Package ‘spmodel’

August 12, 2022

Title Spatial Statistical Modeling and Prediction
Version 0.1.0
Description Fit, summarize, and predict for a variety of spatial statistical models. Parameters are estimated using various methods. Additional modeling features include anisotropy, random effects, partition factors, big data approaches, and more. Model-fit statistics are used to summarize, visualize, and compare models. Predictions at unobserved locations are readily obtainable.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
Depends R (>= 3.5.0)
Imports graphics, generics, Matrix, sf, stats, tibble, parallel
Suggests rmarkdown, knitr, testthat (>= 3.0.0), ggplot2
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation no
Author Michael Dumelle [aut, cre] (<https://orcid.org/0000-0002-3393-5529>), Matt Higham [aut], Jay M. Ver Hoef [aut]
Maintainer Michael Dumelle <Dumelle.Michael@epa.gov>
Repository CRAN
Date/Publication 2022-08-12 13:50:02 UTC

R topics documented:

AIC.spmod ... 2
anova.spmod .. 4
augment.spmod ... 5
caribou ... 7
AIC.spmod

Compute spatial AIC and AICc of fitted model objects

Description

Compute a spatial version AIC and AICc for one or several fitted model objects for which a log-likelihood value can be obtained, according to Hoeting et al. (2006).
AIC.spmod

Usage

S3 method for class 'spmod'
AIC(object, ..., k = 2)

AICc(object, ..., k = 2)

S3 method for class 'spmod'
AICc(object, ..., k = 2)

Arguments

object A fitted model object from splm() or spauthor() where estmethod is "ml" or "reml".

... Optionally more fitted model objects.

k The penalty parameter, taken to be 2. Currently not allowed to differ from 2 (needed for generic consistency).

Details

When comparing models fit by maximum or restricted maximum likelihood, the smaller the AIC or AICc, the better the fit. The AICc contains a correction to AIC for small sample sizes. The theory of AIC and AICc requires that the log-likelihood has been maximized, and hence, no AIC or AICc methods exist for models where estmethod is not "ml" or "reml". Additionally, AIC and AICc comparisons between "ml" and "reml" models are meaningless – comparisons should only be made within a set of models estimated using "ml" or a set of models estimated using "reml". AIC and AICc comparisons for "reml" must use the same fixed effects. To vary the covariance parameters and fixed effects simultaneously, use "ml".

Hoeting et al. (2006) defines that spatial AIC as $-2 \log\text{lik} + 2(\text{estparams})$ and the spatial AICc as $-2 \log\text{lik} + 2n(\text{estparams})/(n - \text{estparams} - 1)$, where n is the sample size and estparams is the number of estimated parameters. For "ml", estparams is the number of estimated covariance parameters plus the number of estimated fixed effects. For "reml", estparams is the number of estimated covariance parameters.

Value

If just one object is provided, a numeric value with the corresponding AIC or AICc.

If multiple objects are provided, a data.frame with rows corresponding to the objects and columns representing the number of parameters estimated (df) and the AIC or AICc.

References

Examples

spmod <- splm(z ~ water + tarp,
 data = caribou,
spcov_type = "exponential", xcoord = x, ycoord = y
)
AIC(spmod)
AICc(spmod)

S3 method for class 'spmod'
anova(object, ..., test = TRUE, Terms, L)

S3 method for class 'anova.spmod'
tidy(x, ...)

Arguments

- **object**: A fitted model object from `splm()` or `spautor()`
- **...**: An additional fitted model object from `splm()` or `spautor()` (for `anova()`).
- **test**: A logical value indicating whether p-values from asymptotic Chi-squared hypothesis tests should be returned. Defaults to `TRUE`.
- **Terms**: An optional character or integer vector that specifies terms in the model used to jointly compute test statistics and p-values (if `test = TRUE`) against a null hypothesis of zero. `Terms` is only used when a single fitted model object is passed to the function. If `Terms` is a character vector, it should contain the names of the fixed effect terms. If `Terms` is an integer vector, it should correspond to the order (starting at one) of the names of the fixed effect terms. The easiest way to obtain the names of all possible terms is to run `tidy(anova(object))$effects` (the integer representation matches the positions of this vector).
- **L**: An optional numeric matrix or list specifying linear combinations of the coefficients in the model used to compute test statistics and p-values (if `test = TRUE`) for coefficient constraints corresponding to a null hypothesis of zero. `L` is only used when a single fitted model object is passed to the function. If `L` is a numeric matrix, its rows indicate coefficient constraints and its columns represent coefficients. Then a single hypothesis test is conducted against a null hypothesis of zero. If `L` is a list, each list element is a numeric matrix specified as above. Then separate hypothesis tests are conducted. The easiest way to obtain all possible coefficients is to run `tidy(object)$term`.
- **x**: An object from `anova(object)`.

Description

Compute analysis of variance tables for a fitted model object or a likelihood ratio test for two fitted model objects.
Details

When one fitted model object is present, `anova()` performs a general linear hypothesis test corresponding to some hypothesis specified by a matrix of constraints. If `Terms` and `L` are not specified, each model term is tested against zero (which correspond to type III or marginal hypothesis tests from classical ANOVA). If `Terms` is specified and `L` is not specified, all terms are tested jointly against zero. When `L` is specified, the linear combinations of terms specified by `L` are jointly tested against zero.

When two fitted model objects are present, one must be a "reduced" model nested in a "full" model. Then `anova()` performs a likelihood ratio test.

Value

When one fitted model object is present, `anova()` returns a data frame with degrees of freedom (`Df`), test statistics (`Chi2`), and p-values (`Pr(>Chi2)` if `test = TRUE`) corresponding to asymptotic Chi-squared hypothesis tests for each model term.

When two fitted model objects are present, `anova()` returns a data frame with the difference in degrees of freedom between the full and reduced model (`Df`), a test statistic (`Chi2`), and a p-value corresponding to the likelihood ratio test (`Pr(>Chi2)` if `test = TRUE`).

Whether one or two fitted model objects are provided, `tidy()` can be used to obtain tidy tibbles of the `anova(object)` output.

Examples

```r
# one-model anova
spmod <- splm(z ~ water + tarp,
              data = caribou,
              spcov_type = "exponential", xcoord = x, ycoord = y)
anova(spmod)
tidy(anova(spmod))
# see terms
tidy(anova(spmod))$effects
tidy(anova(spmod, Terms = c("water", "tarp")))
# same as
tidy(anova(spmod, Terms = c(2, 3)))
# likelihood ratio test
lmod <- splm(z ~ water + tarp,
              data = caribou,
              spcov_type = "none")
tidy(anova(spmod, lmod))
```

augment.spmod

Augment data with information from fitted model objects
Description
Augment accepts a fitted model object and a data set and adds information about each observation in the data set. New columns always begin with a . prefix to avoid overwriting columns in the original data set.

Augment behaves differently depending on whether the original data or new data requires augmenting. Typically, when augmenting the original data, only the fitted model object is specified, and when augmenting new data, the fitted model object and newdata is specified. When augmenting the original data, diagnostic statistics are augmented to each row in the data set. When augmenting new data, predictions and optional intervals or standard errors are augmented to each row in the new data set.

Usage
S3 method for class 'spmod'
augment(
 x,
 drop = TRUE,
 newdata = NULL,
 se_fit = FALSE,
 interval = c("none", "confidence", "prediction"),
 ...
)

Arguments
- **x**: A fitted model object from `splm()` or `spautor()`.
- **drop**: A logical indicating whether to drop extra variables in the fitted model object x when augmenting. The default for drop is TRUE. drop is ignored if augmenting newdata.
- **newdata**: A data frame or tibble containing observations requiring prediction. All of the original explanatory variables used to create the fitted model object x must be present in newdata. Defaults to NULL, which indicates that nothing has been passed to newdata.
- **se_fit**: Logical indicating whether or not a .se.fit column should be added to augmented output. Passed to predict() and defaults to FALSE.
- **interval**: Character indicating the type of confidence interval columns to add to the augmented newdata output. Passed to predict() and defaults to "none".
- **...**: Additional arguments to predict() when augmenting newdata.

Details
`augment()` returns a tibble with the same class as data. That is, if data is an sf object, then the augmented object (obtained via augment(x)) will be an sf object as well. When augmenting newdata, the augmented object has the same class as data.

Missing response values from the original data can be augmented as if they were a newdata object by providing x$newdata to the newdata argument (where x is the name of the fitted model object). This is the only way to compute predictions for `spautor()` fitted model objects.
Value

When augmenting the original data set, a tibble with additional columns

- `.fitted` Fitted value
- `.resid` Raw residual (the difference between observed and fitted values)
- `.hat` Leverage (diagonal of the hat matrix)
- `.cooksd` Cook's distance
- `.std.resid` Standardized residuals
- `.se.fit` Standard error of the fitted value.

