Spatial regression using the spmoran package: Boston housing price data examples

Daisuke Murakami

2020/01/10

Contents
1 Introduction 1

2 Gaussian spatial additive mixed models 2
 2.1 Basic models 2
 2.1.1 Eigenvector spatial filtering (ESF) 2
 2.1.2 Random effects ESF (RE-ESF) 3
 2.2 Extended models 5
 2.2.1 Models with non-spatially varying coefficients (coefficients varying wrt covariate value) 5
 2.2.2 Models with spatially varying coefficients 8
 2.2.3 Models with spatially and non-spatially varying coefficients 11
 2.2.4 Models with group effects 17
 2.2.4.1 Outline 17
 2.2.4.2 Multilevel model 18
 2.2.4.3 Small area estimation 19
 2.2.4.4 Longitudinal/panel data analysis 23
 2.3 Spatial prediction 27

3 Non-Gaussian spatial regression models 30

4 Spatially filtered unconditional quantile regression 31

5 Low rank spatial econometric models 36
 5.1 Spatial weight matrix and their eigenvectors 36
 5.2 Models 37
 5.2.1 Low rank spatial lag model 37
 5.2.2 Low rank spatial error model 38

6 Tips for modeling large samples 39
 6.1 Eigen-decomposition 39
 6.2 Parameter estimation 40
 6.3 For very large samples (e.g., millions of samples) 40

7 Reference 43

1 Introduction

This package provides functions for estimating Gaussian and non-Gaussian spatial regression models and extensions, including spatially and non-spatially varying coefficient models, models with group effects, spatial
unconditional quantile regression models, and low rank spatial econometric models. All these models are estimated computationally efficiently.

An approximate Gaussian process (GP or kriging model), which is interpretable in terms of the Moran coefficient (MC), is used for modeling the spatial process. The approximate GP is defined by a linear combination of the Moran eigenvectors (MEs) corresponding to positive eigenvalue, which are known to explain positive spatial dependence. The resulting spatial process describes positively dependent map patterns (i.e., MC > 0), which are dominant in regional science (Griffith, 2003). Below, the spmoran package is used to analyze the Boston housing dataset.

The sample codes used below are available from https://github.com/dmuraka/spmoran. While this vignette mainly focuses on Gaussian regression modeling, another vignette focusing on non-Gaussian regression modeling and count regression modeling is also available from the same GitHub page (and Murakami 2021).

```
library(spmoran)
```

2 Gaussian spatial additive mixed models

2.1 Basic models

This section considers the following model:

$$y_i = \sum_{k=1}^{K} x_{i,k} \beta_k + f_{MC}(s_i) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2),$$

which decomposes the explained variable y_i observed at the i-th sample site into trend $\sum_{k=1}^{K} x_{i,k} \beta_k$, spatial process $f_{MC}(s_i)$ depending on location s_i, and noise ϵ_i. The spatial process is required to eliminate residual spatial dependence and estimate/infer regression coefficients β_k appropriately. ESF and RE-ESF define $f_{MC}(s_i)$ using the MC-based spatial process to efficiently eliminate residual spatial dependence. These processes are defined by the weighted sum of the Moran eigenvectors (MEs), which are spatial basis functions (distinct map pattern variables; see Griffith, 2003).

2.1.1 Eigenvector spatial filtering (ESF)

ESF specifies $f_{MC}(s_i)$ using an MC-based deterministic spatial process (see Griffith, 2003). Below is a code estimating the linear ESF model. In the code, the meigen function extracts the MEs, and the esf function estimates the model.

```
require(spdep)
data(boston)
y <- boston.c[, "CMEDV"]
x <- boston.c[, c("CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM", "AGE")]
coords<- boston.c[, c("LON", "LAT")]

##########Distance-based ESF
meig <- meigen(coords=coords)
res <- esf(y=y, x=x, meig=meig, vif=10)
res
```

Call:
```
## esf(y = y, x = x, vif = 10, meig = meig)
##
## ----Coefficients----------------------------------------
```
Estimate SE t_value p_value
(Intercept) 11.34040959 3.91692274 2.8952344 3.968277e-03
CRIM -0.20942091 0.03048530 -6.8695702 2.089395e-11
ZN 0.02322000 0.01384823 1.6767492 9.426799e-02
INDUS -0.15063613 0.06823776 -2.2075188 2.776856e-02
CHAS 0.15172838 0.93842988 0.1616832 8.716260e-01
NOX -38.02167637 4.79403898 -7.9310320 1.651338e-14
RM 6.33316024 0.36887955 17.1686403 1.842211e-51
AGE -0.07820247 0.01564970 -4.9970593 8.274067e-07

Spatial effects (residuals)------------------------
Estimate SE
Moran.I/max(Moran.I) 0.6701035

Error statistics--------------------------
stat
resid_SE 4.476459
adjR2 0.762328
logLik -1453.376154
AIC 2996.752308
BIC 3186.946458

While the meigen function is slow for large samples, it can be substituted with the meigen_f function performing a fast eigen-approximation. Here is a fast ESF code for large samples:

```r
meig_f <- meigen_f(coords)
res <- esf(y=y, x=x, meig=meig_f, vif=10, fn="all")
```

2.1.2 Random effects ESF (RE-ESF)

RE-ESF specifies $f_{MC}(s_i)$ using an MC-based spatial random process, again to eliminate residual spatial dependence (see Murakami and Griffith, 2015). Here is a sample example:

```r
res <- resf(y = y, x = x, meig = meig)

# Call:
# resf(y = y, x = x, meig = meig)
```

Estimate SE t_value p_value
(Intercept) 6.63220350 3.94484193 1.6812343 9.340107e-02
CRIM -0.19815203 0.03126666 -6.3374866 5.608678e-10
ZN 0.01453736 0.01591772 0.9132814 3.615764e-01
INDUS -0.15560251 0.06842940 -2.2739131 2.343446e-02
CHAS 0.51046251 0.92329946 0.5528678 5.806245e-01
NOX -31.26690020 5.02069123 -6.2276087 1.075126e-09
RM 6.33993146 0.36671337 17.2885202 0.000000e+00
AGE -0.06351412 0.01526957 -4.1595218 3.810822e-05

Spatial effects (residuals):
(Intercept)
random_SE 6.7424433
Moran.I/max(Moran.I) 0.6648678
##
----Estimated probability distribution of y--------------
Estimates
skewness 0
excess kurtosis 0
##
----Error statistics--------------------------
stat
resid_SE 4.3515211
adjR2(cond) 0.7735912
rlogLik -1540.3812428
AIC 3102.7624855
BIC 3149.2543889
##
NULL model: lm(y ~ x)
(r)loglik: -1612.825 (AIC: 3243.65, BIC: 3281.689)

The residual spatial process $f_{MC}(s_i)$ is plotted as follows:

```r
plot_s(res)
```

Spatially dependent component

For large data, the meigen_f function is available again:

```r
meig_f <- meigen_f(coords)
res <- resf(y = y, x = x, meig = meig_f)
```

The meigen_f function is available for all the regression models explained below.
2.2 Extended models

