Package ‘spm’

February 22, 2019

Title Spatial Predictive Modeling

Version 1.2.0

Date 2019-02-22

Description Introduction to some novel accurate hybrid methods of geostatistical and machine learning methods for spatial predictive modelling. It contains two commonly used geostatistical methods, two machine learning methods, four hybrid methods and two averaging methods. For each method, two functions are provided. One function is for assessing the predictive errors and accuracy of the method based on cross-validation. The other one is for generating spatial predictions using the method. For details please see: Li, J., Potter, A., Huang, Z., Daniell, J. J. and Heap, A. (2010) <https:www.ga.gov.au/metadata-gateway/metadata/record/gcat_71407>

Depends R (>= 2.10)

Imports gstat, sp, randomForest, psy, gbm, biomod2, stats, ranger

License GPL (>= 2)

LazyData true

RoxygenNote 6.1.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Jin Li [aut, cre]

Maintainer Jin Li <jin.li@ga.gov.au>

Repository CRAN

Date/Publication 2019-02-22 05:30:03 UTC
R topics documented:

avi .. 3
cran-comments 4
gbmcv .. 4
gbmidwcv ... 7
gbmidwpred ... 9
gbmokcv .. 11
gbmokgbmidwcv 14
gbmokgbmidwpred 17
gbmokpred ... 19
gbmpred .. 21
hard .. 23
idwcv .. 24
idwpred ... 26
okcv .. 27
okpred ... 29
petrel ... 31
petrel.grid ... 32
pred.acc .. 32
RFcv .. 34
rfidwcv .. 35
rfidwpred ... 37
rfokcv .. 39
rfokpred ... 41
rfokrfidwcv 42
rfokrfidwpred 44
rfpred ... 46
rgcv .. 47
rgidwcv ... 49
rgidwpred ... 51
rgokcv .. 52
rgokpred ... 54
rgokrgidwcv 56
rgokrgidwpred 58
rgpred ... 60
rvi .. 61
sponge ... 63
sponge.grid 64
sw .. 65
swmud ... 66
tovecv ... 66
vecv .. 68

Index 69
Averaged variable importance based on random forest

Description

This function is to derive an averaged variable importance based on random forest

Usage

```r
avi(trainx, trainy, mtry = if (!is.null(trainy) && !is.factor(trainy))
    max(floor(ncol(trainx)/3), 1) else floor(sqrt(ncol(trainx))), ntree = 500,
    importance = TRUE, maxk = c(4), nsim = 100, corr.threshold = 0.5, ...)
```

Arguments

- `trainx`: a dataframe or matrix contains columns of predictor variables.
- `trainy`: a vector of response, must have length equal to the number of rows in `trainx`.
- `mtry`: a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call.
- `ntree`: number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. By default, 500 is used.
- `importance`: importance of predictive variables.
- `maxk`: maxk split value. By default, 4 is used.
- `nsim`: iteration number. By default, 100 is used.
- `corr.threshold`: correlation threshold and the defaults value is 0.5.
- `...`: other arguments passed on to randomForest.

Value

A list with the following components: averaged variable importance (`avi`), column number of importance variable in `trainx` arranged from the most important to the least important (`impvar`), names of importance variable arranged from the most important to the least important (`impvar2`)

Author(s)

Jin Li

References

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples

```r
## Not run:
data(petrel)
set.seed(1234)
 avi1 <- avi(petrel[, c(1,2, 6:9)], petrel[, 5], nsim = 10)
 avi1

 avi1 <- avi(petrel[, c(1), drop = FALSE], petrel[, 5], nsim = 10)
 avi1

## End(Not run)
```

Description

This is my first submission.

```r
## R CMD check results 0 errors | 0 warnings | 0 notes
```

Author(s)

Jin Li

gbmcv

Cross validation, n-fold for generalized boosted regression modeling

(\textit{gbm})

Description

This function is a cross validation function for generalized boosted regression modeling.

Usage

```r
gbmcv(trainx, trainy, var.monotone = rep(0, ncol(trainx)),
family = "gaussian", n.trees = 3000, learning.rate = 0.001,
interaction.depth = 2, bag.fraction = 0.5, train.fraction = 1,
n.minobsinnode = 10, cv.fold = 10, weights = rep(1, nrow(trainx)),
keep.data = FALSE, verbose = TRUE, n.cores = 6, predacc = "VEcv", ...)
```
Arguments

- **trainx**: a dataframe or matrix contains columns of predictive variables.
- **trainy**: a vector of response, must have length equal to the number of rows in trainx.
- **var_monotone**: an optional vector, the same length as the number of predictors, indicating which variables have a monotone increasing (+1), decreasing (-1), or arbitrary (0) relationship with the outcome. By default, a vector of 0 is used.
- **family**: either a character string specifying the name of the distribution to use or a list with a component name specifying the distribution and any additional parameters needed. See gbm for details. By default, "gaussian" is used.
- **n.trees**: the total number of trees to fit. This is equivalent to the number of iterations and the number of basis functions in the additive expansion. By default, 3000 is used.
- **learning.rate**: a shrinkage parameter applied to each tree in the expansion. Also known as step-size reduction.
- **interaction.depth**: the maximum depth of variable interactions. 1 implies an additive model, 2 implies a model with up to 2-way interactions, etc. By default, 2 is used.
- **bag.fraction**: the fraction of the training set observations randomly selected to propose the next tree in the expansion. By default, 0.5 is used.
- **train.fraction**: the first train.fraction * n rows(data) observations are used to fit the gbm and the remainder are used for computing out-of-sample estimates of the loss function.
- **n.minobsinnode**: minimum number of observations in the trees terminal nodes. Note that this is the actual number of observations not the total weight. By default, 10 is used.
- **cv.fold**: integer; number of folds in the cross-validation. It is also the number of cross-validation folds to perform within gbm. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
- **weights**: an optional vector of weights to be used in the fitting process. Must be positive but do not need to be normalized. If keep.data = FALSE in the initial call to gbm then it is the user’s responsibility to resupply the weights to gbm.more. By default, a vector of 1 is used.
- **keep.data**: a logical variable indicating whether to keep the data and an index of the data stored with the object. Keeping the data and index makes subsequent calls to gbm.more faster at the cost of storing an extra copy of the dataset. By default, 'FALSE' is used.
- **verbose**: If TRUE, gbm will print out progress and performance indicators. By default, 'TRUE' is used.
- **n.cores**: The number of CPU cores to use. See gbm for details. By default, 6 is used.
- **predacc**: can be either "VEcv" for vecv or "ALL" for all measures in function pred.acc. ... other arguments passed on to gbm.

Value

A list with the following components: for numerical data: me, rme, mae, rmae, mse, rmse, rrmse, vecv and el; or vecv for categorical data: correct classification rate (ccc.cv) and kappa (kappa.cv)
Note

This function is largely based on rf.cv (see Li et al. 2013), rfcv in randomForest and gbm.

Author(s)

Jin Li

References

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples

```r
## Not run:
data(sponge)

gbmcv1 <- gbmcv(sponge[-c(3)], sponge[, 3], cv.fold = 10,
family = "poisson", n.cores=2, predacc = "ALL")
gbmcv1

n <- 20 # number of iterations, 60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n) {
  gbmcv1 <- gbmcv(sponge[-c(3)], sponge[, 3], cv.fold = 10,
family = "poisson", n.cores=2, predacc = "VEcv")
  VEcv[i] <- gbmcv1
}

plot(VEcv ~ c(1:n), xlab = "Iteration for gbm", ylab = "VEcv (%)")
points(cumsum(VEcv) / c(1:n) - c(1:n), col = 2)
abline(h = mean(VEcv), col = 'blue', lwd = 2)

## End(Not run)
```
gbmidwcv

Cross validation, n-fold for the hybrid method of generalized boosted regression modeling and inverse distance weighting (gbmidw)

Description

This function is a cross validation function for the hybrid method of generalized boosted regression modeling and inverse distance weighting.

Usage

```r
gbmidwcv(longlat, trainx, trainy, var.monotone = rep(0, ncol(trainx)),
         family = "gaussian", n.trees = 3000, learning.rate = 0.001,
         interaction.depth = 2, bag.fraction = 0.5, train.fraction = 1,
         n.minobsinnode = 10, cv.fold = 10, weights = rep(1, nrow(trainx)),
         keep.data = FALSE, verbose = TRUE, idp = 2, nmax = 12,
         predacc = "VEcv", n.cores = 6, ...)
```

Arguments

- `longlat`: a dataframe contains longitude and latitude of point samples (i.e., trainx and trainy).
- `trainx`: a dataframe or matrix contains columns of predictive variables.
- `trainy`: a vector of response, must have length equal to the number of rows in trainx.
- `var.monotone`: an optional vector, the same length as the number of predictors, indicating which variables have a monotone increasing (+1), decreasing (-1), or arbitrary (0) relationship with the outcome. By default, a vector of 0 is used.
- `family`: either a character string specifying the name of the distribution to use or a list with a component name specifying the distribution and any additional parameters needed. See gbm for details. By default, "gaussian" is used.
- `n.trees`: the total number of trees to fit. This is equivalent to the number of iterations and the number of basis functions in the additive expansion. By default, 3000 is used.
- `learning.rate`: a shrinkage parameter applied to each tree in the expansion. Also known as step-size reduction.
- `interaction.depth`: the maximum depth of variable interactions. 1 implies an additive model, 2 implies a model with up to 2-way interactions, etc. By default, 2 is used.
- `bag.fraction`: the fraction of the training set observations randomly selected to propose the next tree in the expansion. By default, 0.5 is used.
- `train.fraction`: The first train.fraction * nrow(data) observations are used to fit the gbm and the remainder are used for computing out-of-sample estimates of the loss function.
- `n.minobsinnode`: minimum number of observations in the trees terminal nodes. Note that this is the actual number of observations not the total weight. By default, 10 is used.
cv.fold integer; number of folds in the cross-validation. It is also the number of cross-validation folds to perform within gbm. If > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.

weights an optional vector of weights to be used in the fitting process. Must be positive but do not need to be normalized. If keep.data=FALSE in the initial call to gbm then it is the user’s responsibility to resupply the weights to gbm.more. By default, a vector of 1 is used.

keep.data a logical variable indicating whether to keep the data and an index of the data stored with the object. Keeping the data and index makes subsequent calls to gbm.more faster at the cost of storing an extra copy of the dataset. By default, 'FALSE' is used.

verbose If TRUE, gbm will print out progress and performance indicators. By default, 'TRUE' is used.

idp numeric; specify the inverse distance weighting power.

nmax for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used.

predacc can be either "VECv" for vecv or "ALL" for all measures in function pred.acc.

n.cores The number of CPU cores to use. See gbm for details. By default, 6 is used.