When augmenting a new data set, a tibble with additional columns

- `.fitted` Predicted (or fitted) value
- `.lower` Lower bound on interval
- `.upper` Upper bound on interval
- `.se.fit` Standard error of the predicted (or fitted) value

See Also

tidy.spmod() glance.spmod()

Examples

```r
spmod <- splm(z ~ water + tarp,
              data = caribou,
              spcov_type = "exponential", xcoord = x, ycoord = y
            )
augment(spmod)
spmod_sulf <- splm(sulfate ~ 1, data = sulfate, spcov_type = "exponential")
augment(spmod_sulf)
augment(spmod_sulf, newdata = sulfate_preds)
# missingness in original data
spmod_seal <- spautor(log_trend ~ 1, data = seal, spcov_type = "car")
augment(spmod_seal)
augment(spmod_seal, newdata = spmod_seal$newdata)
```

Description

A caribou forage experiment.

Usage

caribou
Format

A tibble with 30 rows and 5 columns:

- `water`: A factor representing whether water was added. Takes values `N` (no water added) and `Y` (water added).
- `tarp`: A factor representing tarp cover. Takes values `clear` (a clear tarp), `shade` (a shade tarp), and `none` (no tarp).
- `z`: The percentage of nitrogen.
- `x`: The x-coordinate.
- `y`: The y-coordinate.

Source

These data were provided by Elizabeth Lenart of the Alaska Department of Fish and Game. The data were used in the publication listed in References.

References

c coef.spmod

Extract fitted model coefficients

description

c coef extracts fitted model coefficients from `splm()` or `spautor()` fitted model objects. `coefficients` is an alias for it.

Usage

```r
## S3 method for class 'spmod'
coef(object, type = "fixed", ...)

## S3 method for class 'spmod'
coefficients(object, type = "fixed", ...)
```

Arguments

- `object`: A fitted model object from `splm()` or `spautor()`.
- `type`: "fixed" for fixed effect coefficients, "spcov" for spatial covariance parameter coefficients, or "randcov" for random effect variance coefficients. Defaults to "fixed". If `type = "spcov"`, the coefficient vector is an `spcov_params()` object (which means that has class matching the spatial covariance function used).
- `...`: Other arguments. Not used (needed for generic consistency).
confint.spmod

Value

A named vector of coefficients.

Examples

```r
spmod <- splm(z ~ water + tarp,
             data = caribou,
             spcov_type = "exponential", xcoord = x, ycoord = y
          )
coef(spmod)
coefficients(spmod)
coef(spmod, type = "spcov")
```

confint.spmod

Confidence intervals for fitted model parameters

Description

Computes confidence intervals for one or more parameters in a fitted model object.

Usage

```r
## S3 method for class 'spmod'
confint(object, parm, level = 0.95, ...)
```

Arguments

- `object`: A fitted model object from `splm()` or `spautor()`.
- `parm`: A specification of which parameters are to be given confidence intervals (a character vector of names). If missing, all parameters are considered.
- `level`: The confidence level required. The default is 0.95.
- `...`: Other arguments. Not used (needed for generic consistency).

Value

Gaussian-based confidence intervals (two-sided and equal-tailed) for the fixed effect coefficients based on the confidence level specified by `level`.

Examples

```r
spmod <- splm(z ~ water + tarp,
             data = caribou,
             spcov_type = "exponential", xcoord = x, ycoord = y
          )
confint(spmod)
confint(spmod, parm = "waterY", level = 0.90)
```
Description

Compute the Cook's distance for each observation from a fitted model object.

Usage

```r
## S3 method for class 'spmod'
cooks.distance(model, ...)
```

Arguments

- `model`: A fitted model object from `splm()` or `spautor()`.
- `...`: Other arguments. Not used (needed for generic consistency).

Details

Cook's distance measures the influence of an observation on a fitted model object. If an observation is influential, its omission from the data noticeably impacts parameter estimates. The larger the Cook's distance, the larger the influence.

Value

A vector of Cook's distance values for each observation from the fitted model object.

See Also

`hatvalues.spmod()`, `influence.spmod()`, `residuals.spmod()`

Examples

```r
spmod <- splm(z ~ water + tarp,
              data = caribou,
              spcov_type = "exponential", xcoord = x, ycoord = y)
cooks.distance(spmod)
```
deviance.spmod

Fitted model deviance

Description

Returns the deviance of a fitted model object.

Usage

S3 method for class 'spmod'
deviance(object, ...)

Arguments

- **object**: A fitted model object from `splm()` or `spautor()` where `estmethod` is "ml" or "reml".
- **...**: Other arguments. Not used (needed for generic consistency).

Details

For `spmod` objects estimated using "ml" or "reml", the deviance is \((y - X\beta)^T V(y - X\beta)\) for an inverse covariance matrix \(V\), analogous to residual sums of (whitened) squares.

Value

The deviance.

Examples

```r
spmod <- splm(z ~ water + tarp,
data = caribou,
  spcov_type = "exponential", xcoord = x, ycoord = y
)
deviance(spmod)
```

esv

Compute the empirical semivariogram

Description

Compute the empirical semivariogram for varying bin sizes and cutoff values.
Usage

```r
esv(
  formula,
  data,
  xcoord,
  ycoord,
  dist_matrix,
  bins = 15,
  cutoff,
  partition_factor
)
```

Arguments

- **formula**: A formula describing the fixed effect structure.
- **data**: A data frame or `sf` object containing the variables in `formula` and geographic information.
- **xcoord**: Name of the variable in `data` representing the x-coordinate. Can be quoted or unquoted. Not required if `data` is an `sf` object.
- **ycoord**: Name of the variable in `data` representing the y-coordinate. Can be quoted or unquoted. Not required if `data` is an `sf` object.
- **dist_matrix**: A distance matrix to be used instead of providing coordinate names.
- **bins**: The number of equally spaced bins. The default is 15.
- **cutoff**: The maximum distance considered. The default is half the diagonal of the bounding box from the coordinates.
- **partition_factor**: An optional formula specifying the partition factor. If specified, semivariances are only computed for observations sharing the same level of the partition factor.

Details

The empirical semivariogram is a tool used to visualize and model spatial dependence by estimating the semivariance of a process at varying distances. For a constant-mean process, the semivariance at distance \(h \) is denoted \(\gamma(h) \) and defined as \(0.5 \times \text{Var}(z_1 - z_2) \). Under second-order stationarity, \(\gamma(h) = \text{Cov}(0) - \text{Cov}(h) \), where \(\text{Cov}(h) \) is the covariance function at distance \(h \). Typically the residuals from an ordinary least squares fit defined by `formula` are second-order stationary with mean zero. These residuals are used to compute the empirical semivariogram. At a distance \(h \), the empirical semivariance is \(1/N(h) \sum (r_1 - r_2)^2 \), where \(N(h) \) is the number of (unique) pairs in the set of observations whose distance separation is \(h \) and \(r_1 \) and \(r_2 \) are residuals corresponding to observations whose distance separation is \(h \). In spmodel, these distance bins actually contain observations whose distance separation is \(h + c \), where \(c \) is a constant determined implicitly by `bins`. Typically, only observations whose distance separation is below some cutoff are used to compute the empirical semivariogram (this cutoff is determined by `cutoff`).

When using `splm()` with `estmethod` as "sv-wls", the empirical semivariogram is calculated internally and used to estimate spatial covariance parameters.
Value

A data frame with distance bins (bins), the average distance (dist), the semivariance (gamma), and the number of (unique) pairs (np).

Examples

```
esv(sulfate ~ 1, sulfate)
```

Description

Extract fitted values from fitted model objects. fitted.values is an alias.

Usage

```r
## S3 method for class 'spmod'
fitted(object, type = "response", ...)
## S3 method for class 'spmod'
fitted.values(object, type = "response", ...)
```

Arguments

- `object`: A fitted model object from `splm()` or `spautor()`.
- `type`:
 - "response" for fitted values of the response,
 - "spcov" for fitted values of the spatial random errors, or
 - "randcov" for fitted values of the random effects. The default is "response".
- `...`: Other arguments. Not used (needed for generic consistency).

Details

When `type` is "response", the fitted values for each observation are the standard fitted values \(X \hat{\beta} \). When `type` is "spcov" the fitted values for each observation are (generally) the best linear unbiased predictors of the spatial dependent and spatial independent random error. When `type` is "randcov", the fitted values for each level of each random effect are (generally) the best linear unbiased predictors of the corresponding random effect. The fitted values for type "spcov" and "randcov" can generally be used to check assumptions for each component of the fitted model object (e.g., check a Gaussian assumption).

Value

The fitted values according to `type`.

Examples

```r
spmod <- splm(z ~ water + tarp,
              data = caribou,
              spcov_type = "exponential", xcoord = x, ycoord = y
)  
fitted(spmod)
fitted.values(spmod)
fitted(spmod, type = "spcov")
```

Description

Return formula used by a fitted model object.