2.2.1 Models with non-spatially varying coefficients (coefficients varying wrt covariate value)

Influence from covariates can vary depending on covariate value. For example, distance to railway station might have a strong impact on housing price if the distance is small, while it might be weak if the distance is large. To capture such an effect, the resf function estimates coefficients varying with respect to covariate value. I call such coefficients non-spatially varying coefficients (NVCs). If nvc=TRUE, the resf function estimates the following model considering NSVs and residual spatial dependence:

\[y_i = \sum_{k=1}^{K} x_{i,k} \beta_{i,k} + f_{MC}(s_i) + \epsilon_i, \quad \beta_{i,k} = b_k + f(x_{i,k}), \quad \epsilon_i \sim N(0, \sigma^2), \]

where \(f(x_{i,k}) \) is a smooth function of \(x_{i,k} \) capturing the non-spatial influence. Here is a code estimating a spatial NVC model (with selection of constant or NVC):

```r
res <- resf(y = y, x = x, meig = meig, nvc=TRUE)
res
```

```
## Call:
## resf(y = y, x = x, nvc = TRUE, meig = meig)
##
## ----Non-spatially varying coefficients on x (summary) ----
##
## Coefficients:
## Intercept CRIM ZN INDUS CHAS NOX RM AGE
## Min. :25.41 Min. :-0.1822 Min. :0.02042 Min. :-0.2119
## 1st Qu.:25.41 1st Qu.:-0.1822 1st Qu.:0.02042 1st Qu.:-0.2119
## Median :25.41 Median :-0.1822 Median :0.02042 Median :-0.2119
## Mean :25.41 Mean :-0.1822 Mean :0.02042 Mean :-0.2119
## 3rd Qu.:25.41 3rd Qu.:-0.1822 3rd Qu.:0.02042 3rd Qu.:-0.2119
## Max. :25.41 Max. :-0.1822 Max. :0.02042 Max. :-0.2119
##
## Statistical significance:
## Intercept CRIM ZN INDUS CHAS NOX RM AGE
## Not significant 0 0 506 0 0 506 472 0
## Significant (10% level) 0 0 0 0 506 0 7 0
## Significant ( 5% level) 0 0 0 0 0 0 10 0
## Significant ( 1% level) 506 506 0 506 0 0 17 506
##
## ----Variance parameter------------------------
##
## Random effects (residuals):
## Intercept
## (Intercept) 3.6981527
## Moran.I/max(Moran.I) 0.4490228
##
## Non-spatial effects (coefficients on x):
```
By default, this function selects constant or NVC through BIC minimization. “Non-spatially varying coefficients” in the “Variance parameter” section summarizes the estimated standard errors of the NVCs. Based on the result, coefficients on \{NOX, RM\} are NVCs, and coefficients on the others are constants. The NVC on RM, which is the 6-th covariate, is plotted as below. The solid line in the panel denotes the estimated NVC, and the gray area denotes the 95% confidence interval. This plot shows that RM is positively statistically significant only if RM is large.

```
plot_n(res,6)
```

The NVC can also be spatially plotted as below:

```
plot_s(res,6)
```
On the other hand, the residual spatial process $f_{MC}(s_i)$ is plotted as

```
plot_s(res)
```

Sometimes, the user may wish to assume NVCs only on the first three covariates and constant coefficients on the others. The following code estimates such a model:

```
res <- resf(y = y, x = x, meig = meig, nvc=TRUE, nvc_sel=1:3)
```
2.2.2 Models with spatially varying coefficients

This package implements an ME-based spatially varying coefficient (M-SVC) model (Murakami et al., 2017), which is formulated as

\[y_i = \sum_{k=1}^{K} x_{i,k} \beta_{i,k} + f_{MC}(s_i) + \epsilon_i, \quad \beta_{i,k} = b_k + f_{MC,k}(s_i), \quad \epsilon_i \sim N(0, \sigma^2), \]

This model defines the k-th coefficient at site i by \(\beta_{i,k} = [\text{constant mean } b_k] + [\text{spatially varying component } f_{MC,k}(s_i)] \). Geographically weighted regression (GWR) is known as another SVC estimation approach. Major advantages of the M-SVC modeling approach over GWR are as follows:

- The M-SVC model estimates the spatial scale (or MC value) of each SVC, while the classical GWR assumes a common scale across SVCs.
- The M-SVC model can assume SVCs on some covariates and constant coefficients on the others. This is achieved by simply assuming \(\beta_{i,k} = b_k \).
- This model is faster and available for very large samples. In addition, the model is free from memory limitations if the best_vc function is used (see Section 4).
- Model selection (i.e., constant coefficient or SVC) is implemented without losing its computational efficiency.

Here is a sample code estimating an SVC model without coefficient type selection. In the code, x specifies covariates assuming SVCs, while xconst specifies covariates assuming constant coefficients. If x_sel = FALSE, the types of coefficients on x are fixed.

```r
y <- boston.c[, "CMEDV"]
x <- boston.c[, c("CRIM", "AGE")]
xconst <- boston.c[, c("ZN", "DIS", "RAD", "NOX", "TAX", "RM", "PTRATIO", "B")]
coords <- boston.c[, c("LON", "LAT")]
meig <- meigen(coords=coords)
res <- resf_vc(y=y, x=x, xconst=xconst, meig=meig, x_sel = FALSE)
```

```
## [1] "------- Iteration 1 -------"
## [1] "1/3"
## [1] "2/3"
## [1] "3/3"
## [1] "BIC: 3120.605"
## [1] "------- Iteration 2 -------"
## [1] "1/3"
## [1] "2/3"
## [1] "3/3"
## [1] "BIC: 3114.252"
## [1] "------- Iteration 3 -------"
## [1] "1/3"
## [1] "2/3"
## [1] "3/3"
## [1] "BIC: 3114.139"
## [1] "------- Iteration 4 -------"
## [1] "1/3"
## [1] "2/3"
## [1] "3/3"
## [1] "BIC: 3114.138"
```

Call:
```
resf_vc(y = y, x = x, xconst = xconst, x_sel = FALSE, meig = meig)
```
----Spatially varying coefficients on x (summary)----

Coefficient estimates:

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>CRIM</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>12.03</td>
<td>-3.29294</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>13.99</td>
<td>-0.19941</td>
</tr>
<tr>
<td>Median</td>
<td>15.06</td>
<td>0.04993</td>
</tr>
<tr>
<td>Mean</td>
<td>15.70</td>
<td>0.05902</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>17.31</td>
<td>0.36587</td>
</tr>
<tr>
<td>Max.</td>
<td>20.46</td>
<td>1.83866</td>
</tr>
</tbody>
</table>

Statistical significance:

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>CRIM</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not significant</td>
<td>0</td>
<td>416</td>
</tr>
<tr>
<td>Significant (10% level)</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>Significant (5% level)</td>
<td>190</td>
<td>17</td>
</tr>
<tr>
<td>Significant (1% level)</td>
<td>316</td>
<td>46</td>
</tr>
</tbody>
</table>

----Constant coefficients on xconst----------------------------

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>SE</th>
<th>t_value</th>
<th>p_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZN</td>
<td>0.03202068</td>
<td>2.422322</td>
<td>1.582817e-02</td>
</tr>
<tr>
<td>DIS</td>
<td>-1.47514930</td>
<td>-4.411856</td>
<td>1.292875e-05</td>
</tr>
<tr>
<td>RAD</td>
<td>0.36064288</td>
<td>3.971037</td>
<td>8.368693e-05</td>
</tr>
<tr>
<td>NOX</td>
<td>-36.21088316</td>
<td>-7.052565</td>
<td>6.925571e-12</td>
</tr>
<tr>
<td>TAX</td>
<td>-0.01242296</td>
<td>-3.546862</td>
<td>4.320840e-04</td>
</tr>
<tr>
<td>RM</td>
<td>6.49212566</td>
<td>19.902409</td>
<td>0.000000e+00</td>
</tr>
<tr>
<td>PTRATIO</td>
<td>-0.52573980</td>
<td>-3.468064</td>
<td>5.762765e-04</td>
</tr>
<tr>
<td>B</td>
<td>0.02091202</td>
<td>6.758638</td>
<td>4.477529e-11</td>
</tr>
</tbody>
</table>

----Variance parameters----------------------------------

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>SE</th>
<th>t_value</th>
<th>p_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>3.9039832</td>
<td>1.5944332</td>
<td>0.05746111</td>
</tr>
<tr>
<td>Moran.I/max(Moran.I)</td>
<td>0.6627375</td>
<td>0.04502003</td>
<td>0.06267778</td>
</tr>
</tbody>
</table>

----Estimated probability distribution of y----------------

<table>
<thead>
<tr>
<th>Estimates</th>
<th>skewness</th>
<th>excess kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

----Error statistics-------------------------------------

<table>
<thead>
<tr>
<th>stat</th>
<th>resid_SE</th>
<th>adjR2(cond)</th>
<th>rlogLik</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6706778</td>
<td>0.8375658</td>
<td>-1501.0302460</td>
<td>3038.0604921</td>
<td>3114.1381521</td>
<td></td>
</tr>
</tbody>
</table>