Value A list with the following components: for numerical data: me, rme, mae, rmae, mse, rmse, rrmse, vecv and e1; or vecv for categorical data: correct classification rate (ccr.cv) and kappa (kappa.cv)

Note this function is largely based on rf.cv (see Li et al. 2013), rfcvrandomForest and gbm

Author(s) Jin Li

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

gbmidwpred

Examples

Not run:
data(sponge)

gbmidwcv1 <- gbmidwcv(sponge[, c(1,2)], sponge[, -c(3)], sponge[, 3],
 cv.fold = 10, family = "poisson", n.cores=2, predacc = "ALL")

n <- 20 # number of iterations, 60 to 100 is recommended.
VECv <- NULL
for (i in 1:n) {
 gbmidwcv1 <- gbmidwcv(sponge[, c(1,2)], sponge[, -c(3)], sponge[, 3],
 cv.fold = 10, family = "poisson", n.cores=2, predacc = "VECv")
 VECv[i] <- gbmidwcv1
}

plot(VECv ~ c(1:n), xlab = "Iteration for gbmidw", ylab = "VECv (%)")
points(cumsum(VECv) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(VECv), col = 'blue', lwd = 2)

End(Not run)

gbmidwpred

Generate spatial predictions using the hybrid method of generalized boosted regression modeling and inverse distance weighting (gbmidw)

Description

This function is to make spatial predictions using the hybrid method of generalized boosted regression modeling and inverse distance weighting.

Usage

```r
gbmidwpred(longlat, trainx, trainy, longlatpredx, predx, var.monotone = rep(0,
  ncol(trainx)), family = "gaussian", n.trees = 3000,
  learning.rate = 0.001, interaction.depth = 2, bag.fraction = 0.5,
  train.fraction = 1, n.minobsinnode = 10, cv.fold = 10,
  weights = rep(1, nrow(trainx)), keep.data = FALSE, verbose = TRUE,
  idp = 2, nmax = 12, n.cores = 6, ...)
```

Arguments

- `longlat` a dataframe contains longitude and latitude of point samples (i.e., `trainx` and `trainy`).
- `trainx` a dataframe or matrix contains columns of predictive variables.
- `trainy` a vector of response, must have length equal to the number of rows in `trainx`.
- `longlatpredx` a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted.
predx
a dataframe or matrix contains columns of predictive variables for the grids to be predicted.

var.monotone
an optional vector, the same length as the number of predictors, indicating which variables have a monotone increasing (+1), decreasing (-1), or arbitrary (0) relationship with the outcome. By default, a vector of 0 is used.

family
either a character string specifying the name of the distribution to use or a list with a component name specifying the distribution and any additional parameters needed. See gbm for details. By default, "gaussian" is used.

n.trees
the total number of trees to fit. This is equivalent to the number of iterations and the number of basis functions in the additive expansion. By default, 3000 is used.

learning.rate
a shrinkage parameter applied to each tree in the expansion. Also known as step-size reduction.

interaction.depth
the maximum depth of variable interactions. 1 implies an additive model, 2 implies a model with up to 2-way interactions, etc. By default, 2 is used.

bag.fraction
the fraction of the training set observations randomly selected to propose the next tree in the expansion. By default, 0.5 is used.

train.fraction
The first train.fraction * nrows(data) observations are used to fit the gbm and the remainder are used for computing out-of-sample estimates of the loss function.

n.minobsinnode
minimum number of observations in the trees terminal nodes. Note that this is the actual number of observations not the total weight. By default, 10 is used.

cv.fold
integer; number of folds in the cross-validation. It is also the number of cross-validation folds to perform within gbm. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.

weights
an optional vector of weights to be used in the fitting process. Must be positive but do not need to be normalized. If keep.data = FALSE in the initial call to gbm then it is the user’s responsibility to resupply the weights to gbm.more. By default, a vector of 1 is used.

keep.data
a logical variable indicating whether to keep the data and an index of the data stored with the object. Keeping the data and index makes subsequent calls to gbm.more faster at the cost of storing an extra copy of the dataset. By default, ‘FALSE’ is used.

verbose
If TRUE, gbm will print out progress and performance indicators. By default, ‘TRUE’ is used.

idp
numeric; specify the inverse distance weighting power.

nmax
for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used.

n.cores
The number of CPU cores to use. See gbm for details. By default, 6 is used.

...
other arguments passed on to gbm.

Value
A list with the following components: for numerical data: me, rme, mae, rmae, mse, rmse, rrmse and vecv; or vecv for categorical data: correct classification rate (ccr.cv) and kappa (kappa.cv)
Note
This function is largely based on gbm.

Author(s)
Jin Li

References

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples
```r
## Not run:
data(petrel)
data(petrel.grid)
gbmidwpred1 <- gbmidwpred(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 3],
                          petrel.grid[, c(1,2)], petrel.grid, family = "gaussian", n.cores=6,
                          nmax = 12)
names(gbmidwpred1)

## End(Not run)
```

gbmokcv

Cross validation, n-fold for the hybrid method of generalized boosted regression modeling and ordinary kriging (gbmok)

Description
This function is a cross validation function for the hybrid method of generalized boosted regression modeling and ordinary kriging.
Usage

gbmokcv(longlat, trainx, trainy, var.monotone = rep(0L, ncol(trainx)),
family = "gaussian", n.trees = S000, learning.rate = 0.001,
interaction.depth = 2, bag.fraction = 0.5, train.fraction = 1,
n.minobsinnode = 10, cv.fold = 10, weights = rep(1L, nrow(trainx)),
keep.data = FALSE, verbose = TRUE, nmax = 12, vgm.args = c("Sph"),
block = 0, predacc = "VEcv", n.cores = 6, ...)

Arguments

longlat a dataframe contains longitude and latitude of point samples (i.e., trainx and trainy).
trainx a dataframe or matrix contains columns of predictive variables.
trainy a vector of response, must have length equal to the number of rows in trainx.
var.monotone an optional vector, the same length as the number of predictors, indicating which variables have a monotone increasing (+1), decreasing (-1), or arbitrary (0) relationship with the outcome. By default, a vector of 0 is used.
family either a character string specifying the name of the distribution to use or a list with a component name specifying the distribution and any additional parameters needed. See gbm for details. By default, "gaussian" is used.
n.trees the total number of trees to fit. This is equivalent to the number of iterations and the number of basis functions in the additive expansion. By default, 3000 is used.
learning.rate a shrinkage parameter applied to each tree in the expansion. Also known as step-size reduction.
interaction.depth the maximum depth of variable interactions. 1 implies an additive model, 2 implies a model with up to 2-way interactions, etc. By default, 2 is used.
bag.fraction the fraction of the training set observations randomly selected to propose the next tree in the expansion. By default, 0.5 is used.
train.fraction The first train.fraction * nrow(data) observations are used to fit the gbm and the remainder are used for computing out-of-sample estimates of the loss function.
n.minobsinnode minimum number of observations in the trees terminal nodes. Note that this is the actual number of observations not the total weight. By default, 10 is used.
cv.fold integer; number of folds in the cross-validation. it is also the number of cross-validation folds to perform within gbm. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
weights an optional vector of weights to be used in the fitting process. Must be positive but do not need to be normalized. If keep.data = FALSE in the initial call to gbm then it is the user's responsibility to resupply the weights to gbm.more. By default, a vector of 1 is used.
keep.data a logical variable indicating whether to keep the data and an index of the data stored with the object. Keeping the data and index makes subsequent calls to gbm.more faster at the cost of storing an extra copy of the dataset. By default, 'FALSE' is used.
If TRUE, gbm will print out progress and performance indicators. By default, 'TRUE' is used.

For local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used.

Arguments for vgm, e.g. variogram model of response variable and anisotropy parameters. See notes vgm in gstat for details. By default, "Sph" is used.

Block size. See krig in gstat for details.

Can be either "VEcv" for vecv or "ALL" for all measures in function pred.acc.

The number of CPU cores to use. See gbm for details. By default, 6 is used.

Value
A list with the following components: for numerical data: me, rme, mae, rmae, mse, rmse, rrmse, vecv and e1; or vecv for categorical data: correct classification rate (ccr.cv) and kappa (kappa.cv)

Note
This function is largely based on rf.cv (see Li et al. 2013), rfcv in randomForest and gbm. When 'A zero or negative range was fitted to variogram' occurs, to allow gstat running, the range was set to be positive by using min(vgm1$dist). In this case, caution should be taken in applying this method, although sometimes it can still outperform IDW and OK.

Author(s)
Jin Li

References

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples
Not run:
data(sponge)

gbmokcv1 <- gbmokcv(sponge[, c(1,2)], sponge[, c(3)], sponge[, 3],

...
gbmokgbmidwcv

Cross validation, n-fold for the average of the hybrid method of generalized boosted regression modeling and ordinary kriging and the hybrid method of generalized boosted regression modeling and inverse distance weighting (gbmokgbmidw)

Description

This function is a cross validation function for the average of the hybrid method of generalized boosted regression modeling and ordinary kriging and the hybrid method of generalized boosted regression modeling and inverse distance weighting.

Usage

```r
gbmokgbmidwcv(longlat, trainx, trainy, var.monotone = rep(0, ncol(trainx)),
              family = "gaussian", n.trees = 3000, learning.rate = 0.001,
              interaction.depth = 2, bag.fraction = 0.5, train.fraction = 1,
              n.minobsinnode = 10, cv.fold = 10, weights = rep(1, nrow(trainx)),
              keep.data = FALSE, verbose = TRUE, idp = 2, nmaxidw = 12,
              nmaxok = 12, vgm.args = ("sph"), block = 0, predacc = "vecv",
              n.cores = 6, ...)```

Arguments

- **longlat**: a dataframe contains longitude and latitude of point samples (i.e., trainx and trainy).
- **trainx**: a dataframe or matrix contains columns of predictive variables.
- **trainy**: a vector of response, must have length equal to the number of rows in trainx.
- **var.monotone**: an optional vector, the same length as the number of predictors, indicating which variables have a monotone increasing (+1), decreasing (-1), or arbitrary (0) relationship with the outcome. By default, a vector of 0 is used.
family

either a character string specifying the name of the distribution to use or a list
with a component name specifying the distribution and any additional parame-
ters needed. See gbm for details. By default, "gaussian" is used.

n.trees

the total number of trees to fit. This is equivalent to the number of iterations
and the number of basis functions in the additive expansion. By default, 3000 is
used.

learning.rate

a shrinkage parameter applied to each tree in the expansion. Also known as
step-size reduction.

interaction.depth

the maximum depth of variable interactions. 1 implies an additive model, 2
implies a model with up to 2-way interactions, etc. By default, 2 is used.

bag.fraction

the fraction of the training set observations randomly selected to propose the
next tree in the expansion. By default, 0.5 is used.

train.fraction

The first train.fraction * nrow(data) observations are used to fit the gbm and the
remainder are used for computing out-of-sample estimates of the loss function.

n.minobsinnode

minimum number of observations in the trees terminal nodes. Note that this is
the actual number of observations not the total weight. By default, 10 is used.

cv.fold

integer; number of folds in the cross-validation. it is also the number of cross-
validation folds to perform within gbm. if > 1, then apply n-fold cross validation;
the default is 10, i.e., 10-fold cross validation that is recommended.

weights

an optional vector of weights to be used in the fitting process. Must be positive
but do not need to be normalized. If keep.data = FALSE in the initial call to
gbm then it is the user’s responsibility to resupply the weights to gbm.more. By
default, a vector of 1 is used.

keep.data

a logical variable indicating whether to keep the data and an index of the data
stored with the object. Keeping the data and index makes subsequent calls to
gbm.more faster at the cost of storing an extra copy of the dataset. By default,
'FALSE' is used.

verbose

If TRUE, gbm will print out progress and performance indicators. By default,
'TRUE' is used.

idp

numeric; specify the inverse distance weighting power.

nmaxidw

for local predicting: the number of nearest observations that should be used for
a prediction or simulation, where nearest is defined in terms of the space of the
spatial locations. By default, 12 observations are used for IDW.

nmaxok

for local predicting: the number of nearest observations that should be used for
a prediction or simulation, where nearest is defined in terms of the space of the
spatial locations. By default, 12 observations are used for OK.

vgm.args

arguments for vgm, e.g. variogram model of response variable and anisotropy
parameters. see notes vgmgstat for details. By default, "Sph" is used.

block

block size. see krige in gstat for details.

predacc

can be either "VEcv" for vecv or "ALL" for all measures in function pred.acc.

n.cores

The number of CPU cores to use. See gbm for details. By default, 6 is used.

... other arguments passed on to gbm.
Value

A list with the following components: for numerical data: me, rme, mae, rmae, mse, rmse, rrmse, vecv and e1; or vecv for categorical data: correct classification rate (ccr.cv) and kappa (kappa.cv)

Note

This function is largely based on rf.cv (see Li et al. 2013), rfcv in randomForest and gbm. When 'A zero or negative range was fitted to variogram' occurs, to allow gstat running, the range was set to be positive by using min(vgm1$dist). In this case, caution should be taken in applying this method, although sometimes it can still outperform IDW and OK.

Author(s)

Jin Li

References


Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.


Examples

