Package ‘spectral’

September 15, 2016

Type Package
Title Common Methods of Spectral Data Analysis
Version 1.0.1
Author Martin Seilmayer
Maintainer Martin Seilmayer <m.seilmayer@hzdr.de>
Description Fourier and Hilbert transforms are utilized to perform several types of spectral analysis on the supplied data. Also fragmented and irregularly spaced data can be processed. A user friendly interface helps to interpret the results.
License GPL-2
Depends rasterImage, R (>= 2.15.0)
LazyData TRUE
RoxygenNote 5.0.1
LinkingTo Rcpp
Imports Rcpp
NeedsCompilation yes
Repository CRAN
Date/Publication 2016-09-15 15:46:39

R topics documented:

 analyticFunction .. 2
 BP ... 3
 envelope .. 4
 filter.fft ... 5
 filter.lomb .. 6
 H ... 7
 interpolate.fft ... 7
 lmb .. 8
 plot.fft .. 8
 plot.lomb .. 9
analyticFunction

Description

Normally a causal real valued signal in time has negative frequencies, when a Fourier transform is
applied. To overcome this, a complex complement can be calculated to compensate the negative
frequency spectrum. This is called analytic signal or analytic function. The result is a one sided
spectrum.

Usage

analyticFunction(x)

Arguments

x real valued data vector

Details

An analytic function \(xa \) is composed of the real valued signal representation \(y \) and its Hilber
transform \(H(y) \) as the complex complement

\[
x_a(t) = x(t) + iH(x(t)).
\]

In consequence, the analytic function has a one sided spectrum, which is more natural. Calculating
the discrete Fourier transform of such a signal will give a complex vector, which is only non zero
until the half of the length. Every component higher than the half of the sampling frequency is zero.
Still, the analytic signal and its spectrum are a unique representation of the original signal \(x(t) \). The
new properties enables us to do certain filtering and calculations more easy in the spectral space,
compared to the standard FFT approach. Some examples are:

Filtering because the spectrum is one sided, the user must only modify values in the lower half of
the vector. This strongly reduces mistakes in indexing. See filter.fft

Envelope functions Since the Hilbert transform is a perfect phase shifter by \(\pi/2 \), the envelope of
a band limited signal can be calculated. See envelope

Calculations Deriving and integrating on bandlimited discrete data becomes possible, without tak-
ing the symmetry of the discrete Fourier transform into account. The second Example of the
spec.fft function calculates the derivative as well, but plays with a centered spectrum and its
corresponding "true" negative frequencies
A slightly different approach on the analytic signal can be found in R. Hoffmann "Signalanalyse und -erkennung" (Chap. 6.1.2). Here the signal $x(t)$ is split into the even and odd part. According to Marko and Fritzsche this two parts can be composed to the analytic signal, which lead to the definition with the Hilbert transform above.

Value

Complex valued analytic function

References

BP

Simple bandpass function

Description

This function represents a simple weighting function for spectral filtering.

Usage

```
BP(f, fc, BW, n = 3)
```

Arguments

- `f` vector of frequencies
- `fc` center frequency
- `BW` bandwidth, with $w[f < (fc - BW) \lor f > (fc + BW)] == 0$
- `n` degree of the polynom, `n` can be real, e.g. $n = 2.5$

Details

The band pass is represented throughout a polynom in the form

$$w = 1 - a \cdot (f - fc)^n$$

with the degree n. The parameter fc controls the center frequency and a scales the required bandwidth BW. Outside the bandwidth the result is forced to zero.

Value

This function returns a weight vector, which is to apply to the frequency vector f in a top level function
Description

The envelope of an amplitude modulated signal can be calculated by using the Hilbert-transform of the signal or the analytic signal.

Usage

envelope(y)

Arguments

y numeric vector of the signal

Details

A modulated function \(y(x) = A(x) \cos(\omega x) \) can be demodulated as follows:

\[
A(x)^2 = y(x)^2 + H(y(x))^2
\]

If the signal is not band limited, strange things can happen. See the ripple at the edges in the example below. Pay attention, that the envelope is always the real part of the returned value.

