spmoran: An R package for Moran’s eigenvector-based spatial regression analysis

Daisuke Murakami
Department of Data Science, Institute of Statistical Mathematics
10-3 Midori-cho, Tachikawa, Tokyo, Japan
E-mail: dmuraka@ism.ac.jp

Table of Contents

0. Latest updates .. 2
1. Introduction .. 4
2. Moran eigenvector-based spatial regression models ... 6
 2.1. Extraction of Moran’s eigenvectors ... 6
 2.2. ESF model .. 7
 2.3. RE-ESF model .. 10
 2.4. Extended models ... 12
 2.4.1. Spatially varying coefficient model ... 12
 2.4.2. Spatially filtered unconditional quantile regression ... 16
 2.5. Spatial interpolation .. 20
3. Low rank spatial econometric models ... 23
 3.1. Spatial weight matrix and their eigenvectors .. 23
 3.2. Low rank spatial lag model .. 24
 3.3. Low rank spatial error model .. 27
4. Tips for fast computation .. 28
 4.1. Eigen-decomposition ... 28
 4.2. Parameter estimation ... 30
5. Updates in near future .. 30
References ... 31
0. Latest update (2019/7)

The following functions are newly implemented in the spmoran version July 2019.

Memory-free spatial regression models for very large samples are implemented in the `besf` and `besf_vc` functions.

The `resf` and `resf_vc` functions are not available for very large samples (e.g., millions of samples) because of their memory limit. To overcome this limitation, the `besf` and `besf_vc` functions apply a block-wise parallel computation.

The figure below evaluates the computational time for a spatially varying coefficients (SVC) modeling using the `besf_vc` function. A Mac Pro (3.5 GHz, 12-Core Intel Xeon E5 processor with 64 GB memory). R version 3.6.1 (https://cran.r-project.org/) is used here. The `besf_vc` function took only 8.0 minutes to estimate the 7 multiscale SVCs from 1 million of samples. I also confirmed that `besf_vc` took 70.3 minutes to estimate the same model from 10 million samples (not shown in the figure). `besf` and `besf_vc` are suitable for big data analysis.

![Figure 0. Comparison of CP time. I compared besf_vc, resf_vc, and the bam function in the mgcv package, which was the fastest as far as I know, among R functions available to estimate SVCs. This result shows that the besf_vc function is the fastest (see Murakami and Griffith, 2019).](image)

Figure 0. Comparison of CP time. I compared `besf_vc`, `resf_vc`, and the `bam` function in the mgcv package, which was the fastest as far as I know, among R functions available to estimate SVCs. This result shows that the `besf_vc` function is the fastest (see Murakami and Griffith, 2019).

Group effects are implemented in the `resf` and `resf_vc` functions

Single or multiple group effects are implemented in the `resf` and `resf_vc` functions (see Murakami and Griffith, 2019).

An argument `allsvc` is added in the `resf_vc` function for spatially varying coefficients (SVC) modeling without the penalty-based SVC selection (just like the usual geographically weighted regression modeling).

Although SVCs were automatically selected in the `resf_vc` function in the previous version to stabilize the estimates, such a selection is a bit uncommon in SVC studies. So, I have added an argument “allsvc” to assume SVCs for all the explanatory variables (without the SVC selection).
For all the functions, the Moran’s I values are calculated for the estimated spatial process including the SVCs.

In the previous version, `shrink_sf_SE`, which is the standard error of the estimated spatial dependent component and `shrink_sf_alpha`, which is a scale parameter for the component, are returned from each function. But, the latter is difficult to interpret. So, it was replaced with the Moran I value that is scaled to take a value between 0 (no spatial dependence) and 1 (the maximum possible spatial dependence). Based on Griffith (2003), the scaled Moran’I value is interpretable as follows:

- 0.25-0.50: Weak spatial dependence
- 0.50-0.70: Moderate spatial dependence
- 0.70-0.90: Strong spatial dependence
- 0.90-1.00: Marked spatial dependence

For example, in case of the `resf_vc` function, the Moran I value for each SVC is displayed as follows:

```r
> res <- resf_vc(y = y, x = x, xconst = xconst, meig = meig, allsvc = TRUE )
> res$s
   (Intercept)          ZN     INDUS      LSTAT spcomp_SE         6.0218261   0.05387476   0.281293 6   0.1902040
spcomp_Moran.I/max(Moran.I)   0.8810047   0.7658713 3   0.1619971   0.8012705
```

`spcomp_SE` (Standard error of the spatial component) is the same with `shrink_sf_SE`. `spcomp_Moran.I/max(Moran.I)` is the scaled Moran I value. The Moran I value is calculated in the same way `esf, resf, resf_qr, besf`, and `besf_vc` functions. Note that because an analytic solution for (RE-)ESF is used for the evaluation, it is computationally really efficient.

Note: the manual below is about old version (although most parts hold for the new version too).
1. Introduction

Eigenvector spatial filtering (ESF; e.g., Griffith, 2003), which is also known as Moran’s eigenvector mapping (MEM; e.g., Dray et al., 2006), is a regression approach to estimate and infer regression coefficients in the presence of spatial dependence.