```r
Not run:
data(sponge)

gbmokgbmidw1 <- gbmokgbmidwcv(sponge[, c(1,2)], sponge[, -c(3)], sponge[, 3],
cv.fold = 10, family = "poisson", n.cores=2, predacc = "ALL")

n <- 20 # number of iterations, 60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n) {
 gbmokgbmidw1 <- gbmokgbmidwcv(sponge[, c(1,2)], sponge[, -c(3)], sponge[, 3],
cv.fold = 10, family = "poisson", n.cores=2, predacc = "VEcv")
 VEcv [i] <- gbmokgbmidw1
}
plot(VEcv ~ c(1:n), xlab = "Iteration for gbmokgbmidw", ylab = "VEcv (%)")
points(cumsum(VEcv) / c(1:n) - c(1:n), col = 2)
abline(h = mean(VEcv), col = 'blue', lwd = 2)

End(Not run)
```
Generate spatial predictions using the average of the hybrid method of generalized boosted regression modeling and ordinary kriging and the hybrid method of generalized boosted regression modeling and inverse distance weighting (gbmokgbmidw)

Description

This function is to make spatial predictions using the average of the hybrid method of generalized boosted regression modeling and ordinary kriging and the hybrid method of generalized boosted regression modeling and inverse distance weighting.

Usage

```r
gbmokgbmidwpred(longlat, trainx, trainy, longlatpredx, predx, var.monotone = rep(0, ncol(trainx)), family = "gaussian", n.trees = 3000, learning.rate = 0.001, interaction.depth = 2, bag.fraction = 0.5, train.fraction = 1, n.minobsinnode = 10, cv.fold = 10, weights = rep(1, nrow(trainx)), keep.data = FALSE, verbose = TRUE, idp = 2, nmaxidw = 12, nmaxok = 12, vgm.args = ("Sph"), block = 0, n.cores = 6, ...)
```

Arguments

- `longlat`: a dataframe contains longitude and latitude of point samples (i.e., trainx and trainy).
- `trainx`: a dataframe or matrix contains columns of predictive variables.
- `trainy`: a vector of response, must have length equal to the number of rows in trainx.
- `longlatpredx`: a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted.
- `predx`: a dataframe or matrix contains columns of predictive variables for the grids to be predicted.
- `var.monotone`: an optional vector, the same length as the number of predictors, indicating which variables have a monotone increasing (+1), decreasing (-1), or arbitrary (0) relationship with the outcome. By default, a vector of 0 is used.
- `family`: either a character string specifying the name of the distribution to use or a list with a component name specifying the distribution and any additional parameters needed. See gbm for details. By default, "gaussian" is used.
- `n.trees`: the total number of trees to fit. This is equivalent to the number of iterations and the number of basis functions in the additive expansion. By default, 3000 is used.
- `learning.rate`: a shrinkage parameter applied to each tree in the expansion. Also known as step-size reduction.
interaction.depth
the maximum depth of variable interactions. 1 implies an additive model, 2 implies a model with up to 2-way interactions, etc. By default, 2 is used.

bag.fraction
the fraction of the training set observations randomly selected to propose the next tree in the expansion. By default, 0.5 is used.

train.fraction
The first train.fraction * nrow(data) observations are used to fit the gbm and the remainder are used for computing out-of-sample estimates of the loss function.

n.minobsinnode
minimum number of observations in the trees terminal nodes. Note that this is the actual number of observations not the total weight. By default, 10 is used.

cv.fold
integer; number of cross-validation folds to perform within gbm.

weights
an optional vector of weights to be used in the fitting process. Must be positive but do not need to be normalized. If keep.data = FALSE in the initial call to gbm then it is the user’s responsibility to resupply the weights to gbm.more. By default, a vector of 1 is used.

keep.data
a logical variable indicating whether to keep the data and an index of the data stored with the object. Keeping the data and index makes subsequent calls to gbm.more faster at the cost of storing an extra copy of the dataset. By default, ’FALSE’ is used.

verbose
If TRUE, gbm will print out progress and performance indicators. By default, ’TRUE’ is used.

idp
numeric; specify the inverse distance weighting power.

n.maxidw
for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used for IDW.

n.maxok
for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used for OK.

vgm.args
arguments for vgm, e.g. variogram model of response variable and anisotropy parameters. see notes vgm in gstat for details. By default, "Sph" is used.

block
block size. see krige in gstat for details.

n.cores
The number of CPU cores to use. See gbm for details. By default, 6 is used.

Value
A dataframe of longitude, latitude, predictions and variances. The variances are the same as the variances of gbmokpred.

Note
This function is largely based on gbm. When ’A zero or negative range was fitted to variogram’ occurs, to allow OK running, the range was set to be positive by using min(vgm1$dist). In this case, caution should be taken in applying this method, although sometimes it can still outperform IDW and OK.
gbmokpred

Author(s)
Jin Li

References

Examples
## Not run:
data(petrel)
data(petrel.grid)
gbmokgbmidwpred1 <- gbmokgbmidwpred(petrel[, c(1,2)], petrel[, c(1,2, 6:9)],
petrel[, 3], petrel.grid[, c(1,2)], petrel.grid, family = "gaussian",
n.cores=6, rmaxidw = 12, rmaxok = 12, vgm.args = ("Sph"))
names(gbmokgbmidwpred1)
## End(Not run)

---

gbmokpred

Generate spatial predictions using the hybrid method of generalized
boosted regression modeling and ordinary kriging (gbmok)

Description
This function is to make spatial predictions using the hybrid method of generalized boosted regression modeling and ordinary kriging.

Usage

```r
gbmokpred(longlat, trainx, trainy, longlatpredx, predx, var.monotone = rep(0,
ncol(trainx)), family = "gaussian", n.trees = 3000,
learning.rate = 0.001, interaction.depth = 2, bag.fraction = 0.5,
train.fraction = 1, n.minobsinnode = 10, cv.fold = 10,
weights = rep(1, nrow(trainx)), keep.data = FALSE, verbose = TRUE,
rmmax = 12, vgm.args = ("Sph"), block = 0, n.cores = 6, ...)
```

Arguments

- `longlat`: a dataframe contains longitude and latitude of point samples (i.e., trainx and trainy).
- `trainx`: a dataframe or matrix contains columns of predictive variables.
- `trainy`: a vector of response, must have length equal to the number of rows in trainx.
- `longlatpredx`: a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted.
predx a dataframe or matrix contains columns of predictive variables for the grids to be predicted.

var.monotone an optional vector, the same length as the number of predictors, indicating which variables have a monotone increasing (+1), decreasing (-1), or arbitrary (0) relationship with the outcome. By default, a vector of 0 is used.

family either a character string specifying the name of the distribution to use or a list with a component name specifying the distribution and any additional parameters needed. See gbm for details. By default, "gaussian" is used.

n.trees the total number of trees to fit. This is equivalent to the number of iterations and the number of basis functions in the additive expansion. By default, 3000 is used.

learning.rate a shrinkage parameter applied to each tree in the expansion. Also known as step-size reduction.

interaction.depth the maximum depth of variable interactions. 1 implies an additive model, 2 implies a model with up to 2-way interactions, etc. By default, 2 is used.

bag.fraction the fraction of the training set observations randomly selected to propose the next tree in the expansion. By default, 0.5 is used.

train.fraction The first train.fraction * nrows(data) observations are used to fit the gbm and the remainder are used for computing out-of-sample estimates of the loss function.

n.minobsinnode minimum number of observations in the trees terminal nodes. Note that this is the actual number of observations not the total weight. By default, 10 is used.

cv.fold integer; number of cross-validation folds to perform within gbm.

weights an optional vector of weights to be used in the fitting process. Must be positive but do not need to be normalized. If keep.data = FALSE in the initial call to gbm then it is the user’s responsibility to resupply the weights to gbm.more. By default, a vector of 1 is used.

keep.data a logical variable indicating whether to keep the data and an index of the data stored with the object. Keeping the data and index makes subsequent calls to gbm.more faster at the cost of storing an extra copy of the dataset. By default, 'FALSE' is used.

verbose If TRUE, gbm will print out progress and performance indicators. By default, 'TRUE' is used.

nmax for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used.

vgm.args arguments for vgm, e.g. variogram model of response variable and anisotropy parameters. see notes vgm in gstat for details. By default, "Sph" is used.

block block size. see krige in gstat for details.

n.cores The number of CPU cores to use. See gbm for details. By default, 6 is used.

... other arguments passed on to gbm.
gbmpred

Value

A dataframe of longitude, latitude, predictions and variances. The variances are produced by OK based on the residuals of gbm.

Note

This function is largely based on gbm. When 'A zero or negative range was fitted to variogram' occurs, to allow OK running, the range was set to be positive by using min(vgm1$dist). In this case, caution should be taken in applying this method, although sometimes it can still outperform IDW and OK.

Author(s)

Jin Li

References


Examples

```r
Not run:
data(petrel)
data(petrel.grid)

gbmokpred1 <- gbmokpred(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 3], petrel.grid[, c(1,2)], petrel.grid, family = "gaussian", n.cores=6, nmax = 12, vgm.args = ("Sph"))
names(gbmokpred1)

End(Not run)
```

---

gbmpred  

Generate spatial predictions using generalized boosted regression modeling (gbm)

Description

This function is to make spatial predictions using generalized boosted regression modeling.

Usage