Value

real valued envelope function of the signal

Examples

```r
## noisy signal with amplitude modulation
x <- seq(0,1, length.out=2e2)

# original data
y <- (abs(x-0.5))*sin(20*2*pi*x)

ye <- base::Re(envelope(y))

# plot results
plot(x,y,type="l",lwd=1,col="darkgrey",lty=2,ylab="y",main="Spectral filtering")
lines(x,ye)
legend("bottomright",c("modulated","envelope"),col=c("grey","black"),lty=c(2,1))
```
filter.fft

Filter in the frequency domain

Description

This function provides a method to bandpass filter in the frequency domain.

Usage

```r
filter.fft(y = stop("y-value is missing"), x = NULL, fc = 0, BW = 0, n = 3)
```

Arguments

- `y`: numeric data vector
- `x`: optional x-coordinate
- `fc`: center frequency of the bandpass
- `BW`: bandwidth of the bandpass
- `n`: parameter to control the stiffness of the bandpass

Details

A signal `y` is meant to be equally spaced and causal, which means it starts at `t = 0`. For times `y < 0` the signal is not defined. The filtering itself takes place with the analytic function of `y` which provides an one sided spectrum. Applying the Fourier transform, all properties of `y` will be preserved.

The applied bandpass filter function is a simple polynomial approach, which weights the frequencies. Setting `fc = 0` one can achieve a low pass filter.

Examples

```r
## noisy signal with amplitude modulation
x <- seq(0,1, length.out=500)

# original data
y_org <- (1+sin(2*pi*x))*sin(20*pi*x)

# overlay some noise
y_noise <- y_org+rnorm(length(x),sd=0.2)

# filter the noisy data
y_filt <- filter.fft(y_noise,x,fc=20,BW=4,n=50)

# plot results
plot(x,y_noise,type="l",lwd=1,col="darkgrey",lty=2,ylab="y",main="Spectral filtering")
lines(x,y_org,lwd=5,col="grey")
lines(x,y_filt)
```
Description

Given an object of class `lomb`, this function allows the reconstruction of the input signal using (a) a frequency selection of single or multiple frequency (ranges), and/or (b) the most significant peaks in the periodogram.

Usage

```r
filter.lomb(l = stop("No Lomb-Data"), newx = NULL, threshold = 6,
  filt = NULL, phase = "nextnb")
```

Arguments

- `l`: `lomb` object
- `newx`: vector of new values at which the restored function is to be evaluated
- `threshold`: statistical threshold in terms of a standard deviation of the amplitudes. It determines which frequencies are used. Lower values give more frequencies.
- `filt`: vector or matrix of frequencies (ranges) in which to select the frequencies
- `phase`: set the method to determine the phase at a given frequency

Details

To properly reconstruct the signal out of the calculated `lomb`-object, three different methods are available, which are controlled by the `filt`-argument.

1. If `filt=NULL`, the most significant values in the (dense) spectrum are used.
2. If `filt=c(f1, ..., fn)`, the given frequencies are used. The corresponding phase is approximated.
3. If `class(filt)="matrix"`, each row of the 2 x n matrix defines a frequency range. With in each range the "significant" frequencies are selected for reconstruction.

Prior to the reconstruction the `filter.lomb`-function calculates the most significant amplitudes and corresponding phases. As a measure to select the "correct" frequencies, the `threshold` argument can be adjusted. The corresponding phases of the underlying sine/cosine-waves are estimated by one of the four following methods.

1. `phase="nextnb"`... use the phase of the bin of nearest neighbour.
2. `phase="lin"`... linear interpolation between the two closest bins.
3. `phase="lockin"`... principle of lock-in amplification, also known as quadrature-demodulation technique.
4. `phase="fit"`... non-linear least squares fit with stats::nls
Value

This function returns a list which contains the reconstruction according to the `lomb`-object and `newx` for the given data `x` and `y`. The returned object contains the following:

- `x, y` reconstructed signal
- `f, A, phi` used parameters from the `lomb`-object
- `p` corresponding significance values

Description

The Hilbert-transform is a phase shifter, which represents the complex complement to a real valued signal. It is calculated in the complex frequency space of the signal by using the Fourier transform. Finally, calculating \(f = y + i * H(y) \) gives the analytic signal, with a one sided spectrum. (See `analyticFunction`)

Usage

\(H(x) \)

Arguments

- `x` real valued time series

Value

A numeric real valued vector is returned

interpolate.fft

interpolates data using the Fourier back transform

Description

There are two way to interpolate data from a given spectrum. First, one can do zero padding to cover \(n \) new data points. Or, second the complex amplitude with the associated frequency is taken and evaluated at given points `xout`. Doing that for all frequencies and amplitudes will give the interpolation.

