Package ‘splines2’

June 14, 2018

Title Regression Spline Functions and Classes

Version 0.2.8

Date 2018-06-14

Imports splines, stats

Suggests knitr, rmarkdown, testthat

Depends R (>= 3.2.3)

VignetteBuilder knitr

License GPL (>= 3)

URL https://github.com/wenjie2wang/splines2

BugReports https://github.com/wenjie2wang/splines2/issues

RoxygenNote 6.0.1

NeedsCompilation no

Author Wenjie Wang [aut, cre],
 Jun Yan [aut]

Maintainer Wenjie Wang <wenjie.2.wang@uconn.edu>

Repository CRAN

Date/Publication 2018-06-14 19:00:03 UTC

R topics documented:

- bSpline .. 2
- cSpline .. 3
- dbs .. 5
Description

This function generates the B-spline basis matrix for a polynomial spline.

Usage

```r
bspline(x, df = NULL, knots = NULL, degree = 3L, intercept = FALSE,
        Boundary.knots = range(x, na.rm = TRUE), ...
```

Arguments

- **x**
 The predictor variable. Missing values are allowed and will be returned as they were.

- **df**
 Degrees of freedom. One can specify df rather than knots, then the function chooses "df - degree" (minus one if there is an intercept) knots at suitable quantiles of x (which will ignore missing values). The default, NULL, corresponds to no inner knots, i.e., "degree - intercept". If knots was specified, df specified will be ignored.

- **knots**
 The internal breakpoints that define the spline. The default is NULL, which results in a basis for ordinary polynomial regression. Typical values are the mean or median for one knot, quantiles for more knots. See also Boundary.knots.

- **degree**
 Non-negative integer degree of the piecewise polynomial. The default value is 3 for cubic splines. Zero degree is allowed for this function, which is the only difference compared with bs in package splines.

- **intercept**
 If TRUE, an intercept is included in the basis; Default is FALSE.

- **Boundary.knots**
 Boundary points at which to anchor the B-spline basis. By default, they are the range of the non-NA data. If both knots and Boundary.knots are supplied, the basis parameters do not depend on x. Data can extend beyond Boundary.knots.

- **...**
 Optional arguments for future usage.
cSpline

Details

It is an augmented function of bs in package splines for B-spline basis that allows piecewise constant (close on the left, open on the right) spline basis with zero degree. When the argument degree is greater than zero, it internally calls bs and generates a basis matrix for representing the family of piecewise polynomials with the specified interior knots and degree, evaluated at the values of x. The function has the same arguments with bs for ease usage.

Value

A matrix of dimension length(x) by df = degree + length(knots) (plus one if intercept is included). Attributes that correspond to the arguments specified are returned for usage of other functions in this package.

See Also

predict.bspline2 for evaluation at given (new) values; dbs, deriv.bspline2 for derivatives; ibs for integral of B-splines; mSpline for M-splines; iSpline for I-splines; cSpline for C-splines.

Examples

library(splines2)
x <- seq.int(0, 1, 0.01)
knots <- c(0.3, 0.5, 0.6)
bsMat <- bSpline(x, knots = knots, degree = 0, intercept = TRUE)

library(graphics)
matplot(x, bsMat, type = "l", ylab = "Piecewise constant B-spline bases")
abline(v = knots, lty = 2, col = "gray")

cSpline

C-Spline Basis for Polynomial Splines

Description

This function generates the convex regression spline (called C-spline) basis matrix by integrating I-spline basis for a polynomial spline.

Usage

cSpline(x, df = NULL, knots = NULL, degree = 3L, intercept = FALSE,
 Boundary.knots = range(x, na.rm = TRUE), scale = TRUE, ...)
Arguments

x The predictor variable. Missing values are allowed and will be returned as they were.

df Degrees of freedom. One can specify df rather than knots, then the function chooses "df - degree" (minus one if there is an intercept) knots at suitable quantiles of x (which will ignore missing values). The default, NULL, corresponds to no inner knots, i.e., "degree - intercept".

knots The internal breakpoints that define the spline. The default is NULL, which results in a basis for ordinary polynomial regression. Typical values are the mean or median for one knot, quantiles for more knots. See also Boundary.knots.

degree Non-negative integer degree of the piecewise polynomial. The default value is 3 for cubic splines.

intercept If TRUE, an intercept is included in the basis; Default is FALSE.