```r
gbmpred(trainx, trainy, longlatpredx, predx, var.monotone = rep(0, ncol(trainx)), family = "gaussian", n.trees = 3000, learning.rate = 0.001, interaction.depth = 2, bag.fraction = 0.5, train.fraction = 1, n.minobsinnode = 10, cv.fold = 10, weights = rep(1, nrow(trainx)), keep.data = FALSE, verbose = TRUE, n.cores = 6, ...)
```
Arguments

- **trainx**: a dataframe or matrix contains columns of predictive variables.
- **trainy**: a vector of response, must have length equal to the number of rows in trainx.
- **longlatpredx**: a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted.
- **predx**: a dataframe or matrix contains columns of predictive variables for the grids to be predicted.
- **var.monotone**: an optional vector, the same length as the number of predictors, indicating which variables have a monotone increasing (+1), decreasing (-1), or arbitrary (0) relationship with the outcome. By default, a vector of 0 is used.
- **family**: either a character string specifying the name of the distribution to use or a list with a component name specifying the distribution and any additional parameters needed. See gbm for details. By default, "gaussian" is used.
- **n.trees**: the total number of trees to fit. This is equivalent to the number of iterations and the number of basis functions in the additive expansion. By default, 3000 is used.
- **learning.rate**: a shrinkage parameter applied to each tree in the expansion. Also known as step-size reduction.
- **interaction.depth**: the maximum depth of variable interactions. 1 implies an additive model, 2 implies a model with up to 2-way interactions, etc. By default, 2 is used.
- **bag.fraction**: the fraction of the training set observations randomly selected to propose the next tree in the expansion. By default, 0.5 is used.
- **train.fraction**: The first train.fraction * nrows(data) observations are used to fit the gbm and the remainder are used for computing out-of-sample estimates of the loss function.
- **n.minobsinnode**: minimum number of observations in the trees terminal nodes. Note that this is the actual number of observations not the total weight. By default, 10 is used.
- **cv.fold**: integer; number of cross-validation folds to perform within gbm. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
- **weights**: an optional vector of weights to be used in the fitting process. Must be positive but do not need to be normalized. If keep.data = FALSE in the initial call to gbm then it is the user's responsibility to resupply the weights to gbm.more. By default, a vector of 1 is used.
- **keep.data**: a logical variable indicating whether to keep the data and an index of the data stored with the object. Keeping the data and index makes subsequent calls to gbm.more faster at the cost of storing an extra copy of the dataset. By default, 'FALSE' is used.
- **verbose**: If TRUE, gbm will print out progress and performance indicators. By default, 'TRUE' is used.
- **n.cores**: The number of CPU cores to use. See gbm for details. By default, 6 is used.
- **...**: other arguments passed on to gbm.
Value

A dataframe of longitude, latitude and predictions.

Note

This function is largely based on gbm.

Author(s)

Jin Li

References


Examples

```r
Not run:
data(sponge)
data(sponge.grid)
gbmpred1 <- gbmpred(sponge[, -c(3)], sponge[, 3], sponge.grid[, c(1:2)], sponge.grid, family = "poisson", n.cores=2)
names(gbmpred1)

End(Not run)
```

Description

This dataset contains 137 samples of 17 variables including area surveyed (Area), easting, northing, prock, bathymetry (bathy), backscatter (bs), local Moran I (bathy.moran), planar curvature (planar.curv), profile curvature (profile.curv), topographic relief (relief), slope (slope), surface area (surface), topographic position index (tpi), homogeneity of backscatter (homogeneity), local Moran I of backscatter (bs.moran), variance of backscatter (variance) and seabed hardness (hardness).

Usage

data("hard")
Format

A data frame with 137 observations on the following 17 variables.

- **area**: a categorical vector, no unit
- **easting**: a numeric vector, m
- **northing**: a numeric vector, m
- **prock**: a numeric vector, no unit
- **bathy**: a numeric vector, meter
- **bs**: a numeric vector, dB
- **bathy.moran**: a numeric vector, no unit
- **planar.curv**: a numeric vector, no unit
- **profile.curv**: a numeric vector, no unit
- **relief**: a numeric vector, meter
- **slope**: a numeric vector, no unit
- **surface**: a numeric vector, no unit
- **tpi**: a numeric vector, no unit
- **homogeneity**: a numeric vector, no unit
- **bs.moran**: a numeric vector, no unit
- **variance**: a numeric vector, dB^2
- **hardness**: a categorical vector, no unit

Details

For details, please see the source. This dataset was modified by removing 3 samples with missing values from Appendix AA of the book chapter listed in the source.

Source


---

**idwcv**

*Cross validation, n-fold for inverse distance weighting (IDW)*

Description

This function is a cross validation function for inverse distance weighting.

Usage

```r
idwcv(longlat, trainy, cv.fold = 10, nmax = 12, idp = 2,
 predacc = "VEcv", ...)
```
Arguments

longlat a dataframe contains longitude and latitude of point samples.
trainy a vector of response, must have length equal to the number of rows in longlat.
cv.fold integer; number of folds in the cross-validation. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
nmax for a local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used.
iddp numeric; specify the inverse distance weighting power.
predacc can be either "VEcv" for vecv or "ALL" for all measures in function pred.acc.
... other arguments passed on to gstat.

Value

A list with the following components: me, rme, mae, rmae, mse, rmse, rrmse, vecv and e1; or vecv only.

Note

This function is largely based on rfcv in randomForest and some functions in library(gstat).

Author(s)

Jin Li

References


Examples

## Not run:
library(sp)
data(swmud)
data(petrel)
idwcv1 <- idwcv(swmud[, c(1,2)], swmud[, 3], nmax = 12, idp = 2)
idwcv1
idwpred

Generate spatial predictions using inverse distance weighting (IDW)

Description

This function is to make spatial predictions using inverse distance weighting.

Usage

idwpred(longlat, trainy, longlat2, nmax = 12, idp = 2, ...)

Arguments

longlat: a dataframe contains longitude and latitude of point samples.
trainy: a vector of response, must have length equal to the number of rows in longlat.
longlat2: a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted.
nmax: for a local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used.
idp: numeric; specify the inverse distance weighting power.
... other arguments passed on to gstat.
okcv

Value
A dataframe of longitude, latitude and predictions.

Note
This function is largely based on library(gstat).

Author(s)
Jin Li

References

Examples

```r
Not run:
library(sp)
data(swmud)
data(sw)
idiwpred1 <- idwpred(swmud[, c(1,2)], swmud[, 3], sw, nmax = 12, idp = 2)
names(idwpre1)

End(Not run)
```

okcv  Cross validation, n-fold for ordinary kriging (OK)

Description
This function is a cross validation function for ordinary kriging.

Usage

```r
okcv(longlat, trainy, cv.fold = 10, nmax = 12, transformation = "none",
delta = 1, vgm.args = ("Sph"), anis = c(0, 1), alpha = 0, block = 0,
predacc = "VEcv", ...)```

Arguments

- `longlat` a dataframe contains longitude and latitude of point samples.
- `trainy` a vector of response, must have length equal to the number of rows in longlat.
- `cv.fold` integer; number of folds in the cross-validation. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
rmax for local kriging: the number of nearest observations that should be used for a kriging prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used.

transformation transform the response variable to normalise the data; can be "sqrt" for square root, "arcsine" for arcsine, "log" or "none" for non transformation. By default, "none" is used.

delta numeric; to avoid log(0) in the log transformation.

vgm.args arguments for vgm, e.g. variogram model of response variable and anisotropy parameters. see notes vgm in gstat for details. By default, "Sph" is used.

anis anisotropy parameters: see notes vgm in gstat for details.

alpha direction in plane (x,y). see variogram in gstat for details.

block block size. see krig in gstat for details.

predacc can be either "VEcv" for vecv or "ALL" for all measures in function pred.acc.

other arguments passed on to gstat.

Value

A list with the following components: me, rme, mae, rmse, rrmse, vecv and e1; or vecv only

Note

This function is largely based on rfcv in randomForest and some functions in library(gstat). When 'A zero or negative range was fitted to variogram' occurs, to allow gstat running, the range was set to be positive by using min(vgm1$dist). In this case, caution should be taken in applying this method. If it still occur for okpred function, different method should be used.

Author(s)

Jin Li

References

Examples

```r
## Not run:
library(sp)
data(swmud)
data(petrel)

okcv1 <- okcv(swmud[, c(1, 2)], swmud[, 3], nmax = 7, transformation =
"arcsine", vgm.args = ("Sph"), predacc = "VEcv")
okcv1

n <- 20  # number of iterations, 60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n) {
  okcv1 <- okcv(petrel[, c(1, 2)], petrel[, 5], nmax = 12,
  transformation = "arcsine", predacc = "VEcv")
  VEcv[i] <- okcv1
}
plot(VEcv ~ c(1:n), xlab = "Iteration for OK", ylab = "VEcv (%)")
points(cumsum(VEcv) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(VEcv), col = "blue", lwd = 2)

n <- 20  # number of iterations, 60 to 100 is recommended.
measures <- NULL
for (i in 1:n) {
  okcv1 <- okcv(petrel[, c(1, 2)], petrel[, 3], nmax = 12, transformation =
  "arcsine", predacc = "ALL")
  measures <- rbind(measures, okcv1$vecv)
}
plot(measures ~ c(1:n), xlab = "Iteration for OK", ylab = "VEcv (%)")
points(cumsum(measures) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(measures), col = "blue", lwd = 2)

## End(Not run)
```

okpred

Generate spatial predictions using ordinary kriging (OK)

Description

This function is to make spatial predictions using ordinary kriging.

Usage

```r
okpred(longlat, trainy, longlat2, nmax = 12, transformation = "none",
delta = 1, vgm.args = ("Sph"), anis = c(0, 1), alpha = 0, block = 0,
...)
```
Arguments

longlat a dataframe contains longitude and latitude of point samples.
trainy a vector of response, must have length equal to the number of rows in longlat.
longlat2 a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted.
nmax for local kriging: the number of nearest observations that should be used for a kriging prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used.
transformation transform the response variable to normalise the data; can be "sqrt" for square root, "arcsine" for arcsine, "log" or "none" for non transformation. By default, "none" is used.
delta numeric; to avoid log(0) in the log transformation.
vgm.args arguments for vgm, e.g. variogram model of response variable and anisotropy parameters. see notes vgm in gstat for details. By default, "Sph" is used.
anis anisotropy parameters: see notes vgm in gstat for details.
alp ha direction in plane (x,y). see variogram in gstat for details.
block block size. see krig in gstat for details.
... other arguments passed on to gstat.

Value

A dataframe of longitude, latitude, predictions and variances.

Author(s)

Jin Li

References

Examples

```r
## Not run:
library(sp)
data(swmud)
data(sw)
okpred1 <- okpred(swmud[, c(1,2)], swmud[, 3], sw, nmax = 7, transformation = "arcsine", vgm.args = ("Sph"))
names(okpred1)
## End(Not run)
```
Description

This dataset contains 237 samples of 9 variables including longitude (long), latitude (lat), mud content (mud), sand content (sand), gravel content (gravel), bathymetry (bathy), distance to coast (dist), sea level relief (relief), seabed slope (slope).

Usage

data("petrel")

Format

A data frame with 237 observations on the following 9 variables.

long a numeric vector, decimal degree
lat a numeric vector, decimal degree
mud a numeric vector, percentage
sand a numeric vector, percentage
gravel a numeric vector, percentage
bathy a numeric vector, meter below sea level
dist a numeric vector, degree
relief a numeric vector, meter
slope a numeric vector, no unit

Details

For details, please check the reference.

Source

Li, J., 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods, The International Congress on Modelling and Simulation (MODSIM) 2013: Adelaide, pp. 394-400.
petrel.grid

A dataset of grids for producing spatial predictions of seabed sediment content in the Petrel sub-basin in Australia Exclusive Economic Zone

Description

This dataset contains 248675 rows of 6 variables including longitude (long), latitude (lat), bathymetry (bathy), distance to coast (dist), seabe relief (relief), seabed slope (slope).

Usage

data("petrel")

Format

A data frame with 248675 observations on the following 6 variables.

long a numeric vector, decimal degree
lat a numeric vector, decimal degree
bathy a numeric vector, meter bellow sea level
dist a numeric vector, degree
relief a numeric vector, meter
slope a numeric vector, no unit

Details

For details, please check the reference.

