union of these circles and returns it as a window (object of class
"owin").
stienen(X) generates a plot of the Stienen diagram of the point pattern X. By default, circles are shaded in grey if they lie inside the window of X, and are not shaded otherwise.

Value

The plotting function stienen returns NULL.

The return value of stienenSet is a window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References


See Also

nndist, plot.ppp

Examples

Y <- stienenSet(cells)
stienen(redwood)
stienen(redwood, border=list(bg=NULL, lwd=2, cols="red"))

studpermu.test  Studentised Permutation Test

Description

Perform a studentised permutation test for a difference between groups of point patterns.

Usage

studpermu.test(X, formula, summaryfunction = Kest,
    ..., rinterval = NULL, nperm = 999,
    use=Tbar = FALSE, minpoints = 20, rsteps = 128,
    r = NULL, arguments.in.data = FALSE)
Arguments

- **X**: Data. Either a hyperframe or a list of lists of point patterns.
- **formula**: Formula describing the grouping, when \( X \) is a hyperframe. The left side of the formula identifies which column of \( X \) contains the point patterns. The right side identifies the grouping factor. If the formula is missing, the grouping variable is taken to be the first column of \( X \) that contains a factor, and the point patterns are taken from the first column that contains point patterns.
- **summaryfunction**: Summary function applicable to point patterns.
- **rinterval**: Interval of distance values \( r \) over which the summary function should be evaluated and over which the test statistic will be integrated. If NULL, the default range of the summary statistic is used (taking the intersection of these ranges over all patterns).
- **nperm**: Number of random permutations for the test.
- **use.Tbar**: Logical value indicating choice of test statistic. If TRUE, use the alternative test statistic, which is appropriate for summary functions with roughly constant variance, such as \( K(r)/r \) or \( L(r) \).
- **minpoints**: Minimum permissible number of points in a point pattern for inclusion in the test calculation.
- **rsteps**: Number of discretisation steps in the rinterval.
- **r**: Optional vector of distance values as the argument for summaryfunction. Should not usually be given. There is a sensible default.
- **arguments.in.data**: Logical. If TRUE, individual extra arguments to summaryfunction will be taken from \( X \) (which must be a hyperframe). This assumes that the first argument of summaryfunction is the point pattern dataset.

Details

This function performs the studentized permutation test of Hahn (2012) for a difference between groups of point patterns.

The first argument \( X \) should be either

- **a list of lists of point patterns**: Each element of \( X \) will be interpreted as a group of point patterns, assumed to be replicates of the same point process.

- **a hyperframe**: One column of the hyperframe should contain point patterns, and another column should contain a factor indicating the grouping. The argument formula should be a formula in the R language specifying the grouping: it should be of the form \( P \sim G \) where \( P \) is the name of the column of point patterns, and \( G \) is the name of the factor.

A group needs to contain at least two point patterns with at least \( \text{minpoints} \) points in each pattern.

The function returns an object of class "htest" and "studpermute" that can be printed and plotted. The printout shows the test result and \( p \)-value. The plot shows the summary functions for the groups (and the group means if requested).
subspaceDistance

Value

Object of class "studpermutest".

Author(s)

Ute Hahn.

Modified for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References


See Also

plot.studpermutest

Examples

np <- if(interactive()) 99 else 19
testpyramidal <- studpermu.test(pyramidal, Neurons ~ group, nperm=np)
testpyramidal

---

subspaceDistance  Distance Between Linear Spaces

Description

Evaluate the distance between two linear subspaces using the measure proposed by Li, Zha and Chiaromonte (2005).

Usage

subspaceDistance(B0, B1)

Arguments

B0  Matrix whose columns are a basis for the first subspace.
B1  Matrix whose columns are a basis for the second subspace.

Details

This algorithm calculates the maximum absolute value of the eigenvalues of $P_1 - P_0$ where $P_0, P_1$ are the projection matrices onto the subspaces generated by $B_0, B_1$. This measure of distance was proposed by Li, Zha and Chiaromonte (2005). See also Xia (2007).
thresholdCI

Value
A single numeric value.

Author(s)
Matlab original by Yongtao Guan, translated to R by Suman Rakshit.

References

---

**thresholdCI**

*Confidence Interval for Threshold of Numerical Predictor*

**Description**
Given a point pattern and a spatial covariate that has some predictive value for the point pattern, compute a confidence interval for the optimal value of the threshold that should be used to convert the covariate to a binary predictor.

**Usage**
```r
thresholdCI(X, Z, confidence = 0.95, nsim = 1000, parametric = FALSE)
```

**Arguments**
- **X**: Point pattern (object of class "ppp").
- **Z**: Spatial covariate with numerical values. Either a pixel image (object of class "im"), a distance function (object of class "distfun") or a function(x,y) in the R language.
- **confidence**: Confidence level. A number between 0 and 1.
- **nsim**: Number of bootstrap simulations to perform.
- **parametric**: Logical value specifying whether to use the parametric bootstrap.

**Details**
The spatial covariate Z is assumed to have some utility as a predictor of the point pattern X.
This code computes a bootstrap confidence interval for the best threshold value z for converting the numerical predictor to a binary predictor, for use in techniques such as Weights of Evidence.
thresholdSelect

Value

A matrix containing upper and lower limits for the threshold \( z \) and the corresponding upper and lower limits for the fraction of area of the study region.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References


See Also

thresholdSelect

Examples

```r
gold <- rescale(murchison$gold, 1000, "km")
faults <- rescale(murchison$faults, 1000, "km")
distfault <- distfun(faults)
Nsim <- if(interactive()) 250 else 25
thresholdCI(gold, distfault, nsim=Nsim)
```

Description

Given a point pattern and a spatial covariate that has some predictive value for the point pattern, determine the optimal value of the threshold for converting the covariate to a binary predictor.

Usage

```r
thresholdSelect(X, Z, method = c("Y", "LL", "AR", "t", "C"), Zname)
```

Arguments

- **X**: Point pattern (object of class "ppp").
- **Z**: Spatial covariate with numerical values. Either a pixel image (object of class "im"), a distance function (object of class "distfun") or a function\((x, y)\) in the R language.
- **method**: Character string (partially matched) specifying the method to be used to select the optimal threshold value. See Details.
- **Zname**: Optional character string giving a short name for the covariate.
Details

The spatial covariate $Z$ is assumed to have some utility as a predictor of the point pattern $X$.

This code chooses the best threshold value $v$ for converting the numerical predictor $Z$ to a binary predictor, for use in techniques such as Weights of Evidence.