Boundary.knots Boundary points at which to anchor the C-spline basis. By default, they are the range of the non-na data. If both knots and Boundary.knots are supplied, the basis parameters do not depend on x. Data can extend beyond Boundary.knots.

scale Logical value (TRUE by default) indicating whether scaling on C-spline basis is required. If TRUE, C-spline basis is scaled to have unit height at right boundary knot; the corresponding I-spline and M-spline basis matrices shipped in attributes are also scaled to the same extent.

... Optional arguments for future usage.

Details

It is an implementation of the close form C-spline basis derived from the recursion formula of I-spline and M-spline. Internally, it calls ispline and generates a basis matrix for representing the family of piecewise polynomials and their corresponding integrals with the specified interior knots and degree, evaluated at the values of x.

Value

A matrix of dimension length(x) by df = degree + length(knots) (plus on if intercept is included). The attributes that correspond to the arguments specified are returned for the usage of other functions in this package.

References

See Also

predict.cSpline for evaluation at given (new) values; deriv.cSpline for derivatives; ispline for I-splines; mspline for M-splines.
dbs

Examples

library(splinesR)
x <- seq.int(0, 1, 0.01)
knots <- c(0.3, 0.5, 0.6)

when 'scale = TRUE' (by default)
csMat <- cspline(x, knots = knots, degree = 2, intercept = TRUE)
library(graphics)
matplot(x, csMat, type = "l", ylab = "CSpline basis")
abline(v = knots, lty = 2, col = "gray")
isMat <- deriv(csMat)
msMat <- deriv(csMat, derivs = 2)
matplot(x, isMat, type = "l", ylab = "scaled I-spline basis")
matplot(x, msMat, type = "l", ylab = "scaled M-spline basis")

when 'scale = FALSE'
csMat <- cspline(x, knots = knots, degree = 2,
intercept = TRUE, scale = FALSE)
the corresponding I-splines and M-splines (with same arguments)
isMat <- ispline(x, knots = knots, degree = 2, intercept = TRUE)
msMat <- mspline(x, knots = knots, degree = 2, intercept = TRUE)
or using deriv methods (much more efficient)
isMat1 <- deriv(csMat)
msMat1 <- deriv(csMat, derivs = 2)
equivalent
stopifnot(all.equal(isMat, isMat1, check.attributes = FALSE))
stopifnot(all.equal(msMat, msMat1, check.attributes = FALSE))

dbs

Derivative of B-Spline Basis for Polynomial Splines

Description

This function produces the derivative of given order of B-splines. It is an implementation of the
close form derivative of B-spline basis based on recursion relation. At knots, the derivative is
defined to be the right derivative.

Usage

dbs(x, derivs = 1L, df = NULL, knots = NULL, degree = 3L,
 intercept = FALSE, Boundary.knots = range(x, na.rm = TRUE), ...)

Arguments

x

The predictor variable. Missing values are allowed and will be kept and returned
as they were.
derivs

A positive integer specifying the order of derivative. By default, it is 1L for the
first derivative.
The function chooses "df - degree" (minus one if there is an intercept) knots at suitable quantiles of \(x \) (which will ignore missing values).

The default, NULL, corresponds to no inner knots, i.e., "degree - intercept".

The internal breakpoints that define the B-spline basis to be differentiated. The default is NULL, which results in a basis for ordinary polynomial regression. Typical values are the mean or median for one knot, quantiles for more knots. See also Boundary.knots.

Non-negative integer degree of the piecewise polynomial to be differentiated. The default value is 3 for the integral of cubic B-splines.

If TRUE, an intercept is included in the basis; Default is FALSE.

Boundary points at which to anchor the B-spline basis to be differentiated. By default, they are the range of the non-NA data. If both knots and Boundary.knots are supplied, the basis parameters do not depend on \(x \).

Optional arguments for future usage.

The function is similar with splineDesign. However, it provides a more user-friendly interface, a more considerate NA’s handling. Internally, it calls bSpline and generates a basis matrix for representing the family of piecewise polynomials and their corresponding derivative with the specified interior knots and degree, evaluated at the values of \(x \). The function splineDesign in splines package can also be used to calculate derivative of B-splines.