Usage

```r
## S3 method for class 'spmod'
formula(x, ...)
```

Arguments

- `x` A fitted model object from `splm()` or `spautor()`.
- `...` Other arguments. Not used (needed for generic consistency).

Value

The formula used by a fitted model object.

Examples

```r
spmod <- splm(z ~ water + tarp,
              data = caribou,
              spcov_type = "exponential", xcoord = x, ycoord = y
)  
formula(spmod)
```
glance.spmod

Glance at a fitted model object

Description

Returns a row of model summaries from a fitted model object. Glance returns the same number of columns for all models and estimation methods. If a particular summary is undefined for a model or estimation method (e.g., likelihood statistics for estimation methods "sv-wls" or "sv-cl"), NA is returned for that summary.

Usage

```r
## S3 method for class 'spmod'
glance(x, ...)
```

Arguments

- `x` A fitted model object from `splm()` or `spautor()`.
- `...` Other arguments. Not used (needed for generic consistency).

Value

A single-row tibble with columns

- `n` The sample size.
- `p` The number of fixed effects.
- `npar` The number of estimated covariance parameters.
- `value` The optimized value of the fitting function
- `AIC` The AIC.
- `AICc` The AICc.
- `logLik` The log-likelihood
- `deviance` The deviance.
- `pseudo.r.squared` The pseudo r-squared

See Also

`AIC.spmod()` `AICc()` `logLik.spmod()` `deviance.spmod()` `pseudoR2()` `tidy.spmod()` `augment.spmod()`

Examples

```r
spmod <- splm(z ~ water + tarp, 
               data = caribou, 
               spcov_type = "exponential", xcoord = x, ycoord = y 
) 
glance(spmod)
```
glances

Glance at many fitted model objects

Description

`glances()` repeatedly calls `glance()` on several fitted model objects and binds the output together, sorted by a column of interest.

Usage

```r
glances(..., sort_by = "AICc", decreasing = FALSE)
```

Arguments

- `...`: Fitted model objects from `splm()` or `spautor()`.
- `sort_by`: Sort by a `glance` statistic. The default is `AICc`.
- `decreasing`: Should `sort_by` be decreasing or not? The default is `FALSE`.

Value

A tibble where each row represents the output of `glance()` for each fitted model object.

Examples

```r
lmod <- splm(z ~ water + tarp,
  data = caribou,
  spcov_type = "none"
)
smod <- splm(z ~ water + tarp,
  data = caribou,
  spcov_type = "exponential", xcoord = x, ycoord = y
)
glances(lmod, smod)
glances(lmod, smod, sort_by = "logLik", decreasing = TRUE)
```

hatvalues.spmod

Compute leverage (hat) values

Description

Compute the leverage (hat) value for each observation from a fitted model object.

Usage

```r
## S3 method for class 'spmod'
hatvalues(model, ...)
```
influence.spmod

Arguments

model A fitted model object from splm() or spautor().
...

Other arguments. Not used (needed for generic consistency).

Details

Leverage values measure how far an observation’s explanatory variables are relative to the average of the explanatory variables. In other words, observations with high leverage are typically considered to have an extreme or unusual combination of explanatory variables. Leverage values are the diagonal of the hat (projection) matrix. The larger the hat value, the larger the leverage.

Value

A vector of leverage (hat) values for each observation from the fitted model object.

See Also

cooks.distance() influence.spmod() residuals.spmod()

Examples

spmod <- splm(z ~ water + tarp,
data = caribou,
spcov_type = "exponential", xcoord = x, ycoord = y)
hatvalues(spmod)

influence.spmod Regression diagnostics

Description

Provides basic quantities which are used in forming a wide variety of diagnostics for checking the quality of fitted model objects.

Usage

S3 method for class 'spmod'
influence(model, ...)

Arguments

model A fitted model object from splm() or spautor().
...

Other arguments. Not used (needed for generic consistency).
Details

This function calls `residuals.spmod()`, `hatvalues.spmod()`, and `cooks.distance.spmod()` and puts the results into a tibble. It is primarily used when calling `augment.spmod()`.

Value

A tibble with residuals (.resid), leverage values (.hat), cook’s distance (.cooks), and standardized residuals (.std.resid).

See Also

`augment.spmod()` `cooks.distance.spmod()` `hatvalues.spmod()` `residuals.spmod()`

Examples

```r
spmod <- splm(z ~ water + tarp,
    data = caribou,
    spcov_type = "exponential", xcoord = x, ycoord = y
)
influence(spmod)
```

```
labels.spmod
```

Description

Find labels from object.

Usage

```r
## S3 method for class 'spmod'
labels(object, ...)
```

Arguments

- `object` A fitted model object from `splm()` or `spautoreg()`.
- `...` Other arguments. Not used (needed for generic consistency).

Value

A character vector containing the terms used for the fixed effects from a fitted model object.

Examples

```r
spmod <- splm(z ~ water + tarp,
    data = caribou,
    spcov_type = "exponential", xcoord = x, ycoord = y
)
labels(spmod)
```
logLik.spmod

Extract log-likelihood

Description

Find the log-likelihood of a fitted model when estmethod is "ml" or "reml".

Usage

S3 method for class 'spmod'
logLik(object, ...)

Arguments

object A fitted model object from splm() or spautor() where estmethod is "ml" or "reml".
...
Other arguments. Not used (needed for generic consistency).

Value

The log-likelihood.

Examples

spmod <- splm(z ~ water + tarp,
 data = caribou,
 spcov_type = "exponential", xcoord = x, ycoord = y
)
logLik(spmod)

loocv

Perform leave-one-out cross validation

Description

Perform leave-one-out cross validation with options for computationally efficient approximations for big data.

Usage

loocv(object, ...)

S3 method for class 'spmod'
loocv(object, cv_predict = FALSE, se.fit = FALSE, local, ...)
Arguments

- **object**: A fitted model object from `splm()` or `spautor()`.
- **...**: Other arguments. Not used (needed for generic consistency).
- **cv_predict**: A logical indicating whether the leave-one-out fitted values should be returned. Defaults to `FALSE`.
- **se.fit**: A logical indicating whether the leave-one-out prediction standard errors should be returned. Defaults to `FALSE`.
- **local**: A list or logical. If a list, specific list elements described in `predict.spmod()` control the big data approximation behavior. If a logical, `TRUE` chooses default list elements for the list version of local as specified in `predict.spmod()`. Defaults to `FALSE`, which performs exact computations.

Details

Each observation is held-out from the data set and the remaining data are used to make a prediction for the held-out observation. This is compared to the true value of the observation and a mean-squared error is computed across all observations. The lower the mean squared error, the better the model fit (according to the leave-one-out criterion).

Value

If `cv_predict = FALSE` and `se.fit = FALSE`, a numeric vector indicating the mean-squared-prediction leave-one-out cross validation error. If `cv_predict = TRUE` or `se.fit = TRUE`, a list with elements:
- **mspe**: a numeric vector indicating the mean-squared-prediction leave-one-out cross validation error;
- **cv_predict**: a numeric vector with leave-one-out predictions for each observation (if `cv_predict = TRUE`);
- **se.fit**: a numeric vector with leave-one-out prediction standard errors for each observation (if `se.fit = TRUE`).

Examples

```r
spmod <- splm(z ~ water + tarp, 
              data = caribou, 
              spcov_type = "exponential", xcoord = x, ycoord = y
) 
loocv(spmod)
loocv(spmod, cv_predict = TRUE, se.fit = TRUE)
```

Description

Extract the model frame from a fitted model object.
Usage

S3 method for class 'spmod'
model.frame(formula, ...)

Arguments

formula A fitted model object from `splm()` or `spautor()`.

... Other arguments. Not used (needed for generic consistency).

Value

A model frame that contains the variables used by the formula for the fitted model object.

See Also

`stats::model.frame()`

Examples

```r
spmod <- splm(z ~ water + tarp,
              data = caribou,
              spcov_type = "exponential", xcoord = x, ycoord = y
)  
model.frame(spmod)
```

model.matrix.spmod

Extract the model matrix from a fitted model object

Description

Extract the model matrix (X) from a fitted model object.

Usage

S3 method for class 'spmod'
model.matrix(object, ...)

Arguments

object A fitted model object from `splm()` or `spautor()`.

... Other arguments. Not used (needed for generic consistency).

Value

The model matrix (of the fixed effects), whose rows represent observations and whose columns represent explanatory variables corresponding to each fixed effect.
See Also

\texttt{stats::model.matrix()}

Examples

```r
spmod <- splm(z ~ water + tarp,
  data = caribou,
  spcov_type = "exponential", xcoord = x, ycoord = y
)
model.matrix(spmod)
```

moss

Heavy metals in mosses near a mining road in Alaska, USA

Description

Heavy metals in mosses near a mining road in Alaska, USA.

