This data set was presented first in Symons, Grimson, and Yuan (1983), analysed with reference to the spatial nature of the data in Cressie and Read (1985), expanded in Cressie and Chan (1989), and used in detail in Cressie (1991). It is for the 100 counties of North Carolina, and includes counts of numbers of live births (also non-white live births) and numbers of sudden infant deaths, for the July 1, 1974 to June 30, 1978 and July 1, 1979 to June 30, 1984 periods. In Cressie and Read (1985), a listing of county neighbours based on shared boundaries (contiguity) is given, and in Cressie and Chan (1989), and in Cressie (1991, 386–89), a different listing based on the criterion of distance between county seats, with a cutoff at 30 miles. The county seat location coordinates are given in miles in a local (unknown) coordinate reference system. The data are also used to exemplify a range of functions in the spatial statistics module user’s manual (Kaluzny et al. 1996).
We will be using the spdep and
spreg packages, here version: spdep, version 1.3-1,
2023-11-03, the sf package and the
tmap package. The data from the sources referred to
above is documented in the help page for the nc.sids
data
set in spData. The actual data, included in a shapefile
of the county boundaries for North Carolina were made available in the
maptools package 1. These data are known to be geographical
coordinates (longitude-latitude in decimal degrees) and are assumed to
use the NAD27 datum.
library(spdep)
nc <- st_read(system.file("shapes/sids.shp", package="spData")[1], quiet=TRUE)
st_crs(nc) <- "+proj=longlat +datum=NAD27"
row.names(nc) <- as.character(nc$FIPSNO)
The shapefile format presupposes that you have three files with
extensions .shp
, .shx
, and .dbf
,
where the first contains the geometry data, the second the spatial
index, and the third the attribute data. They are required to have the
same name apart from the extension, and are read here using
sf::st_read()
into the sf
object
nc
; the class is defined in sf. The
centroids of the largest polygon in each county are available using the
st_centroid
method from sf as an
sfc POINT object, and can be used to place labels after
the extraction of the coordinate matrix:
sf_use_s2(FALSE)
plot(st_geometry(nc), axes=TRUE)
text(st_coordinates(st_centroid(st_geometry(nc), of_largest_polygon=TRUE)), label=nc$FIPSNO, cex=0.5)
We can examine the names of the columns of the data frame to see what it contains — in fact some of the same columns that we will be examining below, and some others which will be useful in cleaning the data set.
names(nc)
## [1] "CNTY_ID" "AREA" "PERIMETER" "CNTY_" "NAME" "FIPS" "FIPSNO"
## [8] "CRESS_ID" "BIR74" "SID74" "NWBIR74" "BIR79" "SID79" "NWBIR79"
## [15] "east" "north" "x" "y" "lon" "lat" "L_id"
## [22] "M_id" "geometry"
summary(nc)
## CNTY_ID AREA PERIMETER CNTY_ NAME
## Min. :1825 Min. :0.0420 Min. :0.999 Min. :1825 Length:100
## 1st Qu.:1902 1st Qu.:0.0910 1st Qu.:1.324 1st Qu.:1902 Class :character
## Median :1982 Median :0.1205 Median :1.609 Median :1982 Mode :character
## Mean :1986 Mean :0.1263 Mean :1.673 Mean :1986
## 3rd Qu.:2067 3rd Qu.:0.1542 3rd Qu.:1.859 3rd Qu.:2067
## Max. :2241 Max. :0.2410 Max. :3.640 Max. :2241
## FIPS FIPSNO CRESS_ID BIR74 SID74
## Length:100 Min. :37001 Min. : 1.00 Min. : 248 Min. : 0.00
## Class :character 1st Qu.:37050 1st Qu.: 25.75 1st Qu.: 1077 1st Qu.: 2.00
## Mode :character Median :37100 Median : 50.50 Median : 2180 Median : 4.00
## Mean :37100 Mean : 50.50 Mean : 3300 Mean : 6.67
## 3rd Qu.:37150 3rd Qu.: 75.25 3rd Qu.: 3936 3rd Qu.: 8.25
## Max. :37199 Max. :100.00 Max. :21588 Max. :44.00
## NWBIR74 BIR79 SID79 NWBIR79 east
## Min. : 1.0 Min. : 319 Min. : 0.00 Min. : 3.0 Min. : 19.0
## 1st Qu.: 190.0 1st Qu.: 1336 1st Qu.: 2.00 1st Qu.: 250.5 1st Qu.:178.8
## Median : 697.5 Median : 2636 Median : 5.00 Median : 874.5 Median :285.0
## Mean :1051.0 Mean : 4224 Mean : 8.36 Mean : 1352.8 Mean :271.3
## 3rd Qu.:1168.5 3rd Qu.: 4889 3rd Qu.:10.25 3rd Qu.: 1406.8 3rd Qu.:361.2