NULL model: lm(y ~ x + xconst)

| (r)loglik | -1551.857 (AIC: 3127.715, BIC: 3178.433) |

Estimated SVCs can be plotted as
plot_s(res,0) # Spatially varying intercept

plot_s(res,1) # 1st SVC

plot_s(res,2) # 2nd SVC
On the other hand, by default, the resf_vc function selects constant or SVCs through a BIC minimization (i.e., x_sel=TRUE by default). Here is a code:

```r
res <- resf_vc(y=y, x=x, xconst=xconst, meig=meig)
```

2.2.3 Models with spatially and non-spatially varying coefficients

The spatially and non-spatially varying coefficient (SNVC) model is defined as

\[
y_i = \sum_{k=1}^{K} x_{i,k} \beta_{i,k} + f_{MC}(s_i) + \epsilon_i, \quad \beta_{i,k} = b_k + f_{MC,k}(s_i) + f(x_{i,k}), \quad \epsilon_i \sim N(0, \sigma^2),
\]

This model defines the k-th coefficient as \(\beta_{i,k} = [\text{constant mean } b_k] + [\text{spatially varying component } f_{MC,k}(s_i)] + [\text{non-spatially varying component } f(x_{i,k})] \). Murakami and Griffith (2020) showed that, unlike SVC models that tend to be unstable owing to spurious correlation among SVCs (see Wheeler and Tiefelsdorf, 2005), this SNVC model is stable and quite robust against spurious correlations. Therefore, I recommend using the SNVC model, even if the purpose of the analysis is estimating SVCs.

An SNVC model is estimated by specifying x_nvc = TRUE in the resf_vc function as follows:

```r
res <- resf_vc(y=y, x=x, xconst=xconst, meig=meig, x_nvc=TRUE)
```

This model assumes SNVC on x and constant coefficients on xconst. By default, the coefficient type (SNVC, SVC, NVC, or constant) on x is selected.

It is also possible to assume SNVCs on x and NVCs on xcnost by specifying xconst_nvc = TRUE as follows:

```r
res <- resf_vc(y=y, x=x, xconst=xconst, meig=meig, x_nvc=TRUE, xconst_nvc=TRUE)
```
------- Iteration 2 -------

BIC: 3023.362

------- Iteration 3 -------

BIC: 3013.007

------- Iteration 4 -------

BIC: 3012.859

------- Iteration 5 -------

BIC: 3012.857
BIC: 3012.857

res

```
# Call:
# resf_vc(y = y, x = x, xconst = xconst, x_nvc = TRUE, xconst_nvc = TRUE,
#        meig = meig)
#
# ----Spatially and non-spatially varying coefficients on x (summary)----
#
# Coefficient estimates:
#   (Intercept)      CRIM      AGE
#  Min. :34.970 -2.17120 -0.07496
#  1st Qu.:40.940 -0.61410 -0.07496
#  Median :42.280 -0.41560 -0.07496
#  Mean :42.430 -0.42880 -0.07496
#  3rd Qu.:43.770 -0.21560 -0.07496
#  Max. :49.940  0.52350 -0.07496
#
# Statistical significance:
#   Intercept   CRIM   AGE
#  Not significant 0  394  0
#  Significant (10% level) 0  15  0
#  Significant ( 5% level) 0  29  0
#  Significant ( 1% level) 506  68 506
#
# ----Non-spatially varying coefficients on xconst (summary)----
#
# Coefficient estimates:
#      ZN      DIS      RAD      NOX
#  Min. :0.02511 -1.1070  0.62890 -0.01371
#  1st Qu.:0.02511 -1.1070  0.62890 -0.01371
#  Median :0.02511 -1.1070  0.62890 -0.01371
#  Mean :0.02511 -1.1070  0.62890 -0.01371
#  3rd Qu.:0.02511 -1.1070  0.62890 -0.01371
#  Max. :0.02511 -1.1070  0.62890 -0.01371
#
```

Statistical significance:

<table>
<thead>
<tr>
<th></th>
<th>ZN</th>
<th>DIS</th>
<th>RAD</th>
<th>NOX</th>
<th>TAX</th>
<th>RM</th>
<th>PTRATIO</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not significant</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>185</td>
<td>0</td>
<td>414</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Significant (10% level)</td>
<td>506</td>
<td>0</td>
<td>0</td>
<td>217</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Significant (5% level)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>23</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Significant (1% level)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>23</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Variance parameters

Spatial effects (coefficients on x):

<table>
<thead>
<tr>
<th></th>
<th>CRIM</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>4.067763</td>
<td>1.0007384</td>
</tr>
<tr>
<td>Moran.I/max(Moran.I)</td>
<td>0.3274953</td>
<td>0.0743859</td>
</tr>
</tbody>
</table>

Non-spatial effects (coefficients on x):

<table>
<thead>
<tr>
<th>CRIM</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03405477</td>
<td>0</td>
</tr>
</tbody>
</table>

Non-spatial effects (coefficients on xconst):

<table>
<thead>
<tr>
<th>ZN</th>
<th>DIS</th>
<th>RAD</th>
<th>NOX</th>
<th>TAX</th>
<th>RM</th>
<th>PTRATIO</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.496402</td>
<td>0</td>
<td>0.200113</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Estimated probability distribution of y

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>skewness</td>
</tr>
<tr>
<td>excess kurtosis</td>
</tr>
</tbody>
</table>

Error statistics

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>resid_SE</td>
</tr>
<tr>
<td>adjR2(cond)</td>
</tr>
<tr>
<td>rlogLik</td>
</tr>
<tr>
<td>AIC</td>
</tr>
<tr>
<td>BIC</td>
</tr>
</tbody>
</table>

NULL model: lm(y ~ x + xconst)

(r)loglik: -1551.857 (AIC: 3127.715, BIC: 3178.433)

By default, the coefficient type (SNVC, SVC, NVC, or constant) on x and those (NVC or const) on xconst are selected. The estimated SNVCs are plotted as follows:

plot_s(res,0) # Spatially varying intercept
NVCs on xconst is plotted by specifying xtype="xconst" in the plot_n function, as below. The solid line denotes the estimated NVC, and the gray area denotes the 95% confidence interval:

```
plot_n(res,4, xtype="xconst") #NVC on xconst[,4]
```
These NVCs can also be plotted spatially as follows:

\[
\text{plot_s(res,4,xtyle=\textquotesingle xconst\textquotesingle)} \quad \text{\#Spatial plot of NVC on xconst[,4]}
\]
2.2.4 Models with group effects

2.2.4.1 Outline

Two group effects are available in this package:
1. Spatially dependent group effects. Spatial dependence among groups is modeled instead of modeling spatial dependence among individuals.

2. Spatially independent group effects assuming independence across groups (usual group effects)

They are estimated in the resf and resf_vc functions. When considering both these effects, the resf function estimates the following model (if no NVC is assumed):

\[y_i = \sum_{k=1}^{K} x_{i,k} \beta_k + f_{MC}(g_I(0)) + \sum_{h=1}^{H} \gamma(g_I(h)) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2), \]

where \(g_I(0), g_I(1), \ldots, g_I(H) \) represent group variables. \(f_{MC}(g_I(0)) \) denotes spatially dependent group effects, while \(\gamma(g_I(h)) \) denotes spatially independent group effects for the \(h \)-th group variable. On the other hand, the resf_vc function can estimate the following model considering these two effects (again, no NVC is assumed):

\[y_i = \sum_{k=1}^{K} x_{i,k} \beta_{i,k} + f_{MC}(g_I(0)) + \sum_{h=1}^{H} \gamma(g_I(h)) + \epsilon_i, \quad \beta_{i,k} = b_k + f_{MC,k}(g_i(0)), \quad \epsilon_i \sim N(0, \sigma^2), \]

Below, multilevel modeling, small area estimation, and panel data analysis are demonstrated.

2.2.4.2 Multilevel model

Data often have a multilevel structure. For example, the school achievement of individual students changes depending on the class and school. A condominium unit price depends, not only on unit attributes, but also on building attributes. Multilevel modeling is required to explicitly consider the multilevel structure behind data and perform spatial regressions.