Recently, ESF is extended to a random effects ESF (RE-ESF; Murakami and Griffith, 2015), which approximates a Gaussian process. RE-ESF estimates regression coefficients and their standard errors computationally efficiently. This approach is extended to spatially varying coefficient modeling (Murakami et al., 2017; 2018) and a spatial unconditional quantile regression modeling (Murakami and Seya, 2017). The package “spmoran” provides R functions to implement these approaches computationally efficiently.

This package also provides functions to estimate low rank spatial econometric models (Murakami et al., 2018), which is a variant of the RE-ESF model. The modeling approach is faster and more stable for noisy data than classical spatial econometric models.

This tutorial describes how to implement above-mentioned approaches through a land price analysis focusing on flood hazard. The target area is Ibaraki prefecture, Japan. Explained variables are logged land prices in 2015 (JPY/m²; sample size: 647; Figure 1). Explanatory variables are as listed in Table 1. All these variables are downloaded from the National Land Numerical Information download service (http://nlftp.mlit.go.jp/ksj-e/index.html).

The following is a data image, in which “px” and “py” are spatial coordinates:

> data <- read.csv("data.csv")
> data[1:6,]

<table>
<thead>
<tr>
<th>px</th>
<th>py</th>
<th>ln_price</th>
<th>station</th>
<th>tokyo</th>
<th>city</th>
<th>flood</th>
</tr>
</thead>
<tbody>
<tr>
<td>19235.25</td>
<td>-4784.562</td>
<td>10.126631</td>
<td>4.0109290</td>
<td>43.38504</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>16450.37</td>
<td>-8782.851</td>
<td>10.835652</td>
<td>0.8977986</td>
<td>43.38504</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>17673.30</td>
<td>-8351.802</td>
<td>10.633449</td>
<td>0.5596742</td>
<td>43.38504</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>17824.50</td>
<td>-7704.343</td>
<td>9.878170</td>
<td>0.8504618</td>
<td>43.38504</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>67334.31</td>
<td>58001.724</td>
<td>10.122623</td>
<td>3.1660661</td>
<td>140.95839</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>68929.42</td>
<td>55028.751</td>
<td>9.952278</td>
<td>2.5008292</td>
<td>140.95839</td>
<td>1</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Figure 1. Anticipated inundation depth (left) and officially assessed land prices in 2015 (right) in the Ibaraki prefecture

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tokyo</td>
<td>Logarithm of the distance from the nearest railway station to Tokyo Station [km]</td>
</tr>
<tr>
<td>station</td>
<td>Logarithm of the distance to the nearest railway station [km]</td>
</tr>
<tr>
<td>flood</td>
<td>Anticipated inundation depth [m]</td>
</tr>
<tr>
<td>city</td>
<td>1 if the site is in an urban promotion land and 0 otherwise</td>
</tr>
</tbody>
</table>

Section 2 explains how to estimate ESF/RE-ESF models and their extensions, and Section 3 explains how to estimate low rank spatial econometric models, respectively.
2. Moran’s eigenvector-based spatial regression analysis

2.1. Extraction of Moran’s eigenvectors

Consider a doubly-centered spatial connectivity matrix, MCM, where C is a symmetric spatial proximity matrix whose diagonals are zeros, $M = I - 11' / N$ is a centering operator, where I is an identity matrix, and 1 is a vector of ones, and N is the sample size. The eigenvectors, $E = \{e_1, ..., e_N\}$, of MCM furnish all possible distinct map pattern descriptions of latent spatial dependence, with each level being indexed by the Moran coefficient (MC; Griffith, 2003; Tiefelsdorf and Griffith, 2007). Eigenvectors corresponding to large positive eigenvalue describe map patterns with greater positive spatial dependence (i.e. greater positive MC), whereas eigenvectors corresponding to negative eigenvalue describe map patterns with negative spatial dependence. As positive spatial dependence is dominant in most real-world cases, only eigenvectors corresponding to positive eigenvalues are considered in many of applied studies.

The function `meigen` extracts eigenvectors corresponding to positive eigenvalue (i.e. $\lambda_l > 0$, where λ_l is the l-th eigenvalue). The command is as follows:

```r
c > coords <- data[,c( "px", "py" ) ]
c > meig <- meigen( coords = coords )
```

Calculated eigenvectors and eigenvalues are displayed by commanding `meig$sf` and `meig$ev`, respectively. By default, C is given by the matrix whose (i, j)-th element equals $\exp(-d_{i,j}/r)$, where $d_{i,j}$ is the Euclidean distance between sites i and j, and r is the longest distance in the minimum spanning tree covering the sample sites (Dray et al., 2006; Murakami and Griffith, 2015). The other available options for the distance-decay kernel are the Gaussian kernel (model = "gau") and the spherical kernel (model = "sph").