## Max. :8027.0 Max. :30757 Max. :57.00 Max. :11631.0 Max. :482.0
## north x y lon lat
## Min. : 6.0 Min. :-328.04 Min. :3757 Min. :-84.08 Min. :33.92
## 1st Qu.: 97.0 1st Qu.: -60.55 1st Qu.:3920 1st Qu.:-81.20 1st Qu.:35.26
## Median :125.5 Median : 114.38 Median :3963 Median :-79.26 Median :35.68
## Mean :122.1 Mean : 91.46 Mean :3953 Mean :-79.51 Mean :35.62
## 3rd Qu.:151.5 3rd Qu.: 240.03 3rd Qu.:4000 3rd Qu.:-77.87 3rd Qu.:36.05
## Max. :182.0 Max. : 439.65 Max. :4060 Max. :-75.67 Max. :36.52
## L_id M_id geometry
## Min. :1.00 Min. :1.00 MULTIPOLYGON :100
## 1st Qu.:1.00 1st Qu.:2.00 epsg:NA : 0
## Median :2.00 Median :3.00 +proj=long...: 0
## Mean :2.12 Mean :2.67
## 3rd Qu.:3.00 3rd Qu.:3.25
## Max. :4.00 Max. :4.00
Let’s check the different versions of the data against each other - sf and spData have NC SIDS files, as does GeoDa Center in two forms:
library(sf)
nc_sf <- st_read(system.file("shape/nc.shp", package="sf"),
quiet=TRUE)
st_crs(nc_sf)
## Coordinate Reference System:
## User input: NAD27
## wkt:
## GEOGCRS["NAD27",
## DATUM["North American Datum 1927",
## ELLIPSOID["Clarke 1866",6378206.4,294.978698213898,
## LENGTHUNIT["metre",1]]],
## PRIMEM["Greenwich",0,
## ANGLEUNIT["degree",0.0174532925199433]],
## CS[ellipsoidal,2],
## AXIS["latitude",north,
## ORDER[1],
## ANGLEUNIT["degree",0.0174532925199433]],
## AXIS["longitude",east,
## ORDER[2],
## ANGLEUNIT["degree",0.0174532925199433]],
## ID["EPSG",4267]]
nc <- st_read(system.file("shapes/sids.shp",
package="spData"), quiet=TRUE)
st_crs(nc)
## Coordinate Reference System: NA
As the actual CRS is unknown, spData reports
missing, although it may very well be
+proj=longlat +datum=NAD27
st_crs(nc) <- "+proj=longlat +datum=NAD27"
Next, are the geometries the same? sf::st_equals
returns
a logical matrix, so we’ll check that the diagonal values are all
TRUE
, and that only those values are TRUE
by
summing and recalling that n
is 100
:
suppressWarnings(st_crs(nc_sf) <- st_crs(nc))
xx <- st_equals(nc, nc_sf, sparse=FALSE)
all(diag(xx)) && sum(xx) == 100L
## [1] TRUE
Next, let’s download the GeoDa files and repeat the comparisons:
td <- tempdir()
#download.file("https://geodacenter.github.io/data-and-lab//data/sids.zip", file.path(td, "sids.zip"), quiet=TRUE)
# local copy (2020-10-22) as repository sometimes offline
file.copy(system.file("etc/misc/sids.zip", package="spdep"), td)
## [1] TRUE
unzip(file.path(td, "sids.zip"), c("sids/sids.dbf", "sids/sids.prj", "sids/sids.shp", "sids/sids.shx"), exdir=td)
sids_sf <- st_read(file.path(td, "sids/sids.shp"), quiet=TRUE)
#download.file("https://geodacenter.github.io/data-and-lab//data/sids2.zip", file.path(td, "sids2.zip"), quiet=TRUE)
file.copy(system.file("etc/misc/sids2.zip", package="spdep"), td)
## [1] TRUE
unzip(file.path(td, "sids2.zip"), c("sids2/sids2.dbf", "sids2/sids2.prj", "sids2/sids2.shp", "sids2/sids2.shx"), exdir=td)
sids2_sf <- st_read(file.path(td, "sids2/sids2.shp"), quiet=TRUE)
st_crs(sids_sf)
## Coordinate Reference System:
## User input: WGS 84
## wkt:
## GEOGCRS["WGS 84",
## DATUM["World Geodetic System 1984",
## ELLIPSOID["WGS 84",6378137,298.257223563,
## LENGTHUNIT["metre",1]]],
## PRIMEM["Greenwich",0,
## ANGLEUNIT["degree",0.0174532925199433]],
## CS[ellipsoidal,2],
## AXIS["latitude",north,
## ORDER[1],
## ANGLEUNIT["degree",0.0174532925199433]],
## AXIS["longitude",east,
## ORDER[2],
## ANGLEUNIT["degree",0.0174532925199433]],
## ID["EPSG",4326]]
st_crs(sids2_sf)
## Coordinate Reference System:
## User input: WGS 84
## wkt:
## GEOGCRS["WGS 84",
## DATUM["World Geodetic System 1984",
## ELLIPSOID["WGS 84",6378137,298.257223563,
## LENGTHUNIT["metre",1]]],
## PRIMEM["Greenwich",0,
## ANGLEUNIT["degree",0.0174532925199433]],
## CS[ellipsoidal,2],
## AXIS["latitude",north,
## ORDER[1],
## ANGLEUNIT["degree",0.0174532925199433]],
## AXIS["longitude",east,
## ORDER[2],
## ANGLEUNIT["degree",0.0174532925199433]],
## ID["EPSG",4326]]
It looks as though the external files are assuming WGS84/NAD83 for the datum, but also contain the same geometries.