Usage

\[
\text{interpolate.fft}(y, x = NULL, n = NULL, xout = NULL)
\]
Arguments

- **y**: numeric data vector to be interpolated
- **x**: numeric data vector with reference points
- **n**: number of new points
- **xout**: a vector new points

Value

A list with a `x` and `y` component is returned. The `e99` value evaluates the error of the interpolation with respect to linear approximation with the `approx()` function.

lmb

Lomb-Scargle estimation function

Description

calculates the Lomb-Scargle estimation

Usage

`lmb(x, y, omega)`

Arguments

- **x**: spatial vector
- **y**: data vector
- **omega**: frequency vector

Details

This wrapper function calls compiled C++ code, which does the job.

plot.fft

Plot fft-objects

Description

Plot fft-objects

Usage

```r
## S3 method for class 'fft'
plot(x, ...)
```
Arguments

x Object of the class fft

... further arguments to the plot functions

See Also

spec.fft

Examples

See spec.fft

```
plot.lomb
```

Description

This method plots a standard Lomb-Scargle periodogram, which contains the amplitude A and the false alarm probability p.

Usage

```
# S3 method for class 'lomb'
plot(x, FAPcol = 1, FAP1wd = 1, FAP1ty = "dashed",
     FAPlim = c(1, 0.001), FAPlab = "FAP", legend.pos = "topleft",
     legend.cex = 1, legend.on = T, legend.text = c("Spectrum",
     "False Alarm Propability"), legend.lwd = NULL, legend.lty = NULL,
     legend.col = NULL, xlab = "Frequency", ylab = "Amplitude", main = "",
     ...)```

Arguments

x object of class lomb
FAPcol color of the FAP line
FAP1wd line width of the FAP line
FAP1ty line type for the FAP graph
FAPlim limits to the FAP
FAPlab label of the right vertical axis
legend.pos position of the legend
legend.cex cex value for the legend
legend.on logical, wheater to draw a legend or not
legend.text legend text
legend.lwd line width
legend.lty  line type
legend.col  color vector of the legend elements
xlab  a label for the x axis, defaults to a description of x.
ylab  a label for the y axis, defaults to a description of y.
main  setting the title of the plot
...  further parameters to the plot function

Details

The `plot.lomb` function is a wrapper function for R's standard scatter plot. To switch off certain properties, simply overwrite the parameter. For example `log = ""` will reset the plot axis back to non-log scale.

See Also

`spec.lomb`

Examples

```r
See spec.lomb
```

---

**Description**

This function calculates the Fourier spectrum of a given 1D or 2D data object. It returns a user friendly object, which contains one or two frequency vectors to map the complex amplitudes (vector or matrix) to the corresponding frequencies. The output is already normalized and the frequencies can be seen in terms of $1/\Delta x$-units.

**Usage**

```r
spec.fft(y = NULL, x = NULL, z = NULL, center = T, inverse = F)
```

**Arguments**

- `y`  1D data vector, y coordinate of a 2D matrix or object of class `fft`
- `x`  x-coordinate of the data in y vector or z matrix
- `z`  optional 2D matrix
- `center`  logical parameter, if the spectrum should be centered or not
- `inverse`  logical parameter, if the back transformation should be performed
Value

An object of the type `fft` is returned. This contains the original dataset and the corresponding spectrum, with "reasonable" frequency vectors.

See Also

`plot.fft`

Examples

```r
1D example with two frequencies
x <- seq(0, 1, length.out = 1e3)
y <- sin(4 * 2 * pi * x) + 0.5 * sin(20 * 2 * pi * x)
FT <- spec.fft(y, x)
par(mfrow = c(2, 1))
plot(x, y, type = "l", main = "Signal")
plot(FT,
ylab = "Amplitude",
xislab = "Frequency",
type = "l",
xlim = c(-30, 30),
main = "Spectrum")