The distance-based C may be replaced with other types of spatial connectivity matrix. In this case, user must construct the matrix $a priori$. For example, the following command employs the 4-nearest-neighbor-based C:

```r
c > library( spdep )
c > col.knn <- knearneigh( coordinates( coords ), k = 4 )
c > cmat <- nb2mat( knn2nb( col.knn ), style = "B" )
c > meigB <- meigen( cmat = cmat )
```

1 For the distance-based C, it is standard to set the threshold by $\lambda_l > 0$, which attempts to consider all elements describing positive spatial dependence.
If the spatial connectivity matrix is not symmetric like the 4-nearest neighbor-based C, `meigen` symmetrizes it by taking $(C + t(C))/2$. In cases with binary connectivity-based C (e.g. proximity-based C; k-nearest-neighbor-based C), $\lambda_i / \lambda_1 > 0.25$ is a standard threshold when C is a binary matrix\(^2\). The thresholding is implemented by the following command:

```
> meigB <- meigen( cmat = cmat, threshold = 0.25 )
```

The eigen-decomposition can be very slow for large samples. For fast computation, the function `meigen_f` approximates the eigenvectors by a Nystrom extension-based approach of Murakami and Griffith (2018a)\(^3\). The command is as follows:

```
> meig_f <- meigen_f( coords = coords )
```

Just like `meigen`, `meig_f$sf` and `meig_f$ev` return approximated eigenvectors and eigenvalues, respectively. By default, the first 200 eigenvectors are approximated\(^4\). While `meigen` takes 243.79 seconds for the eigen-decomposition, `meigen_f` takes only 0.38 seconds (see Section 4 for further details).

Sections 2.2 and 2.3 explain how to use the extracted eigenvectors in ESF and RE-ESF, respectively.

2.2. ESF model

The linear ESF model is formulated as follows:

$$y = X\beta + E\gamma + \epsilon, \quad \epsilon \sim N(0, \sigma^2 I),$$

where E is a matrix whose l-th column is the l-th eigenvector, e_l, and γ is a vector of coefficients. The term $E\gamma$ eliminates residual spatial dependence to estimate and infer regression coefficients appropriately while avoiding the Type I error. This model is identical to the standard linear regression model.

\(^2\) The threshold $\lambda_i / \lambda_1 > 0.25$ attempts to capture roughly 95% of the variations attributable to positive spatial dependence (Griffith and Chun, 2014).

\(^3\) This approximation is available only for the distance-based C.

\(^4\) Consideration of 200 eigenvectors is recommended following Murakami and Griffith (2017), which showed that the approximation error in the ESF/RE-ESF analysis is quite small when 200 (or more) eigenvectors are considered.
The ESF model is estimated using the following steps: (i) eigenvectors whose eigenvalue exceeds a threshold are extracted from MCM; (ii) stepwise eigenvector selection is performed; (iii) the ESF model with the selected eigenvectors is estimated by ordinary least squares.

The following command estimates the linear ESF model:

```r
> y <- data[, "ln_price"]  # Explained variables
> x <- data[, c("station", "tokyo", "city", "flood") ]  # Explanatory variables
> meig <- meigB  # Moran's eigenvectors (knn-based C)
> e_res <- esf( y = y, x = x, meig = meig, vif = 10, fn = "r2" )
```

Here, to cope with possible multicollinearity, eigenvectors are selected so that the variance inflation factor (VIF), which is an indicator of multicollinearity, does not exceed 10. It is implemented by setting `vif = 10` whereas VIF is not considered by default. The eigenvector selection is performed by the adjusted R^2 maximization (`fn = "r2"`; default), Akaike information criterion (AIC) minimization (`fn = "aic"`), or Bayesian Information criterion (BIC) minimization (`fn = "bic"`). Alternatively, all eigenvectors can be included by setting `fn = "all"`.

When `fn = "r2"`, the coefficient estimates yield:

```
> e_res$b
   Estimate      SE     t_value   p_value
(Intercept)  9.932080e+00  0.0587240255  169.13146372  0.000000e+00
 station     -6.911515e-02  0.0065601988  -10.53552610  5.070594e-24
 tokyo      -2.846888e-05  0.0004214075  -0.06755664  9.461599e-01
     city     6.738630e-01  0.0360500253   18.69244166  2.121536e-62
   flood      2.795299e-02  0.0142681894   1.95911280  5.053884e-02
```

Station (-) and city (+) are statistically significant at the 0.1% level. It is verified that urban areas nearby railway stations are popular residential areas. Flood is positively significant at the 10% level. This result suggests that influence from flood disaster, which is expected to be negative, is not appropriately reflected to land price.
VIF values are displayed by the following command:

```
> e_res$vif
     VIF
station 1.367917
tokyo 1.225594
city 1.282930
flood 1.208189
sf4 1.167728
sf9 1.017697
sf12 1.142611
sf31 1.084662
sf33 1.032077
sf45 1.035118
sf32 1.095973
sf26 1.012234
sf6 1.059948
sf20 1.016059
```

The following command displays error statistics, including residual standard error (residual_SE), adjusted R^2 (adjR2), log-likelihood (logLik), AIC, and BIC:

```
> e_res$e
    stat
resid_SE 0.3542671
adjR2 0.6987400
logLik -239.0702859
AIC 510.1405718
BIC 581.6981125
```

While we assumed ESF with a topology-based C for following many of studies in regional science, ESF with distance-based C is popular in ecology; it is implemented as follows:

```
> meig <- meigen( coords=coords ) #Moran’s eigenvectors (distance-based C)
> e_res <- esf( y=y, x=x, meig=meig, fn = "r2" )
```
The distance-based ESF is often referred to as MEM or a principal coordinate neighborhood matrix (PCNM) (see Legendre and Legendre, 2012).