suppressWarnings(st_crs(sids_sf) <- st_crs(nc_sf))
xx <- st_equals(sids_sf, nc_sf, sparse=FALSE)
all(diag(xx)) && sum(xx) == 100L
## [1] FALSE
suppressWarnings(st_crs(sids2_sf) <- st_crs(nc_sf))
xx <- st_equals(sids2_sf, nc_sf, sparse=FALSE)
all(diag(xx)) && sum(xx) == 100L
## [1] FALSE
Now for the contents of the files - sids2
also contains
rates, while the file in spData
contains the coordinates as
given in Cressie (1991), and the parcels
of contiguous counties on p. 554, and the aggregations used for median
polishing.
all.equal(as.data.frame(nc_sf)[,1:14], as.data.frame(sids_sf)[,1:14])
## [1] "Names: 12 string mismatches"
## [2] "Component 4: Modes: numeric, character"
## [3] "Component 4: target is numeric, current is character"
## [4] "Component 5: 100 string mismatches"
## [5] "Component 6: Modes: character, numeric"
## [6] "Component 6: target is character, current is numeric"
## [7] "Component 7: Mean relative difference: 0.9986388"
## [8] "Component 8: Mean relative difference: 64.33901"
## [9] "Component 9: Mean relative difference: 0.9979786"
## [10] "Component 10: Mean relative difference: 156.5427"
## [11] "Component 11: Mean relative difference: 3.01968"
## [12] "Component 12: Mean relative difference: 0.9980208"
## [13] "Component 13: Mean relative difference: 160.8194"
## [14] "Component 14: Modes: numeric, list"
## [15] "Component 14: Attributes: < target is NULL, current is list >"
## [16] "Component 14: target is numeric, current is sfc_MULTIPOLYGON"
all.equal(as.data.frame(nc_sf)[,1:14], as.data.frame(sids2_sf)[,1:14])
## [1] "Names: 12 string mismatches"
## [2] "Component 4: Modes: numeric, character"
## [3] "Component 4: target is numeric, current is character"
## [4] "Component 5: 100 string mismatches"
## [5] "Component 6: Modes: character, numeric"
## [6] "Component 6: target is character, current is numeric"
## [7] "Component 7: Mean relative difference: 0.9986388"
## [8] "Component 8: Mean relative difference: 64.33901"
## [9] "Component 9: Mean relative difference: 0.9979786"
## [10] "Component 10: Mean relative difference: 156.5427"
## [11] "Component 11: Mean relative difference: 3.01968"
## [12] "Component 12: Mean relative difference: 0.9980208"
## [13] "Component 13: Mean relative difference: 160.8194"
## [14] "Component 14: Mean relative difference: 0.9984879"
The spData data set has some columns reordered and a surprise:
all.equal(as.data.frame(nc_sf)[,1:14], as.data.frame(nc)[,c(2,3,4,1,5:14)])
## [1] "Component \"NWBIR74\": Mean relative difference: 0.04891304"
so a difference in NWBIR74
:
which(!(nc_sf$NWBIR74 == nc$NWBIR74))
## [1] 21
c(nc$NWBIR74[21], nc_sf$NWBIR74[21])
## [1] 386 368
where spData follows Cressie (1991) and sf and Geoda follow Cressie and Chan (1989) for NWBIR74 in Chowan county.
We will now examine the data set reproduced from Cressie and collaborators, included in spData (formerly in spdep), and add the neighbour relationships used in Cressie and Chan (1989) to the background map as a graph shown in Figure \(\ref{plot-CC89.nb}\):
gal_file <- system.file("weights/ncCR85.gal", package="spData")[1]
ncCR85 <- read.gal(gal_file, region.id=nc$FIPSNO)
ncCR85
## Neighbour list object:
## Number of regions: 100
## Number of nonzero links: 492
## Percentage nonzero weights: 4.92
## Average number of links: 4.92
gal_file <- system.file("weights/ncCC89.gal", package="spData")[1]
ncCC89 <- read.gal(gal_file, region.id=nc$FIPSNO)
ncCC89
## Neighbour list object:
## Number of regions: 100
## Number of nonzero links: 394
## Percentage nonzero weights: 3.94
## Average number of links: 3.94
## 2 regions with no links:
## 37055 37095
## 3 disjoint connected subgraphs
plot(st_geometry(nc), border="grey")
plot(ncCC89, st_centroid(st_geometry(nc), of_largest_polygon), add=TRUE, col="blue")