2D example with a propagating wave

x <- seq(0, 1, length.out = 1e2)
y <- seq(0, 1, length.out = 1e2)

calculate the data
m <- matrix(0, length(x), length(y))
for (i in 1:length(x))
 for (j in 1:length(y))
 m[i, j] <- sin(4 * 2 * pi * x[i] + 10 * 2 * pi * y[j])

calculate the spectrum
FT <- spec.fft(x = x, y = y, z = m)

plot
par(mfrow = c(2, 1))
rasterImage2(x = x, y = y,
 z = m,
 main = "Propagating Wave")
plot(FT,
 main = "2D Spectrum",
 palette = "wb")
```
# calculating the derivative with the help of FFT

# Remember, a signal has to be band limited.
# !!! You must use a window function !!!

# preparing the data
x <- seq(-2, 2, length.out = 1e4)
dx <- mean(diff(x))
y <- win.tukey(x) * (-x^3 + 3 * x)

# calculating spectrum
FT <- spec.fft(y = y, center = TRUE)
# calculating the first derivative
FT$A <- FT$A * 2 * pi * 1i * FT$fx
# back transform
dm <- spec.fft(FT, inverse = TRUE)

# plot
par(mfrow=c(1,1))
plot(
x, 
c(0, diff(y) / dx),
type = "l",
col = "grey",
lty = 2,
ylim = c(-4, 3)
)
# add some points to the line for the numerical result
points(approx(x, Re(dm$y) / dx, n = 100))
# analytical result
curve(-3 * x^2 + 3,
add = TRUE,
lty = 3,
n = length(x))
Description

The Lomb-Scargle periodogram represents an statistical estimator for the amplitude and phase for a given frequency.

Usage

```r
spec.lomb(y = stop("Missing y-Value"), x = stop("Missing x-Value"), f = NULL, ofac = 4)
```

Arguments

- **y**: data vector
- **x**: sampling vector
- **f**: frequency vector
- **ofac**: in case f=NULL this value controls the amount of frequency oversampling.

Details

A given time series does not need to be evenly sampled. This means a time series mainly consists of data pairs x and y, which store the data and the sampling position (e.g. in time). Additionally, this method enables the user to analyse the data with respect to a given frequency vector, which can be artificial dense.

- **ofac**: If the user does not provide a corresponding frequency vector, the ofac parameter causes the function to estimate
  \[ nf = ofac \times length(x) / 2 \]
  equidistant frequencies.

- **p-value**: The p-value gives the probability, wheater the estimated amplitude is NOT significant. However, if p tends to zero the amplitude is significant. The user must decide which maximum value is acceptable, until an amplitude is not valid.
Value

The `spec.lomb` function returns an object of the type `lomb`, which is a list containing the following parameters:

- **A** A vector with amplitude spectrum
- **f** corresponding frequency vector
- **phi** phase vector
- **x,y** original data
- **p** p-value as statistical measure

References


See Also

`filter.lomb`

Examples

```r
create two sin-functions
x_orig <- seq(0,1,by=1e-2)
y_orig <- sin(10*2*pi*x_orig) + 0.3*sin(2*2*pi*x_orig)

make a 10% gap
i <- round(length(x_orig)*0.2) : round(length(x_orig)*0.3)
x <- x_orig
y <- y_orig
x[i] <- NA
y[i] <- NA

calculating the lomb periodogram
l <- spec.lomb(x=x, y=y)
select a frequency range
m <- rbind(c(9,11))
select and reconstruct the most significant component
l2 = filter.lomb(l, x_orig, filt=m)

plot everything
par(mfrow=c(2,1),mar = c(4,4,2,4))
plot(x,y,"1", main = "Gapped signal")
lines(l2$x, l2$y,lty=2)
legend("bottomleft",c("gapped","10Hz component"),lty=c(1,2))
plot(l1,main = "Spectrum")
```
**waterfall** | Estimate the local frequencies

**Description**

A waterfall-diagram displays the local frequency in dependence of spatial or vector. One can then locate an event in time or space.

**Usage**