This section demonstrates the modeling considering the two group effects using the resf function. The data used are the Boston housing datasets that consist of 506 samples in 92 towns, which are regarded as groups. To model spatially dependent group effects, Moran eigenvectors are defined by groups. This is done by specifying \(s_id \) in the meigen function using a group variable, which is the town name (TOWNNO), in this case, as follows:

```r
xgroup <- boston.c[, "TOWNNO"]
coords <- boston.c[, c("LON", "LAT")]
meig_g <- meigen(coords = coords, s_id = xgroup)
```

When additionally estimating spatially independent group effects, the user needs to specify \(xgroup \) in the resf function by one or more group variables, as follows:

```r
x <- boston.c[, c("CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM", "AGE")]
res <- resf(y = y, x = x, meig = meig_g, xgroup = xgroup)
```

Call:
resf(y = y, x = x, meig = meig_g, xgroup = xgroup)

---Coefficients-----------------------------------

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>t_value</th>
<th>p_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-0.81545943</td>
<td>3.23135854</td>
<td>-0.2523581</td>
<td>8.008871e-01</td>
</tr>
<tr>
<td>CRIM</td>
<td>-0.04596392</td>
<td>0.02505503</td>
<td>-1.8345188</td>
<td>6.728064e-02</td>
</tr>
<tr>
<td>ZN</td>
<td>0.03285021</td>
<td>0.02313784</td>
<td>1.4197611</td>
<td>1.564153e-01</td>
</tr>
<tr>
<td>INDUS</td>
<td>0.03549188</td>
<td>0.11980486</td>
<td>0.2962474</td>
<td>7.671869e-01</td>
</tr>
<tr>
<td>CHAS</td>
<td>-0.62561231</td>
<td>0.72381491</td>
<td>-0.8643264</td>
<td>3.878995e-01</td>
</tr>
<tr>
<td>NOX</td>
<td>-26.38632673</td>
<td>3.88238119</td>
<td>-6.7964286</td>
<td>3.668488e-11</td>
</tr>
<tr>
<td>RM</td>
<td>6.30273567</td>
<td>0.29409796</td>
<td>21.4307357</td>
<td>0.000000e+00</td>
</tr>
<tr>
<td>AGE</td>
<td>-0.06730232</td>
<td>0.01048068</td>
<td>-6.4215611</td>
<td>3.637544e-10</td>
</tr>
</tbody>
</table>
Variance parameter

Spatial effects (residuals):

(Intercept)

| random_SE | 5.074794 |
| Moran.I/max(Moran.I) | 0.812936 |

Group effects:

| xgroup | random_SE 4.4404 |

Estimated probability distribution of y

| Estimates |
| skewness | 0 |
| excess kurtosis | 0 |

Error statistics

| stat |
resid_SE	3.2429178
adjR2(cond)	0.8740022
rlogLik	-1465.8457138
AIC	2955.6914276
BIC	3006.4098677

NULL model: lm(y ~ x)

(r)loglik: -1612.825 (AIC: 3243.65, BIC: 3281.689)

The estimated independent group effects are extracted as

res$b_g[[1]][1:5]

Estimates in the first 5 groups

<table>
<thead>
<tr>
<th>Estimate</th>
<th>SE</th>
<th>t_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>xgroup_0</td>
<td>2.165726</td>
<td>2.061093</td>
</tr>
<tr>
<td>xgroup_1</td>
<td>3.747633</td>
<td>1.783543</td>
</tr>
<tr>
<td>xgroup_2</td>
<td>6.544205</td>
<td>1.659184</td>
</tr>
<tr>
<td>xgroup_3</td>
<td>2.431558</td>
<td>1.431325</td>
</tr>
<tr>
<td>xgroup_4</td>
<td>1.036033</td>
<td>1.181672</td>
</tr>
</tbody>
</table>

2.2.4.3 Small area estimation

Small area estimation (SAE; Ghosh and Rao, 1994) is a statistical technique estimating parameters for small areas such as districts and municipality. SAE is useful for obtaining reliable small area statistics from noisy data. The resf and resf_vc functions are available for SEA (see as explained in Murakami 2020 for further detail).

The Boston housing datasets consist of 506 samples in 92 towns. This section estimates the standard housing price in the I-th towns by assuming the following model:

\[
y_I = \hat{y}_I + \epsilon_I, \quad \epsilon_I \sim N(0, \sigma_I^2)\n\]

where \(\hat{y}_I = \sum_{i=1}^{N_I} \hat{y}_i / N_I \). This model decomposes the observed mean house price \(y_I \) in the I-th town into the standard price \(\hat{y}_I \) and noise \(\epsilon_I \), which reduces as the number of samples in the I-th town increases. The standard price is defined by an aggregate of the predictors \(\hat{y}_i \) by individuals.
The above equation suggests that, if \hat{y}_i is predicted using the resf or resf_vc function and aggregated into the towns, we can estimate the standard house price. Here is a sample code for the individual level prediction:

```r
r_res <- resf(y=y, x=x, meig=meig_g, xgroup=xgroup)
pred <- predict0(r_res, x0=x, meig0=meig_g, xgroup0=xgroup)
pred$pred[1:5,]
```

pred xb sf_residual xgroup
1 23.70932 22.71407 -1.170482 2.165726
2 24.57615 22.21874 -1.390220 3.747633
3 30.58942 28.23201 -1.390220 3.747633
4 33.24998 28.19959 -1.493814 6.544205
5 33.62206 28.57167 -1.493814 6.544205

As shown above, the predict0 function returns predicted values (pred), predicted trends (xb), predicted residual spatial components (sf_residuals), and predicted group effects (xgroup). Then, these individual-level variables are aggregated into towns. Here is a code:

```r
adat <- aggregate(data.frame(y, pred$pred), by=list(xgroup), mean)
adat[1:5,]
```

Group.1 y pred xb sf_residual xgroup
1 0 24.00000 23.70932 22.71407 -1.170482 2.165726
2 1 28.15000 27.58279 25.22537 -1.390220 3.747633
3 2 32.76667 31.89132 26.84093 -1.493814 6.544205
4 3 19.42857 19.36679 18.51187 -1.576641 2.431558
5 4 16.71364 16.72781 17.10793 -1.416151 1.036033

The outputs are the predicted standard price (pred), trend (xb), spatially dependent group effects (sf_residual), and spatially independent group effects (xgroup) by town.

To map the result, spatial polygons for the towns are loaded and combined with our estimates:

```r
require(rgdal)
require(rgeos)
require(dplyr)
boston.tr <- readOGR(system.file("shapes/boston_tracts.shp", package="spData") [1])
```

OGR data source with driver: ESRI Shapefile
Source: "/Library/Frameworks/R.framework/Versions/4.0/Resources/library/spData/shapes/boston_tracts.shp"
with 506 features
It has 36 fields

```r
b1 <- st_as_sf(boston.tr)
b1_dissolve <- b1 %>% group_by(TOWNNO) %>% summarize(#dissolve
boston.tr2 <- as_Spatial(b1_dissolve)
boston.tr2@data$id <- 1:(dim(boston.tr2)[1])
b2_dat <- boston.tr2@data
b2_dat2 <- merge(b2_dat, adat, by.x="TOWNNO", by.y="Group.1", all.x=TRUE)
```

Here are the maps of our estimates. “y” denotes the observed mean prices, and “pred” denotes our predicted standard price. While they are similar, there are some differences in towns with high housing prices.

```r
spplot(boston.tr2, c("y", "pred"), lwd=0.3)
```
Here are the elements of the predicted values. The maps below show that each element explains different things to each other:

```r
spplot(boston.tr2, c("xgroup", "sf_residual"), lwd=0.3)

spplot(boston.tr2, "xb", lwd=0.3)
```
Note that the resf_vc function is also available for SVC model-based SAE. Here is a sample code:

```r
rv_res <- resf_vc(y=y, x=x, meig=meig_g, xgroup=xgroup, x_sel=FALSE)
```

```r
## [1] "------- Iteration 1 -------
## [1] "1/9"
## [1] "2/9"
## [1] "3/9"
## [1] "4/9"
## [1] "5/9"
## [1] "6/9"
## [1] "7/9"
## [1] "8/9"
## [1] "9/9"
## [1] "BIC: 3074.297"
## [1] "------- Iteration 2 -------
## [1] "1/9"
## [1] "2/9"
## [1] "3/9"
## [1] "4/9"
## [1] "5/9"
## [1] "6/9"
## [1] "7/9"
## [1] "8/9"
## [1] "9/9"
## [1] "BIC: 3040.896"
## [1] "------- Iteration 3 -------
## [1] "1/9"
## [1] "2/9"
## [1] "3/9"
## [1] "4/9"
## [1] "5/9"
## [1] "6/9"
```
pred_vc <- predict0_vc(rv_res, x0=x, meig0=meig_g, xgroup0=xgroup)
adat_vc <- aggregate(data.frame(y, pred_vc$pred), by=list(xgroup), mean)
adat_vc[1:5,]

Group.1 y pred xb sf_residual xgroup
1 0 24.00000 23.67839 23.12533 -1.125536 1.678592
2 1 28.15000 27.81181 27.44629 -1.966846 2.332368
3 2 32.76667 32.28629 31.09675 -2.552106 3.741645
4 3 19.42857 19.25653 18.45742 -2.506070 3.305184
5 4 16.71364 16.68358 15.40519 -1.025996 2.304387

2.2.4.4 Longitudinal/panel data analysis

The resf and resf_vc functions are also available for longitudinal or panel data analysis with/without S(N)VC (see Yu et al., 2020). Although this section takes resf as an example, resf_vc function-based panel analysis is implemented in the same way.