Source

Li, J., 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods, The International Congress on Modelling and Simulation (MODSIM) 2013: Adelaide, pp. 394-400.
Description

This function is used to calculate the mean error (me), mean absolute error (mae), mean squared error (mse), relative me (rme), relative mae (rmgae), root mse (rmse), relative rmse (rrmse), variance explained by predictive models based on cross-validation (vecv), and Legates and McCabe’s E1 (e1) for numerical data; and it also calculates correct classification rate (ccr), kappa (kappa), sensitivity (sens), specificity (spec), and true skill statistic (tss) for categorical data with the observed (obs) data specified as factor. They are based on the differences between the predicted values for and the observed values of validation samples for cross-validation. For 0 and 1 data, the observed values need to be specified as factor in order to use accuracy measures for categorical data. Moreover, sens, spec, tss and rmse are for categorical data with two levels (e.g. presence and absence data).

Usage

pred.acc(obs, pred)

Arguments

obs a vector of observation values of validation samples.
pred a vector of prediction values of predictive models for validation samples.

Value

A list with the following components: me, rme, mae, rmgae, mse, rmse, rrmse, vecv and e1 for numerical data; ccr, kappa, sens, spec and tss for categorical data with two levels; and ccr, kappa for categorical data with more than two levels.

Author(s)

Jin Li

References

Examples

set.seed(1234)
x <- sample(1:30, 30)
e <- rnorm(30, 1)
y <- x + e
pred.acc(x, y)

y <- 0.8 * x + e
pred.acc(x, y)
RFcv

Cross validation, n-fold for random forest (RF)

Description

This function is a cross validation function for random forest.

Usage

RFcv(trainx, trainy, cv.fold = 10, mtry = if (!is.null(trainy) && !is.factor(trainy)) max(floor(ncol(trainx)/3), 1) else floor(sqrt(ncol(trainx))), ntree = 500, predacc = "ALL", ...)

Arguments

trainx a dataframe or matrix contains columns of predictor variables.
trainy a vector of response, must have length equal to the number of rows in trainx.
cv.fold integer; number of folds in the cross-validation. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
mtry a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call.
ntree number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. By default, 500 is used.
predacc can be either "VEcv" for vecv or "ALL" for all measures in function pred.acc.
... other arguments passed on to randomForest.

Value

A list with the following components: for numerical data: me, rme, mae, rmae, mse, rmse, rrmse, vecv and e1; or vecv. for categorical data: correct classification rate (ccr), kappa (kappa), sensitivity (sens), specificity (spec) and true skill statistic (tss)

Note

This function is largely based on rf.cv (see Li et al. 2013) and rfcv in randomForest.

Author(s)

Jin Li
References

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples

```r
## Not run:
data(hard)
data(petrel)

rfcv1 <- RFcv(petrel[, c(1,2,6:9)], petrel[, 5], predacc = "ALL")
rfcv1

n <- 20 # number of iterations, 60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n) {
  rfcv1 <- RFcv(petrel[, c(1,2,6:9)], petrel[, 5], predacc = "VEcv")
  VEcv[i] <- rfcv1
}
plot(VEcv ~ c(1:n), xlab = "Iteration for RF", ylab = "VEcv (%)")
points(cumsum(VEcv) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(VEcv), col = 'blue', lwd = 2)

## End(Not run)
```

rfidwcv

Cross validation, n-fold for the hybrid method of random forest and inverse distance weighting (RFIDW)
Description

This function is a cross validation function for the hybrid method of random forest and inverse distance weighting (RFIDW).

Usage

```r
rfidwcv(longlat, trainx, trainy, cv.fold = 10, mtry = function(p) max(1, floor(sqrt(p))), ntree = 500, idp = 2, nmax = 12, predacc = "VEcv", ...)
```

Arguments

- `longlat`: a dataframe contains longitude and latitude of point samples (i.e., trainx and trainy).
- `trainx`: a dataframe or matrix contains columns of predictive variables.
- `trainy`: a vector of response, must have length equal to the number of rows in trainx.
- `cv.fold`: integer; number of folds in the cross-validation. If > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
- `mtry`: a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call.
- `ntree`: number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. By default, 500 is used.
- `idp`: numeric; specify the inverse distance weighting power.
- `nmax`: for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used.
- `predacc`: can be either "VEcv" for vecv or "ALL" for all measures in function pred.acc.
- `...`: other arguments passed on to randomForest or gstat.

Value

A list with the following components: for numerical data: me, rme, mae, rmae, mse, rmse, rrmse, vecv and e1; or vecv.

Note

This function is largely based on rf.cv (see Li et al. 2013) and rfcv in randomForest.

Author(s)

Jin Li
rfidwpred

Generate spatial predictions using the hybrid method of random forest and inverse distance weighting (RFIDW)

Description

This function is to make spatial predictions using the hybrid method of random forest and inverse distance weighting (RFIDW).

References

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples

```r
## Not run:
data(petrel)

rfidwcv1 <- rfidwcv(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 5], predacc = "ALL")
rfidwcv1

n <- 20 # number of iterations, 60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n) {
  rfidwcv1 <- rfidwcv(petrel[, c(1,2)], petrel[, c(1,2,6:9)], petrel[, 5], predacc = "VEcv")
  VEcv[i] <- rfidwcv1
}
plot(VEcv ~ c(1:n), xlab = "Iteration for RFIDW", ylab = "VEcv (%)")
points(cumsum(VEcv) / c(1:n) - c(1:n), col = 2)
abline(h = mean(VEcv), col = 'blue', lwd = 2)

n <- 20 # number of iterations, 60 to 100 is recommended.
measures <- NULL
for (i in 1:n) {
  rfidwcv1 <- rfidwcv(petrel[, c(1,2)], petrel[, c(1,2,6:9)], petrel[, 5], predacc = "ALL")
  measures <- rbind(measures, rfidwcv1$vecv)
}
plot(measures ~ c(1:n), xlab = "Iteration for RFIDW", ylab = "VEcv (%)")
points(cumsum(measures) / c(1:n) - c(1:n), col = 2)
abline(h = mean(measures), col = 'blue', lwd = 2)

## End(Not run)
```
Usage

```r
rfidwpred(longlat, trainx, trainy, longlatpredx, predx, mtry = function(p)
  max(1, floor(sqrt(p))), ntree = 500, idp = 2, nmax = 12, ...)
```

Arguments

- `longlat`: a dataframe contains longitude and latitude of point samples (i.e., `trainx` and `trainy`).
- `trainx`: a dataframe or matrix contains columns of predictive variables.
- `trainy`: a vector of response, must have length equal to the number of rows in `trainx`.
- `longlatpredx`: a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted.
- `predx`: a dataframe or matrix contains columns of predictive variables for the grids to be predicted.
- `mtry`: a function of number of remaining predictor variables to use as the `mtry` parameter in the randomForest call.
- `ntree`: number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. By default, 500 is used.
- `idp`: numeric; specify the inverse distance weighting power.
- `nmax`: for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used.
- `...`: other arguments passed on to randomForest or gstat.

Value

A dataframe of longitude, latitude and predictions.

Author(s)

Jin Li

References

Examples

```r
## Not run:
data(petrel)
data(petrel.grid)
rfidwpred1 <- rfidwpred(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 3],
  petrel.grid[, c(1,2)], petrel.grid, ntree = 500, idp = 2, nmax = 12)
names(rfidwpred1)

## End(Not run)
```
A cross validation function for the hybrid method of random forest and ordinary kriging (RFOK).

Usage

```r
rfokcv(longlat, trainx, trainy, cv.fold = 10, mtry = function(p) max(1, floor(sqrt(p))), ntree = 500, nmax = 12, vgm.args = ("Sph"), block = 0, predacc = "VEcv", ...)
```

Arguments

- `longlat`: a dataframe contains longitude and latitude of point samples (i.e., trainx and trainy).
- `trainx`: a dataframe or matrix contains columns of predictive variables.
- `trainy`: a vector of response, must have length equal to the number of rows in trainx.
- `cv.fold`: integer; number of folds in the cross-validation. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
- `mtry`: a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call.
- `ntree`: number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. By default, 500 is used.
- `nmax`: for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12.
- `vgm.args`: arguments for vgm, e.g. variogram model of response variable and anisotropy parameters. see notes vgm in gstat for details. By default, "Sph" is used.
- `block`: block size. see krige in gstat for details.
- `predacc`: can be either "VEcv" for vecv or "ALL" for all measures in function pred.acc.
- `...`: other arguments passed on to randomForest or gstat.

Value

A list with the following components: for numerical data: me, rme, mae, rmae, mse, rmse, rrmse, vecv and e1; or vecv.
Note

This function is largely based on rf.cv (see Li et al. 2013) and rfcv in randomForest. When 'A zero or negative range was fitted to variogram' occurs, to allow gstat running, the range was set to be positive by using min(vgm1$dist). In this case, caution should be taken in applying this method, although sometimes it can still outperform IDW and OK.

Author(s)

Jin Li

References

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples

```r
## Not run:
data(petrel)
rforcv1 <- rfokcv(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 5],
predacc = "ALL")
rforcv1

n <- 20 # number of iterations, 60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n) {
  rforcv1 <- rfokcv(petrel[, c(1,2)], petrel[, c(1,2,6:9)], petrel[, 5],
predacc = "VEcv")
  VEc[1] <- rforcv1
}
plot(VEcv ~ c(1:n), xlab = "Iteration for RFOK", ylab = "VEcv (%)")
points(cumsum(VEcv) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(VEcv), col = 'blue', lwd = 2)

## End(Not run)
```
Generate spatial predictions using the hybrid method of random forest and ordinary kriging (RFOK)

Description

This function is to make spatial predictions using the hybrid method of random forest and ordinary kriging (RFOK).

Usage

```r
rfokpred(longlat, trainx, trainy, longlatpredx, predx, mtry = function(p) max(1, floor(sqrt(p))), ntree = 500, nmax = 12, vgm.args = ("Sph"), block = 0, ...)
```

Arguments

- `longlat`: a dataframe contains longitude and latitude of point samples (i.e., `trainx` and `trainy`).
- `trainx`: a dataframe or matrix contains columns of predictive variables.
- `trainy`: a vector of response, must have length equal to the number of rows in `trainx`.
- `longlatpredx`: a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted.
- `predx`: a dataframe or matrix contains columns of predictive variables for the grids to be predicted.
- `mtry`: a function of number of remaining predictor variables to use as the `mtry` parameter in the `randomForest` call.
- `ntree`: number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. By default, 500 is used.
- `nmax`: for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12.
- `vgm.args`: arguments for `vgm`, e.g. variogram model of response variable and anisotropy parameters. see notes `vgm` in `gstat` for details. By default, "Sph" is used.
- `block`: block size. see `krige` in `gstat` for details.
- `...`: other arguments passed on to `randomForest` or `gstat`.

Value

A dataframe of longitude, latitude, predictions and variances. The variances are produced by OK based on the residuals of `rf`.
Note

This function is largely based rfcv in randomForest. When 'A zero or negative range was fitted to variogram' occurs, to allow OK running, the range was set to be positive by using min(vgm1$dist). In this case, caution should be taken in applying this method, although sometimes it can still out-perform IDW and OK.