The best threshold is selected by maximising the criterion specified by the argument method. Options are:

- method="Y" (the default): the Youden criterion
- method="LL": log-likelihood
- method="AR": the Akman-Raftery criterion
- method="t": the Studentised Weights-of-Evidence contrast
- method="C": the Weights-of-Evidence contrast

These criteria are explained in Baddeley et al (2021).

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim" (see bw.optim.object) which can be plotted to show the criterion used to select the threshold.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References


See Also

thresholdCI

Examples

gold <- rescale(murchison$gold, 1000, "km")
faults <- rescale(murchison$faults, 1000, "km")
distfault <- distfun(faults)
z <- thresholdSelect(gold, distfault)
z
plot(z, xlim=c(0, 20))
Pixel Values Along a Transect

**Description**

Extract the pixel values of a pixel image at each point along a linear transect.

**Usage**

```r
transect.im(X, ..., from="bottomleft", to="topright",
 nsample=512, click=FALSE, add=FALSE, curve=NULL)
```

**Arguments**

- `X`: A pixel image (object of class "im").
- `...`: Ignored.
- `from, to`: Optional. Start point and end point of the transect. Pairs of \((x, y)\) coordinates in a format acceptable to `xy.coords`, or keywords "bottom", "left", "top", "right", "bottomleft" etc.
- `nsample`: Integer. Number of sample locations along the transect.
- `click`: Optional. Logical value. If `TRUE`, the linear transect is determined interactively by the user, who clicks two points on the current plot.
- `add`: Logical. If `click=TRUE`, this argument determines whether to perform interactive tasks on the current plot (`add=TRUE`) or to start by plotting `X` (`add=FALSE`).
- `curve`: Optional. A specification of a curved transect. See the section on Curved Transect.

**Details**

The pixel values of the image `X` along a line segment will be extracted. The result is a function table ("fv" object) which can be plotted directly.

If `click=TRUE`, then the user is prompted to click two points on the plot of `X`. These endpoints define the transect.

Otherwise, the transect is defined by the endpoints `from` and `to`. The default is a diagonal transect from bottom left to top right of the frame.

**Value**

An object of class "fv" which can be plotted.
**Curved Transect**

If `curve` is given, then the transect will be a curve. The argument `curve` should be a list with the following arguments:

- **f** A function in the R language with one argument `t`.
- **tlim** A numeric vector of length 2 giving the range of values of the argument `t`. `tname`(Optional) a character string giving the symbolic name of the function argument `t`; defaults to "t".
- **tdescrip** (Optional) a character string giving a short description of the function argument `t`; defaults to "curve parameter".

The function `f` must return a 2-column matrix or data frame specifying the spatial coordinates `(x,y)` of locations along the curve, determined by the values of the input argument `t`.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

*im*

**Examples**

```r
Z <- bei.extra$elev
plot(transect.im(Z))
```

---

**Tstat**

**Third order summary statistic**

**Description**

Computes the third order summary statistic $T(r)$ of a spatial point pattern.

**Usage**

```r
Tstat(X, ..., r = NULL, rmax = NULL, correction = c("border", "translate"), ratio = FALSE, verbose=TRUE)
```

**Arguments**

- **X** The observed point pattern, from which an estimate of $T(r)$ will be computed. An object of class "ppp", or data in any format acceptable to `as.ppp()`.
- **...** Ignored.
- **r** Optional. Vector of values for the argument `r` at which $T(r)$ should be evaluated. Users are advised not to specify this argument; there is a sensible default.
- **rmax** Optional. Numeric. The maximum value of `r` for which $T(r)$ should be estimated.
correction  Optional. A character vector containing any selection of the options "none", "border", "bord.modif", "translate", "translation", or "best". It specifies the edge correction(s) to be applied. Alternatively correction="all" selects all options.

ratio  Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

verbose  Logical. If TRUE, an estimate of the computation time is printed.

Details

This command calculates the third-order summary statistic $T(r)$ for a spatial point patterns, defined by Schladitz and Baddeley (2000).

The definition of $T(r)$ is similar to the definition of Ripley's $K$ function $K(r)$, except that $K(r)$ counts pairs of points while $T(r)$ counts triples of points. Essentially $T(r)$ is a rescaled cumulative distribution function of the diameters of triangles in the point pattern. The diameter of a triangle is the length of its longest side.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Computation time

If the number of points is large, the algorithm can take a very long time to inspect all possible triangles. A rough estimate of the total computation time will be printed at the beginning of the calculation. If this estimate seems very large, stop the calculation using the user interrupt signal, and call Tstat again, using rmax to restrict the range of $r$ values, thus reducing the number of triangles to be inspected.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References


See Also

Kest

Examples

plot(Tstat(redwood))
Description

This command estimates the variance of any summary statistic (such as the $K$-function) by spatial subdivision of a single point pattern dataset.

Usage

```r
varblock(X, fun = Kest,
 blocks = quadrats(X, nx = nx, ny = ny),
 ...,
 nx = 3, ny = nx,
 confidence=0.95)
```

Arguments

- **x**: Point pattern dataset (object of class "ppp").
- **fun**: Function that computes the summary statistic.
- **blocks**: Optional. A tessellation that specifies the division of the space into blocks.
- **...**: Arguments passed to `fun`.
- **nx, ny**: Optional. Number of rectangular blocks in the $x$ and $y$ directions. Incompatible with `blocks`.
- **confidence**: Confidence level, as a fraction between 0 and 1.

Details

This command computes an estimate of the variance of the summary statistic $\text{fun}(X)$ from a single point pattern dataset $X$ using a subdivision method. It can be used to plot confidence intervals for the true value of a summary function such as the $K$-function.

The window containing $X$ is divided into pieces by an $nx \times ny$ array of rectangles (or is divided into pieces of more general shape, according to the argument `blocks` if it is present). The summary statistic $\text{fun}$ is applied to each of the corresponding sub-patterns of $X$ as described below. Then the pointwise sample mean, sample variance and sample standard deviation of these summary statistics are computed. Then pointwise confidence intervals are computed, for the specified level of confidence, defaulting to 95 percent.

The variance is estimated by equation (4.21) of Diggle (2003, page 52). This assumes that the point pattern $X$ is stationary. For further details see Diggle (2003, pp 52–53).

The estimate of the summary statistic from each block is computed as follows. For most functions `fun`, the estimate from block $B$ is computed by finding the subset of $X$ consisting of points that fall inside $B$, and applying `fun` to these points, by calling `fun(X[B])`.