Usage

moss

Format

An \texttt{sf} object with 365 rows and 10 columns:

- sample: A factor with a sample identifier. Some samples were replicated in the field or laboratory. As a result, there are 318 unique sample identifiers.
- field_dup: A factor representing field duplicate. Takes values 1 and 2.
- lab_rep: A factor representing laboratory replicate. Takes values 1 and 2.
- sideroad: A factor representing direction relative to the haul road. Takes values N (north of the haul road) and S (south of the haul road).
- log_dist2road: The log of distance (in meters) to the haul road.
- log_Zn: The log of zinc concentration in moss tissue (mg/kg).
- geometry: \texttt{POINT} geometry representing coordinates in an Alaska Albers projection (EPSG: 3338).

Source

Data were obtained from Peter Neitlich and Linda Hasselbach of the National Park Service. Data were used in the publications listed in References.
plot.spmod

References

plot.spmod

Plot fitted model diagnostics

Description

Plot fitted model diagnostics such as residuals vs fitted values, quantile-quantile, scale-location, Cook's distance, residuals vs leverage, Cook's distance vs leverage, and a fitted spatial covariance function.

Usage

S3 method for class 'spmod'
plot(x, which, ...)

Arguments

x A fitted model object from splm() or spautor().
which An integer vector taking on values between 1 and 7, which indicates the plots to return. Available plots are described in Details. If which has length greater than one, additional plots are stepped through in order using <Return>. The default for splm() fitted model objects is which = c(1, 2, 7). The default for spautor() fitted model objects is which = c(1, 2).
...
Other arguments passed to other methods.

Details

For splm() and spautor(), the values of which make the corresponding plot:

• 1: Standardized residuals vs fitted values (of the response)
• 2: Normal quantile-quantile plot of standardized residuals
• 3: Scale-location plot of standardized residuals
• 4: Cook's distance
• 5: Standardized residuals vs leverage
• 6: Cook's distance vs leverage

For splm(), there is an additional value of which:

• 7: Fitted spatial covariance function vs distance
predict.spmod

Value

No return value. Function called for plotting side effects.

Examples

```r
spmod <- splm(z ~ water + tarp,
              data = caribou,
              spcov_type = "exponential", xcoord = x, ycoord = y)
plot(spmod)
plot(spmod, which = c(1, 2, 4, 6))
```

predict.spmod Model predictions (Kriging)

Description

Predicted values and intervals based on a fitted model object.

Usage

```r
## S3 method for class 'spmod'
predict(
  object,
  newdata,
  se.fit = FALSE,
  interval = c("none", "confidence", "prediction"),
  level = 0.95,
  local,
  ...
)
```

Arguments

- **object**: A fitted model object from `splm()` or `spautoreg()`.
- **newdata**: A data frame or `sf` object in which to look for variables with which to predict. If a data frame, `newdata` must contain all variables used by `formula(object)` and all variables representing coordinates. If an `sf` object, `newdata` must contain all variables used by `formula(object)` and coordinates are obtained from the geometry of `newdata`. If omitted, missing data from the fitted model object are used.
- **se.fit**: A logical indicating if standard errors are returned. The default is `FALSE`.
- **interval**: Type of interval calculation. The default is "none". Other options are "confidence" (for confidence intervals) and "prediction" (for prediction intervals).
- **level**: Tolerance/confidence level. The default is `0.95`.

Arguments
local

A optional logical or list controlling the big data approximation. If omitted, local is set to TRUE or FALSE based on the sample size of the fitted model object and/or the prediction size of newdata – if the sample size or prediction size exceeds 5000, local is set to TRUE, otherwise it is set to FALSE. If FALSE, no big data approximation is implemented. If a list is provided, the following arguments detail the big data approximation:

• method: The big data approximation method. If method = "all", all observations are used and size is ignored. If method = "distance", the size data observations closest (in terms of Euclidean distance) to the observation requiring prediction are used. If method = "covariance", the size data observations with the highest covariance with the observation requiring prediction are used. If random effects and partition factors are not used in estimation and the spatial covariance function is monotone decreasing, "distance" and "covariance" are equivalent. The default is "covariance". Only used with models fit using splm().

• size: The number of data observations to use when method is "distance" or "covariance". The default is 50. Only used with models fit using splm().

• parallel: If TRUE, parallel processing via the parallel package is automatically used. The default is FALSE.

• ncores: If parallel = TRUE, the number of cores to parallelize over. The default is the number of available cores on your machine.

When local is a list, at least one list element must be provided to initialize default arguments for the other list elements. If local is TRUE, defaults for local are chosen such that local is transformed into list(size = 50, method = "covariance", parallel = FALSE).

... Other arguments. Not used (needed for generic consistency).

Details

The (empirical) best linear unbiased predictions (i.e., Kriging predictions) at each site are returned when interval is "none" or "prediction" alongside standard errors. Prediction intervals are also returned if interval is "prediction". When interval is "confidence", the estimated mean is returned alongside standard errors and confidence intervals for the mean.

Value

If se.fit is FALSE, predict.spmod() returns a vector of predictions or a matrix of predictions with column names fit, lwr, and upr if interval is "confidence" or "prediction".

If se.fit is TRUE, a list with the following components is returned:

• fit: vector or matrix as above
• se.fit: standard error of each fit

Examples

spmod <- splm(sulfate ~ 1,
 data = sulfate,
spcov_type = "exponential", xcoord = x, ycoord = y
)
predict(spmod, sulfate_preds)
predict(spmod, sulfate_preds, interval = "prediction")
augment(spmod, newdata = sulfate_preds, interval = "prediction")

print.spmod

Description

Print fitted model objects and summaries.

Usage

S3 method for class 'spmod'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

S3 method for class 'summary.spmod'
print(
 x,
 digits = max(3L, getOption("digits") - 3L),
 signif.stars = getOption("show.signif.stars"),
 ...
)

S3 method for class 'anova.spmod'
print(
 x,
 digits = max(getOption("digits") - 2L, 3L),
 signif.stars = getOption("show.signif.stars"),
 ...
)

Arguments

x A fitted model object from splm() or spautor() or output from summary(x) or anova(x).
digits The number of significant digits to use when printing..
... Other arguments passed to or from other methods.
signif.stars Logical. If TRUE, significance stars are printed for each coefficient

Value

Printed fitted model objects and summaries with formatting.
pseudoR2

Examples

```r
spmod <- splm(z ~ water + tarp,
    data = caribou,
    spcov_type = "exponential", xcoord = x, ycoord = y
)
print(spmod)
print(summary(spmod))
print(anova(spmod))
```

pseudoR2

Compute a pseudo r-squared

Description

Compute a pseudo r-squared for a fitted model object.

Usage

```r
pseudoR2(object, ...)  # S3 method for class 'spmod'
pseudoR2(object, adjust = FALSE, ...)
```

Arguments

- `object` A fitted model object from `splm()` or `spautor()`.
- `...` Other arguments. Not used (needed for generic consistency).
- `adjust` A logical indicating whether the pseudo r-squared should be adjusted to account for the number of explanatory variables. The default is `FALSE`.

Details

Several pseudo r-squared statistics exist for in the literature. We define this pseudo r-squared as one minus the ratio of the deviance of a full model relative to the deviance of a null (intercept only) model. This pseudo r-squared can be viewed as a generalization of the classical r-squared definition seen as one minus the ratio of error sums of squares from the full model relative to the error sums of squares from the null model. If adjusted, the adjustment is analogous to the the classical r-squared adjustment.

Value

The pseudo r-squared as a numeric vector.
Examples

```r
spmod <- splm(z ~ water + tarp,
             data = caribou,
             spcov_type = "exponential", xcoord = x, ycoord = y
          )
pseudoR2(spmod)
```

randcov_initial
Create a random effects covariance parameter initial object

Description

Create a random effects (co)variance parameter initial object that specifies initial and/or known values to use while estimating random effect variances with `splm()` or `spautor()`.

Usage

```r
randcov_initial(..., known)
```

Arguments

- `...` Arguments to `randcov_params()`.
- `known` A character vector indicating which random effect variances are to be assumed known. The value "given" is shorthand for assuming all random effect variances given to `randcov_initial()` are assumed known.

Details

A random effect is specified as Zu, where Z is the random effects design matrix and u is the random effect. The covariance of Zu is $\sigma^2 ZZ^T$, where σ^2 is the random effect variance, and Z^T is the transpose of Z.

Value

A list with two elements: `initial` and `is_known`. `initial` is a named numeric vector indicating the random effect variances with specified initial and/or known values. `is_known` is a named logical vector indicating whether the random effect variances in `initial` are known or not.

Examples

```r
randcov_initial(group = 1)
randcov_initial(group = 1, known = "group")
```
Create a random effects covariance parameter object for use with other functions.

