Package ‘spectralGraphTopology’

October 12, 2019

Title Learning Graphs from Data via Spectral Constraints

Version 0.2.0

Date 2019-10-08

Description In the era of big data and hyperconnectivity, learning high-dimensional structures such as graphs from data has become a prominent task in machine learning and has found applications in many fields such as finance, health care, and networks. ‘spectralGraphTopology’ is an open source, documented, and well-tested R package for learning graphs from data. It provides implementations of state of the art algorithms such as Combinatorial Graph Laplacian Learning (CGL), Spectral Graph Learning (SGL), Graph Estimation based on Majorization-Minimization (GLE-MM), and Graph Estimation based on Alternating Direction Method of Multipliers (GLE-ADMM). In addition, graph learning has been widely employed for clustering, where specific algorithms are available in the literature. To this end, we provide an implementation of the Constrained Laplacian Rank (CLR) algorithm.

Maintainer Ze Vinicius <jvmirca@gmail.com>

URL https://github.com/dppalomar/spectralGraphTopology,
https://mirca.github.io/spectralGraphTopology,
https://www.danielppalomar.com

BugReports https://github.com/dppalomar/spectralGraphTopology/issues

Depends

License GPL-3

Encoding UTF-8

LazyData true

LinkingTo Rcpp, RcppArmadillo, RcppEigen

Imports Rcpp, MASS, Matrix, progress, rlist

RoxygenNote 6.1.1

Suggests bookdown, knitr, prettydoc, rmarkdown, R.rsp, testthat, patrick, corrplot, igraph, kernlab, pals, clusterSim, viridis, quadprog, matrixcalc
VignetteBuilder knitr, rmarkdown, R.rsp

NeedsCompilation yes

Author Ze Vinicius [cre, aut],
Daniel P. Palomar [aut]

Repository CRAN

Date/Publication 2019-10-12 08:00:03 UTC

R topics documented:

spectralGraphTopology-package .. 2
A ... 3
block_diag ... 4
cluster_k_component_graph ... 4
f-score .. 6
L ... 6
learn_bipartite_graph .. 7
learn_bipartite_k_component_graph ... 9
learn_combinatorial_graph_laplacian 12
learn_k_component_graph ... 13
learn_laplacian_gle_admm .. 15
learn_laplacian_gle_mm ... 16
relative_error ... 17

Index 18

spectralGraphTopology-package

Package spectralGraphTopology

Description

This package provides estimators to learn k-component, bipartite, and k-component bipartite graphs
from data by imposing spectral constraints on the eigenvalues and eigenvectors of the Laplacian
and adjacency matrices. Those estimators leverages spectral properties of the graphical models as a
prior information, which turn out to play key roles in unsupervised machine learning tasks such as
community detection.

Functions

learn_k_component_graph learn_bipartite_graph learn_bipartite_k_component_graph cluster_k_component_graph
learn_laplacian_gle_mm learn_laplacian_gle_admm L A

Help

For a quick help see the README file: GitHub-README.
A

Author(s)
Ze Vinicius and Daniel P. Palomar

References

A

Computes the Adjacency linear operator which maps a vector of weights into a valid Adjacency matrix.

Description
Computes the Adjacency linear operator which maps a vector of weights into a valid Adjacency matrix.

Usage
A(w)

Arguments
w
weight vector of the graph

Value
Aw the Adjacency matrix

Examples
library(spectralGraphTopology)
Aw <- A(c(1, 0, 1))
Aw
block diag

Constructs a block diagonal matrix from a list of square matrices

Description

Constructs a block diagonal matrix from a list of square matrices

Usage

```r
block_diag(...) 
```

Arguments

...

list of matrices or individual matrices

Value

block diagonal matrix

Examples

```r
library(spectralGraphTopology) 
X <- L(c(1, 0, 1))
Y <- L(c(1, 0, 1, 0, 0, 1))
B <- block_diag(X, Y)
B 
```

cluster_k_component_graph

Cluster a k-component graph from data using the Constrained Laplacian Rank algorithm
Cluster a k-component graph on the basis of an observed data matrix. Check out https://mirca.github.io/spectralGraphTopology for code examples.

Description

Cluster a k-component graph from data using the Constrained Laplacian Rank algorithm

Cluster a k-component graph on the basis of an observed data matrix. Check out https://mirca.github.io/spectralGraphTopology for code examples.