A matrix of dimension length(\(x \)) by df = degree + length(knots) (plus one if intercept is included). Attributes that correspond to the arguments specified are returned for usage of other functions in this package.

See Also

predict.dbs for evaluation at given (new) values; deriv.dbs for derivative method; bSpline for B-splines; ibs for integral of B-splines.

Examples

```r
library(splines2)
x <- seq.int(0, 1, 0.01)
knots <- c(0.2, 0.4, 0.7)
## the second derivative of cubic B-splines with three internal knots
dMat <- dbs(x, derivs = 2L, knots = knots, intercept = TRUE)

## compare with the results from splineDesign
ord <- attr(dMat, "degree") + 1L
```
Derivatives of Splines

Description

Deriv methods that obtain derivative of given order of B-splines, M-spline, I-splines, and C-splines, etc. At knots, the derivative is defined to be the right derivative. By default, the function returns the first derivative. For derivatives of order greater than one, the nested call such as deriv(deriv(expr)) is supported but not recommended. For a better performance, argument derivs should be specified instead.

Usage

```r
## S3 method for class 'bspline2'
deriv(expr, derivs = 1L, ...)

## S3 method for class 'dbs'
deriv(expr, derivs = 1L, ...)

## S3 method for class 'ibs'
deriv(expr, derivs = 1L, ...)

## S3 method for class 'mSpline'
deriv(expr, derivs = 1L, ...)

## S3 method for class 'iSpline'
deriv(expr, derivs = 1L, ...)

## S3 method for class 'cSpline'
deriv(expr, derivs = 1L, ...)
```

Arguments

- `expr`: Objects of class `bspline2`, `ibs`, `dbs`, `mSpline`, `iSpline`, or `cSpline`, etc.
- `derivs`: A positive integer specifying the order of derivatives. By default, it is 1L for the first derivative.
- `...`: Other arguments for further usage.

Details

The function is designed for most of the objects generated from this package. It internally extracts necessary information about the input spline basis matrix from its attributes. So the function will not work if some attribute is not available.
Value

A matrix of dimension length(x) by df = degree + length(knots) (plus one if intercept is included). Attributes that correspond to the arguments specified are returned for usage for other function in this package.

References

See Also

`bSpline` for B-splines; `ibs` for integral of B-splines; `mSpline` for M-splines; `iSpline` for I-splines; `cSpline` for C-splines.

Examples

```r
library(splines2)
x <- c(seq.int(0, 1, 0.1), NA) # NA's will be kept.
knots <- c(0.3, 0.5, 0.6)

## integral of B-splines and the corresponding B-splines integrated
ibsMat <- ibs(x, knots = knots)
bsMat <- bSpline(x, knots = knots)

## the first derivative
d1Mat <- deriv(ibsMat)
stopifnot(all.equal(bsMat, d1Mat, check.attributes = FALSE))

## the second derivative
d2Mat1 <- deriv(bsMat)
d2Mat2 <- deriv(ibsMat, derivs = 2L)
## nested calls are supported but not recommended
d2Mat3 <- deriv(deriv(ibsMat))
stopifnot(all.equal(d2Mat1, d2Mat2, d2Mat3, check.attributes = FALSE))

## C-splines, I-splines, M-splines and the derivatives
csMat <- cSpline(x, knots = knots, scale = FALSE)
isMat <- iSpline(x, knots = knots)
stopifnot(all.equal(isMat, deriv(csMat), check.attributes = FALSE))

msMat <- mSpline(x, knots = knots)
stopifnot(all.equal(msMat, deriv(isMat), deriv(csMat), 2),
         deriv(deriv(csMat)), check.attributes = FALSE))

dmsMat <- mSpline(x, knots = knots, derivs = 1)
stopifnot(all.equal(dmsMat, deriv(msMat), deriv(isMat), 2),
         deriv(deriv(isMat)), deriv(csMat, 3),
         deriv(deriv(deriv(csMat))), check.attributes = FALSE))
```
ibs

Integral of B-Spline Basis for Polynomial Splines

Description

This function generates the integral of B-spline basis matrix for a polynomial spline. The arguments are exactly the same with function `bs` in package `splines`.

Usage

```r
ibs(x, df = NULL, knots = NULL, degree = 3, intercept = FALSE,
 Boundary.knots = range(x, na.rm = TRUE), ...)
```

Arguments

- **x**
 The predictor variable. Missing values are allowed and will be returned as they were.