Usage

randcov_params(..., nm)

Arguments

... A named vector (or vectors) whose names represent the name of each random effect and whose values represent the variance of each random effect. If unnamed, nm is used to set names.

nm A character vector of names to assign to . . .

Details

Names of the random effects should match eligible names given to random in splm() or spautor(). While with the random argument to these functions, an intercept is implicitly assumed, with randcov_params, an intercept must be explicitly specified. That is, while with random, x | group is shorthand for (1 | group) + (x | group), with randcov_params, x | group implies just x | group, which means that if 1 | group is also desired, it must be explicitly specified.

Value

A named numeric vector of random effect covariance parameters.

Examples

randcov_params(group = 1, subgroup = 2)
randcov_params(1, 2, nm = c("group", "subgroup"))
same as
randcov_params("1 | group" = 1, "1 | subgroup" = 2)
residuals.spmod

Extract fitted model residuals

Description

Extract residuals from a fitted model object. resid is an alias.

Usage

```r
## S3 method for class 'spmod'
residuals(object, type = "raw", ...)

## S3 method for class 'spmod'
resid(object, type = "raw", ...)

## S3 method for class 'spmod'
rstandard(model, ...)
```

Arguments

- `object`: A fitted model object from `splm()` or `spautor()`.
- `type`: "raw" for raw residuals, "pearson" for Pearson residuals, or "standardized" for standardized residuals. The default is "raw".
- `...`: Other arguments. Not used (needed for generic consistency).
- `model`: A fitted model object from `splm()` or `spautor()`.

Details

The raw residuals are taken as the response minus the fitted values for the response: \(y - X\hat{\beta} \).
The Pearson residuals are the raw residuals pre-multiplied by their square (Cholesky) root. The standardized residuals are Pearson residuals divided by the square root of one minus the leverage (hat) value. The standardized residuals are often used to check model assumptions, as they have mean zero and variance approximately one.

`rstandard()` is an alias for `residuals(model, type = "standardized")`.

Value

The residuals as a numeric vector.

Examples

```r
spmod <- splm(z ~ water + tarp,
               data = caribou,
               spcov_type = "exponential", xcoord = x, ycoord = y
)
residuals(spmod)
resid(spmod)
```
residuals(spmod, type = "pearson")
residuals(spmod, type = "standardized")
rstandard(spmod)

seal

Estimated harbor-seal trends from abundance data in southeast Alaska, USA

Description

Estimated harbor-seal trends from abundance data in southeast Alaska, USA.

Usage

seal

Format

A sf object with 62 rows and 2 columns:

- **log_trend**: The log of the estimated harbor-seal trends from abundance data.
- **geometry**: POLYGON geometry representing polygons in an Alaska Albers projection (EPSG: 3338).

Source

These data were collected by the Polar Ecosystem Program of the Marine Mammal Laboratory of the Alaska Fisheries Science Center of NOAA Fisheries. The data were used in the publication listed in References.

References

spautor

Fit spatial autoregressive models

Description

Fit spatial linear models for areal data (i.e., spatial autoregressive models) using a variety of estimation methods, allowing for random effects, partition factors, and row standardization.
Usage

spautor(
 formula,
 data,
 spcov_type,
 spcov_initial,
 estmethod = "reml",
 random,
 randcov_initial,
 partition_factor,
 W,
 row_st = TRUE,
 M,
 ...
)

Arguments

formula A two-sided linear formula describing the fixed effect structure of the model, with the response to the left of the ~ operator and the terms, separated by + operators, on the right.
data A data frame or sf object that contains the variables in fixed, random, and partition_factor, as well as potentially geographical information.
spcov_type The spatial covariance type. Available options include "car" and "sar". Parameterizations of each spatial covariance type are available in Details. When spcov_type is specified, relevant spatial covariance parameters are assumed unknown, requiring estimation. spcov_type is not required (and is ignored) if spcov_initial is provided. The default for spcov_type is "car".
spcov_initial An object from spcov_initial() specifying initial and/or known values for the spatial covariance parameters. Not required if spcov_type is provided.
estmethod The estimation method. Available options include "reml" for restricted maximum likelihood and "ml" for maximum likelihood. The default is "reml".
random A one-sided linear formula describing the random effect structure of the model. Terms are specified to the right of the ~ operator. Each term has the structure x1 + ... + xn | g1/.../gm, where x1 + ... + xn specifies the model for the random effects and g1/.../gm is the grouping structure. Separate terms are separated by + and must generally be wrapped in parentheses. Random intercepts are added to each model implicitly when at least one other variable is defined. If a random intercept is not desired, this must be explicitly defined (e.g., x1 + ... + xn - 1 | g1/.../gm). If only a random intercept is desired for a grouping structure, the random intercept must be specified as 1 | g1/.../gm. Note that g1/.../gm is shorthand for (1 | g1/.../gm). If only random intercepts are desired and the shorthand notation is used, parentheses can be omitted.
randcov_initial An optional object specifying initial and/or known values for the random effect variances.
A one-sided linear formula with a single term specifying the partition factor. The partition factor assumes observations from different levels of the partition factor are uncorrelated.

W

Weight matrix specifying the neighboring structure used. Not required if data is an `sf` polygon object, as `W` is calculated internally. If calculated internally, `W` is computed using `sf::st_intersects()`.

row_st

A logical indicating whether row standardization be performed on `W`. The default is `TRUE`.

M

M matrix satisfying the car symmetry condition. The car symmetry condition states that \((I - \text{range} \times W)^{-1} M\) is symmetric, where \(I\) is an identity matrix, \(\text{range}\) is a constant that controls the spatial dependence, \(W\) is the weights matrix, and \(^{-1}\) represents the inverse operator. \(M\) is required for car models when \(W\) is provided and \(\text{row_st}\) is `FALSE`. When \(M\) is required, the default is the identity matrix.

... Other arguments to `stats::optim()`.

Details

The spatial linear model for areal data (i.e., spatial autoregressive model) can be written as \(y = X\beta + \tau + \epsilon\), where \(X\) is the fixed effects design matrix, \(\beta\) are the fixed effects, \(\tau\) is random error that is spatially dependent, and \(\epsilon\) is random error that is spatially independent. Together, \(\tau\) and \(\epsilon\) are modeled using a spatial covariance function, expressed as \(de \times R + ie \times I\), where \(de\) is the dependent error variance, \(R\) is a matrix that controls the spatial dependence structure among observations, \(ie\) is the independent error variance, and \(I\) is an identity matrix. Note that \(de\) and \(ie\) must be non-negative while \(\text{range}\) must be between the reciprocal of the maximum eigenvalue of \(W\) and the reciprocal of the minimum eigenvalue of \(W\).

spcov_type

Details: Parametric forms for \(R\) are given below:

- car: \((I - \text{range} \times W)^{-1} M\), weights matrix \(W\), symmetry condition matrix \(M\)
- sar: \([(I - \text{range} \times W)(I - \text{range} \times W)^T]^{-1}\), weights matrix \(W\), \(T\) indicates matrix transpose

If there are observations with no neighbors, they are given a unique variance parameter called `extra`, which must be non-negative.

estmethod

Details: The various estimation methods are

- reml: Maximize the restricted log-likelihood.
- ml: Maximize the log-likelihood.

By default, all spatial covariance parameters except \(ie\) as well as all random effect variance parameters are assumed unknown, requiring estimation. \(ie\) is assumed zero and known by default (in contrast to models fit using `splm()`, where \(ie\) is assumed unknown by default). To change this default behavior, specify `spcov_initial` (an NA value for \(ie\) in `spcov_initial` to assume \(ie\) is unknown, requiring estimation).

random

Details: If random effects are used (the estimation method must be "reml" or "ml"), the model can be written as \(y = X\beta + Z1u1 + ...Zjuj + \tau + \epsilon\), where each \(Z\) is a random effects design matrix and each \(u\) is a random effect.
partition_factor Details: The partition factor can be represented in matrix form as P, where elements of P equal one for observations in the same level of the partition factor and zero otherwise. The covariance matrix involving only the spatial and random effects components is then multiplied element-wise (Hadamard product) by P, yielding the final covariance matrix.

Observations with NA response values are removed for model fitting, but their values can be predicted afterwards by running predict(object). This is the only way to perform prediction for spautor() models (i.e., the prediction locations must be known prior to estimation).

Value

A list with many components used to return information about the fitted model object via summary functions like summary.spmod(), tidy.spmod(), augment.spmod(), glance.spmod(), and plot.spmod(). Many other generics are also available for use with the fitted model object, including AIC, AICc, anova, coef, cooks.distance, deviance, fitted, formula, hatvalues, influence, labels, logLik, loocv, model.frame, model.matrix, predict, print, pseudoR2, terms, update, and vcov.

Note

This function does not perform any internal scaling. If optimization is not stable due to large extremely large variances, scale relevant variables so they have variance 1 before optimization.