However if `fun` is the $K$-function `Kest`, or any function which has an argument called `domain`, the estimate for each block $B$ is computed by calling `fun(X, domain=B)`. In the case of the $K$-function this means that the estimate from block $B$ is computed by counting pairs of points in which the first point lies in $B$, while the second point may lie anywhere.
Value

A function value table (object of class "fv") that contains the result of \text{fun}(X) as well as the sample mean, sample variance and sample standard deviation of the block estimates, together with the upper and lower two-standard-deviation confidence limits.

Errors

If the blocks are too small, there may be insufficient data in some blocks, and the function \text{fun} may report an error. If this happens, you need to take larger blocks.

An error message about incompatibility may occur. The different function estimates may be incompatible in some cases, for example, because they use different default edge corrections (typically because the tiles of the tessellation are not the same kind of geometric object as the window of \text{X}, or because the default edge correction depends on the number of points). To prevent this, specify the choice of edge correction, in the \text{correction} argument to \text{fun}, if it has one.

An alternative to varblock is Loh’s mark bootstrap \text{lohboot}.

Author(s)

A. Baddeley and R. Turner

References


See Also

\texttt{tess, quadrats} for basic manipulation.

\texttt{lohboot} for an alternative bootstrap technique.

Examples

\begin{verbatim}
v <- varblock(amacrine, Kest, nx=4, ny=2)
v <- varblock(amacrine, Kcross, nx=4, ny=2)
if(interactive()) plot(v, iso ~ r, shade=c("hiiso", "loiso"))
\end{verbatim}

Description

Given a spatial object (such as a point pattern or pixel image) in two dimensions, these functions extract the window in which the object is defined.
Usage

```r
S3 method for class 'quadrattest'
Window(X, ...)
```

Arguments

- `X`: A spatial object.
- `...`: Ignored.

Details

These are methods for the generic function `Window` which extract the spatial window in which the object `X` is defined.

Value

An object of class "owin" (see `owin.object`) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

`Window`, `Window.ppp`, `Window.psp`

`owin.object`

Examples

```r
A <- quadrat.test(cells, 4)
Window(A)
```

---

### with.fv

**Evaluate an Expression in a Function Table**

**Description**

Evaluate an R expression in a function value table (object of class "fv").

**Usage**

```r
S3 method for class 'fv'
with(data, expr, ..., fun = NULL, enclos=NULL)
```
**with.fv**

**Arguments**

- **data**: A function value table (object of class "fv") in which the expression will be evaluated.
- **expr**: The expression to be evaluated. An R language expression, which may involve the names of columns in data, the special abbreviations .x and .y, and global constants or functions.
- **fun**: Logical value, specifying whether the result should be interpreted as another function (fun=TRUE) or simply returned as a numeric vector or array (fun=FALSE). See Details.
- **enclos**: An environment in which to search for variables that are not found in data. Defaults to `parent.frame()`.

**Details**

This is a method for the generic command `with` for an object of class "fv" (function value table).

An object of class "fv" is a convenient way of storing and plotting several different estimates of the same function. It is effectively a data frame with extra attributes. See `fv.object` for further explanation.

This command makes it possible to perform computations that involve different estimates of the same function. For example we use it to compute the arithmetic difference between two different edge-corrected estimates of the \( K \) function of a point pattern.

The argument `expr` should be an R language expression. The expression may involve

- the name of any column in data, referring to one of the estimates of the function;
- the symbol . which stands for all the available estimates of the function;
- the symbol .y which stands for the recommended estimate of the function (in an "fv" object, one of the estimates is always identified as the recommended estimate);
- the symbol .x which stands for the argument of the function;
- global constants or functions.

See the Examples. The expression should be capable of handling vectors and matrices.

The interpretation of the argument `fun` is as follows:

- If `fun=FALSE`, the result of evaluating the expression `expr` will be returned as a numeric vector, matrix or data frame.
- If `fun=TRUE`, then the result of evaluating `expr` will be interpreted as containing the values of a new function. The return value will be an object of class "fv". (This can only happen if the result has the right dimensions.)
- The default is `fun=TRUE` if the result of evaluating `expr` has more than one column, and `fun=FALSE` otherwise.

To perform calculations involving several objects of class "fv", use `eval.fv`. 
Value

A function value table (object of class "fv") or a numeric vector or data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

with.fv.object, eval.fv, Kest

Examples

# compute 4 estimates of the K function
X <- runifrect(42)
K <- Kest(X)
plot(K)

# derive 4 estimates of the L function L(r) = sqrt(K(r)/pi)
L <- with(K, sqrt(./pi))
plot(L)

# compute 4 estimates of V(r) = L(r)/r
V <- with(L, ./x)
plot(V)

# compute the maximum absolute difference between
# the isotropic and translation correction estimates of K(r)
D <- with(K, max(abs(iso - trans)))

with.ssf

Evaluate Expression in a Spatially Sampled Function

Description

Given a spatially sampled function, evaluate an expression involving the function values.

Usage

apply.ssf(X, ...)

### S3 method for class 'ssf'
with(data, ...)

Arguments

X, data A spatially sampled function (object of class "ssf").
... Arguments passed to with.default or apply specifying what to compute.
Details
An object of class "ssf" represents a function (real- or vector-valued) that has been sampled at a finite set of points. It contains a data frame which provides the function values at the sample points.

In with.ssf, the expression specified by ... will be evaluated in this dataframe. In apply.ssf, the dataframe will be subjected to the apply operator using the additional arguments ... .

If the result of evaluation is a data frame with one row for each data point, or a numeric vector with one entry for each data point, then the result will be an object of class "ssf" containing this information. Otherwise, the result will be a numeric vector.

Value
An object of class "ssf" or a numeric vector.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also
ssf

Examples
a <- ssf(cells, data.frame(d=nndist(cells), i=1:npoints(cells)))
with(a, i/d)
Details

This is the subset operator for the class "ssf".