Author(s)

Jin Li

References

Examples

```r
## Not run:
data(petrel)
data(petrel.grid)
rfokpred1 <- rfokpred(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 3],
petrel.grid[, c(1,2)], petrel.grid, ntree = 500, nmax = 12, vgm.terms =
("Sph"))
names(rfokpred1)
## End(Not run)
```

`rfokrfidwcv` *Cross validation, n-fold for the average of the hybrid method of random forest and ordinary kriging and the hybrid method of random forest and inverse distance weighting (RFOKRFDW)*

Description

This function is a cross validation function for the average of the hybrid method of random forest and ordinary kriging and the hybrid method of random forest and inverse distance weighting (RFOKRFDW).

Usage

```r
rfokrfidwcv(longlat, trainx, trainy, cv.fold = 10, mtry = function(p) max(1, floor(sqrt(p))), ntree = 500, idp = 2, nmaxok = 12, nmaxidw = 12,
vgm.terms = ("Sph"), block = 0, predacc = "vecv", ...)
```
Arguments

- **longlat**: a dataframe contains longitude and latitude of point samples (i.e., trainx and trainy).
- **trainx**: a dataframe or matrix contains columns of predictive variables.
- **trainy**: a vector of response, must have length equal to the number of rows in trainx.
- **cv.fold**: integer; number of folds in the cross-validation. If > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
- **mtry**: a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call.
- **ntree**: number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. By default, 500 is used.
- **idp**: numeric; specify the inverse distance weighting power.
- **nmaxok**: for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used for OK.
- **nmaxidw**: for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used for IDW.
- **vgm.args**: arguments for vgm, e.g. variogram model of response variable and anisotropy parameters. see notes vgm in gstat for details. By default, "Sph" is used.
- **block**: block size. see krige in gstat for details.
- **predacc**: can be either "VEcv" for vecv or "ALL" for all measures in function pred.acc.
- **...**: other arguments passed on to randomForest or gstat.

Value

A list with the following components: for numerical data: me, rme, mae, rmae, mse, rmse, rrmse, vecv and e1; or vecv.

Note

This function is largely based on rf.cv (see Li et al. 2013) and rfcv in randomForest. When 'A zero or negative range was fitted to variogram' occurs, to allow gstat running, the range was set to be positive by using min(vgm1$dist). In this case, caution should be taken in applying this method, although sometimes it can still outperform IDW and OK.

Author(s)

Jin Li

References

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples

```r
## Not run:
data(petrel)

rfokrfidwcv1 <- rfokrfidwcv(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 5], predacc = "ALL")
rfokrfidwcv1

n <- 20 # number of iterations, 60 to 100 is recommended.
VECv <- NULL
for (i in 1:n) {
  rfokrfidwcv1 <- rfokrfidwcv(petrel[, c(1,2)], petrel[, c(1,2,6:9)], petrel[, 5], predacc = "VECv")
  VECv [i] <- rfokrfidwcv1
}
plot(VECv ~ c(1:n), xlab = "Iteration for RFOKRFDW", ylab = "VECv (%)")
points(cumsum(VECv) / c(1:n) - c(1:n), col = 2)
abline(h = mean(VECv), col = 'blue', lwd = 2)

n <- 20 # number of iterations, 60 to 100 is recommended.
measures <- NULL
for (i in 1:n) {
  rfokrfidwcv1 <- rfokrfidwcv(petrel[, c(1,2)], petrel[, c(1,2,6:9)], petrel[, 5], predacc = "ALL")
  measures <- rbind(measures, rfokrfidwcv1$vecv)
}
plot(measures ~ c(1:n), xlab = "Iteration for RFOKRFDW", ylab = "VECv (%)")
points(cumsum(measures) / c(1:n) - c(1:n), col = 2)
abline(h = mean(measures), col = 'blue', lwd = 2)
## End(Not run)
```

rfokrfidwpred Generate spatial predictions using the average of the hybrid method of random forest and ordinary kriging and the hybrid method of random forest and inverse distance weighting (RFOKRFDW)

Description

This function is to make spatial predictions using the average of the hybrid method of random forest and ordinary kriging and the hybrid method of random forest and inverse distance weighting (RFOKRFDW).

Usage

```r
rfokrfidwpred(longlatx, trainx, trainy, longlatpredx, predx, mtry = function(p)
              max(1, floor(sqrt(p))), ntree = 500, idp = 2, nmaxok = 12,
              nmaxidw = 12, vgm.args =("Sph"), block = 0, ...)
```
Arguments

longlat a dataframe contains longitude and latitude of point samples (i.e., trainx and trainy).

trainx a dataframe or matrix contains columns of predictive variables.

trainy a vector of response, must have length equal to the number of rows in trainx.

longlatpredx a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted.

predx a dataframe or matrix contains columns of predictive variables for the grids to be predicted.

mtry a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call.

ntree number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. By default, 500 is used.

idp numeric; specify the inverse distance weighting power.

nmaxok for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used for OK.

nmaxidw for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used for IDW.

vgm.args arguments for vgm, e.g. variogram model of response variable and anisotropy parameters. see notes vgm in gstat for details. By default, "Sph" is used.

block block size. see krige in gstat for details.

... other arguments passed on to randomForest or gstat.

Value

A dataframe of longitude, latitude, predictions and variances. The variances are the same as the variances of rfokpred.

Note

This function is largely based rfcv in randomForest. When 'A zero or negative range was fitted to variogram' occurs, to allow OK running, the range was set to be positive by using min(vgm1$dist). In this case, caution should be taken in applying this method, although sometimes it can still outperform IDW and OK.

Author(s)

Jin Li

References

rfpred

Generate spatial predictions using random forest (RF)

Description

This function is to make spatial predictions using random forest.

Usage

rfpred(trainx, trainy, longlatpredx, predx, mtry = if (!is.null(trainy) &&
!is.factor(trainy)) max(floor(ncol(trainx)/3), 1) else
floor(sqrt(ncol(trainx)))); ntree = 500, ...)

Arguments

trainx a dataframe or matrix contains columns of predictor variables.
trainy a vector of response, must have length equal to the number of rows in trainx.
longlatpredx a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted.
predx a dataframe or matrix contains columns of predictive variables for the grids to be predicted.
mtry a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call.
ntree number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. By default, 500 is used.
... other arguments passed on to randomForest.

Value

A dataframe of longitude, latitude and predictions.

Author(s)

Jin Li
rgcv

References

Examples

```r
## Not run:
data(petrel)
data(petrel.grid)
rfpred1 <- rfpred(petrel[, c(1, 2, 6:9)], petrel[, 5], petrel.grid[, c(1, 2)],
                  petrel.grid, ntree = 500)
names(rfpred1)

## End(Not run)
```

rgcv

Cross validation, n-fold for random forest in ranger (RG)

Description
This function is a cross validation function for random forest in ranger.

Usage

```r
rgcv(trainx, trainy, cv.fold = 10, mtry = if (!is.null(trainy) &&
       !is.factor(trainy)) max(floor(ncol(trainx)/3), 1) else
       floor(sqrt(ncol(trainx))), num.trees = 500, min.node.size = NULL,
       num.threads = NULL, verbose = FALSE, predacc = "ALL", ...)
```

Arguments

- `trainx`: a dataframe or matrix contains columns of predictor variables.
- `trainy`: a vector of response, must have length equal to the number of rows in `trainx`.
- `cv.fold`: integer; number of folds in the cross-validation. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
- `mtry`: Number of variables to possibly split at in each node. Default is the (rounded down) square root of the number variables.
- `num.trees`: number of trees. By default, 500 is used.
- `min.node.size`: Default 1 for classification, 5 for regression.
- `num.threads`: number of threads. Default is number of CPUs available.
- `verbose`: Show computation status and estimated runtime. Default is FALSE.
- `predacc`: can be either "VEcv" for vcv or "ALL" for all measures in function pred.acc.
- `...`: other arguments passed on to randomForest.
Value

A list with the following components: for numerical data: me, rme, mae, rmae, mse, rmse, rrmse, vecv and e1; or vecv. for categorical data: correct classification rate (ccr), kappa (kappa), sensitivity (sens), specificity (spec) and true skill statistic (tss)

Note

This function is largely based on RFcv.

Author(s)

Jin Li

References

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples

```r
## Not run:
data(hard)
data(petrel)

rgcv1 <- rgcv(petrel[, c(1,2, 6:9)], petrel[, 5], predacc = "ALL")
rgcv1

n <- 20 # number of iterations, 60 to 100 is recommended.
VEcov <- NULL
for (i in 1:n) {
  rgcv1 <- rgcv(petrel[, c(1,2,6:9)], petrel[, 5], predacc = "VEcov")
  VEcov [i] <- rgcv1
}
plot(VEcov ~ c(1:n), xlab = "Iteration for RF", ylab = "VEcov (%)")
points(cumsum(VEcov) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(VEcov), col = 'blue', lwd = 2)

n <- 20 # number of iterations, 60 to 100 is recommended.
measures <- NULL
for (i in 1:n) {
  rgcv1 <- rgcv(hard[, c(4:6)], hard[, 17])
  measures <- rbind(measures, rgcv1$crr) # for kappa, replace ccr with kappa
}
plot(measures ~ c(1:n), xlab = "Iteration for RF", ylab = "Correct classification rate (%)")
points(cumsum(measures) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(measures), col = 'blue', lwd = 2)
```
rgidwcv

Cross validation, n-fold for the hybrid method of random forest in ranger and inverse distance weighting (RGIDW)

Description
This function is a cross validation function for the hybrid method of random forest in ranger and inverse distance weighting (RGIDW).

Usage
rgidwcv(longlat, trainx, trainy, cv.fold = 10, mtry = function(p) max(1, floor(sqrt(p))), num.trees = 500, min.node.size = NULL, num.threads = NULL, verbose = FALSE, idp = 2, nmax = 12, predacc = "VEcv", ...)

Arguments
longlat a dataframe contains longitude and latitude of point samples (i.e., trainx and trainy).
trainx a dataframe or matrix contains columns of predictive variables.
trainy a vector of response, must have length equal to the number of rows in trainx.
cv.fold integer; number of folds in the cross-validation. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
mtry a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call.
num.trees number of trees. By default, 500 is used.
min.node.size Default 1 for classification, 5 for regression.
num.threads number of threads. Default is number of CPUs available.
verbose Show computation status and estimated runtime. Default is FALSE.
idp numeric; specify the inverse distance weighting power.
nmax for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used.
predacc can be either "VEcv" for vecv or "ALL" for all measures in function pred.acc.
...
other arguments passed on to randomForest or gstat.

Value
A list with the following components: for numerical data: me, rme, mae, rmae, mse, rmse, rrmse, vecv and e1; or vecv.
Note

This function is largely based on rfidwcv.

Author(s)

Jin Li

References

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples

```r
## Not run:
data(petrel)
rgidwcv1 <- rgidwcv(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 5], predacc = "ALL")
rgidwcv1

n <- 20 # number of iterations, 60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n) {
  rgidwcv1 <- rgidwcv(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 5], predacc = "VEcv")
  VECv [i] <- rgidwcv1
}
plot(VEcv ~ c(1:n), xlab = "Iteration for RFIDW", ylab = "VEcv (%)")
points(cumsum(VEcv) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(VEcv), col = 'blue', lwd = 2)

n <- 20 # number of iterations, 60 to 100 is recommended.
measures <- NULL
for (i in 1:n) {
  rgidwcv1 <- rgidwcv(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 5], predacc = "ALL")
  measures <- rbind(measures, rgidwcv1$vecv)
}
plot(measures ~ c(1:n), xlab = "Iteration for RFIDW", ylab = "VEcv (%)")
points(cumsum(measures) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(measures), col = 'blue', lwd = 2)

## End(Not run)
```
rgidwpred

Generate spatial predictions using the hybrid method of random forest in ranger and inverse distance weighting (RGIDW)

Description

This function is to make spatial predictions using the hybrid method of random forest in ranger and inverse distance weighting (RGIDW).