A major disadvantage of ESF is the computational cost. To cope with this problem, Murakami and Griffith (2018a) develops a fast approximation. It is implemented by the following command:

```r
> meig_f <- meigen_f( coords = coords )
> e_res <- esf( y = y, x = x, meig = meig_f, fn = "all" )
```

Here, all the eigenvectors in `meig_f` are included without selecting them by setting `fn = "all"`. It is acceptable for medium to large samples (see Murakami and Griffith, 2018a).

2.3. RE-ESF model

The RE-ESF model is formulated as follows:

$$\mathbf{y} = \mathbf{X}\mathbf{\beta} + \mathbf{E}\gamma + \mathbf{\epsilon}, \quad \gamma \sim N(\mathbf{0}, \sigma_\gamma^2\mathbf{\Lambda}(\alpha)), \quad \mathbf{\epsilon} \sim N(\mathbf{0}, \sigma^2\mathbf{I}).$$

Unlike ESF, γ is given by a vector of random coefficients: $\gamma \sim N(\mathbf{0}, \sigma_\gamma^2\mathbf{\Lambda}(\alpha))$. $\mathbf{\Lambda}(\alpha)$ is a diagonal matrix whose elements are the eigenvalues, which are multiplied by α. σ_γ^2 and α represent the variance and the scale of the spatially dependent component; large α implies large-scale map patterns while small α implies small-scale map patterns. These parameters act as shrinkage parameters controlling variance inflation. The RE-ESF model is a low rank approximation of the Gaussian process model, which is popular in geostatistics.

The RE-ESF model is estimated by the following steps: (i) $L (< N)$ eigenvectors are extracted from `MCM`; (ii) the parameters are estimated by the Type II maximum likelihood (ML) method or the restricted maximum likelihood (REML) method. Default is REML.

The REML estimation is implemented by the following command:

```r
> meig <- meigen( coords = coords )  #Moran’s eigenvectors (distance-based C)
> r_res <- resf( y = y, x = x, meig = meig, method = "reml" )
```

ML is implemented by replacing `method = "reml"` with `method = "ml"`.
Estimated coefficients are displayed as follows:

\[
\begin{array}{l}
> r_res\$b \\
\text{Estimate} & \text{SE} & \text{t_value} & \text{p_value} \\
(\text{Intercept}) & 9.9902998898 & 0.169833051 & 58.8242385 & 0.000000e+00 \\
\text{station} & -0.0792859163 & 0.009598674 & -8.2600901 & 8.881784e-16 \\
\text{tokyo} & -0.0003715008 & 0.001795810 & -0.2068709 & 8.361807e-01 \\
\text{city} & 0.6857752216 & 0.036926493 & 18.5713608 & 0.0000000e+00 \\
\text{flood} & -0.0043670379 & 0.014784271 & -0.2953841 & 7.678025e-01 \\
\end{array}
\]

Just like the result from ESF, station (-) and city (+) are statistically significant, and tokyo is not. In contrast, unlike ESF, flood is not statistically significant. Because RE-ESF tends to outperform ESF in terms of the estimation accuracy of regression coefficients and their standard errors (Murakami and Griffith, 2015), the RE-ESF result might be more reliable. Error statistics are extracted by the following command:

\[
> r_res\$e \\
\text{stat} \\
\text{resid_SE} & 0.3116825 \\
\text{adjR2_cond} & 0.7649824 \\
r\text{logLik} & -262.9627231 \\
\text{AIC} & 543.9254462 \\
\text{BIC} & 584.1765628
\]

where \(\text{adjR2_cond}\) is the adjusted conditional \(R^2\), and \(r\text{logLik}\) is the restricted log-likelihood. \(r\text{logLik}\) is replaced with \text{loglik}, which is the log-likelihood, if \text{method} = "ml". It is important to note that, when REML is used, AIC and BIC are comparable only with models with the same explanatory variables. \text{resf} also returns the estimated shrinkage parameters as follows:

\[
> r_res\$s \\
\text{par} \\
\text{shrink_sf_SE} & 0.4337118 \\
\text{shrink_sf_alpha} & 0.2449076
\]

where \text{shrink_sf_SE} and \text{shrink_sf_alpha} are \(\sigma_i\) and \(\alpha\), respectively. The standard error of the
spatially dependent component (shrink sf SE = 0.4337118) is greater than the residual standard error (resid SE = 0.3116825). In other words, large spatial dependent variations, which are ignored if the linear regression model is estimated, are captured by E_γ. shrink sf alpha is smaller than one. This implies that coefficients on each eigenvector are shrunk comparatively equally, irrespective of their corresponding eigenvalues. The resulting E_γ has small-scale spatial variations relative to E_γ with large shrink sf alpha.

resf performs the computationally efficient ML/REML estimation of Murakami and Griffith (2018a). The command is as follows:

```r
> meig_f <- meigen_f( coords = coords )
> r_res <- resf( y = y, x = x, meig = meig_f, method = "reml" )
```

2.4. Extended models

2.4.1. Moran eigenvector spatially varying coefficient (M-SVC) model

Murakami et al. (2017) showed that a Moran-eigenvector-based SVC (M-SVC) modeling approach outperforms the geographically weighted regression (GWR) approach that is a standard SVC modeling approach, in terms of coefficient estimation accuracy and computational time.