Value

Another object of class "ssf".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

ssf, with ssf

Examples

```r
f <- ssf(cells, data.frame(d=nndist(cells), i=1:42))
f
f[1:10,]
f[,1]
```
Index

* **Prospectivity**
  rhohat, 412

* **Resource Selection Function**
  rhohat, 412

* **algebra**
  dimhat, 121
  subspaceDistance, 451

* **array**
  dimhat, 121

* **attribute**
  bind.fv, 33
  bw.optim.object, 53
  fasp.object, 157
  fv.object, 172

* **classes**
  fv, 170

* **classif**
  clusterset, 74
  nnclean, 328

* **datagen**
  ssf, 446

* **hplot**
  bits.envelope, 35
  dg.envelope, 112
  envelope, 132
  envelope.envelope, 141
  envelope.pp3, 143
  markmarkscatter, 314
  pairs.im, 339
  panel.contour, 340
  plot.bermantest, 367
  plot.cdf.test, 368
  plot.envelope, 370
  plot.fasp, 371
  plot.fv, 373
  plot.laslett, 377
  plot.quadmatrix, 378
  plot.ss, 380
  plot.studpermutoest, 382

  pool.envelope, 386
  pool.fasp, 387
  pool.fv, 388
  rose, 421

* **htest**
  berman.test, 31
  bits.envelope, 35
  bits.test, 37
  cdf.test, 66
  clarkevans.test, 72
  dclf.progress, 82
  dclf.sigtrace, 84
  dclf.test, 86
  dg.envelope, 112
  dg.progress, 114
  dg.sigtrace, 116
  dg.test, 119
  envelope, 132
  envelope.envelope, 141
  envelope.pp3, 143
  hopskel, 203
  plot.quadmatrix, 378
  plot.scan.test, 379
  plot.studpermutoest, 382
  pool.envelope, 386
  pool.fasp, 387
  pool.fv, 388
  pool.quadmatrix, 389
  quadtest, 393
  quadmatrix.splitppp, 397
  scan.test, 424
  scanLRTS, 427
  segregation.test, 431
  studpermutoest, 449

* **iplot**
  transect.im, 455

* **iteration**
  bits.envelope, 35
  dg.envelope, 112
| envelope, 132       | bw.diggle, 50 |
| envelope.envelope, 141 | bw.frac, 51    |
| envelope.pp3, 143   | bw.pcf, 54    |
| envelopeArray, 146  | bw.ppl, 56    |
| pool.envelope, 386  | bw.relrisk, 59|
| pool.fasp, 387      | bw.scott, 60  |
| pool.fv, 388        | bw.smoothppp, 62|

* **manip**
  
  | [.ssf, 463       | density.ppp, 90 |
  | as.data.frame.envelope, 20 | density.psp, 96 |
  | as.fv, 24        | density.splitppp, 98|
  | as.owin.quadrattest, 26 | densityAdaptiveKernel, 100|
  | as.tess, 29      | densityfun.ppp, 102|
  | blur, 39         | densityVoronoi, 108|
  | collapse.fv, 76  | dkernel, 123    |
  | compatible.fasp, 77 | formula.fv, 166|
  | compatible.fv, 78 | idw, 207         |
  | domain.quadrattest, 125 | kernel.factor, 247|
  | eval.fasp, 148   | kernel.moment, 248|
  | eval.fv, 149     | kernel.squint, 249|
  | Extract.fasp, 151 | Math.fasp, 318   |
  | Extract.fv, 153  | Math.fv, 320     |
  | fvnames, 173     | methods.rho2hat, 321|
  | harmonise.fv, 200 | methods.rhohat, 323|
  | laslett, 277     | methods.ss, 325  |
  | PPversion, 392   | nndensity.ppp, 333|
  | rat, 401         | quantile.density, 398|
  | stienen, 448     | relrisk.ppp, 407  |
  | transect.im, 455 | Smooth, 434      |
  | Window.quadrattest, 459 | Smooth.ppp, 437 |
  | with.fv, 460     | Smooth.ssf, 440  |
  | withssf, 462     | Smoothfun.ppp, 441|

* **math**
  
  | deriv.fv, 110    | rho2hat, 411 |
  | distcdf, 122     | rhohat, 412  |
  | hotbox, 205      | thresholdCI, 452|
  | increment.fv, 211| thresholdSelect, 453|
  | pairMean, 336    |               |
  | radcumint, 400   |               |
  | rotmean, 423     |               |
  | stieltjes, 447   |               |
  | stienen, 448     |               |