Usage

```r
cluster_k_component_graph(Y, k = 1, m = 5, lmd = 1, eigtol = 1e-09, edgetol = 1e-06, maxiter = 1000) 
```
cluster_k_component_graph

Arguments

- **Y**: a pxn data matrix, where p is the number of nodes and n is the number of features (or data points per node)
- **k**: the number of components of the graph
- **m**: the maximum number of possible connections for a given node used to build an affinity matrix
- **lmd**: L2-norm regularization hyperparameter
- **eigtol**: value below which eigenvalues are considered to be zero
- **edgetol**: value below which edge weights are considered to be zero
- **maxiter**: the maximum number of iterations

Value

A list containing the following elements:

- **Laplacian**: the estimated Laplacian Matrix
- **Adjacency**: the estimated Adjacency Matrix
- **eigvals**: the eigenvalues of the Laplacian Matrix
- **lmd_seq**: sequence of lmd values at every iteration
- **elapsed_time**: elapsed time at every iteration

Author(s)

Ze Vinicius and Daniel Palomar

References

Examples

```r
library(clusterSim)
library(spectralGraphTopology)
library(igraph)
set.seed(1)
# number of nodes per cluster
N <- 30
# generate datapoints
twomoon <- shapes.two.moon(N)
# estimate underlying graph
graph <- cluster_k_component_graph(twomoon$data, k = 2)
# build network
net <- graph_from_adjacency_matrix(graph$Adjacency, mode = "undirected", weighted = TRUE)
# colorify nodes and edges
colors <- c("#706FD3", "#FF5252", "#33D9B2")
V(net)$cluster <- twomoon$clusters
```
E(net)$color <- apply(as.data.frame(get.edgelist(net)), 1,
 function(x) ifelse(V(net)$cluster[x[1]] == V(net)$cluster[x[2]],
 colors[V(net)$cluster[x[1]]], '#000000'))
V(net)$color <- c(colors[1], colors[2])[twomoon$clusters]
plot network
plot(net, layout = twomoon$data, vertex.label = NA, vertex.size = 3)

fscore
Computes the fscore between two matrices

Description
Computes the fscore between two matrices

Usage
fscore(A, B, eps = 1e-04)

Arguments
- **A**: first matrix
- **B**: second matrix
- **eps**: real number such that edges whose values are smaller than eps are not considered in the computation of the fscore

Examples
library(spectralGraphTopology)
X <- L(c(1, 0, 1))
fscore(X, X)

L
Computes the Laplacian linear operator which maps a vector of weights into a valid Laplacian matrix.

Description
Computes the Laplacian linear operator which maps a vector of weights into a valid Laplacian matrix.

Usage
L(w)

Arguments
- **w**: weight vector of the graph
learn_bipartite_graph

Value
Lw the Laplacian matrix

Examples

library(spectralGraphTopology)
Lw <- L(c(1, 0, 1))
Lw

learn_bipartite_graph Learn a bipartite graph
Learns a bipartite graph on the basis of an observed data matrix

Description
Learn a bipartite graph
Learns a bipartite graph on the basis of an observed data matrix

Usage
learn_bipartite_graph(S, is_data_matrix = FALSE, z = 0, nu = 10000,
alpha = 0, w0 = "naive", m = 7, maxiter = 10000,
abstol = 1e-06, reltol = 1e-04, record_weights = FALSE,
verbose = TRUE)

Arguments

S either a pxp sample covariance/correlation matrix, or a pxn data matrix, where p
is the number of nodes and n is the number of features (or data points per node)
is_data_matrix whether the matrix S should be treated as data matrix or sample covariance
matrix
z the number of zero eigenvalues for the Adjancecy matrix
nu regularization hyperparameter for the term \|A(w) - V \Psi V^\top\|^2_F
alpha initial estimate for the weight vector the graph or a string selecting an appropri-
ate method. Available methods are: "qp": finds w0 that minimizes \|ginv(S) -
L(w0)\|^2_F, w0 >= 0; "naive": takes w0 as the negative of the off-diagonal elements
of the pseudo inverse, setting to 0 any elements s.t. w0 < 0
m in case is_data_matrix = TRUE, then we build an affinity matrix based on Nie
et. al. 2017, where m is the maximum number of possible connections for a
given node
maxiter the maximum number of iterations
abstol absolute tolerance on the weight vector w
reltol relative tolerance on the weight vector w
record_weights whether to record the edge values at each iteration
verbose whether to output a progress bar showing the evolution of the iterations
Value