Usage

rgidwpred(longlat, trainx, trainy, longlatpredx, predx, mtry = function(p) max(1, floor(sqrt(p))), num.trees = 500, min.node.size = NULL,
 type = "response", num.threads = NULL, verbose = FALSE, idp = 2,
 nmax = 12, ...)

Arguments

longlat a dataframe contains longitude and latitude of point samples (i.e., trainx and trainy).
trainx a dataframe or matrix contains columns of predictive variables.
trainy a vector of response, must have length equal to the number of rows in trainx.
longlatpredx a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted.
predx a dataframe or matrix contains columns of predictive variables for the grids to be predicted.
mtry a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call.
num.trees number of trees. By default, 500 is used.
min.node.size Default 1 for classification, 5 for regression.
type Type of prediction. One of ‘response’, ‘se’, ‘terminalNodes’ with default ‘response’. See ranger::predict.ranger for details.
num.threads number of threads. Default is number of CPUs available.
verbose Show computation status and estimated runtime. Default is FALSE.
idp numeric; specify the inverse distance weighting power.
nmax for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used.
... other arguments passed on to randomForest or gstat.

Value

A dataframe of longitude, latitude and predictions.
Note

This function is largely based on rgidwpred.

Author(s)

Jin Li

References

Examples

```r
## Not run:
data(petrel)
data(petrel.grid)
rgidwpred1 <- rgidwpred(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 3],
petrel.grid[, c(1,2)], petrel.grid, num.trees = 500, idp = 2, nmax = 12)
names(rgidwpred1)
## End(Not run)
```

rgokcv Cross validation, n-fold for the hybrid method of random forest in ranger and ordinary kriging (RGFOK)

Description

This function is a cross validation function for the hybrid method of random forest in ranger and ordinary kriging (RFOK).

Usage

```r
rgokcv(longlat, trainx, trainy, cv.fold = 10, mtry = function(p) max(1,
floor(sqrt(p))), num.trees = 500, min.node.size = NULL,
num.threads = NULL, verbose = FALSE, nmax = 12, vgm.args = ("Sph"),
block = 0, predacc = "VECv", ...)
```

Arguments

- **longlat**: a dataframe contains longitude and latitude of point samples (i.e., trainx and trainy).
- **trainx**: a dataframe or matrix contains columns of predictive variables.
- **trainy**: a vector of response, must have length equal to the number of rows in trainx.
cv.fold integer; number of folds in the cross-validation. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.

mtry a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call.

num.trees number of trees. By default, 500 is used.

min.node.size Default 1 for classification, 5 for regression.

num.threads number of threads. Default is number of CPUs available.

verbose Show computation status and estimated runtime. Default is FALSE.

nmax for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12.

vgm.args arguments for vgm, e.g. variogram model of response variable and anisotropy parameters. see notes vgm in gstat for details. By default, "Sph" is used.

block block size. see krige in gstat for details.

predacc can be either "VECv" for vecv or "ALL" for all measures in function pred.acc.

... other arguments passed on to randomForest or gstat.

Value

A list with the following components: for numerical data: me, rme, mae, rmae, mse, rmse, rrmse, vecv and e1; or vecv.

Note

This function is largely based on rfokcv. When 'A zero or negative range was fitted to variogram' occurs, to allow gstat running, the range was set to be positive by using min(vgm1$dist). In this case, caution should be taken in applying this method, although sometimes it can still outperform IDW and OK.

Author(s)

Jin Li

References

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples

```r
## Not run:
data(petrel)

gokcv1 <- gokcv(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 5], predacc = "ALL")
gokcv1

n <- 20 # number of iterations, 60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n)
  gokcv1 <- gokcv(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 5],
  predacc = "VEcv")
VEcv[i] <- gokcv1

plot(VEcv ~ c(1:n), xlab = "Iteration for RFOK", ylab = "VEcv (%)")
points(cumsum(VEcv) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(VEcv), col = 'blue', lwd = 2)
```

End(Not run)

rgokpred Generate spatial predictions using the hybrid method of random forest in ranger and ordinary kriging (RGOK)

Description

This function is to make spatial predictions using the hybrid method of random forest in ranger and ordinary kriging (RGOK).

Usage

```r
rgokpred(longlat, trainx, trainy, longlatpredx, predx, mtry = function(p)
  max(1, floor(sqrt(p))), num.trees = 500, min.node.size = NULL,
  type = "response", num.threads = NULL, verbose = FALSE, nmax = 12,
  vgm.terms = ("Sph"), block = 0, ...)
```
rgokpred

Arguments

longlat a dataframe contains longitude and latitude of point samples (i.e., trainx and trainy).
trainx a dataframe or matrix contains columns of predictive variables.
trainy a vector of response, must have length equal to the number of rows in trainx.
longlatpredx a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted.
predx a dataframe or matrix contains columns of predictive variables for the grids to be predicted.
mtry a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call.
num.trees number of trees. By default, 500 is used.
min.node.size Default 1 for classification, 5 for regression.
type Type of prediction. One of 'response', 'se', 'terminalNodes' with default 'response'. See ranger::predict.ranger for details.
num.threads number of threads. Default is number of CPUs available.
verbose Show computation status and estimated runtime. Default is FALSE.
nmax for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12.
vgm.args arguments for vgm, e.g. variogram model of response variable and anisotropy parameters. see notes vgm in gstat for details. By default, "Sph" is used.
block block size. see krige in gstat for details.
... other arguments passed on to randomForest or gstat.

Value

A dataframe of longitude, latitude, predictions and variances. The variances are produced by OK based on the residuals of rf.

Note

This function is largely based rfokpred. When 'A zero or negative range was fitted to variogram' occurs, to allow OK running, the range was set to be positive by using min(vgm1$dist). In this case, caution should be taken in applying this method, although sometimes it can still outperform IDW and OK.

Author(s)

Jin Li

References

Examples

```r
## Not run:
data(petrel)
data(petrel.grid)
rgokpred1 <- rgokpred(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 3],
                      petrel.grid[, c(1,2)], petrel.grid, num.trees = 500, nmax = 12, vgm.args =
                      ("Sph"))
names(rgokpred1)
## End(Not run)
```

rgokrgidwcv

Cross validation, n-fold for the average of the hybrid method of random forest in ranger (RG) and ordinary kriging and the hybrid method of RG and inverse distance weighting (RGOKRIGIDW)

Description

This function is a cross validation function for the average of the hybrid method of random forest in ranger (RG) and ordinary kriging and the hybrid method of RG and inverse distance weighting (RGOKRIGIDW).

Usage

```r
rgokrgidwcv(longlat, trainx, trainy, cv.fold = 10, mtry = function(p) max(1, floor(sqrt(p))), num.trees = 500, min.node.size = NULL,
             num.threads = NULL, verbose = FALSE, idp = 2, nmaxok = 12,
             nmaxidw = 12, vgm.args = ("Sph"), block = 0, predacc = "Vecv", ...)
```

Arguments

- **longlat**
 - A dataframe contains longitude and latitude of point samples (i.e., trainx and trainy).
- **trainx**
 - A dataframe or matrix contains columns of predictive variables.
- **trainy**
 - A vector of response, must have length equal to the number of rows in trainx.
- **cv.fold**
 - Integer; number of folds in the cross-validation. If > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
- **mtry**
 - A function of number of remaining predictor variables to use as the mtry parameter in the randomForest call.
- **num.trees**
 - Number of trees. By default, 500 is used.
- **min.node.size**
 - Default 1 for classification, 5 for regression.
- **num.threads**
 - Number of threads. Default is number of CPUs available.
- **verbose**
 - Show computation status and estimated runtime. Default is FALSE.
- **idp**
 - Numeric; specify the inverse distance weighting power.
"rgokrgidwcv" 57

nmaxok for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used for OK.

nmaxidw for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used for IDW.

vgm.args arguments for vgm, e.g. variogram model of response variable and anisotropy parameters. see notes vgm in gstat for details. By default, "Sph" is used.

block block size. see krige in gstat for details.

predacc can be either "VEcv" for vecv or "ALL" for all measures in function pred.acc.

... other arguments passed on to randomForest or gstat.

Value

A list with the following components: for numerical data: me, rme, mae, mse, rmse, rrmse, vecv and e1; or vecv.

Note

This function is largely based on rfokrfidw. When 'A zero or negative range was fitted to variogram' occurs, to allow gstat running, the range was set to be positive by using min(vgm1$dist). In this case, caution should be taken in applying this method, although sometimes it can still outperform IDW and OK.

Author(s)

Jin Li

References

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples

```r
## Not run:
data(petrel)

rgokrgidwcv1 <- rgokrgidwcv(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 5],
predacc = "ALL")
rgokrgidwcv1

n <- 20 # number of iterations, 60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n) {
  rgokrgidwcv1 <- rgokrgidwcv(petrel[, c(1,2)], petrel[, c(1,2,6:9)], petrel[, 5],
```
rgokrgidwpred

Generate spatial predictions using the average of the hybrid method of random forest in ranger (RG) and ordinary kriging and the hybrid method of RG and inverse distance weighting (RGOKRGIDW).

Description

This function is to make spatial predictions using the average of the hybrid method of random forest in ranger (RG) and ordinary kriging and the hybrid method of RG and inverse distance weighting (RGOKRGIDW).

Usage

rgokrgidwpred(longlat, trainx, trainy, longlatpredx, predx, mtry = function(p) max(1, floor(sqrt(p))), num.trees = 500, min.node.size = NULL, type = "response", num.threads = NULL, verbose = FALSE, idp = 2, nmaxok = 12, nmaxidw = 12, vgm.args = ("Sph"), block = 0, ...)

Arguments

longlat a dataframe contains longitude and latitude of point samples (i.e., trainx and trainy).
trainx a dataframe or matrix contains columns of predictive variables.
trainy a vector of response, must have length equal to the number of rows in trainx.
longlatpredx a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted.
predx a dataframe or matrix contains columns of predictive variables for the grids to be predicted.
mtry a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call.
num.trees number of trees. By default, 500 is used.
min.node.size Default 1 for classification, 5 for regression.
type Type of prediction. One of 'response', 'se', 'terminalNodes' with default 'response'. See ranger::predict.ranger for details.
num.threads number of threads. Default is number of CPUs available.
verbose Show computation status and estimated runtime. Default is FALSE.
idp numeric; specify the inverse distance weighting power.
nmaxok for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used for OK.
nmaxidw for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used for IDW.
vgm.args arguments for vgm, e.g. variogram model of response variable and anisotropy parameters. see notes vgm in gstat for details. By default, "Sph" is used.
block block size. see krige in gstat for details.
... other arguments passed on to randomForest or gstat.

Value
A dataframe of longitude, latitude, predictions and variances. The variances are the same as the variances of rfokpred.