To illustrate this, we use a panel data of 48 US states from 1970 to 1986, which is published in the plm package (Croissant and Millo, 2008). Because our approach uses spatial coordinates by default, we added center spatial coordinates (px and py) to the panel data. Here is the code:

```r
require(plm)
require(spData)
data(Produc, package = "plm")
data(us_states)
us_states2 <- data.frame(us_states$GEOID, us_states$NAME, st_coordinates(st_centroid(us_states)))
names(us_states2)[3:4] <- c("px", "py")
```
Here are the first five rows of the data:

```
# state year region pcap hwy water util pc gsp emp
# 1 ALABAMA 1970 6 15032.67 7325.80 1655.68 6051.20 35793.80 28418 1010.5
# 2 ALABAMA 1971 6 15501.94 7525.94 1721.02 6254.98 37299.91 29375 1021.9
# 3 ALABAMA 1972 6 15972.41 7765.42 1764.75 6442.23 38670.30 31303 1072.3
# 4 ALABAMA 1973 6 16406.26 7907.66 1742.41 6756.19 40084.01 33430 1135.5
# 5 ALABAMA 1974 6 16762.67 8025.52 1734.85 7002.29 42057.31 33749 1169.8
```

Following a vignette of the plm package, this section uses logged gross state product as explained variables (y) and logged public capital stock (log_pcap), logged private capital stock (log_pc), logged labor input measured by the employment in non-agricultural payrolls (log_emp), and unemployment rate (unemp) as covariables.

```
y <- log(pdat$gsp)
x <- data.frame(log_pcap=log(pdat$pcap), log_pc=log(pdat$pc),
                log_emp=log(pdat$emp), unemp=pdat$unemp)
```

Because spatial coordinates are defined by states, Moran eigenvectors must be extracted by state by specifying s_id in the meigen function, as follows:

```
coords<- pdat[,c("px", "py")]
s_id <- pdat$state
meig_p<- meigen(coords, s_id=s_id) # Moran eigenvectors by states
```

Currently, the following spatial panel models are available: pooling model (no group effects); individual random effects model (state-level group effects); time random effects model (year-level group effects); and two-way random effects model (state and year-level group effects). All these models consider residual spatial dependence. Here are the codes implementing these models:
pm0 <- `resf(y=y, x=x, meig=meig_p)` # pooling model

xgroup <- `pdat[, c("state")]

pm1 <- `resf(y=y, x=x, meig=meig_p, xgroup=xgroup)` # individual model

xgroup <- `pdat[, c("year")]

pm2 <- `resf(y=y, x=x, meig=meig_p, xgroup=xgroup)` # time model

xgroup <- `pdat[, c("state", "year")]

pm3 <- `resf(y=y, x=x, meig=meig_p, xgroup=xgroup)` # two-way model

Among these models, the two-way model indicates the smallest BIC. The output is summarized as pm3.

```
## Call:
## resf(y = y, x = x, xgroup = xgroup, meig = meig_p)
##
## ----Coefficients-----------------------------
##                      Estimate       SE  t_value    p_value
## (Intercept)          2.266458952 0.157678635 14.3739128 0.0000000000
## log_pcap             0.007185026 0.023530593 0.3053483 0.7601856016
## log_pc               0.292350481 0.022207172 13.1646874 0.0000000000
## log_emp              0.732900408 0.024808722 29.5420464 0.0000000000
## unemp                -0.004356469 0.001066686 -4.0841178 0.0000490012
##
## ----Variance parameter----------------------
##
## Spatial effects (residuals):
##   (Intercept) 0.1555241
## Moran.I/max(Moran.I) 0.3344001
##
## Group effects:
##   state year
## random.SE 0.09492895 0.02433059
##
## ----Estimated probability distribution of y---------
##   Estimates
##   skewness 0
##   excess kurtosis 0
##
## ----Error statistics--------------------------
##   stat
##   resid.SE  3.381428e-02
##   adjR2(cond) 9.988953e-01
##   rlogLik 1.408381e+03
##   AIC -2.796762e+03
##   BIC -2.749718e+03
##
## NULL model: lm( y ~ x )
## (r)loglik: 826.9817 ( AIC: -1641.963, BIC: -1613.737 )
```

The estimated group effects are displayed as follows:
s_g <- pmod3$b_g[[1]]
s_g[1:5,] # State-level group effects

Estimate SE t_value
state_ALABAMA -0.07165160 0.01390024 -5.154702
state_ARIZONA -0.04404058 0.01667988 -2.640342
state_ARKANSAS -0.07256766 0.01471017 -4.933162
state_CALIFORNIA 0.24012817 0.01967478 12.204875
state COLORADO -0.11492607 0.01232067 -9.327905

t_g <- pmod3$b_g[[2]]
t_g[1:5,] # Year-level group effects

Estimate SE t_value
year_1970 -0.006016459 0.01109130 -0.5424484
year_1971 0.002901673 0.01056932 0.2745372
year_1972 0.013281801 0.01041698 1.2750149
year_1973 0.021949386 0.01028021 2.1351098
year_1974 -0.009852614 0.00967949 -1.0178857

For validation, the same panel model (but without spatial dependence) is estimated using the plm function:

pm0 <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
 data = pdat, effect="twoways", model="random")

Model Formula: log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp
##
Coefficients:
(Intercept) log(pcap) log(pc) log(emp) unemp
2.3634993 0.0178529 0.2655895 0.7448989 -0.0045755

s_g_plm<- ranef(pm0,"individual")
t_g_plm<- ranef(pm0,"time")

The coefficient estimates are similar. The plots below compare estimated group effects. Estimated state-level effects have differences because our models consider residual spatial dependence, while plm does not (by default). Time effects are quite similar.

plot(s_g_plm,s_g[,1],xlab="plm",ylab="resf")
abline(0,1,col="red")
2.3 Spatial prediction

This package provides functions for ESF/RE-ESF-based spatial interpolation minimizing the expected prediction error (just like kriging). RE-ESF approximates a Gaussian process or the kriging model, which has actively been used for spatial prediction, and ESF is a special case (Murakami and Griffith, 2015). Because ESF and RE-ESF perform approximations, their spatial predictions might be less accurate relative to kriging. Instead, they are faster and available for very large samples.

The predict0 function is used for prediction based on the resf or besf function, while the predict0_vc function is used for resf_vc or besf_vc function (see Section 4 for besf and besf_vc functions).