* **methods**
  
  | adaptive.density, 15 | allstats, 16 |
  | as.function.fv, 21   | alltypes, 17 |
  | as.function.rhohat, 23 | blur, 39    |
  | bw.CvL, 45           | bw.abram, 41 |
  | bw.CvL.adaptive, 46  | bw.abram.ppp, 42|
  |                     | CDF, 65       |
circdensity, 69
clarkevans, 70
clarkevans.test, 72
compileK, 79
cov.im, 81
deriv.fv, 110
dkernel, 123
edge.Ripley, 126
edge.Trans, 127
Emark, 129
evelopeArray, 146
F3est, 154
Fest, 158
Finhom, 162
FmultiInhom, 165
fryplot, 167
G3est, 175
Gcross, 176
Gcross.inhom, 180
Gdot, 182
Gdot.inhom, 185
Gest, 187
Gfox, 191
Ginhom, 193
Gmulti, 195
GmultiInhom, 198
Hest, 201
hopskkel, 203
Iest, 209
increment.fv, 211
Jcross, 212
Jdot, 216
Jest, 221
Jinhom, 224
Jmulti, 226
Jmulti.inhom, 229
K3est, 231
kaplan.meier, 232
Kcross, 233
Kcross.inhom, 236
Kdot, 240
Kdot.inhom, 243
kernel.factor, 247
kernel.moment, 248
kernel.squint, 249
Kest, 250
Kest.fft, 254
Kinhom, 256
km.rs, 260
Kmark, 262
Kmeasure, 264
Kmulti, 267
Kmulti.inhom, 269
Kscaled, 273
Ksector, 276
Lcross, 280
Lcross.inhom, 281
Ldot, 283
Ldot.inhom, 285
Lest, 286
Linhom, 288
localK, 289
localKcross, 291
localKcross.inhom, 293
localKdot, 296
localKinhom, 298
localpcf, 300
loh.boot, 302
markconnect, 305
markcorr, 308
markcrosscorr, 312
markvario, 316
miplot, 327
nn.cor, 330
nnorient, 334
pairorient, 337
pcf, 342
pcf.fasp, 343
pcf.fv, 345
pcf.ppp, 347
pcf3est, 351
pcf.cross, 353
pcf.cross.inhom, 355
pcf.dot, 357
pcf.dot.inhom, 360
pcf.inhom, 362
pcf.multi, 365
pool.anylist, 385
pool.rat, 390
PPversion, 392
quantile.density, 398
rectcontact, 402
reduced.sample, 403
rhohat, 412
sdrPredict, 430
sharpen, 433
* Smooth.fv, 435
  spatcov, 442
  spatialcdf, 444
  thresholdCI, 452
  thresholdSelect, 453
  Tstat, 456
  varblock, 458
* package
  spatstat.explore-package, 7
* programming
  eval.fasp, 148
  eval.fv, 149
  marktable, 315
  with.fv, 460
  with.ssf, 462
* smooth
  adaptive.density, 15
  bw.CvL, 45
  bw.CvL.adaptive, 46
  bw.CvLHeat, 48
  bw.diggle, 50
  bw.frac, 51
  bw.pcf, 54
  bw.ppl, 56
  bw.pplHeat, 57
  bw.relrisk, 59
  bw.scott, 60
  bw.smoothppp, 62
  bw.stoyan, 64
  circdensity, 69
  density.ppp, 90
  density.psp, 96
  density.splitppp, 98
  densityAdaptiveKernel, 100
  densityfun.ppp, 102
  densityHeat, 104
  densityHeat.ppp, 105
  densityVoronoi, 108
  dkernel, 123
  idw, 207
  kernel.factor, 247
  kernel.moment, 248
  kernel.squint, 249
  ndensity.ppp, 333
  relrisk.ppp, 407
  Smooth, 434
  Smooth.ppp, 437
  Smooth.ssf, 440
* spatial
  [.ssf, 463
  adaptive.density, 15
  allstats, 16
  alltypes, 17
  as.data.frame.envelope, 20
  as.function.fv, 21
  as.function.rhohat, 23
  as.fv, 24
  as.owin.quadrattest, 26
  as.tess, 29
  auc, 30
  berman.test, 31
  bind.fv, 33
  bits.envelope, 35
  bits.test, 37
  blur, 39
  bw.abram.ppp, 42
  bw.CvL, 45
  bw.CvL.adaptive, 46
  bw.CvLHeat, 48
  bw.diggle, 50
  bw.frac, 51
  bw.optim.object, 53
  bw.pcf, 54
  bw.ppl, 56
  bw.pplHeat, 57
  bw.relrisk, 59
  bw.scott, 60
  bw.smoothppp, 62
  bw.stoyan, 64
  cdf.test, 66
  clarkevans, 70
  clarkevans.test, 72
  clusterset, 74
  collapse.fv, 76
  compatible.fasp, 77
  compatible.fv, 78
  compileK, 79
  cov.im, 81
  dclf.progress, 82
  dclf.sigtrace, 84
  dclf.test, 86
  density.ppp, 90
  density.psp, 96
  density.splitppp, 98
  densityAdaptiveKernel, 100
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>densityfun.ppp</td>
<td>102</td>
</tr>
<tr>
<td>densityHeat</td>
<td>104</td>
</tr>
<tr>
<td>densityHeat.ppp</td>
<td>105</td>
</tr>
<tr>
<td>densityVoronoi</td>
<td>108</td>
</tr>
<tr>
<td>deriv.fv</td>
<td>110</td>
</tr>
<tr>
<td>dg.envelope</td>
<td>112</td>
</tr>
<tr>
<td>dg.progress</td>
<td>114</td>
</tr>
<tr>
<td>dg.sigtrace</td>
<td>116</td>
</tr>
<tr>
<td>dg.test</td>
<td>119</td>
</tr>
<tr>
<td>distcdf</td>
<td>122</td>
</tr>
<tr>
<td>domain.quadratetest</td>
<td>125</td>
</tr>
<tr>
<td>edge.Ripley</td>
<td>126</td>
</tr>
<tr>
<td>edge.Trans</td>
<td>127</td>
</tr>
<tr>
<td>Emark</td>
<td>129</td>
</tr>
<tr>
<td>envelope</td>
<td>132</td>
</tr>
<tr>
<td>envelope.envelope</td>
<td>141</td>
</tr>
<tr>
<td>envelope.pp3</td>
<td>143</td>
</tr>
<tr>
<td>envelopeArray</td>
<td>146</td>
</tr>
<tr>
<td>eval.fasp</td>
<td>148</td>
</tr>
<tr>
<td>eval.fv</td>
<td>149</td>
</tr>
<tr>
<td>Extract.fasp</td>
<td>151</td>
</tr>
<tr>
<td>Extract.fv</td>
<td>153</td>
</tr>
<tr>
<td>F3est</td>
<td>154</td>
</tr>
<tr>
<td>fasp.object</td>
<td>157</td>
</tr>
<tr>
<td>Fest</td>
<td>158</td>
</tr>
<tr>
<td>Finhom</td>
<td>162</td>
</tr>
<tr>
<td>FmultiInhom</td>
<td>165</td>
</tr>
<tr>
<td>formula.fv</td>
<td>166</td>
</tr>
<tr>
<td>fryplot</td>
<td>167</td>
</tr>
<tr>
<td>fv</td>
<td>170</td>
</tr>
<tr>
<td>fv.object</td>
<td>172</td>
</tr>
<tr>
<td>fvnames</td>
<td>173</td>
</tr>
<tr>
<td>G3est</td>
<td>175</td>
</tr>
<tr>
<td>Gcross</td>
<td>176</td>
</tr>
<tr>
<td>Gcross.inhom</td>
<td>180</td>
</tr>
<tr>
<td>Gdot</td>
<td>182</td>
</tr>
<tr>
<td>Gdot.inhom</td>
<td>185</td>
</tr>
<tr>
<td>Gest</td>
<td>187</td>
</tr>
<tr>
<td>Gfox</td>
<td>191</td>
</tr>
<tr>
<td>Ginhom</td>
<td>193</td>
</tr>
<tr>
<td>Gmulti</td>
<td>195</td>
</tr>
<tr>
<td>GmultiInhom</td>
<td>198</td>
</tr>
<tr>
<td>harmonise.fv</td>
<td>200</td>
</tr>
<tr>
<td>Hest</td>
<td>201</td>
</tr>
<tr>
<td>hopskel</td>
<td>203</td>
</tr>
<tr>
<td>idw</td>
<td>207</td>
</tr>
<tr>
<td>Iest</td>
<td>209</td>
</tr>
<tr>
<td>increment.fv</td>
<td>211</td>
</tr>
<tr>
<td>Jcross</td>
<td>212</td>
</tr>
<tr>
<td>Jdot</td>
<td>216</td>
</tr>
<tr>
<td>Jest</td>
<td>221</td>
</tr>
<tr>
<td>Jinhom</td>
<td>224</td>
</tr>
<tr>
<td>Jmulti</td>
<td>226</td>
</tr>
<tr>
<td>Jmulti.inhom</td>
<td>229</td>
</tr>
<tr>
<td>K3est</td>
<td>231</td>
</tr>
<tr>
<td>kaplan.meier</td>
<td>232</td>
</tr>
<tr>
<td>Kcross</td>
<td>233</td>
</tr>
<tr>
<td>Kcross.inhom</td>
<td>236</td>
</tr>
<tr>
<td>Kdot</td>
<td>240</td>
</tr>
<tr>
<td>Kdot.inhom</td>
<td>243</td>
</tr>
<tr>
<td>Kest</td>
<td>250</td>
</tr>
<tr>
<td>Kest.fft</td>
<td>254</td>
</tr>
<tr>
<td>Kinhom</td>
<td>256</td>
</tr>
<tr>
<td>km.rs</td>
<td>260</td>
</tr>
<tr>
<td>Kmark</td>
<td>262</td>
</tr>
<tr>
<td>Kmeasure</td>
<td>264</td>
</tr>
<tr>
<td>Kmulti</td>
<td>267</td>
</tr>
<tr>
<td>Kmulti.inhom</td>
<td>269</td>
</tr>
<tr>
<td>Kscaled</td>
<td>273</td>
</tr>
<tr>
<td>Ksector</td>
<td>276</td>
</tr>
<tr>
<td>laslett</td>
<td>277</td>
</tr>
<tr>
<td>Lcross</td>
<td>280</td>
</tr>
<tr>
<td>Lcross.inhom</td>
<td>281</td>
</tr>
<tr>
<td>Ldot</td>
<td>283</td>
</tr>
<tr>
<td>Ldot.inhom</td>
<td>285</td>
</tr>
<tr>
<td>Lest</td>
<td>286</td>
</tr>
<tr>
<td>Linhom</td>
<td>288</td>
</tr>
<tr>
<td>localK</td>
<td>289</td>
</tr>
<tr>
<td>localKcross</td>
<td>291</td>
</tr>
<tr>
<td>localKcross.inhom</td>
<td>293</td>
</tr>
<tr>
<td>localKdot</td>
<td>296</td>
</tr>
<tr>
<td>localKinhom</td>
<td>298</td>
</tr>
<tr>
<td>localpcf</td>
<td>300</td>
</tr>
<tr>
<td>lohboot</td>
<td>302</td>
</tr>
<tr>
<td>markconnect</td>
<td>305</td>
</tr>
<tr>
<td>markcorr</td>
<td>308</td>
</tr>
<tr>
<td>markcrosscorr</td>
<td>312</td>
</tr>
<tr>
<td>markmarksccatter</td>
<td>314</td>
</tr>
<tr>
<td>marktable</td>
<td>315</td>
</tr>
<tr>
<td>markvario</td>
<td>316</td>
</tr>
<tr>
<td>Math.fasp</td>
<td>318</td>
</tr>
<tr>
<td>Math.fv</td>
<td>320</td>
</tr>
<tr>
<td>methods.rho2hat</td>
<td>321</td>
</tr>
<tr>
<td>methods.rhohat</td>
<td>323</td>
</tr>
<tr>
<td>methods.ssf</td>
<td>325</td>
</tr>
<tr>
<td>miplot</td>
<td>327</td>
</tr>
</tbody>
</table>
nnnclean, 328
nnncorr, 330
nnndensity.ppp, 333
nnnorient, 334
pairMean, 336
pairorient, 337
pairs.im, 339
panel.contour, 340
pcf, 342
pcf.fasp, 343
pcf.fv, 345
pcf.ppp, 347
pcf3est, 351
pcfcross, 353
pcfcross.inhom, 355
pcfdot, 357
pcfdot.inhom, 360
pcfinhom, 362
pcfmulti, 365
plot.bermantest, 367
plot.cdf.test, 368
plot.envelope, 370
plot.fasp, 371
plot.fv, 373
plot.laslett, 377
plot.quadrattest, 378
plot.scan.test, 379
plot.ssf, 380
pool, 384
pool.anylist, 385
pool.envelope, 386
pool.fasp, 387
pool.fv, 388
pool.quadrattest, 389
pool.rat, 390
PPversion, 392
quadrat.test, 393
quadrat.test.splitppp, 397
radecumint, 400
rat, 401
rectcontact, 402
reduced.sample, 403
relrisk, 406
relrisk.ppp, 407
rho2hat, 411
rholhat, 412
roc, 419
rose, 421
rotmean, 423
scan.test, 424
scanLRTS, 427
sdr, 429
sdrPredict, 430
segregation.test, 431
sharpen, 433
Smooth, 434
Smooth.fv, 435
Smooth.ppp, 437
Smooth.ssf, 440
Smoothfun.ppp, 441
spatcov, 442
spatialcdfs, 444
spatstat.explore.package, 7
ssf, 446
stieljes, 447
stienen, 448
studpermu.test, 449
thresholdCI, 452
thresholdSelect, 453
transect.im, 455
Tstat, 456
varblock, 458
Window.quadrattest, 459
with.fv, 460
with.ssf, 462