Examples

```r
spmod <- spautor(log_trend ~ 1, data = seal, spcov_type = "car")
summary(spmod)
```

spcov_initial

Create a spatial covariance parameter initial object

Description

Create a spatial covariance parameter initial object that specifies initial and/or known values to use while estimating spatial covariance parameters with splm() or spautor().

Usage

```r
spcov_initial(spcov_type, de, ie, range, extra, rotate, scale, known)
```

Arguments

- **de** The spatially dependent (correlated) random error variance. Commonly referred to as a partial sill.
The spatially independent (uncorrelated) random error variance. Commonly referred to as a nugget.

range The correlation parameter.

extra An extra covariance parameter used when spcov_type is "matern", "cauchy", "pexponential", "car", or "sar".

rotate Anisotropy rotation parameter (from 0 to π radians). Not used if spcov_type is "car" or "sar".

scale Anisotropy scale parameter (from 0 to 1). Not used if spcov_type is "car" or "sar".

known A character vector indicating which spatial covariance parameters are to be assumed known. The value "given" is shorthand for assuming all spatial covariance parameters given to spcov_initial() are assumed known.

Details

The spcov_initial vector is later passed to splm() or spautor(). NA values can be given for ie, rotate, and scale, which lets splm() and spautor() find initial values for parameters that are sometimes otherwise assumed known (e.g., rotate and scale with splm() and ie with spautor()). The spatial covariance functions can be generally expressed as $de \ast R + ie \ast I$, where de is de above, R is a matrix that controls the spatial dependence structure among observations, h, ie is ie above, and I is an identity matrix. Note that de and ie must be non-negative while $range$ must be positive, except when spcov_type is car or sar, in which case $range$ must be between the reciprocal of the maximum eigenvalue of W and the reciprocal of the minimum eigenvalue of W.

Parametric forms for R are given below, where $\eta = h/range$:

- exponential: $\exp(-\eta)$
- spherical: $(1 - 1.5\eta + 0.5\eta^3) \ast I(h <= range)$
- gaussian: $\exp(-\eta^2)$
- triangular: $(1 - \eta) \ast I(h <= range)$
- circular: $(1 - (2/\pi) \ast (m * sqrt(1 - m^2) + \sin^{-1}(m))) \ast I(h <= range), m = \min(\eta, 1)$
- cubic: $(1 - 7\eta^2 + 8.75\eta^3 - 3.5\eta^5 + 0.75\eta^7) \ast I(h <= range)$
- pentaspherical: $(1 - 1.875\eta + 1.25\eta^3 - 0.375\eta^5) \ast I(h <= range)$
- cosine: $\cos(\eta)$
- wave: $\sin(\eta)/\eta \ast I(h > 0) + I(h = 0)$
- jbessel: $Bj(h * range)$, Bj is Bessel-J function
- gravity: $(1 + \eta^2)^{(1 - 0.5)}$
- rquad: $(1 + \eta^2)^{-1}$
- magnetic: $(1 + \eta^2)^{-1.5}$
- matern: $2^{1-extra}/\Gamma(extra) \ast \alpha^{extra} \ast Bk(\alpha, extra), \alpha = (2^{extra} \ast \eta)^0.5$, Bk is Bessel-K function with order $1/5 \leq extra \leq 5$
- cauchy: $(1 + \eta^2)^{-extra}, extra > 0$
- pexponential: $\exp(h^{extra/range}), 0 < extra \leq 2$
• car: \((I - \text{range} * W)^{-1} * M\), weights matrix \(W\), symmetry condition matrix \(M\), observations with no neighbors are given a unique variance parameter called \(\text{extra}\), \(\text{extra} \geq 0\).

• sar: \([(I - \text{range} * W)(I - \text{range} * W)^T]^{-1}\), weights matrix \(W\), \(T\) indicates matrix transpose, observations with no neighbors are given a unique variance parameter called \(\text{extra}\), \(\text{extra} \geq 0\).

• none: 0

All spatial covariance functions are valid in one spatial dimension. All spatial covariance functions except triangular and cosine are valid in two dimensions.

When the spatial covariance function is car or sar, \(\text{extra}\) represents the variance parameter for the observations in \(W\) without at least one neighbor (other than itself) – these are called unconnected observations. \(\text{extra}\) is only used if there is at least one unconnected observation.

Value

A list with two elements: initial and is_known. initial is a named numeric vector indicating the spatial covariance parameters with specified initial and/or known values. is_known is a named numeric vector indicating whether the spatial covariance parameters in initial are known or not. The class of the list matches the value given to the spcov_type argument.

Examples

```r
# known de value 1 and initial range value 0.4
spcov_initial("exponential", de = 1, range = 0.4, known = c("de"))
# known ie value 0 and known range value 1
spcov_initial("gaussian", ie = 0, range = 1, known = c("given"))
# ie given NA
spcov_initial("car", ie = NA)
```

spcov_params

Create a spatial covariance parameter object

Description

Create a spatial covariance parameter object for use with other functions.

Usage

```r
spcov_params(spcov_type, de, ie, range, extra, rotate = 0, scale = 1)
```

Arguments

- de: The initial value for the "de" parameter.
- ie: The initial value for the "ie" parameter.
- range: The initial value for the "range" parameter.
- extra: The initial value for the "extra" parameter.
- rotate: The rotation parameter.
- scale: The scale parameter.
splm

The spatially dependent (correlated) random error variance. Commonly referred to as a partial sill.

ie

The spatially independent (uncorrelated) random error variance. Commonly referred to as a nugget.

range

The correlation parameter.

extra

An extra covariance parameter used when `spcov_type` is "matern", "cauchy", "pexponential", "car", or "sar".

rotate

Anisotropy rotation parameter (from 0 to \(\pi\) radians). A value of 0 (the default) implies no rotation. Not used if `spcov_type` is "car" or "sar".

scale

Anisotropy scale parameter (from 0 to 1). A value of 1 (the default) implies no scaling. Not used if `spcov_type` is "car" or "sar".

Details

Generally, all arguments to `spcov_params` must be specified, though default arguments are often chosen based on `spcov_type`. When `spcov_type` is car or sar, ie is assumed to be 0 unless specified otherwise. For full parameterizations of all spatial covariance functions, see `spcov_initial()`.

Value

A named numeric vector of spatial covariance parameters with class `spcov_type`.

Examples

```r
spcov_params("exponential", de = 1, ie = 1, range = 1)
```

Description

Fit spatial linear models for point-referenced data (i.e., geostatistical models) using a variety of estimation methods, allowing for random effects, anisotropy, partition factors, and big data methods.

Usage

```r
splm(formula, data, spcov_type, xcoord, ycoord, spcov_initial, estmethod = "reml", weights = "cressie", anisotropy = FALSE,)
```
random,
randcov_initial,
partition_factor,
local,
...
)

Arguments

formula A two-sided linear formula describing the fixed effect structure of the model, with the response to the left of the \(~\) operator and the terms on the right, separated by + operators.
data A data frame or sf object object that contains the variables in fixed, random, and partition_factor as well as geographical information. If an sf object is provided with POINT geometries, the x-coordinates and y-coordinates are used directly. If an sf object is provided with POLYGON geometries, the x-coordinates and y-coordinates are taken as the centroids of each polygon.
spcov_type The spatial covariance type. Available options include "exponential", "spherical", "gaussian", "triangular", "circular", "cubic", "pentaspherical", "cosine", "wave", "jbessel", "gravity", "rquad", "magnetic", "matern", "cauchy", "pexponential", and "none". Parameterizations of each spatial covariance type are available in Details. When spcov_type is specified, relevant spatial covariance parameters are assumed unknown, requiring estimation. spcov_type is not required (and is ignored) if spcov_initial is provided. The default for spcov_type is "exponential".
xcoord The name of the column in data representing the x-coordinate. Can be quoted or unquoted. Not required if data is an sf object.
ycoord The name of the column in data representing the y-coordinate. Can be quoted or unquoted. Not required if data is an sf object.
spcov_initial An object from spcov_initial() specifying initial and/or known values for the spatial covariance parameters.
estmethod The estimation method. Available options include "reml" for restricted maximum likelihood, "ml" for maximum likelihood, "sv-wls" for semivariogram weighted least squares, and "sv-cl" for semivariogram composite likelihood. The default is "reml".
weights Weights to use when estmethod is "sv-wls". Available options include "cressie", "cressie-dr", "cressie-nopairs", "cressie-dr-nopairs", "pairs", "pairs-invd", "pairs-invrd", and "ols". Parameterizations for each weight are available in Details. The default is "cressie".
anisotropy A logical indicating whether (geometric) anisotropy should be modeled. Not required if spcov_initial is provided with 1) rotate assumed unknown or assumed known and non-zero or 2) scale assumed unknown or assumed known and less than one. When anisotropy is TRUE, computational times can significantly increase. The default is FALSE.
random A one-sided linear formula describing the random effect structure of the model. Terms are specified to the right of the \(~\) operator. Each term has the structure \(x_1 + \ldots + x_n | g_1/\ldots/g_m\), where \(x_1 + \ldots + x_n\) specifies the model for
the random effects and g1/.../gm is the grouping structure. Separate terms are separated by + and must generally be wrapped in parentheses. Random intercepts are added to each model implicitly when at least one other variable is defined. If a random intercept is not desired, this must be explicitly defined (e.g., x1 + ... + xn - 1 | g1/.../gm). If only a random intercept is desired for a grouping structure, the random intercept must be specified as 1 | g1/.../gm.