The SVC model is formulated as follows:

$$
\hat{y} = \sum_k x_k \otimes \beta_k + E\gamma + \epsilon, \quad \gamma \sim N\left(0, \sigma_\gamma^2 \Lambda(\alpha)\right), \quad \epsilon \sim N(0, \sigma^2 I),
$$

$$
\beta_k = \beta_{k,0} 1 + E\gamma_k, \quad \gamma_k \sim N\left(0, \sigma_{\gamma,k}^2 \Lambda(\alpha_k)\right),
$$

where β_k is a vector of the SVCs on the kth explanatory variables, x_k, β_k consists of the constant component, $\beta_{k,0} 1$, and the spatially varying component, $E\gamma_k$. The latter is modeled by Moran’s eigenvectors, E, and their random coefficients, $\gamma_k \sim N(0, \sigma_{\gamma,k}^2 \Lambda(\alpha_k))$. $\Lambda(\alpha_k)$ is a diagonal matrix whose elements are the eigenvalues, which are multiplied by α_k. $\sigma_{\gamma,k}^2$ denotes the variance of the spatially dependent component, $E\gamma_k$, whereas α_k denotes the scale; large/small α_k implies large/small-scale map patterns. An interesting point is that, unlike GWR that assumes a uniform scale for each SVC, the M-SVC approach estimates the scale of each SVC using α_k. Furthermore, the M-SVC approach enables us selecting SVCs to stabilize the estimates.

5 The following relationship holds: $\text{Var}[E\gamma] = E\gamma E' = \sigma_\gamma^2 E\Lambda(\alpha) E' = \sigma_\gamma^2 \tilde{C}_M^\alpha$, where \tilde{C}_M^α is MC^\alpha approximated by the eigenvectors in E. Hence, σ_γ^2 denotes the variance of the spatially dependent component.
In this tutorial, coefficients on tokyo, station, city, and flood are allowed to vary across geographical space whereas constant coefficients are assumed on px (x-coordinate) and py (y-coordinate). The command for the M-SVC modeling is as follows:

```r
> xv <- x[, c("tokyo", "station", "city", "flood") ]  #x with spatially varying coefficients
> xconst <- x[, c("px", "py") ]  #x with constant coefficients
> meig <- meigen( coords = coords )  #Moran’s eigenvectors (distance-based C)
> rv_res <- resf_vc( y = y, x = xv, xconst = xconst, meig = meig )
```

To stabilize the estimates, the `resf_vc` function selects SVCs by a Bayesian information criterion (BIC) minimization by default (`penalty = "bic"`). The selection can be replaced with an Akaike information criterion (AIC) minimization-based selection by specifying `penalty = "aic"`.

The constant coefficient estimates for px and py are returned by the following command:

```r
> rv_res$b

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>t_value</th>
<th>p_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>px</td>
<td>-1.164779e-06</td>
<td>4.476629e-06</td>
<td>-0.2601911</td>
<td>0.79492527</td>
</tr>
<tr>
<td>py</td>
<td>7.977915e-06</td>
<td>4.447399e-06</td>
<td>1.7938385</td>
<td>0.07401748</td>
</tr>
</tbody>
</table>
```

Regarding the SVCs, the BIC-based coefficients selection result is displayed as follows:

```r
> rv_res$vc

<table>
<thead>
<tr>
<th></th>
<th>(Intercept)</th>
<th>tokyo</th>
<th>station</th>
<th>city</th>
<th>flood</th>
</tr>
</thead>
<tbody>
<tr>
<td>varying coefficients</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

The result shows that the coefficients on tokyo are estimated constant, and the coefficients on the other variables are estimated to have spatial variations. Estimated SVCs are displayed as follows:

```r
> rv_res$b_vc[1:6,]

<table>
<thead>
<tr>
<th></th>
<th>(Intercept)</th>
<th>tokyo</th>
<th>station</th>
<th>city</th>
<th>flood</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.875385</td>
<td>-0.00513785</td>
<td>-0.06311678</td>
<td>0.5690735</td>
<td>0.006637360</td>
</tr>
<tr>
<td>2</td>
<td>10.278009</td>
<td>-0.00513785</td>
<td>-0.11503321</td>
<td>0.8255947</td>
<td>0.005446833</td>
</tr>
<tr>
<td>3</td>
<td>10.173544</td>
<td>-0.00513785</td>
<td>-0.10025270</td>
<td>0.7743310</td>
<td>0.006120595</td>
</tr>
<tr>
<td>4</td>
<td>10.138267</td>
<td>-0.00513785</td>
<td>-0.09395701</td>
<td>0.7445319</td>
<td>0.006262945</td>
</tr>
<tr>
<td>5</td>
<td>10.207279</td>
<td>-0.00513785</td>
<td>-0.10122246</td>
<td>0.5212322</td>
<td>-0.058020901</td>
</tr>
<tr>
<td>6</td>
<td>10.258219</td>
<td>-0.00513785</td>
<td>-0.08688370</td>
<td>0.5006614</td>
<td>-0.059386765</td>
</tr>
</tbody>
</table>
```
The p-values for the estimated coefficients are shown as

```r
> rv_res$p_vc[1:6,]