Note
This function is largely based rfokrfdwpred. When 'A zero or negative range was fitted to variogram' occurs, to allow OK running, the range was set to be positive by using min(vgm1$dist). In this case, caution should be taken in applying this method, although sometimes it can still outperform IDW and OK.

Author(s)
Jin Li

References
Examples

```r
## Not run:
data(petrel)
data(petrel.grid)
rgokrgidwpred1 <- rgokrgidwpred(petrel[, c(1,2)], petrel[, c(1,2, 6:9)],
petrel[, 3], petrel.grid[, c(1,2)], petrel.grid, num.trees = 500, idp = 2,
nmaxok = 12, nmaxidw = 12)
names(rgokrgidwpred1)

## End(Not run)
```

rgpred

Generate spatial predictions using random forest in ranger (RG)

Description

This function is to make spatial predictions using random forest in ranger.

Usage

```r
rgpred(trainx, trainy, longlatpredx, predx, mtry = if (!is.null(trainy) &&
!is.factor(trainy)) max(floor(ncol(trainx)/3), 1) else
floor(sqrt(ncol(trainx))), num.trees = 500, min.node.size = NULL,
type = "response", num.threads = NULL, verbose = FALSE, ...)
```

Arguments

- `trainx`: a dataframe or matrix contains columns of predictor variables.
- `trainy`: a vector of response, must have length equal to the number of rows in `trainx`.
- `longlatpredx`: a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted.
- `predx`: a dataframe or matrix contains columns of predictive variables for the grids to be predicted.
- `mtry`: Number of variables to possibly split at in each node. Default is the (rounded down) square root of the number variables.
- `num.trees`: number of trees. By default, 500 is used.
- `min.node.size`: Default 1 for classification, 5 for regression.
- `type`: Type of prediction. One of 'response', 'se', 'terminalNodes' with default 'response'. See `ranger::predict.ranger` for details.
- `num.threads`: number of threads. Default is number of CPUs available.
- `verbose`: Show computation status and estimated runtime. Default is FALSE.
- `...`: other arguments passed on to `randomForest`.
rvi

Value

A dataframe of longitude, latitude and predictions.

Note

This function is largely based on rfpred.

Author(s)

Jin Li

References

Examples

```r
## Not run:
data(petrel)
data(petrel.grid)
set.seed(1234)
rgpred1 <- rgpred(petrel[, c(1,2, 6:9)], petrel[, 5], petrel.grid[, c(1,2)],
petrel.grid, num.trees = 500)
names(rgpred1)
## End(Not run)
```

rvi

Relative variable influence based on generalized boosted regression modeling (gbm)

Description

This function is to derive a relative variable influence based on generalized boosted regression modeling.

Usage

```r
rvi(trainx, trainy, var.monotone = rep(0, ncol(trainx)),
family = "gaussian", n.trees = 3000, learning.rate = 0.001,
interaction.depth = 2, bag.fraction = 0.5, train.fraction = 1,
n.minobsinnode = 10, cv.fold = 10, weights = rep(1, nrow(trainx)),
keep.data = FALSE, verbose = TRUE, n.cores = 6, ...)
```
Arguments

trainx a dataframe or matrix contains columns of predictive variables.
trainy a vector of response, must have length equal to the number of rows in trainx.
var.monotone an optional vector, the same length as the number of predictors, indicating which
variables have a monotone increasing (+1), decreasing (-1), or arbitrary (0) relationship with the outcome. By default, a vector of 0 is used.
family either a character string specifying the name of the distribution to use or a list
with a component name specifying the distribution and any additional parameters needed. See gbm for details. By default, "gaussian" is used.
n.trees the total number of trees to fit. This is equivalent to the number of iterations
and the number of basis functions in the additive expansion. By default, 3000 is used.
learning.rate a shrinkage parameter applied to each tree in the expansion. Also known as step-size reduction.
interaction.depth the maximum depth of variable interactions. 1 implies an additive model, 2 implies a model with up to 2-way interactions, etc. By default, 2 is used.
bag.fraction the fraction of the training set observations randomly selected to propose the
next tree in the expansion. By default, 0.5 is used.
train.fraction The first train.fraction * nrow(data) observations are used to fit the gbm and the
remainder are used for computing out-of-sample estimates of the loss function.
n.minobsinnode minimum number of observations in the trees terminal nodes. Note that this is the actual number of observations not the total weight. By default, 10 is used.
cv.fold integer; number of cross-validation folds to perform within gbm. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
weights an optional vector of weights to be used in the fitting process. Must be positive but do not need to be normalized. If keep.data = FALSE in the initial call to gbm then it is the user’s responsibility to resupply the weights to gbm.more. By default, a vector of 1 is used.
keep.data a logical variable indicating whether to keep the data and an index of the data stored with the object. Keeping the data and index makes subsequent calls to gbm.more faster at the cost of storing an extra copy of the dataset. By default, ‘FALSE’ is used.
verbose If TRUE, gbm will print out progress and performance indicators. By default, ‘TRUE’ is used.
n.cores The number of CPU cores to use. See gbm for details. By default, 6 is used.
... other arguments passed on to gbm.

Value

A list of column number of importance variable in trainx arranged from the most influential to the least influential (impvar), and a dataframe of variables (var), and relative influence (rel.inf)
Note

This function is largely based on gbm.

Author(s)

Jin Li

References

Examples

Not run:
data(sponge)
set.seed(1234)
ri1 <- rvi(sponge[, -c(3)], sponge[, 3], family = "poisson", n.cores=2)
names(ri1)
impvar <- (1:ncol(sponge[, -c(3)]))[ri1$var]

End(Not run)

__sponge__

A dataset of sponge species richness in the Timor Sea region, northern Australia marine margin

Description

This dataset contains 77 samples of 8 variables including longitude (easting), latitude (northing), sponge, topographic position index (tpi3), variance of backscatter (var7), entropy (entro7), backscatter at incidence angle 11 degree (bs11), and backscatter at incidence angle 34 degree (bs34).

Usage

data("sponge")

Format

A data frame with 77 observations on the following 8 variables.

easting a numeric vector, m

northing a numeric vector, m

sponge a numeric vector, no unit

tpi3 a numeric vector, no unit

var7 a numeric vector, dB^2
Details

For details, please see the source. This dataset was published as an appendix of the paper listed in the source. Where the long and lat were replaced with easting and northing for prediction purpose.

Source

Description

This dataset contains 95530 rows of 7 predictive variables including longitude (easting), latitude (northing), topographic position index (tpi3), variance of backscatter (var7), entropy (entro7), backscatter at incidence angle 11 degree (bs11), and backscatter at incidence angle 34 degree (bs34).

Usage

data("sponge.grid")

Format

A data frame with 95530 rows on the following 7 variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>easting</td>
<td>a numeric vector, m</td>
</tr>
<tr>
<td>northing</td>
<td>a numeric vector, m</td>
</tr>
<tr>
<td>tpi3</td>
<td>a numeric vector, no unit</td>
</tr>
<tr>
<td>var7</td>
<td>a numeric vector, dB^2</td>
</tr>
<tr>
<td>entro7</td>
<td>a numeric vector, no unit</td>
</tr>
<tr>
<td>bs11</td>
<td>a numeric vector, dB</td>
</tr>
<tr>
<td>bs34</td>
<td>a numeric vector, dB</td>
</tr>
</tbody>
</table>

Details

For details, please see the source. This dataset was used to produce the figure of predictions in the paper listed in the source.
Source

Dataset: "sw"

A dataset of grids for producing spatial predictions of seabed mud content in the southwest Australia Exclusive Economic Zone

Description

This dataset contains 500703 rows of 2 variables including longitude (long), latitude (lat).

Usage

data("sw")

Format

A data frame with 500703 rows on the following 2 variables.

1. long a numeric vector, decimal degree
2. lat a numeric vector, decimal degree

Details

For details, please check the source.

Source

swmud

A dataset of seabed mud content in the southwest Australia Exclusive Economic Zone

Description

This dataset contains 177 samples of 3 variables including longitude (long), latitude (lat), mud content (mud).

Usage

```r
data("swmud")
```

Format

A data frame with 177 observations on the following 3 variables.

- `long` a numeric vector, decimal degree
- `lat` a numeric vector, decimal degree
- `mud` a numeric vector, percentage

Details

For details, please check the source.

Source

tovecv

Convert error measures to vecv

Description

tovecv can be used to convert existing predictive error measures to vecv. For the definition of vecv, please see function vecv in library (spm). The error measures considered are mean square error (mse), root mse (rmse), relative rmse (rrmse), standardised rmse (srmse) and mean square reduced error (msre).

Usage

```r
tovecv(n, mu, s, m, measure = c("mse", "rmse", "rrmse", "srmse", "msre"))
```
Arguments

- **n**: sample number of validation samples.
- **mu**: mean of validation samples.
- **s**: standard deviation of validation samples.
- **m**: value of an error measure.
- **measure**: a type of error measure (i.e. "mse", "rmse", "rrmse", "srmse" or "msre").

Value

- a numeric number.

Author(s)

Jin Li

References

Examples

```r
n <- 300
mu <- 15.5
sd <- 8.80
mse <- 50.43
rmse <- sqrt(mse)
rrmse <- rmse / mu * 100
srmse <- rmse / sd
msre <- mse / sd ^ 2
tovecv(n=n, mu=mu, s=sd, m=mse, measure="mse")
tovecv(n=n, mu=mu, s=sd, m=rmse, measure="rmse")
tovecv(n=n, mu=mu, s=sd, m=rrmse, measure="rrmse")
tovecv(n=n, mu=mu, s=sd, m=srmse, measure="srmse")
tovecv(n=n, mu=mu, s=sd, m=msre, measure="msre")
```
vecv is used to calculate the variance explained by predictive models based on cross-validation. The vecv is based on the differences between the predicted values for, and the observed values of, validation samples for cross-validation. It measures the proportion of variation in the validation data explained by the predicted values obtained from predictive models based on cross-validation.

Usage

vecv(obs, pred)

Arguments

obs observation values of validation samples.
pred prediction values of predictive models for validation samples.

Value

a numeric number.

Author(s)

Jin Li

References

Examples

set.seed(1234)
x <- sample(1:30, 30)
e <- rnorm(30, 1)
y <- x + e
vecv(x, y)

y <- 0.8 * x + e
vecv(x, y)
Index

*Topic datasets
 hard, 23
 petrel, 31
 petrel.grid, 32
 sponge, 63
 sponge.grid, 64
 sw, 65
 swmud, 66

avi, 3

cran-comments, 4

gbmcv, 4
gbmIdwcv, 7
gbmIdwpred, 9
gbmokcv, 11
gbmokgbmIdwcv, 14
gbmokgbmIdwpred, 17
gbmokpred, 19
gbmPred, 21

hard, 23

idwcv, 24
idwpred, 26

okcv, 27
okpred, 29

petrel, 31
petrel.grid, 32
pred.acc, 32

RFcv, 34
rfidwcv, 35
rfidwpred, 37
rfokcv, 39
rfokpred, 41
rfokrfidwcv, 42
rfokrfidwpred, 44

rfPred, 46
rgcv, 47
rgidwcv, 49
rgidwpred, 51
rgokcv, 52
rgokpred, 54
rgokrgidwcv, 56
rgokrgidwpred, 58
rgPred, 60
rvi, 61

sponge, 63
sponge.grid, 64
sw, 65
swmud, 66
tovecv, 66
vecv, 68