* univar
  CDF, 65
cov.im, 81
quantile.density, 398

* utilities
  reload.or.compute, 404
[. 153
[.fasp, 157, 158
[.fasp(Extract.fasp), 151
[.fv(Extract.fv), 153
[.ppp, 165, 198
[.ssf, 446, 463
[<-.fv(Extract.fv), 153
$<-.fv(Extract.fv), 153

ad.test, 66–68
adaptivedensity, 15, 48, 95, 102, 104, 107, 110
allstats, 10, 16
anova.ppm, 13, 396, 398
dclf.test, 13, 37, 39, 83–86, 86, 119, 120, 139
default.expand, 139
density.pplists (density.splitppp), 98
density.psp, 9, 96
density.splitppp, 98
densityAdaptiveKernel, 15, 16, 47, 48, 100
densityfun (densityfun.ppp), 102
densityfun.ppp, 102
densityHeat, 104, 106
densityHeat.ppp, 9, 11, 49, 58, 104, 105, 206
densityVoronoi, 15, 16, 102, 108
deriv, 111
deriv.fv, 11, 110, 211, 335, 338
dg.envelope, 36, 37, 112
dg.progress, 114
dg.sigttrace, 86, 116
dg.test, 13, 39, 113, 115–118, 119
dimhat, 121, 430
dirichlet, 108, 110
distcdfs, 52, 122, 336, 337
distmap, 202
dkernel, 123, 248–250
domain, 125, 126
domain.lpp, 126
domain.ppm, 126
domain.quadratcount, 126
domain.quadrattest, 125
domain.rmhmodel, 126
dppm, 25
ecdf, 447
dfg.mink, 126, 129
dg.Trans, 127, 127