Note that g1/.../gm is shorthand for (1 | g1/.../gm). If only random intercepts are desired and the shorthand notation is used, parentheses can be omitted.

randcov_initial
An optional object specifying initial and/or known values for the random effect variances.

partition_factor
A one-sided linear formula with a single term specifying the partition factor. The partition factor assumes observations from different levels of the partition factor are uncorrelated.

local
An optional logical or list controlling the big data approximation. If omitted, local is set to TRUE or FALSE based on the sample size (the number of non-missing observations in data) – if the sample size exceeds 5,000, local is set to TRUE. Otherwise it is set to FALSE. If FALSE, no big data approximation is implemented. If a list is provided, the following arguments detail the big data approximation:

- index: The group indexes. Observations in different levels of index are assumed to be uncorrelated for the purposes of estimation. If index is not provided, it is determined by specifying method and either size or groups.
- method: The big data approximation method used to determine index. Ignored if index is provided. If method = "random", observations are randomly assigned to index based on size. If method = "kmeans", observations assigned to index based on k-means clustering on the coordinates with groups clusters. The default is "random". Note that both methods have a random component, which means that you may get different results from separate model fitting calls. To ensure consistent results, specify index or set a seed via base::set.seed().
- size: The number of observations in each index group when method is "random". If the number of observations is not divisible by size, some levels get size - 1 observations. The default is 50.
- groups: The number of index groups. If method is "random", size is ceiling(n/groups), where n is the sample size. Automatically determined if size is specified. If method is "kmeans", groups is the number of clusters.
- var_adjust: The approach for adjusting the variance-covariance matrix of the fixed effects. "none" for no adjustment, "theoretical" for the theoretically-correct adjustment, "pooled" for the pooled adjustment, and "empirical" for the empirical adjustment. The default is "theoretical".
- parallel: If TRUE, parallel processing via the parallel package is automatically used. The default is FALSE.
- ncores: If parallel = TRUE, the number of cores to parallelize over. The default is the number of available cores on your machine.
When local is a list, at least one list element must be provided to initialize default arguments for the other list elements. If local is TRUE, defaults for local are chosen such that local is transformed into `list(size = 50, method = "random", var_adjust = "theoretical", parallel = FALSE).

Other arguments to `esv()` or `stats::optim()`.

Details

The spatial linear model for point-referenced data (i.e., geostatistical model) can be written as $y = X\beta + \tau + \epsilon$, where X is the fixed effects design matrix, β are the fixed effects, τ is random error that is spatially dependent, and ϵ is random error that is spatially independent. Together, τ and ϵ are modeled using a spatial covariance function, expressed as $de * R + ie * I$, where de is the dependent error variance, R is a correlation matrix that controls the spatial dependence structure among observations, ie is the independent error variance, and I is an identity matrix.

spcov_type Details: Parametric forms for R are given below, where $\eta = h/range$ for h distance between observations:

- exponential: $exp(-\eta)$
- spherical: $(1 - 1.5\eta + 0.5\eta^3) * I(h <= range)$
- gaussian: $exp(-\eta^2)$
- triangular: $(1 - \eta) * I(h <= range)$
- circular: $(1 - (2/\pi) * (m * sqrt(1 - m^2) + sin^{-1}(m))) * I(h <= range), m = min(\eta, 1)$
- cubic: $(1 - 7\eta^2 + 8.75\eta^3 - 3.5\eta^5 + 0.75\eta^7) * I(h <= range)$
- pentaspherical: $(1 - 1.875\eta + 1.25\eta^3 - 0.375\eta^5) * I(h <= range)$
- cosine: $cos(\eta)$
- wave: $sin(\eta)/\eta * I(h > 0) + I(h = 0)$
- jbessel: $BJ(h * range), BJ$ is Bessel-J function
- gravity: $(1 + \eta^2)^{-0.5}$
- rquad: $(1 + \eta^2)^{-1}$
- magnetic: $(1 + \eta^2)^{-1.5}$
- matern: $2^1 - extra / \Gamma(extra) * \alpha^{extra} * Bk(\alpha, extra), \alpha = (2extra * \eta)^{0.5}, Bk$ is Bessel-K function with order $1/5 \leq extra \leq 5$
- cauchy: $(1 + \eta^2)^{-extra}, extra > 0$
- pexponential: $exp(h^{extra/range}), 0 < extra \leq 2$
- none: 0

All spatial covariance functions are valid in one spatial dimension. All spatial covariance functions except triangular and cosine are valid in two dimensions.

estmethod Details: The various estimation methods are

- reml: Maximize the restricted log-likelihood.
- ml: Maximize the log-likelihood.
- sv-wls: Minimize the semivariogram weighted least squares loss.
• sv-cl: Minimize the semivariogram composite likelihood loss.

anisotropy Details: By default, all spatial covariance parameters except rotate and scale as well as all random effect variance parameters are assumed unknown, requiring estimation. If either rotate or scale are given initial values other than 0 and 1 (respectively) or are assumed unknown in spcov_initial(), anisotropy is implicitly set to TRUE. (Geometric) Anisotropy is modeled by transforming a covariance function that decays differently in different directions to one that decays equally in all directions via rotation and scaling of the original coordinates. The rotation is controlled by the rotate parameter in \([0, \pi]\) radians. The scaling is controlled by the scale parameter in \([0, 1]\). The anisotropy correction involves first a rotation of the coordinates clockwise by rotate and then a scaling of the coordinates’ minor axis by the reciprocal of scale. The spatial covariance is then computed using these transformed coordinates.

random Details: If random effects are used (the estimation method must be "reml" or "ml"), the model can be written as \(y = X\beta + Zu_j + \tau + \epsilon\), where each \(Z\) is a random effects design matrix and each \(u\) is a random effect.

partition_factor Details: The partition factor can be represented in matrix form as \(P\), where elements of \(P\) equal one for observations in the same level of the partition factor and zero otherwise. The covariance matrix involving only the spatial and random effects components is then multiplied element-wise (Hadamard product) by \(P\), yielding the final covariance matrix.

local Details: The big data approximation works by sorting observations into different levels of an index variable. Observations in different levels of the index variable are assumed to be uncorrelated for the purposes of model fitting. Sparse matrix methods are then implemented for significant computational gains. Parallelization further speeds up computations. Both the "random" and "kmeans" values of method in local have random components. That means you may get slightly different results when using the big data approximation and rerunning splm() with the same code. For consistent results, either set a seed via base::set.seed() or specify index to local.

Observations with NA response values are removed for model fitting, but their values can be predicted afterwards by running predict(object).

Value

A list with many components used to return information about the fitted model object via summary functions like summary.spmod(), tidy.spmod(), augment.spmod(), glance.spmod(), and plot.spmod(). Many other generics are also available for use with the fitted model object, including AIC, AICc, anova, coef, cooks.distance, deviance, fitted, formula, hatvalues, influence, labels, logLik, loocv, model.frame, model.matrix, predict, print, pseudoR2, terms, update, and vcov.

Note

This function does not perform any internal scaling. If optimization is not stable due to large extremely large variances, scale relevant variables so they have variance 1 before optimization.

Examples

```r
spmod <- splm(z ~ water + tarp,
  data = caribou,
  spcov_type = "exponential", xcoord = x, ycoord = y)
```
Simulate a spatial normal (Gaussian) random variable with a specific mean and covariance structure.