A list containing possibly the following elements:

- **Laplacian**: the estimated Laplacian Matrix
- **Adjacency**: the estimated Adjacency Matrix
- **w**: the estimated weight vector
- **psi**: optimization variable accounting for the eigenvalues of the Adjacency matrix
- **V**: eigenvectors of the estimated Adjacency matrix
- **elapsed_time**: elapsed time recorded at every iteration
- **convergence**: boolean flag to indicate whether or not the optimization converged
- **obj_fun**: values of the objective function at every iteration in case `record_objective = TRUE`
- **loglike**: values of the negative loglikelihood at every iteration in case `record_objective = TRUE`
- **w_seq**: sequence of weight vectors at every iteration in case `record_weights = TRUE`

Author(s)

Ze Vinicius and Daniel Palomar

References

Examples

```r
library(spectralGraphTopology)
library(igraph)
library(viridis)
library(corrplot)
set.seed(42)
n1 <- 10
n2 <- 6
n <- n1 + n2
pc <- .9
bipartite <- sample_bipartite(n1, n2, type="Gnp", p = pc, directed=FALSE)
# randomly assign edge weights to connected nodes
E(bipartite)$weight <- runif(gsize(bipartite), min = 0, max = 1)
# get true Laplacian and Adjacency
Ltrue <- as.matrix(laplacian_matrix(bipartite))
Atrue <- diag(diag(Ltrue)) - Ltrue
# get samples
Y <- MASS::mvrnorm(100 * n, rep(0, n), Sigma = MASS::ginv(Ltrue))
# compute sample covariance matrix
S <- cov(Y)
# estimate Adjacency matrix
graph <- learn_bipartite_graph(S, z = 4, verbose = FALSE)
```
graph$Adjacency[graph$Adjacency < 1e-3] <- 0
Plot Adjacency matrices: true, noisy, and estimated
corrplot(Atrue / max(Atrue), is.corr = FALSE, method = "square",
 addgrid.col = NA, tl.pos = "n", cl.cex = 1.25)
corrplot(graph$Adjacency / max(graph$Adjacency), is.corr = FALSE,
 method = "square", addgrid.col = NA, tl.pos = "n", cl.cex = 1.25)
build networks
estimated_bipartite <- graph_from_adjacency_matrix(graph$Adjacency,
 mode = "undirected",
 weighted = TRUE)
V(estimated_bipartite)$type <- c(rep(0, 10), rep(1, 6))
la = layout_as_bipartite(estimated_bipartite)
colors <- viridis(20, begin = 0, end = 1, direction = -1)
c_scale <- colorRamp(colors)
E(estimated_bipartite)$color = apply(c_scale(E(estimated_bipartite)$weight / max(E(estimated_bipartite)$weight)), 1,
 function(x) rgb(x[1]/255, x[2]/255, x[3]/255))
E(bipartite)$color = apply(c_scale(E(bipartite)$weight / max(E(bipartite)$weight)), 1,
 function(x) rgb(x[1]/255, x[2]/255, x[3]/255))
la = la[, c(2, 1)]
Plot networks: true and estimated
plot(bipartite, layout = la, vertex.color=c("red","black")[V(bipartite)$type + 1],
 vertex.shape = c("square", "circle")[V(bipartite)$type + 1],
 vertex.label = NA, vertex.size = 5)
plot(estimated_bipartite, layout = la,
 vertex.color=c("red","black")[V(estimated_bipartite)$type + 1],
 vertex.shape = c("square", "circle")[V(estimated_bipartite)$type + 1],
 vertex.label = NA, vertex.size = 5)

learn_bipartite_k_component_graph

Learns a bipartite k-component graph Jointly learns the Laplacian and Adjacency matrices of a graph on the basis of an observed data matrix

Description

Learns a bipartite k-component graph

Jointly learns the Laplacian and Adjacency matrices of a graph on the basis of an observed data matrix