- **df**
 Degrees of freedom of the B-spline basis to be integrated. One can specify `df` rather than `knots`, then the function chooses "df - degree" (minus one if there is an intercept) knots at suitable quantiles of `x` (which will ignore missing values). The default, `NULL`, corresponds to no inner knots, i.e., "degree - intercept".

- **knots**
 The internal breakpoints that define the B-spline basis to be integrated. The default is `NULL`, which results in a basis for ordinary polynomial regression. Typical values are the mean or median for one knot, quantiles for more knots. See also `Boundary.knots`.

- **degree**
 Non-negative integer degree of the piecewise polynomial to be integrated. The default value is 3 for the integral of cubic B-splines.

- **intercept**
 If `TRUE`, an intercept is included in the basis; Default is `FALSE`.

- **Boundary.knots**
 Boundary points at which to anchor the B-spline basis to be integrated. By default, they are the range of the non-NA data. If both `knots` and `Boundary.knots` are supplied, the basis parameters do not depend on `x`. Data can extend beyond `Boundary.knots`.

- **...**
 Optional arguments for future usage.

Details

It is an implementation of the close form integral of B-spline basis based on recursion relation. Internally, it calls `bSpline` and generates a basis matrix for representing the family of piecewise polynomials and their corresponding integrals with the specified interior knots and degree, evaluated at the values of `x`.

Value

A matrix of dimension `length(x)` by `df = degree + length(knots)` (plus one if intercept is included). Attributes that correspond to the arguments specified are returned for usage of other functions in this package.
References

See Also

predict.ibs for evaluation at given (new) values; deriv.ibs for derivative method. bSpline for B-splines; dbS for derivatives of B-splines;

Examples

library(splines2)
x <- seq.int(0, 1, 0.01)
knots <- c(0.2, 0.4, 0.7, 0.9)
ibsMat <- ibs(x, knots = knots, degree = 1, intercept = TRUE)

the B-spline bases integrated by function bSpline (same arguments)
bsMat0 <- bSpline(x, knots = knots, degree = 1, intercept = TRUE)
or by function deriv (recommended) that directly extracts the existing
result from the attribute of ibsMat and thus is much more efficient.
bsMat <- deriv(ibsMat)
stopifnot(all.equal(bsMat0, bsMat, check.attributes = FALSE)) # equivalent

plot B-spline basis with their corresponding integrals
library(graphics)
par(mfrow = c(1, 2))
matplot(x, bsMat, type = "l", ylab = "B-spline basis")
abline(v = knots, lty = 2, col = "gray")
matplot(x, ibsMat, type = "l", ylab = "Integral of B-spline basis")
abline(v = knots, lty = 2, col = "gray")
par(mfrow = c(1, 1))

iSpline

I-Spline Basis for Polynomial Splines or its derivatives

Description

This function generates the I-spline (integral of M-spline) basis matrix for a polynomial spline or its derivatives of given order.

Usage

iSpline(x, df = NULL, knots = NULL, degree = 3L, intercept = FALSE, Boundary.knots = range(x, na.rm = TRUE), derivs = 0L, ...)
iSpline

Arguments

- **x**
 The predictor variable. Missing values are allowed and will be returned as they were.

- **df**
 Degrees of freedom. One can specify df rather than knots, then the function chooses “df - degree” (minus one if there is an intercept) knots at suitable quantiles of x (which will ignore missing values). The default, NULL, corresponds to no inner knots, i.e., "degree - intercept".

- **knots**
 The internal breakpoints that define the spline. The default is NULL, which results in a basis for ordinary polynomial regression. Typical values are the mean or median for one knot, quantiles for more knots. See also Boundary.knots.

- **degree**
 Non-negative integer degree of the piecewise polynomial. The default value is 3 for cubic splines. Note that the degree of I-spline is defined to be the degree of the associated M-spline instead of actual polynomial degree. In other words, I-spline basis of degree 2 is defined as the integral of associated M-spline basis of degree 2.

- **intercept**
 If TRUE, an intercept is included in the basis; Default is FALSE.

- **Boundary.knots**
 Boundary points at which to anchor the I-spline basis. By default, they are the range of the non-NA data. If both knots and Boundary.knots are supplied, the basis parameters do not depend on x. Data can extend beyond Boundary.knots.