In this tutorial, the Lucas housing price data with sample size being 25,357 is used. In the prediction, “price” is used as the explained variable, and “age,” “rooms,” “beds,” and “year” are used as covariates.
require(spData)
data(house)
dat <- data.frame(coordinates(house), house@data[,c("price","age","rooms","beds","syear")])

A total of 20,000 randomly selected samples are used for model estimation, and the other 5,357 samples are used for accuracy evaluation. The code below creates the data for observation sites (coords, y, x) and for unobserved sites (coords0, y0, x0):
samp <- sample(dim(dat)[1], 20000)
coords<- dat[samp ,c("long","lat")]
y <- log(dat[samp,"price"])
x <- dat[samp,c("age","rooms","beds","syear")]

coords0<- dat[-samp ,c("long","lat")]
y0 <- log(dat[-samp,"price"])
x0 <- dat[-samp,c("age","rooms","beds","syear")]

The prediction is done in two steps: (1) evaluation of Moran eigenvectors at prediction sites using the meigen0 function; (2) prediction using the predict0 function. Below is a sample code based on the resf function:

start.time1<- proc.time() ####### just for CP time evaluation
meig <- meigen_f(coords)
meig0 <- meigen0(meig=meig, coords0=coords0)
mod <- resf(y = y, x = x, meig = meig)
pred0 <- predict0(mod = mod, x0 = x0, meig0=meig0)
end.time1<- proc.time() ####### just for CP time evaluation

Note that the first and last lines are just for computing time evaluation. NVCs are considered if adding NVC=TRUE in the resf function. The meigen_f function is used for fast computation.

The outputs shown below include predicted values (pred), predicted trend (xb), and predicted residual spatial component (sf_residuals).

pred0$pred[1:5,]
pred xb sf_residual
4 11.13933 10.77552 0.3638097
5 11.76268 11.34495 0.4177267
7 10.98430 10.57121 0.4130822
11 11.56381 11.18246 0.3813527
17 10.99135 10.53905 0.4522981

pred <- pred0$pred[,1]

On the other hand, here is a code for a spatial prediction based on an S(N)VC model:

start.time2<- proc.time() ####### just for CP time evaluation
meig <- meigen_f(coords)
meig0 <- meigen0(meig=meig, coords0=coords0)
mod2 <- resf_vc(y = y, x = x, meig = meig)

[1] "------- Iteration 1 -------"
[1] "1/5"
[1] "2/5"
[1] "3/5"
[1] "4/5"
[1] "5/5"
[1] "BIC: 13434.383"

28
NVCs are considered by adding NVC=TRUE in the resf_vc function. Here are the output variables:

```r
pred02 <- predict0_vc( mod = mod2, x0 = x0, meig0=meig0 )
```

```r
end.time2<- proc.time()###### just for CP time evaluation
```

```r
## pred xb sf_residual
## 4  11.37177  11.35821  0.013559949
## 5  11.67948  11.69211 -0.012626023
## 7  11.02490  11.03355 -0.008640786
## 11 11.54755  11.52937  0.018178307
```
The root mean squared prediction error (RMSPE) and the computational time of the spatial regression model (resf) are as follows:

\[
\text{sqrt}\left(\frac{\text{sum}(\text{pred} - y_0)^2}{\text{length}(y_0)}\right) \quad \# \text{rmse}
\]

[1] 0.3417898

(end.time1 - start.time1)[3] \# computational time (second)

elapsed
9.686

while those of the SVC model (resf_vc) are as follows:

\[
\text{sqrt}\left(\frac{\text{sum}(\text{pred2} - y_0)^2}{\text{length}(y_0)}\right) \quad \# \text{rmse}
\]

[1] 0.3284294

(end.time2 - start.time2)[3] \# computational time (second)

elapsed
87.103

The results suggest that both models are available for large samples. It is also demonstrated that while the spatial regression model is faster than the SVC model, the SVC model is slightly more accurate. The actual values \(y_0\) and predicted values \(\text{pred}/\text{pred2}\) are compared below:

\[
\text{par(mfrow=c(1,2))}
\]

\[
\text{plot}(y_0,\text{pred}); \text{abline}(0,1,\text{col="red"})
\]

\[
\text{plot}(y_0,\text{pred2}); \text{abline}(0,1,\text{col="red"})
\]

3 Non-Gaussian spatial regression models

This package is now available for modeling a wide variety of non-Gaussian data including count data. Unlike the conventional generalized linear model (GLM), the implemented model estimates the most likely data
distribution (i.e., probability density/mass function) without explicitly specifying the data distribution (see Murakami et al., 2021). See Murakami (2021) or vignette_spmoran(nongaussian).pdf, which is another vignette in the same GitHub page https://github.com/dmuraka/spmoran for details on how to implement it.

4 Spatially filtered unconditional quantile regression

While the usual (conditional) quantile regression (CQR) estimates the influence of x_k on the τ-th conditional quantile of y, $q_\tau(y|x_k)$, the unconditional quantile regression estimates the influence of x_k on the “unconditional” quantile of y, $q(y)$ (Firpo et al., 2009).

Suppose that y and x_k represent land price and accessibility, respectively. UQR estimates the influence of accessibility on land price by quantile; it is interpretable and useful for hedonic land price analysis, for example. By contrast, this interpretation does not hold for CQR because it estimates the influence of accessibility on conditional land prices (land price conditional on explanatory variables). Higher conditional land price does not mean higher land price; rather, it means overprice relative to the price expected by the explanatory variables. Therefore, CQR has difficulty in its interpretation, in some cases, including hedonic land price modeling.

The spatial filter UQR (SF-UQR) model (Murakami and Seya, 2019), which is implemented in this package, is formulated as

$$q_\tau(y_i) = \sum_{k=1}^{K} x_{i,k} \beta_{k,\tau} + f_{MC,\tau}(s_i) + \epsilon_{i,\tau}, \quad \epsilon_{i,\tau} \sim N(0, \sigma^2_\tau),$$

This model is a UQR considering spatial dependence.

The resf_qr function implements this model. Below is a sample code. If boot=TRUE in resf_qr, a semiparametric bootstrapping is performed to estimate the standard errors of the regression coefficients. By default, this function estimates models at 0.1, 0.2, \ldots, 0.9 quantiles.

```r
y <- boston.c[, "CMEDV"]
x <- boston.c[, c("CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM", "AGE")]
coords<- boston.c[, c("LON", "LAT")]
meig <- meigen(coords=coords)
res <- resf_qr(y=y, x=x, meig=meig, boot=TRUE)
```

Here is a summary of the estimation result:

```r
## Call:
## resf_qr(y = y, x = x, meig = meig, boot = TRUE)
##
## ----Coefficients-------------------------------
##  tau=0.1  tau=0.2  tau=0.3  tau=0.4  tau=0.5
## (Intercept) 23.86841970 29.16185736 26.550125353 21.16263694 17.151053980
## CRIM -0.36845124 -0.21172051 -0.106949379 -0.08357496 -0.070290258
```

31
The estimated coefficients can be visualized using the `plot_qr` function, as below. The numbers 1 to 5 specify which coefficients are plotted (1: intercept). In each panel, solid lines are estimated coefficients, and gray areas are their 95% confidence intervals.

```r
plot_qr(res, 1)
```
plot_qr(res, 2)

plot_qr(res, 3)
plot_qr(res, 4)

plot_qr(res, 5)
Standard errors and the scaled Moran coefficient (Moran.I/max(Moran.I)), which is a measure of spatial scale by quantile, are plotted if par = “s” is added. Here are the plots:

```r
plot_qr(res, par = "s", 1)
```

![CHAS](image1.png)

![spcomp_SE](image2.png)
5 Low rank spatial econometric models

While ESF/RE-ESF and their extensions approximate Gaussian processes, this section explains low rank spatial econometric models approximating spatial econometric models (see Murakami et al., 2018).

5.1 Spatial weight matrix and their eigenvectors

The low rank models use eigenvectors and eigenvalues of a spatial connectivity matrix, which is called a spatial weight matrix or W matrix in spatial econometrics. The weigen function is available for the eigen-decomposition. Here is a code extracting the eigenvectors and eigenvalues from spatial polygons:

```r
data(boston)
poly <- readOGR(system.file( "shapes/boston_tracts.shp", package = "spData" )[1])
```

```
## OGR data source with driver: ESRI Shapefile
## Source: "/Library/Frameworks/R.framework/Versions/4.0/Resources/library/spData/shapes/boston_tracts.shp"
## with 506 features
## It has 36 fields
```

```r
weig <- weigen(poly) # Rook adjacency-based W
```

By default, the weigen function returns a Rook adjacency-based W matrix. Other than that, knn-based W, Delaunay triangulation-based W, and user-specified W are also available.
5.2 Models

5.2.1 Low rank spatial lag model

The low rank spatial lag model (LSLM) approximates the following model:

\[y_i = \beta_0 + z_i + \epsilon_i \quad \epsilon_i \sim N(0, \sigma^2) \]
\[z_i = \rho \sum_{i \neq j} w_{i,j} z_j + \sum_{k \neq 1} x_{i,k} \beta_k + u_i \quad u_i \sim N(0, \tau^2) \]

where \(z_i \) is defined by the classical spatial lag model (SLM; see LeSage and Pace, 2009) with parameters \(\rho \) and \(\tau^2 \). Just like the original SLM, \(\rho \) takes a value between 1 and \(1/\lambda_N < 0 \). Larger positive \(\rho \) means stronger positive dependence. \(\tau^2 \) represents the variance of the SLM-based spatial process (i.e., \(z_i \)), while \(\sigma^2 \) represents the variance of the data noise \(\epsilon_i \). Because of the additional noise term, the LSLM estimates are different from the original SLM, in particular if data is noisy.