Usage

```r
sprnorm(
    spcov_params,
    mean = 0,
    samples = 1,
    data,
    randcov_params,
    partition_factor,
    ...
)
```

S3 method for class 'exponential'
sprnorm(
 spcov_params,
 mean = 0,
 samples = 1,
 data,
 randcov_params,
 partition_factor,
 xcoord,
 ycoord,
 ...
)

S3 method for class 'none'
sprnorm(
 spcov_params,
 mean = 0,
 samples = 1,
 data,
 randcov_params,
 partition_factor,
 ...
)

S3 method for class 'car'
sprnorm(
```
\texttt{sprnorm}

\begin{verbatim}
spcov_params, mean = 0, samples = 1, data, randcov_params, partition_factor, W, row_st = TRUE, M, ...
}

Arguments

\begin{description}
\item [spcov_params] An \texttt{spcov_params()} object.
\item [mean] A numeric vector representing the mean. \texttt{mean} must have length 1 (in which case it is recycled) or length equal to the number of rows in \texttt{data}. The default is 0.
\item [samples] The number of independent samples to generate. The default is 1.
\item [data] A data frame or \texttt{sf} object containing spatial information.
\item [randcov_params] A \texttt{randcov_params()} object.
\item [partition_factor] A formula indicating the partition factor.
\item [\ldots] Other arguments. Not used (needed for generic consistency).
\item [xcoord] Name of the column in \texttt{data} representing the x-coordinate. Can be quoted or unquoted. Not required if \texttt{data} are an \texttt{sf} object.
\item [ycoord] Name of the column in \texttt{data} representing the y-coordinate. Can be quoted or unquoted. Not required if \texttt{data} are an \texttt{sf} object.
\item [W] Weight matrix specifying the neighboring structure used for car and sar models. Not required if \texttt{data} are an \texttt{sf} polygon object and \texttt{W} should be calculated internally.
\item [row_st] A logical indicating whether row standardization be performed on \texttt{W}. The default is TRUE.
\item [M] M matrix satisfying the car symmetry condition. The car symmetry condition states that \((I - range * W)^{-1} M\) is symmetric, where \(I\) is an identity matrix, \texttt{range} is a constant that controls the spatial dependence, \(W\) is the weights matrix, and \(^{-1}\) represents the inverse operator. \(M\) is required for car models when \(W\) is provided and \texttt{row_st} is FALSE. When \(M\), is required, the default is the identity matrix.
\end{description}

Details

Random variables are simulated via the product of the covariance matrix’s square (Cholesky) root and independent standard normal random variables with mean 0 and variance 1. Computing the square root is a significant computational burden and likely unfeasible for sample sizes much past
10,000. Because this square root only needs to be computed once, however, it is nearly the sample computational cost to call sprnorm() for any value of samples.

Only methods for the exponential, none, and car covariance functions are documented here, but methods exist for all other spatial covariance functions defined in spcov_initial(). Syntax for the exponential method is the same as syntax for spherical, gaussian, triangular, circular, cubic, pentaspherical, cosine, wave, jbessel, gravity, rquad, magnetic, matern, cauchy, and pexponential methods. Syntax for the car method is the same as syntax for the sar method. The extra parameter for car and sar models is ignored when all observations have neighbors.

Value

If samples is 1, a vector of random variables for each row of data is returned. If samples is greater than one, a matrix of random variables is returned, where the rows correspond to each row of data and the columns correspond to independent samples.

Examples

spcov_params_val <- spcov_params("exponential", de = 1, ie = 1, range = 1)
sprnorm(spcov_params_val, data = caribou, xcoord = x, ycoord = y)
sprnorm(spcov_params_val, mean = 1:30, samples = 5, data = caribou, xcoord = x, ycoord = y)

---

**sulfate**

*Sulfate atmospheric deposition in the conterminous USA*

**Description**

Sulfate atmospheric deposition in the conterminous USA.

**Usage**

sulfate

**Format**

An sf object with 197 rows and 2 columns.

**sulfate**: Total wet deposition sulfate in kilograms per hectare.

**geometry**: POINT geometry representing coordinates in a Conus Albers projection (EPSG: 5070).

**Source**

These data were used in the publication listed in References. Data were downloaded from the National Atmospheric Deposition Program National Trends Network.

**References**

sulfate_preds

Locations at which to predict sulfate atmospheric deposition in the conterminous USA

Description

Locations at which to predict sulfate atmospheric deposition in the conterminous USA.

Usage

sulfate_preds

Format

An sf object with 197 rows and 1 column.

geometry: POINT geometry representing coordinates in a Conus Albers projection (EPSG: 5070).

Source

These data were used in the publication listed in References. Data were downloaded from the National Atmospheric Deposition Program National Trends Network.

References


summary.spmod

Summarize a fitted model object

Description

Summarize a fitted model object.

Usage

## S3 method for class 'spmod'
summary(object, ...)

Arguments

object A fitted model object from splm() or spautor().

... Other arguments. Not used (needed for generic consistency).
Details

summary.spmod() creates a summary of a fitted model object intended to be printed using print(). This summary contains useful information like the original function call, residuals, a coefficients table, a pseudo r-squared, and estimated covariance parameters.

Value

A list with several fitted model quantities used to create informative summaries when printing.

See Also

print.summary.spmod()

Examples

spmod <- splm(z ~ water + tarp,
              data = caribou,
              spcov_type = "exponential", xcoord = x, ycoord = y
)
summary(spmod)

---

tidy.spmod Tidy a fitted model object

Description

Tidy a fitted model object into a summarized tibble.

Usage

## S3 method for class 'spmod'
tidy(x, conf.int = FALSE, conf.level = 0.95, effects = "fixed", ...)

Arguments

x A fitted model object from splm() or spautor()

conf.int Logical indicating whether or not to include a confidence interval in the tidied output. The default is FALSE.

conf.level The confidence level to use for the confidence interval if conf.int is TRUE. Must be strictly greater than 0 and less than 1. The default is 0.95, which corresponds to a 95 percent confidence interval.

effects The type of effects to tidy. Available options are "fixed" (fixed effects), "spcov" (spatial covariance parameters), and "randcov" (random effect variances). The default is "fixed".

... Other arguments. Not used (needed for generic consistency).
vcov.spmod

Value

A tidy tibble of summary information effects.

See Also

glance.spmod() augment.spmod()

Examples

```r
spmod <- splm(z ~ water + tarp,
 data = caribou,
 spcov_type = "exponential", xcoord = x, ycoord = y
)
tidy(spmod)
tidy(spmod, effects = "spcov")
```

---

vcov.spmod

Calculate variance-covariance matrix for a fitted model object

Description

Calculate variance-covariance matrix for a fitted model object.

Usage

```r
S3 method for class 'spmod'
vcov(object, ...)
```

Arguments

- **object**
  
  A fitted model object from `splm()` or `spautor()`.

- **...**
  
  Other arguments. Not used (needed for generic consistency).

Value

The variance-covariance matrix of coefficients obtained via `coef()`. Currently, only the variance-covariance matrix of the fixed effects is supported.

Examples

```r
spmod <- splm(z ~ water + tarp,
 data = caribou,
 spcov_type = "exponential", xcoord = x, ycoord = y
)
vcov(spmod)
```
Index

* datasets
  caribou, 7
  moss, 22
  seal, 31
  sulfate, 44
  sulfate_preds, 45

AIC.spmod, 2
AIC.spmod(), 15
AICc (AIC.spmod), 2
AICc(), 15
anova.spmod, 4
augment.spmod, 5
augment.spmod(), 15, 18, 34, 41, 47

caribou, 7
coeff.spmod, 8
coefficients.spmod(coeff.spmod), 8
confint.spmod, 9
cooks.distance(), 17
cooks.distance.spmod, 10
cooks.distance.spmod(), 18
deviance.spmod, 11
deviance.spmod(), 15
esv, 11
esv(), 40
fitted.spmod, 13
fitted.values.spmod(fitted.spmod), 13
formula.spmod, 14
glance.spmod, 15
glance.spmod(), 7, 34, 41, 47
glances, 16
hatvalues.spmod, 16
hatvalues.spmod(), 10, 18
influence.spmod, 17
influence.spmod(), 10, 17
labels.spmod, 18
logLik.spmod, 19
logLik.spmod(), 15
loocv, 19
model.frame.spmod, 20
model.matrix.spmod, 21
moss, 22
plot.spmod, 23
plot.spmod(), 34, 41
predict.spmod, 24
predict.spmod(), 20
print.anova.spmod(print.spmod), 26
print.spmod, 26
print.summary.spmod(print.spmod), 26
print.summary.spmod(), 46
pseudoR2, 27
pseudoR2(), 15
randcov_initial, 28
randcov_params, 29
randcov_params(), 43
resid.spmod(residuals.spmod), 30
residuals.spmod, 30
residuals.spmod(), 10, 17, 18
rstandard.spmod(residuals.spmod), 30
seal, 31
spautor, 31
spautor(), 3, 4, 6, 8–11, 13–21, 23, 24,
   26–30, 34, 35, 45–47
spcov_initial, 34
spcov_initial(), 32, 37, 38, 41, 44
spcov_params, 36
spcov_params(), 8, 43
splm, 37
splm(), 3, 4, 6, 8–21, 23–30, 33–35, 45–47
sprnorm, 42
stats::model.frame(), 21
stats::model.matrix(), 22
sulfate, 44
sulfate_preds, 45
summary.spmod, 45
summary.spmod(), 34, 41

tidy.anova.spmod(anova.spmod), 4
tidy.spmod, 46
tidy.spmod(), 7, 15, 34, 41

vcov.spmod, 47