```r
call = stop("y value is missing"), x = NULL, nf = 3, width = 10
```

**Arguments**

- `y`: numeric real valued data vector
- `x`: numeric real valued spatial vector (time or space)
- `nf`: steepness of the bandpass filter, degree of the polynomial.
- `width`: normalized (to \(df\)) maximum width of the bandpass.

**Details**

Each frequency is evaluated by calculating the demodulation. This is equivalent to the envelope function of the bandpass filtered signal. The frequency of interest defines automatically the center frequency of the applied bandpass with the bandwidth \(BW\):

\[
BW = f0/4, \quad BW < 4df \rightarrow BW = 4df, \quad BW > width * df \rightarrow BW = width * df
\]

The minimal frequency is \(df\) and \(f0\) denotes the center frequency of the bandpass. With increasing frequency the bandwidth becomes wider, which lead to a variable resolution in space and frequency. This is comparable to the wavelet transform, which scales the wavelet according to the frequency. However, the necessary bandwidth is changed by frequency to take the uncertainty principle into account. Slow oscillating events are measured precisely in frequency and fast changing processes can be determined more exact in space. This means for a signal with steady increasing frequency the waterfall function will produce a diagonally stripe. See the examples below.

**Value**

A special `fft`-object is returned. It has mode "waterfall" and \(x\) and \(fx\) present, so it is only plotable.

**Examples**

```r
noisy signal with amplitude modulation
x <- seq(0,1, length.out=1000)
original data
extended example from envelope function
y <- 2*(abs(x-0.5))*sin(10*2*pi*x) + ifelse(x > 0.5, sin(10*(1+2*(x - 0.5))*2*pi*x), 0)
ye <- base::Re(envelope(y))
```
par(mfrow=c(2,1),mar=c(1,3.5,3,3),mgp=c(2.5,1,0))
# plot results
plot(x,y,type="l",lwd=1,col="darkgrey",lty=2,ylab="y",main="Original Data",xaxt="n",xlab="")
lines(x,ye)
legend("bottomright",c("modulated","envelope"),col=c("grey","black"),lty=c(2,1))

par(mar=c(3.5,3.5,2,0))
wf <- waterfall(y,x,nf = 3)
plot(wf ylim=c(0,40),main="Waterfall")

## uncertainty principle
#
# take a look at the side effects at [0,30] and [1,0]
#
# with a large steepness e.g. n=50 you will gain
# artefacts.
#
x <- seq(0,1, length.out=500)
y <- sin(100*pi*x)

par(mfrow=c(2,1),mar=c(1,3.5,3,3),mgp=c(2.5,1,0))
# plot results
plot(x,y,type="l",lwd=1,col="darkgrey",lty=2,ylab="y",main="Original Data",xaxt="n",xlab="")

par(mar=c(3.5,3.5,2,0))
wf <- waterfall(y,x)
rasterImage2(x = wf$x, y = wf$fx,z=wf$A,ylim=c(0,40),main="Waterfall")

---

**win.cos**

*Cosine window function*

**Description**

This window function returns a vector of weights with means of a cosine window

**Usage**

`win.cos(n)`

**Arguments**

- `n` data vector to be windowed

**See Also**

Windowfunctions
Description

This window function returns a vector of weights with means of a Tukey-window. In contrast to a cosine window this function is more steep at the beginning and the end. And it is 1 in the middle.

Usage

\texttt{win.tukey(n, a = 0.5)}

Arguments

- \texttt{n} : data vector to be windowed
- \texttt{a} : width of the rising and falling edge as ratio of the total data length

See Also

Windowfunctions

Description

Some typical window functions are defined below:

Details

\texttt{win.cos()} cosine window
\texttt{win.tukey()} the tukey window

A window function weights a given dataset in a way, that the new data set is coerced to be periodic. This method reduces the leakage effects of the Fourier transform.

Value

All window functions return a weighting vector with the same length as the provided data vector.
Examples

```r
y <- 1:100
y_cos <- y * win.cos(y)
y_tuk <- y * win.tukey(y)

Plot the original data
plot(y, main="Effect of window functions")
legend("topleft", c("original", "cos", "tukey"), pch=c(16,17))
points(y_cos, pch=16)
points(y_tuk, pch=17)
```
Index

analyticFunction, 2, 7
BP, 3
envelope, 2, 4
filter.fft, 2, 5
filter.lomb, 6, 14
H, 7
interpolate.fft, 7
lmb, 8
plot.fft, 8, 11
plot.lomb, 9
spec.fft, 2, 9, 10
spec.lomb, 10, 13
waterfall, 15
win.cos, 16
win.tukey, 17
Windowfunctions, 16, 17, 17