The LSLM is implemented using the lslm function. Here is a sample code:

```r
y <- boston.c[, "CMEDV"]
x <- boston.c[, c("CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM", "AGE")]
coords <- boston.c[, c("LON", "LAT")]
res <- lslm(y = y, x = x, weig = weig, boot = TRUE)
```

If boot=TRUE, a nonparametric bootstrapping is performed to estimate the 95% confidence intervals for the \(\tau^2 \) and \(\rho \) parameters and the direct and indirect effects, which quantify spill-over effects. Default is FALSE. Here is the output in which \(\{s_rho, sp_SE\} \) are parameters \(\{\rho, \tau^2\} \):

```
## Call:
## lslm(y = y, x = x, weig = weig, boot = TRUE)
##
## ----Coefficients-----------------------------
##                        Estimate    SE  t_value  p_value
## (Intercept)            -14.71904 2.822153 -5.215587 2.748705e-07
## CRIM                   -0.10761 0.028513 -3.774260 1.809488e-04
## ZN                     0.00259 0.012767  0.203224 8.390474e-01
## INDUS                  -0.09860 0.061915 -1.592568 1.119273e-01
## CHAS                   1.90318 0.891289  2.135309 3.325050e-02
## NOX                    -5.10132 3.846734 -1.326141 1.854349e-01
## RM                     6.92274 0.333880  20.734223 0.000000e+00
## AGE                    -0.04069 0.012625 -3.223125 1.355874e-03
##
## ----Spatial effects (lag)---------------------
## Estimates  CI_lower  CI_upper
## sp_rho     0.02709 -0.01506 0.06551
## sp_SE      7.54450 6.53804 8.45893
```
Effects estimates

Direct:

<table>
<thead>
<tr>
<th></th>
<th>Estimates</th>
<th>CI_lower</th>
<th>CI_upper</th>
<th>p_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRIM</td>
<td>-0.107999852</td>
<td>-0.16109300</td>
<td>-0.03894377</td>
<td>0.00</td>
</tr>
<tr>
<td>ZN</td>
<td>0.002603915</td>
<td>-0.02379086</td>
<td>0.02395807</td>
<td>0.86</td>
</tr>
<tr>
<td>INDUS</td>
<td>-0.098956945</td>
<td>-0.22340762</td>
<td>0.01806250</td>
<td>0.12</td>
</tr>
<tr>
<td>CHAS</td>
<td>1.909981199</td>
<td>-0.07594212</td>
<td>3.77480062</td>
<td>0.06</td>
</tr>
<tr>
<td>NOX</td>
<td>-5.119549463</td>
<td>-13.77106206</td>
<td>2.16599546</td>
<td>0.16</td>
</tr>
<tr>
<td>RM</td>
<td>6.947486715</td>
<td>6.24965933</td>
<td>7.59531166</td>
<td>0.00</td>
</tr>
<tr>
<td>AGE</td>
<td>-0.040836844</td>
<td>-0.06754693</td>
<td>-0.01819998</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Indirect:

<table>
<thead>
<tr>
<th></th>
<th>Estimates</th>
<th>CI_lower</th>
<th>CI_upper</th>
<th>p_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRIM</td>
<td>-2.227815e-03</td>
<td>-0.0059384109</td>
<td>0.0008846955</td>
<td>0.18</td>
</tr>
<tr>
<td>ZN</td>
<td>5.371341e-05</td>
<td>-0.0006535456</td>
<td>0.0008069910</td>
<td>0.86</td>
</tr>
<tr>
<td>INDUS</td>
<td>-2.041278e-03</td>
<td>-0.0079768670</td>
<td>0.0018664258</td>
<td>0.30</td>
</tr>
<tr>
<td>CHAS</td>
<td>3.939898e-02</td>
<td>-0.0264500676</td>
<td>0.1388147474</td>
<td>0.22</td>
</tr>
<tr>
<td>NOX</td>
<td>-1.056058e-01</td>
<td>-0.4628122401</td>
<td>0.0920116372</td>
<td>0.30</td>
</tr>
<tr>
<td>RM</td>
<td>1.433123e-01</td>
<td>-0.0776551604</td>
<td>0.3605923023</td>
<td>0.18</td>
</tr>
<tr>
<td>AGE</td>
<td>-8.423800e-04</td>
<td>-0.0025295003</td>
<td>0.0004555659</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Error statistics

<table>
<thead>
<tr>
<th>stat</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>resid_SE</td>
<td>3.9555161</td>
</tr>
<tr>
<td>adjR2(cond)</td>
<td>0.8129243</td>
</tr>
<tr>
<td>rlogLik</td>
<td>-1561.3219098</td>
</tr>
<tr>
<td>AIC</td>
<td>3144.6438195</td>
</tr>
<tr>
<td>BIC</td>
<td>3191.1357229</td>
</tr>
</tbody>
</table>

Note: The AIC and BIC values are based on the restricted likelihood.

Use method ="ml" for comparison of models with different fixed effects (x)

5.2.2 Low rank spatial error model

The low rank spatial error model (LSEM) approximates the following model:

\[
y_i = \beta_0 + z_i + \epsilon_i \quad \epsilon_i \sim N(0, \sigma^2) \quad z_i = \sum_{k\neq 1}^K x_i,k\beta_k + \epsilon_i \quad \epsilon_i = \lambda \sum_{i\neq j}^N w_{i,j} \epsilon_j + u_i \quad u_i \sim N(0, \tau^2)
\]

where \(z_i \) is defined by the classical spatial error model (SLM) with parameters \(\lambda \) and \(\tau^2 \). Just like the original SEM, \(\lambda \) takes a larger positive value in the presence of stronger positive dependence. \(\tau^2 \) represents the variance of the SEM-based spatial process (i.e., \(z_i \)). As with LSLM, the LSEM estimates can be different from the original SEM if data is noisy.

The lsem function estimates LSEM, as follows:

```r
data(boston)
res <- lsem( y = y, x = x, weig = weig )
res
```

```
## Call:
## lsem(y = y, x = x, weig = weig)
```
Coefficients

<table>
<thead>
<tr>
<th>Estimate</th>
<th>SE</th>
<th>t_value</th>
<th>p_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-15.535928399</td>
<td>2.82054020</td>
<td>-5.5081393</td>
</tr>
<tr>
<td>CRIM</td>
<td>-0.093112127</td>
<td>0.02911351</td>
<td>-3.1982447</td>
</tr>
<tr>
<td>ZN</td>
<td>0.002300116</td>
<td>0.01292558</td>
<td>0.1779507</td>
</tr>
<tr>
<td>INDUS</td>
<td>-0.063433279</td>
<td>0.06176206</td>
<td>-1.0270591</td>
</tr>
<tr>
<td>CHAS</td>
<td>1.335521734</td>
<td>0.88216035</td>
<td>1.5139217</td>
</tr>
<tr>
<td>NOX</td>
<td>-5.717186159</td>
<td>3.86329642</td>
<td>-1.4798725</td>
</tr>
<tr>
<td>RM</td>
<td>7.052094665</td>
<td>0.33425292</td>
<td>21.0980796</td>
</tr>
<tr>
<td>AGE</td>
<td>-0.037131943</td>
<td>0.01253448</td>
<td>-2.9623833</td>
</tr>
</tbody>
</table>

Spatial effects (residuals)

<table>
<thead>
<tr>
<th>Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp_lambda</td>
</tr>
<tr>
<td>sp_SE</td>
</tr>
</tbody>
</table>

Error statistics

<table>
<thead>
<tr>
<th>stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>resid_SE</td>
</tr>
<tr>
<td>adjR2(cond)</td>
</tr>
<tr>
<td>rlogLik</td>
</tr>
<tr>
<td>AIC</td>
</tr>
<tr>
<td>BIC</td>
</tr>
</tbody>
</table>

Note: The AIC and BIC values are based on the restricted likelihood. Use method="ml" for comparison of models with different fixed effects \(x\) \(\{s_lambda, sp_SE\}\) are parameters \(\lambda, \tau^2\).