Emark, 12, 129
evelope envelopes, 134, 137, 139, 141, 386, 387
evelope.ppp, 9, 12, 134, 143
evelopeArray, 146
eval.fasp, 11, 78, 148, 157, 158, 319
eval.fv, 11, 79, 148, 149, 172, 200, 201, 320, 321, 461, 462
eval.im, 410
ecdf, 67, 445, 447
Extract.fasp, 151
Extract.fv, 153

Fest, 12, 146, 154, 176, 232, 352
fast, 388
fasp.object, 16, 19, 20, 149, 152, 157, 343, 344, 372, 373
Fest, 10, 16–20, 139, 150, 156, 158, 163, 164, 172, 173, 190, 192, 202, 203, 213, 217, 218, 221–223, 228, 254, 393
fft, 265
Fhazard(Fest), 158
Finhom, 10, 162, 166, 195, 226
fitted.ppm, 238, 244, 257, 271, 294, 298, 301, 363
Fmulti.inhom (FmultiInhom), 165
FmultiInhom, 165, 230
formula, 167
formula.fv, 166
formula<- (formula.fv), 166
Frame, 126
fryplot, 10, 167, 265, 266
frypoints (fryplot), 167
fv, 23, 34, 35, 167, 170, 423
INDEX

305, 342–347, 363, 364
km.rs, 162, 190, 223, 233, 260, 404
Kmark, 12, 262, 311
Kmeasure, 11, 168, 169, 255, 256, 264
Kmulti, 11, 12, 234, 236, 241, 243, 252, 254, 267, 271, 273, 342, 343, 345–347
Kmulti.inhom, 239, 246, 269
kppm, 25
ks.test, 66–68
Kscaled, 11, 273
Ksector, 11, 276, 338
laslett, 277, 377, 378
layered, 28
Lcross, 11, 18–20, 280, 282, 284, 293, 304
Lcross.inhom, 12, 281, 286, 304
Ldot, 11, 19, 281, 283, 285, 286, 297, 304
Ldot.inhom, 12, 285
legend, 374
Lest, 10, 19, 20, 83, 88, 115, 281, 284, 286, 289, 291, 304
Linhom, 10, 282, 285, 286, 288, 295, 299, 304
localK, 11, 254, 289, 293, 295, 297, 299, 302, 304, 305
localKcross, 12, 291, 294, 304, 305
localKcross.inhom, 12, 293, 293, 304, 305
localKdot, 12, 296, 304, 305
localKinhom, 11, 291, 298, 302, 304, 305
localL, 11, 293, 295, 297, 299, 304
localL (localK), 289
localLcross, 12, 294, 304, 305
localLcross (localKcross), 291
localLcross.inhom, 12, 304, 305
localLcross.inhom (localKcross.inhom), 293
localLdot, 12, 304, 305
localLdot (localKdot), 296
localLinhom, 11, 291, 293, 304
localLinhom (localKinhom), 298
localpcf, 11, 300, 303–305
localpcf.inhom, 11, 304, 305
localpcf.inhom (localpcf), 300
locfit, 414, 416
loess, 130, 306, 308, 313, 317, 436
lohboot, 11, 13, 138, 253, 302, 349, 350, 459
Lscaled (Kscaled), 273
mad.progress, 14
mad.progress (dclf.progress), 82
mad.sigrace (dclf.sigrace), 84
mad.test, 13, 36, 37, 39, 83–85, 112, 113, 119, 120, 136, 139
mad.test (dclf.test), 86
markconnect, 11, 131, 305, 311, 318, 355, 359
markcorr (Kmark), 262
markcross (markcrosscorr), 12, 311, 312
markmarkscatter, 12, 314
markmean, 12
markmean (Smooth.ppp), 437
marks, 326
marks.ssf, 446
marks.ssf (methods.ssf), 325
marks<-.ssf (methods.ssf), 325
markstat, 316
marktable, 12, 315
markvar, 12
markvar (Smooth.ppp), 437
markvario, 12, 131, 307, 311, 316
Math.fasp, 318
Math.fv, 172, 320
max, 326
max.ssf (methods.ssf), 325
mctest.progress, 84
mctest.progress (dclf.progress), 82
mctest.sigrace (dclf.sigrace), 84
methods.rhohat, 321, 412
methods.rhohat, 24, 323, 419
methods.ssf, 325, 446
min, 326
min.ssf (methods.ssf), 325
mincontrast, 25
miplot, 10, 327
nearest.neighbour (Gest), 187
nnclean, 10, 75, 328
nnconnect, 330
nnconnect, 205
ndensity, 15, 16
ndensity (nddensity.ppp), 333
ndensity.ppp, 333
ndist, 71, 189, 190, 205, 330, 449
nnmap, 333, 334
nnmark, 208, 381, 439, 440
nnmean, 12
nnmean (nnconnect), 330
nnorient, 334, 338
nnvario, 12
nnvario (nnccorr), 330
nnwhich, 189, 190

Ops.fasp (Math.fasp), 318
Ops.fv, 172
Ops.fv (Math.fv), 320
overlap.owin, 129
owin, 28
owin.object, 27, 28, 460