- **derivs**
 A non-negative integer specifying the order of derivatives of I-splines.

- **...**
 Optional arguments for future usage.

Details

It is an implementation of the close form I-spline basis based on the recursion formula of B-spline basis. Internally, it calls mSpline and bSpline, and generates a basis matrix for representing the family of piecewise polynomials and their corresponding integrals with the specified interior knots and degree, evaluated at the values of x.

Value

A matrix of dimension length(x) by df = degree + length(knots) (plus on if intercept is included). Attributes that correspond to the arguments specified are returned for usage of other functions in this package.

References

See Also

predict.iSpline for evaluation at given (new) values; deriv.iSpline for derivative method; mSpline for M-splines; cSpline for C-splines;
Examples

Example given in the reference paper by Ramsay (1988)
```r
library(splines2)
x <- seq.int(0, 1, by = 0.01)
knots <- c(0.3, 0.5, 0.6)
isMat <- ispline(x, knots = knots, degree = 2, intercept = TRUE)

library(graphics)
matplot(x, isMat, type = "l", ylab = "1-spline basis")
abline(v = knots, lty = 2, col = "gray")

## the derivative of 1-splines is M-spline
msMat1 <- ispline(x, knots = knots, degree = 2, derivs = 1)
msMat2 <- mSpline(x, knots = knots, degree = 2)
stopifnot(all.equal(msMat1, msMat2))
```

mSpline

M-Spline Basis for Polynomial Splines and its Derivatives

Description

This function generates the monotone regression spline (or simply called M-spline) basis matrix for a polynomial spline or its derivatives of given order.

Usage

```r
mSpline(x, df = NULL, knots = NULL, degree = 3L, intercept = FALSE,
        Boundary.knots = range(x, na.rm = TRUE), derivs = 0L, ...)
```

Arguments

- **x**: The predictor variable. Missing values are allowed and will be returned as they were.
- **df**: Degrees of freedom. One can specify df rather than knots, then the function chooses "df - degree" (minus one if there is an intercept) knots at suitable quantiles of x (which will ignore missing values). The default, NULL, corresponds to no inner knots, i.e., "degree - intercept".
- **knots**: The internal breakpoints that define the spline. The default is NULL, which results in a basis for ordinary polynomial regression. Typical values are the mean or median for one knot, quantiles for more knots. See also Boundary.knots.
- **degree**: Non-negative integer degree of the piecewise polynomial. The default value is 3 for cubic splines. Zero degree is allowed for piecewise constant basis.
- **intercept**: If TRUE, an intercept is included in the basis; Default is FALSE.
- **Boundary.knots**: Boundary points at which to anchor the M-spline basis. By default, they are the range of the non-NA data. If both knots and Boundary.knots are supplied, the basis parameters do not depend on x. Data can extend beyond Boundary.knots.
mSpline

derivs A non-negative integer specifying the order of derivatives of M-splines. The default value is 0 for M-spline bases.

... Optional arguments for future usage.

Details

It is an implementation of the close form M-spline basis based on relationship between M-spline basis and B-spline basis. In fact, M-spline basis is a rescaled version of B-spline basis. Internally, it calls function bSpline and generates a basis matrix for representing the family of piecewise polynomials with the specified interior knots and degree, evaluated at the values of \(x \).

Value

A matrix of dimension \(\text{length}(x) \times \text{df} = \text{degree} + \text{length}(\text{knots}) \) (plus one if intercept is included). Attributes that correspond to the arguments specified are returned for usage of other functions in this package.

References

See Also

`predict.mSpline` for evaluation at given (new) values; `deriv.mSpline` for derivative method; `bSpline` for B-splines; `iSpline` for I-splines; `cSpline` for C-splines.

Examples

```r
## Example given in the reference paper by Ramsay (1988)
library(splines2)
x <- seq.int(0, 1, 0.01)
knots <- c(0.3, 0.5, 0.6)
msMat <- mSpline(x, knots = knots, degree = 2, intercept = TRUE)

library(graphics)
matplot(x, msMat, type = "l", ylab = "M-spline basis")
abline(v = knots, lty = 2, col = "gray")

## derivatives of M-splines
dmsMat <- mSpline(x, knots = knots, degree = 2,
intercept = TRUE, derivs = 1)
## or using the 'deriv' method
dmsMat1 <- deriv(msMat)
stopifnot(all.equal(dmsMat, dmsMat1, check.attributes = FALSE))
```
Description

This function evaluates a predefined spline basis at (new) given values.