Usage

learn_bipartite_k_component_graph(S, is_data_matrix = FALSE, z = 0,
 k = 1, w0 = "naive", m = 7, alpha = 0, beta = 10000,
 rho = 0.01, fix.beta = TRUE, beta_max = 1e+06, nu = 10000,
 lb = 0, ub = 10000, maxiter = 10000, abstol = 1e-06,
 reltol = 1e-04, eigtol = 1e-09, record_weights = FALSE,
 record_objective = FALSE, verbose = TRUE)
learn_bipartite_k_component_graph

Arguments

S either a pxp sample covariance/correlation matrix, or a pxn data matrix, where p is the number of nodes and n is the number of features (or data points per node)

is_data_matrix whether the matrix S should be treated as data matrix or sample covariance matrix

z the number of zero eigenvalues for the Adjacency matrix

k the number of components of the graph

w0 initial estimate for the weight vector the graph or a string selecting an appropriate method. Available methods are: "qp": finds w0 that minimizes \|\text{ginv}(S) - L(w0)\|_F, w0 \geq 0; "naive": takes w0 as the negative of the off-diagonal elements of the pseudo inverse, setting to 0 any elements s.t. w0 < 0

m in case is_data_matrix = TRUE, then we build an affinity matrix based on Nie et al. 2017, where m is the maximum number of possible connections for a given node

alpha L1 regularization hyperparameter

beta regularization hyperparameter for the term \|L(w) - U \Lambda U'\|^2_F

rho how much to increase (decrease) beta in case fix_beta = FALSE

fix_beta whether or not to fix the value of beta. In case this parameter is set to false, then beta will increase (decrease) depending whether the number of zero eigenvalues is lesser (greater) than k

beta_max maximum allowed value for beta

nu regularization hyperparameter for the term \|A(w) - V \Psi V'\|^2_F

lb lower bound for the eigenvalues of the Laplacian matrix

ub upper bound for the eigenvalues of the Laplacian matrix

maxiter the maximum number of iterations

abstol absolute tolerance on the weight vector w

reitol relative tolerance on the weight vector w

eigtol value below which eigenvalues are considered to be zero

record_weights whether to record the edge values at each iteration

record_objective whether to record the objective function values at each iteration

verbose whether to output a progress bar showing the evolution of the iterations

Value

A list containing possibly the following elements:

Laplacian the estimated Laplacian Matrix

Adjacency the estimated Adjacency Matrix

w the estimated weight vector

psi optimization variable accounting for the eigenvalues of the Adjacency matrix
learn_bipartite_k_component_graph

lambda optimization variable accounting for the eigenvalues of the Laplacian matrix
V eigenvectors of the estimated Adjacency matrix
U eigenvectors of the estimated Laplacian matrix
elapsed_time elapsed time recorded at every iteration
beta_seq sequence of values taken by beta in case fix_beta = FALSE
convergence boolean flag to indicate whether or not the optimization converged
obj_fun values of the objective function at every iteration in case record_objective = TRUE
loglike values of the negative loglikelihood at every iteration in case record_objective = TRUE
w_seq sequence of weight vectors at every iteration in case record_weights = TRUE

Author(s)
Ze Vinicius and Daniel Palomar

References

Examples
library(spectralGraphTopology)
library(igraph)
library(viridis)
library(corrplot)
set.seed(42)
w <- c(1, 0, 0, 1, 0, 1) * runif(6)
Laplacian <- block_diag(L(w), L(w))
Atrue <- diag(diag(Laplacian)) - Laplacian
bipartite <- graph_from_adjacency_matrix(Atrue, mode = "undirected", weighted = TRUE)
n <- ncol(Laplacian)
Y <- MASS::mvrnorm(40 * n, rep(0, n), MASS::ginv(Laplacian))
graph <- learn_bipartite_k_component_graph(cov(Y), k = 2, beta = 1e2, nu = 1e2, verbose = FALSE)
graph$Adjacency[graph$Adjacency < 1e-2] <- 0 # Plot Adjacency matrices: true, noisy, and estimated
corrplot(Atrue / max(Atrue), is.corr = FALSE, method = "square", addgrid.col = NA, t1.pos = "n", cl.cex = 1.25)
corrplot(graph$Adjacency / max(graph$Adjacency), is.corr = FALSE, method = "square", addgrid.col = NA, t1.pos = "n", cl.cex = 1.25)
Plot networks
V(bipartite)$type <- rep(c(TRUE, FALSE), 4)
V(estimated_bipartite)$type <- rep(c(TRUE, FALSE), 4)
l <- layout_as_bipartite(estimated_bipartite)
colors <- viridis(20, begin = 0, end = 1, direction = -1)
c_scale <- colorRamp(colors)
learn_combinatorial_graph_laplacian