6 Tips for modeling large samples

6.1 Eigen-decomposition

The meigen function implements an eigen-decomposition that is slow for large samples. For fast eigenapproximation, the meigen_f function is available. By default, this function approximates 200 eigenvectors; 200 is based on simulation results in Murakami and Griffith (2019a). The computation is further accelerated by reducing the number of eigenvectors. It is achieved by specifying enum by a number smaller than 200. While the meigen function took 243.8 seconds for 5,000 samples, the meigen_f took less than 1 second, as demonstrated below:

```r
coords_test <- cbind(rnorm(5000), rnorm(5000))

system.time(meig_test200 <- meigen_f(coords = coords_test))[3]
```

elapsed

```r
# elapsed
# 0.23

system.time(meig_test100 <- meigen_f(coords = coords_test, enum=100))[3]
```

elapsed

```r
# elapsed
# 0.089

system.time(meig_test50 <- meigen_f(coords = coords_test, enum=50))[3]
```

elapsed

```r
# elapsed
# 0.039
```
On the other hand, the weigen function implements the ARPACK routine for fast eigen-decomposition by default. The computational times with 5,000 samples and enum = 200 (default), 100, and 50 are as follows:

```r
system.time( weig_test200 <- weigen( coords_test ))
## elapsed
## 5.564

system.time( weig_test100 <- weigen( coords_test, enum=100 ))
## elapsed
## 1.962

system.time( weig_test50 <- weigen( coords_test, enum=50 ))
## elapsed
## 1.006
```

6.2 Parameter estimation

The basic ESF model is estimated computationally efficiently by specifying fn = “all” in the esf function. This setting is acceptable for large samples (Murakami and Griffith, 2019a). The resf and resf_vc functions estimate all the models explained above using a fast estimation algorithm developed in Murakami and Griffith (2019b). They are available for large samples (e.g., 100,000 samples). Although the SF-UQR model requires a bootstrapping to estimate confidential intervals for the coefficients, the computational cost for the iteration does not depend on sample size. Therefore, it is available for large samples too.

6.3 For very large samples (e.g., millions of samples)

A computational limitation is the memory consumption of the meigen and meigen_f functions to store Moran eigenvectors. Because of the limitation, the resf and resf_vc functions are not available for very large samples (e.g., millions of samples). To overcome this limitation, the besf and besf_vc functions perform the same calculation as resf and resf_vc but without saving the eigenvectors in the memory. Besides, for fast computation, these functions perform a parallel model estimation (see Murakami and Griffith, 2019c).

Here is an example implementing a spatial regression model using the besf function and an SVC model using the besf_vc function:

```r
data(house)
dat <- data.frame(coordinates(house),
    house@data[,c("price","age","rooms","beds","syear")])
coords<- dat[,c("long","lat")]
y <- log(dat[,"price"])
x <- dat[,c("age","rooms","beds","syear")]
res1 <- besf(y=y, x=x, coords=coords)
res1
```

```r
## Call:
## besf(y = y, x = x, coords = coords)
##
## ----Coefficients-----------------------------------------------
## Estimate    SE  t_value     p_value
## (Intercept) -59.12935709 2.592858061 -22.80470 4.118061e-115
## age          -0.74853906 0.013345062  -56.09109 0.0000000e+00
## rooms        0.10929171 0.002964869  36.86224 1.862098e-297
## beds         0.05111374 0.005025957  10.16995 2.700425e-24
```
Variance parameter

Spatial effects (residuals):

- **Random effects:**
 - Intercept
 - random_SE: 0.05150463
 - Moran.I/max(Moran.I): 0.37937646

Error statistics

- **Residual standard error:** resid_SE: 0.3380269
- **Adjusted R-squared:** adjR2(cond): 0.8036598
- **Log-likelihood:** rlogLik: -9014.1842479
- **AIC:** AIC: 18044.3684958
- **BIC:** BIC: 18109.4949766

Note: The AIC and BIC values are based on the restricted likelihood. Use method = "ml" for comparison of models with different fixed effects (x).

```r
res2 <- besf_vc(y = y, x = x, coords = coords)
```

```r
# [1] "------- Iteration 1 -------"
# [1] "1/5"
# [1] "2/5"
# [1] "3/5"
# [1] "4/5"
# [1] "5/5"
# [1] "BIC: 16857.433"
# [1] "------- Iteration 2 -------"
# [1] "1/5"
# [1] "2/5"
# [1] "3/5"
# [1] "4/5"
# [1] "5/5"
# [1] "BIC: 16385.756"
# [1] "------- Iteration 3 -------"
# [1] "1/5"
# [1] "2/5"
# [1] "3/5"
# [1] "4/5"
# [1] "5/5"
# [1] "BIC: 16383.058"
# [1] "------- Iteration 4 -------"
# [1] "1/5"
# [1] "2/5"
# [1] "3/5"
# [1] "4/5"
# [1] "5/5"
# [1] "BIC: 16383.011"
# [1] "------- Iteration 5 -------"
# [1] "1/5"
# [1] "2/5"
# [1] "3/5"
# [1] "4/5"
```

41


```
res2

# Call:
# besf_vc(y = y, x = x, coords = coords)
#
# ----Spatially varying coefficients on x (summary)----
#
# Coefficient estimates:
# (Intercept) age rooms beds
# Min. : -61.54 Min. : -2.4952 Min. : 0.002297 Min. : -0.06546
# 1st Qu.: -60.80 1st Qu.: -0.9748 1st Qu.: 0.081956 1st Qu.: 0.02733
# Median: -60.62 Median: -0.6949 Median: 0.096380 Median: 0.04257
# Mean : -60.62 Mean : -0.7353 Mean : 0.101118 Mean : 0.04560
# 3rd Qu.: -60.40 3rd Qu.: -0.4273 3rd Qu.: 0.112445 3rd Qu.: 0.06112
# Max. : -59.88 Max. : 0.7182 Max. : 0.226071 Max. : 0.15729
#
#
# syear
# Min. : 0.03573
# 1st Qu.: 0.03573
# Median : 0.03573
# Mean : 0.03573
# 3rd Qu.: 0.03573
# Max. : 0.03573
#
# Statistical significance:
# (Intercept) age rooms beds syear
# Not significant 0 3336 102 15351 0
# Significant (10% level) 0 837 44 2782 0
# Significant (5% level) 0 1755 198 3817 0
# Significant (1% level) 25357 19429 25013 3407 25357
#
# ----Variance parameters----------------------------------
#
# Spatial effects (coefficients on x):
# (Intercept) age rooms beds syear
# random_SE 0.04158897 0.06313101 0.004654487 0.005667772 0
# Moran.I/max(Moran.I) 0.18096963 0.13861246 0.11011713 0.059731358 NA
#
# ----Error statistics-------------------------------------
# resid_SE 0.3211358
# adjR2(cond) 0.8227497
# rlogLik -8120.5195421
# AIC 16269.0390842
# BIC 16383.0104257
```

42
Note: The AIC and BIC values are based on the restricted likelihood.

Roughly speaking, these functions are faster than the resf and resf_vc functions if the sample size is more than 100,000.

I have evaluated the computational time for an SVC modeling using the besf_vc function using a Mac Pro (3.5 GHz, 12-Core Intel Xeon E5 processor with 64 GB memory). The besf_vc function took only 8.0 minutes to estimate the 7 SVCs from 1 million samples. I also confirmed that besf_vc took 70.3 minutes to estimate the same model from 10 million samples. besf and besf_vc are suitable for very large data analysis.

7 Reference