Usage

```r
## S3 method for class 'bSpline2'
predict(object, newx, ...)

## S3 method for class 'ibs'
predict(object, newx, ...)

## S3 method for class 'dbs'
predict(object, newx, ...)

## S3 method for class 'mSpline'
predict(object, newx, ...)

## S3 method for class 'iSpline'
predict(object, newx, ...)

## S3 method for class 'cSpline'
predict(object, newx, ...)
```

Arguments

- `object` Objects of class bSpline2, ibs, mSpline, iSpline, or cSpline having attributes describing knots, degree, etc.
- `newx` The x values at which evaluations are required.
- `...` Optional argument for future usage.

Details

These are methods for the generic function `predict` for objects inheriting from class bSpline2, ibs, mSpline, iSpline, or cSpline. If `newx` is not given, the function returns the input object. For object returned by function `cSpline`, the mSpline and iSpline objects shipped in attributes should not be evaluated by this function if `rescale` is `TRUE`. See `cSpline` for details.

Value

An object just like the `object` input, except evaluated at the new values of `x`.
See Also

`bSpline` for B-splines; `ibs` for integral of B-splines; `dbs` for derivative of B-splines; `mSpline` for M-splines; `iSpline` for I-splines; `cSpline` for C-splines.

Examples

```r
library(splines)
x <- seq.int(0, 1, 0.2)
knots <- c(0.3, 0.5, 0.6)
newX <- seq.int(0.1, 0.9, 0.2)

## for B-splines
bsMat <- bSpline(x, knots = knots, degree = 2)
predict(bsMat, newX)

## for integral of B-splines
ibsMat <-ibs(x, knots = knots, degree = 2)
predict(ibsMat, newX)

## for derivative of B-splines
dbsMat <- dbs(x, knots = knots, degree = 2)
predict(dbsMat, newX)

## for M-spline
msMat <- mSpline(x, knots = knots, degree = 2)
predict(msMat, newX)

## for I-spline
ismat <- iSpline(x, knots = knots, degree = 2)
predict(ismat, newX)

## for C-spline
csmat <- cSpline(x, knots = knots, degree = 2)
predict(csmat, newX)
```

Description

Print methods that simply print out the spline basis matrix without unnecessary attributes.

Usage

```r
## S3 method for class 'bSpline2'
print(x, ...)

## S3 method for class 'ibs'
print(x, ...)
```
S3 method for class 'dbs'
print(x, ...)

S3 method for class 'mSpline'
print(x, ...)

S3 method for class 'iSpline'
print(x, ...)

S3 method for class 'cSpline'
print(x, ...)

Arguments

- **x**: Objects of class `bsplineR`, `ibs`, `mSpline`, `iSpline`, or `cSpline`, etc.
- **...**: Optional argument for future usage.

Value

Object input.

splines2

splines2: Regression Spline Functions and Classes

Description

A supplementary package on splines providing functions constructing B-splines, integral of B-splines, monotone splines (M-splines) and its integral (I-splines), convex splines (C-splines), and their derivatives of given order. Piecewise constant basis is allowed for B-spline and M-spline basis.

Details

It is named after the package **splines**: “Regression Spline Functions and Classes”. The tailing number two is simply “too” (and by no means for the generation two).
Index

bs, 2, 3, 9
bSpline, 2, 6, 8–11, 13, 15

cSpline, 3, 3, 8, 11, 13–15

dbs, 3, 5, 10, 15
deriv, 7
deriv.bspline2, 3
deriv.cSpline, 4
deriv.dbs, 6
deriv.ibs, 10
deriv.iSpline, 11
deriv.mSpline, 13

ibs, 3, 6, 8, 9, 15
iSpline, 3, 4, 8, 10, 13, 15

mSpline, 3, 4, 8, 11, 12, 15

predict, 14
predict.bspline2, 3
predict.cSpline, 4
predict.dbs, 6
predict.ibs, 10
predict.iSpline, 11
predict.mSpline, 13
print, 15

splineDesign, 6
splines2, 16
splines2-package (splines2), 16