pairMean, 336
pairorient, 336, 337
pairs, 339–341
pairs.default, 339–341
pairs.im, 82, 339, 341
panel.contour, 340, 340
panel.histogram (panel.contour), 340
panel.image, 340
panel.image (panel.contour), 340
panel.smooth, 341
par, 340, 372
parent.frame, 461
parres, 419
pcf, 10, 54, 64, 80, 138, 139, 235, 236, 239,
   242, 243, 246, 252, 254, 259, 260,
   266, 269, 272, 273, 275, 280, 288,
   289, 302–305, 342, 344, 346, 347,
   350, 352, 354, 355, 358, 359, 364
pcf.fasp, 342, 343, 343
pcf.fv, 275, 342, 343, 345
pcf.ppp, 55, 342, 343, 347, 347, 355–357,
   359, 361–364, 366
pcf3est, 12, 146, 156, 176, 232, 351
pcfcross, 11, 19, 307, 353, 357, 359, 365, 366
pcfcross.inhom, 12, 355, 361
pcfdo.inhom, 11, 354, 355, 357, 361, 366
pcfdo.inhom, 12, 357, 360
pcfinhom, 10, 54, 55, 301, 302, 304, 305, 357,
   361, 362
pcfmulti, 11, 355, 359, 365
pixelcentres, 9
pixellate.ppp, 90, 93, 105
pixellate.psp, 97
pkernel (dkernel), 123
plot, 322, 324, 381
plot.bermantest, 33, 367
plot.cdftest, 68, 368
plot.default, 369
plot.ecdf, 367
plot.envelope, 136, 137, 139, 370
plot.fasp, 17–20, 158, 371
plot.fv, 11, 17, 23, 25, 84, 86, 123, 137, 139,
   150, 160, 164, 167, 171–174, 189,
   194, 202, 210, 222, 226, 253, 281,
   284, 287, 289, 290, 292, 295, 297,
   299, 301, 322, 324, 335, 338, 355,
   359, 370–373, 373, 382, 383, 393,
   417
plot.im, 340, 341, 377, 379
plot.laslett, 278, 279, 377
plot.owin, 377
plot.ppp, 314, 377, 381, 448, 449
plot.quadcount, 379
plot.quadtest, 378
plot.rho2hat (methods.rho2hat), 321
plot.rhohat (methods.rhohat), 323
plot.scanhat (methods.scanhat), 379
plot.solist, 379
plot.ssf, 380, 446
plot.studpermtest, 382, 451
plot.tess, 378, 379
points, 340
polygon, 422
pool, 80, 384, 385–392, 402
pool.anylist, 385, 389
pool.envelope, 137, 139, 384, 386, 388
pool.fasp, 384, 387, 387
pool.fv, 11, 384, 388, 392
pool.quadstat, 389, 398
pool.rat, 384, 389, 390
pp3, 146, 156, 176, 232, 352
ppm, 33, 68, 139, 419
ppp, 139
ppp.object, 95, 99, 159, 188, 207, 208, 210,
   222, 251, 316, 438, 440
PPversion, 392
predict, 322, 324
predict.rho2hat (methods.rho2hat), 321
predict.rhohat (methods.rhohat), 323
predict.smooth.spline, 344–347
print, 322, 324, 326
print.rho2hat (methods.rho2hat), 321
print.rhohat (methods.rhohat), 323
print.ssf (methods.ssf), 325
psp.object, 98
qkernel (dkernel), 123
qqplot.ppm, 13
QQversion (PPversion), 392
quadrat.test, 13, 29, 33, 68, 378, 379, 390, 393, 398
quadrat.test.ppp, 398
quadrat.test.splitppp, 395, 396, 397
quadratcount, 29, 328, 394–396, 398, 416
quadratresample, 14, 396, 398
quadrats, 396, 398, 459
quantile, 399
quantile.default, 303
quantile.density, 65, 398
quantile.ecdf, 399
quantile.im, 399
quote, 171
radcumint, 400, 424
range, 326
range.ssf (methods.ssf), 325
rat, 391, 392, 401
rect, 341
rectcontact, 402
rectdistmap, 402
reduced.sample, 162, 190, 223, 233, 254, 261, 262, 403
reload.or.compute, 404
relrisk, 10, 11, 59, 60, 95, 406, 406, 408, 426, 432
relrisk.ppm, 406, 410
relnrisk.ppm, 406, 407, 432
rhol2hat, 10, 322, 411, 419
rhol2hat, 10, 23, 24, 324, 411, 412, 412
rkernel (dkernel), 123
rknn, 11
rlabel, 135, 432
rmax.Ripley (edge.Ripley), 126
rmax.Trans, 127, 129
rmax.Trans (edge.Trans), 127
rmh, 28, 136
rnoise, 9
roc, 10, 30, 31, 419
rose, 69, 70, 335, 338, 421
rotmean, 400, 423
rpoisline, 9
rpoislineess, 9
rpoispp3, 9, 146
rpoisppx, 10
rshift, 14
rthin, 14
rug, 322, 324
runifpoint3, 9
runifpointx, 10
scan.test, 11, 13, 379, 380, 424, 427, 428
scanLRTS, 380, 426, 427
sdr, 121, 429, 431
sdrPredict, 430, 430
segregation.test, 13, 431
setcov, 123, 129, 444
sharpen, 75, 433
sharpen.ppp, 9–11, 95
shift.owin, 400, 423
simulate, 324
simulate.kppm, 136
simulate.rhomahat (methods.rhohat), 323
smooth, 40, 434, 436, 438, 440–442
smooth.fv, 11, 161, 435, 435
smooth.im, 9, 435
smooth.im (blur), 39
smooth.msr, 435
smooth.ppp, 9–11, 40, 63, 94, 95, 208, 381, 410, 434, 435, 437, 440, 441
smooth.spline, 110, 111, 344–347, 436
smooth.ssf, 440, 446
smoothfun, 103
smoothfun (smoothfun.ppp), 441
smoothfun.ppp, 441
spatcov, 442
spatialcdf, 424, 10, 400, 444, 447
spatstat.explore (spatstat.explore-package), 7
spatstat.explore-package, 7
spatstat.options, 156, 255, 256, 266, 375
split.ppp, 98, 99, 330
ssf, 326, 381, 441, 446, 463, 464
stieltjes, 336, 447
stienen, 448
stienenSet (stienen), 448
studpermu.test, 13, 382, 383, 449
subspaceDistance, 121, 430, 451
substitute, 171
summary, 326
summary.fasp (Math.fasp), 318
summary.fv, 172
summary.fv (Math.fv), 320
summary.ssf (methods.ssf), 325
Sweave, 405
symbolmap, 314
table, 316

tess, 29, 459

text.default, 378, 379

thresholdCI, 452, 454

thresholdSelect, 453, 453

transect.im, 9, 455

Tstat, 10, 456

unmark, 326, 446

unmark.ssf (methods.ssf), 325

update.kppm, 163, 193, 225, 238, 244, 257, 271, 294, 298, 301, 363

update.ppm, 163, 193, 225, 238, 244, 257, 271, 294, 298, 301, 363

varblock, 11, 13, 138, 253, 305, 458

Vmark, 12

Vmark (Emark), 129

Window, 126, 460

Window.ppp, 460

Window.psp, 460

Window.quadrattest, 459

with, 461, 462

with.default, 462

with.fv, 11, 35, 111, 137, 172, 436, 460

with.ssf, 446, 462, 464

xy.coords, 455