Learn the Combinatorial Graph Laplacian from data Learns a graph Laplacian matrix using the Combinatorial Graph Laplacian (CGL) algorithm proposed by Egilmez et. al. (2017)

Description

Learn the Combinatorial Graph Laplacian from data

Learns a graph Laplacian matrix using the Combinatorial Graph Laplacian (CGL) algorithm proposed by Egilmez et. al. (2017)

Usage

learn_combinatorial_graph_laplacian(S, A_mask = NULL, alpha = 0,
 reltol = 1e-05, max_cycle = 10000, regtype = 1,
 record_objective = FALSE, verbose = TRUE)

Arguments

S sample covariance matrix
A_mask binary adjacency matrix of the graph
alpha L1-norm regularization hyperparameter
reltol minimum relative error considered for the stopping criteri
max_cycle maximum number of cycles
regtype type of L1-norm regularization. If reg_type == 1, then all elements of the Laplacian matrix will be regularized. If reg_type == 2, only the off-diagonal elements will be regularized
record_objective whether or not to record the objective function value at every iteration. Default is FALSE
verbose if TRUE, then a progress bar will be displayed in the console. Default is TRUE
Value

A list containing possibly the following elements

- Laplacian: estimated Laplacian Matrix
- elapsed_time: elapsed time recorded at every iteration
- frod_norm: relative Frobenius norm between consecutive estimates of the Laplacian matrix
- convergence: whether or not the algorithm has converged within the tolerance and maximum number of iterations
- obj_fun: objective function value at every iteration, in case record_objective = TRUE

References

learn_k_component_graph

Learn the Laplacian matrix of a k-component graph. Learns a k-component graph on the basis of an observed data matrix. Check out https://mirca.github.io/spectralGraphTopology for code examples.

Description

Learn the Laplacian matrix of a k-component graph.

Learns a k-component graph on the basis of an observed data matrix. Check out https://mirca.github.io/spectralGraphTopology for code examples.

Usage

```r
learn_k_component_graph(S, is_data_matrix = FALSE, k = 1,
                        w0 = "naive", lb = 0, ub = 10000, alpha = 0, beta = 10000,
                        beta_max = 1e+06, fix_beta = TRUE, rho = 0.01, m = 7,
                        maxiter = 10000, abstol = 1e-06, reltol = 1e-04, eigtol = 1e-09,
                        record_objective = FALSE, record_weights = FALSE, verbose = TRUE)
```

Arguments

- `S`: either a pxp sample covariance/correlation matrix, or a pxn data matrix, where p is the number of nodes and n is the number of features (or data points per node)
- `is_data_matrix`: whether the matrix S should be treated as data matrix or sample covariance matrix
- `k`: the number of components of the graph
\[\text{initial estimate for the weight vector the graph or a string selecting an appropriate method. Available methods are: "qp": finds } w_0 \text{ that minimizes } \| \text{ginv}(S) - L(w_0) \|_F, \quad w_0 \geq 0; \text{ "naive": takes } w_0 \text{ as the negative of the off-diagonal elements of the pseudo inverse, setting to } 0 \text{ any elements s.t. } w_0 < 0 \]

\[\text{lower bound for the eigenvalues of the Laplacian matrix} \]

\[\text{upper bound for the eigenvalues of the Laplacian matrix} \]

\[\text{L1 regularization hyperparameter} \]

\[\text{regularization hyperparameter for the term } \| L(w) - U \Lambda U' \|_F^2 \]

\[\text{maximum allowed value for beta} \]

\[\text{whether or not to fix the value of beta. In case this parameter is set to false, then beta will increase (decrease) depending whether the number of zero eigenvalues is lesser (greater) than } k \]

\[\text{how much to increase (decrease) beta in case fix_beta = FALSE} \]

\[\text{in case is_data_matrix = TRUE, then we build an affinity matrix based on Nie et. al. 2017, where } m \text{ is the maximum number of possible connections for a given node} \]

\[\text{the maximum number of iterations} \]

\[\text{absolute tolerance on the weight vector } w \]

\[\text{relative tolerance on the weight vector } w \]

\[\text{value below which eigenvalues are considered to be zero} \]

\[\text{whether to record the objective function values at each iteration} \]

\[\text{whether to record the edge values at each iteration} \]

\[\text{whether to output a progress bar showing the evolution of the iterations} \]

Value

A list containing possibly the following elements:

- Laplacian
- Adjacency
- w
- lambda
- U
- elapsed_time
- beta_seq
- convergence
- obj_fun
- loglike
- w_seq
Author(s)
Ze Vinicius and Daniel Palomar

References

Examples
```r
# design true Laplacian
Laplacian <- rbind(c(1, -1, 0, 0),
                   c(-1, 1, 0, 0),
                   c(0, 0, 1, -1),
                   c(0, 0, -1, 1))

n <- ncol(Laplacian)
# sample data from multivariate Gaussian
Y <- MASS::mvrnorm(n * 500, rep(0, n), MASS::ginv(Laplacian))
# estimate graph on the basis of sampled data
graph <- learn_k_component_graph(cov(Y), k = 2, beta = 10)
graph$Laplacian
```

learn_laplacian_gle_admm

Learn the weighted Laplacian matrix of a graph using the ADMM method

Description
Learn the weighted Laplacian matrix of a graph using the ADMM method

Usage
```
learn_laplacian_gle_admm(S, A_mask = NULL, alpha = 0, rho = 1,
                         maxiter = 10000, reltol = 1e-05, record_objective = FALSE,
                         verbose = TRUE)
```

Arguments
- `S`: a pxp sample covariance/correlation matrix
- `A_mask`: the binary adjacency matrix of the graph
- `alpha`: L1 regularization hyperparameter
- `rho`: ADMM convergence rate hyperparameter
- `maxiter`: the maximum number of iterations
- `reltol`: relative tolerance on the Laplacian matrix estimation
- `record_objective`: whether or not to record the objective function. Default is FALSE
- `verbose`: if TRUE, then a progress bar will be displayed in the console. Default is TRUE
Value

A list containing possibly the following elements:

- **Laplacian**: the estimated Laplacian Matrix
- **Adjacency**: the estimated Adjacency Matrix
- **convergence**: boolean flag to indicate whether or not the optimization converged
- **obj_fun**: values of the objective function at every iteration in case `record_objective = TRUE`

Author(s)

Ze Vinicius, Jiaxi Ying, and Daniel Palomar

References

Description

Learn the weighted Laplacian matrix of a graph using the MM method

Usage

```r
learn_laplacian_gle_mm(S, A_mask = NULL, alpha = 0, maxiter = 10000,
reltol = 1e-05, record_objective = FALSE, verbose = TRUE)
```

Arguments

- **S**: a pxp sample covariance/correlation matrix
- **A_mask**: the binary adjacency matrix of the graph
- **alpha**: L1 regularization hyperparameter
- **maxiter**: the maximum number of iterations
- **reltol**: relative tolerance on the weight vector w
- **record_objective**: whether or not to record the objective function. Default is FALSE
- **verbose**: if TRUE, then a progress bar will be displayed in the console. Default is TRUE
Value

A list containing possibly the following elements:

- **Laplacian**: the estimated Laplacian Matrix
- **Adjacency**: the estimated Adjacency Matrix
- **convergence**: boolean flag to indicate whether or not the optimization converged
- **obj_fun**: values of the objective function at every iteration in case `record_objective = TRUE`

Author(s)

Ze Vinicius, Jiaxi Ying, and Daniel Palomar

References

relative_error

Computes the relative error between two matrices

Description

Computes the relative error between two matrices

Usage

```
relative_error(A, B)
```

Arguments

- **A**: first matrix
- **B**: second matrix

Examples

```
library(spectralGraphTopology)
X <- L(c(1, 0, 1))
relative_error(X, X)
```
Index

A, 2, 3

block_diag, 4

cluster_k_component_graph, 2, 4

fscore, 6

L, 2, 6

learn_bipartite_graph, 2, 7

learn_bipartite_k_component_graph, 2, 9

learn_combinatorial_graph_laplacian, 12

learn_k_component_graph, 2, 13

learn_laplacian_gle_admm, 2, 15

learn_laplacian_gle_mm, 2, 16

relative_error, 17

spectralGraphTopology-package, 2