       (Intercept)    tokyo station       city    flood
1    0.2354304 0.288107321 1.324063e-06 0.76500129
2    0.2354304 0.006000605 6.344747e-11 0.79813709
3    0.2354304 0.012536479 6.735013e-10 0.77200809
4    0.2354304 0.019306686 3.431317e-10 0.76597759
5    0.2354304 0.058577563 5.667240e-05 0.04008828
6    0.2354304 0.124107522 1.405513e-03 0.15243568
```

The estimated SVCs and their p-values can be summarized as follows (coefficients on tokyo are omitted):

```r
> summary( rv_res$b_vc[, -2] )

       (Intercept) station       city    flood
Min. : 8.909  Min. : -0.21020  Min. : -0.02115  Min. : -0.066797
1st Qu.: 9.831  1st Qu.: -0.15448  1st Qu.:  0.57226  1st Qu.: -0.049578
Median :10.062  Median : -0.12184  Median :  0.68319  Median : -0.013046
Mean : 10.061  Mean : -0.11572  Mean :  0.67039  Mean :  -0.021668
3rd Qu.:10.242  3rd Qu.: -0.07764  3rd Qu.:  0.81286  3rd Qu.:  0.003591
Max. :10.946  Max. :  0.06522  Max. :  1.06872  Max. :  0.009442
```

```r
> summary( rv_res$p_vc[, -2] )

       (Intercept) station       city    flood
Min. : 0      Min. : 0.000001  Min. : 0.0000000  Min. : 0.003934
1st Qu.: 0    1st Qu.: 0.001426 1st Qu.: 0.0000001 1st Qu.: 0.086623
Median : 0    Median : 0.010549 Median : 0.0000068 Median : 0.585556
Mean : 0     Mean : 0.123792  Mean : 0.0171369  Mean : 0.495177
3rd Qu.: 0   3rd Qu.: 0.175201 3rd Qu.: 0.0006345 3rd Qu.: 0.853780
Max. : 0     Max. : 0.945239  Max. : 0.9582583  Max. : 0.995845
```

The result suggests that the spatially varying intercept and SVCs on city are positively significant across the target area. station is negatively significant in many sample sites, and flood is statistically insignificant in most sample sites.
Figure 2 displays the estimated coefficients and their statistical significance. Estimated SVCs on station demonstrate that the distance to a railway station has a significant influence on land price in areas along railways. SVCs on city are positively significant across the target area. SVCs on flood suggest that flood risk is negatively significant around Mito city, which is the prefectural capital. Mito city has a long history as a castle town. The negative sign on flood might be because Mito city has adapted to flood disaster in the long history.

Figure 2. Estimated SVCs and their p-values (the spatially varying intercept is omitted)
Just like `resf`, `resf_vc` returns the shrinkage parameter estimates for SVCs. In our case, the estimates are as follows:

```r
> rv_res$s
  (Intercept) station city flood
Shrink_sf_SE  0.4562311 0.0820578615 0.30293756 0.04153263
Shrink_sf_alpha 0.1472938 0.0001043149 0.04450748 1.59444026
```

`Shrink_sf_SE` summarizes the estimated standard errors, σ_{γ_k}, for each SVC, and `Shrink_sf_alpha` summarizes the estimated α_k parameters. Large α_k values imply strong shrinkage for local variations.

For example, SVCs on flood have a global map pattern due to the large α_k value while SVCs on station have a local pattern due to the small α_k value. Thus, the α_k parameter controls the spatial scale of the k-th SVCs.

Error statistics for the SVC model are displayed by the following command.

```r
> r_res$e
  stat
resid_SE 0.2637017
adjR2(cond) 0.8312410
rlogLik -230.4469132
AIC 482.8938264
BIC 532.0896357
```

2.4.2. Spatially filtered unconditional quantile regression (SF-UQR)

While the conventional conditional quantile regression (CQR) estimates the influence of x_k on the τ-th “conditional” quantile of y, $q_{\tau}(y|x_k)$, the unconditional quantile regression (UQR; Firpo et al., 2009) estimates the influence of x_k on the “unconditional” quantile of y, $q_{\tau}(y)$.

Suppose y and x_k represent land price and accessibility, respectively. UQR estimates the influence of accessibility on land price in each price range. This interpretation does not hold for CQR, because it estimates the influence of accessibility on land prices given explanatory variables. For example, upper conditional quantiles denote land plots, which are overpriced (i.e. priced higher than they ought to be given their characteristics). This of course does not mean at all that this would be the most expensive land. Thus, CQR has difficulty in its interpretation in some cases including...
hedonic land price modeling.

In this context, Murakami and Seya (2017) developed the spatial filter UQR (SF-UQR). The SF-UQR model is formulated as follows:

\[r_i = X \beta + \varepsilon_i + \varepsilon, \quad y \sim N \left(\mu, \sigma^2 \Lambda(\alpha) \right), \quad \varepsilon \sim N(0, \sigma^2 I), \]

where \(r_i \) is a vector whose \(i \)-th element equals the re-centered influence function (RIF) for the \(i \)-th explained variable, \(y_i \). The SF-UQR is a UQR considering spatial dependence.

The `spmoran` package provides the `resf_qr` function to estimate the SF-UQR model. The command is as follows:

```r
> qr_res <- resf_qr( y = y, x = x, meig = meig, boot = TRUE )
```

If `boot = TRUE`, a semiparametric bootstrapping is performed to estimate the standard errors of UQR coefficients, and these are not calculated if `boot = FALSE`. This function returns parameters estimated at 0.1, 0.2, ..., 0.9 quantiles by default. The quantile(s) are specified using an argument `tau`; for example, parameters at the 0.22 quantile are estimated by setting `tau = 0.22`.

The computational complexity for the bootstrap iterations does not depend on the sample size, \(N \) (see, Murakmai and Griffith, 2018), but it depends on the number of eigenpairs, \(L \), which grows as \(N \) increases. Hence, for large samples, it is useful to restrict \(L \) as follows:

```r
> meig <- meig( coords, enum = 200 )
> qr_res <- resf_qr( y = y, x = x, meig = meig, boot = TRUE )
```

For large \(N \), which prohibits the eigen-decomposition, the following eigen-approximation would be useful:

```r
> meig <- meig_f( coords )  # It approximates the first 200 eigen-pairs by default
```
UQR coefficients estimated from the resf_qr function can be visualized using the plot_qr function. The commands to plot estimated coefficients for the first five explanatory variables are as follows:

```r
> plot_qr(qr_res, 1)
> plot_qr(qr_res, 2)
> plot_qr(qr_res, 3)
> plot_qr(qr_res, 4)
> plot_qr(qr_res, 5)
```

The numbers 1 to 5 specify which regression coefficients are plotted (1: intercept). The resulting plots are as follows:

![Outputs from the plot_qr function](image)

Figure 4. Outputs from the plot_qr function (regression coefficients). Solid lines are coefficient estimates and gray areas are their 95% confidential intervals.
On the other hand, the standard errors for the residual spatial dependent component (shrink_sf_SE) are plotted by assigning `pnum = 1` and `par = "s"`, while the scale (degree) parameters for the spatial component (shrink_sf_alpha) are plotted by assigning `pnum = 2` and `par = "s"`. The commands and the outcomes are as follows:

```r
> plot( qr_res, 1, "s" )
> plot( qr_res, 2, "s" )
```

![Figure 5](image)

Figure 5. Outputs from the `plot_qr` function (shrinkage (variance) parameters). Solid lines are coefficient estimates and gray areas are their 95% confidential intervals.

Estimated parameter values are displayed by the following commands:

```r
> res$b
> res$s
```

When `boot = TRUE`, parameter estimates, lower and upper bounds for their 95% confidential intervals, and `p-values` are returned by the following command:

```r
> res$B
> res$S
```

Error statistics, including the residual standard error and the adjusted quasi conditional R^2, are displayed as follows:

```r
> res$e
  tau=0.1  tau=0.2  tau=0.3  ...  tau=0.9
resid_SE  0.93164  0.67819  0.58475  ...  1.0025
quasi_adjR2(cond)  0.43749  0.57931  0.57318  ...  0.4258
```
2.4 Spatial interpolation

Despite ESF (or MEMs) is well-known as an explanatory tool in ecology, it is less clear how to apply it for (out-of-sample) spatial prediction, which is a representative objective of explanatory spatial data analysis. To overcome this limitation, this package provides functions for ESF/RE-ESF-based spatial interpolation minimizing the expected error (just like kriging). The Nystrom extension, which is an eigen-approximation technique is used for the expected error minimization.

Note that RE-ESF can be viewed as a low rank approximation of the Gaussian process (GP) model whose spatial prediction is well-known as kriging (see, Murakami and Griffith, 2015). ESF is also a special case. In other words, because the ESF and RE-ESF models are approximations, their spatial predictions might be less accurate relative to kriging. Instead, they are available for large samples as I will explain in section 6.

In this tutorial, the land price data is randomly divided into two, and one is considered as observations (dd) and another is considered as data at unobserved sites (d0).

```r
> samp<-sample( length( d[, 1] ), 300 ) # Random sampling

> dd <- d[samp, ] # Data at observed sites
> coords <- dd[, 1:2]
> y <- dd[, 3]
> x <- dd[, 4:7]
> xconst <- dd[, 1:2]

> md <- d[-samp, ] # Data at unobserved sites
> coords0 <- md[, 1:2]
> y0 <- md[, 3]
> x0 <- md[, 4:7]
> xconst0 <- md[, 1:2]
```

Before the prediction, Moran’s eigenvectors must be evaluated for both the observed and unobserved sites. `meigen` or `meigen_f` is used for the former while `meigen0` is used for the latter:

```r
> meig <- meigen( coords = coords )
> meig0 <- meigen0( meig = meig, coords0 = coords0 )
```
For ESF-based spatial interpolation, the ESF model is estimated as before. Then, data at unobserved sites are predicted using the `predict0` function. The command is as follows:

```r
> mod_e <-esf( y = y, x = x, meig = meig )   ## Model estimation
> pred_e <-predict0( mod = mod_e, x0 = x0, meig0 = meig0 ) ## Spatial prediction
> pred_e[1:6,]
   pred     xb       sf
 1  10.42826 10.430779 -0.00252353
 2  10.76887 10.598882  0.16999289
 3  10.01560  9.930919  0.08467572
 4  10.22738 10.331080 -0.01572316
 5  10.43264 10.458080 -0.02543832
 6  10.41613 10.375074  0.04106011
```

The outputs are the predicted explained variables (pred; \(y\)), trend (xb; \(X\beta\)), and residual spatial component (sf; \(E\gamma\)). RE-ESF-based spatial interpolation is implemented in the same way:

```r
> mod_re <-resf( y = y, x = x, meig = meig )   ## Model estimation
> pred_re <-predict0( mod = mod_re, x0 = x0, meig0 = meig0 ) ## Spatial prediction
> pred_re[1:6,]
   pred     xb       sf
 1  10.43984 10.438097  0.00174815
 2  10.79472 10.629825  0.16489057
 3  10.02705  9.941318  0.08573132
 4  10.21008 10.318316 -0.10823100
 5  10.41722 10.455091 -0.03787292
 6  10.39429 10.364245  0.03004664
```

If \(x_0\) is not provided, the `predict0` function interpolates the spatial component only.

```r
> sf_re <-predict0( mod = mod_re, meig0 = meig0 )
> sf_re[1:6]
 [1]  0.001748157  0.164890570  0.085731320 -0.108231008 -0.037872927  0.030046643
```
The M-SVC model is also available for spatial prediction. The predict0_vc function predicts, explanatory variables and the SVCs. The command is as follows:

```r
> rv_res <- resf_vc( y = y, x = x, xconst = xconst, meig = meig )## Model estimation
> pred_vc <- predict0_vc( mod = rv_res, x0 = x0, xconst0 = xconst0, meig0 = meig0 )
## Spatial prediction
```

The predicted explained variables are returned as

```r
> pred_vc$pred[ , 1:6 ]
pred xb sf
1 10.44104 10.420895 0.02014816
2 10.77090 10.579498 0.19139730
3 10.01037 9.898628 0.11174645
4 10.20561 10.375823 -0.17020794
5 10.41315 10.496904 -0.08375796
6 10.40018 10.431076 -0.03090005
```

The outputs are the predicted explained variables (pred; y), trend (xb; $\sum_k x_k \otimes \beta_k$), and residual spatial component (sf; E_γ). The predicted SVCs are returned as follows:

```r
> pred_vc$b_vc[ 1:6, ]
(Intercept) tokyo station city flood
1 10.07619 -0.00513785 -0.06439647 0.5620327 -0.003 150771
2 10.42358 -0.00513785 -0.10874117 0.8603790 0.0069 05524
3 10.33535 -0.00513785 -0.09560769 0.8012729 0.0003 62355
4 10.30509 -0.00513785 -0.09011763 0.7661289 -0.004 951810
5 10.27922 -0.00513785 -0.10336049 0.5352906 0.0028 64006
6 10.35502 -0.00513785 -0.08970204 0.5099307 -0.041 507693
```

The standard errors, t-values, and p-values of the SVCs are returned by `pred_vc$bse_vc`, `pred_vc$t_vc`, and `pred_vc$p_vc`, respectively. Note that the SVCs are predicted even if x0 and xconst0 are missing. The command is as follows:

```r
> pred_vc <- predict0_vc( mod = rv_res, meig0 = meig0 )
> pred_vc$b_vc[ 1:6, ]
```
3. Low rank spatial econometric models

In Section 2, we have explained a RE-ESF with distance-based C to approximate a Gaussian process (i.e., a geostatistical model), this approach explains low rank spatial econometric models, which are based on another RE-ESF with topology-based spatial connectivity matrix (see Murakami et al., 2018).

Section 3.1 explains how to specify the spatial connectivity, and Section 3.2 and 3.3 explains low rank spatial lag model (LSLM) and low rank spatial error model (LSEM), respectively.

3.1. Spatial weight matrix and their eigenvectors

Eigenvectors and eigenvalues of a spatial connectivity matrix, which is called spatial weight matrix or W matrix in spatial econometrics, are extracted using the weigen function.

If a shape polygon object is provided, this function returns eigenpairs of a rook adjacency-based W (1 if two polygons share edge, and 0 otherwise). A sample code is as

```r
require( spdep )
require( rgdal )
data( boston )
poly <- readOGR( system.file( "shapes/boston_tracts.shp", package = "spData" )[ 1 ] )
weig1 <- weigen( poly )   #### Rook adjacency-based W
```

If spatial coordinates are provided, weigen returns eigenpairs of a k-nearest neighbor-based W by default. The commands are as follows:

```r
cords <- boston.c[ ,c( "LAT", "LON" )]
weig2 <- weigen( cords )   #### 4-nearest neighbor-based W
weig3 <- weigen( cords, k = 8 )  #### 8-nearest-neighbor-based W
```

Alternatively, the W matrix can be defined based on the Delaunay triangulation. In this case, the (i, j)-th element of W is 1 if the sample sites i and j share edge that is generated by the Delaunay triangulation, and 0 otherwise. This type of W is used if type = "tri" is specified:

```r
weig4 <- weigen( coords, type = "tri" )   #### Delaunay triangulation-based W
```
User-specified W matrix is also available if the matrix is provided instead of a shape polygon object of spatial coordinates. A sample code is follows:

```r
dmat <- as.matrix( rist( coords ))
cmat <- exp( -dmat )  #### User specified W
diag(cmat)<- 0
weig5  <- weigen( cmat )
```

Note that, even if `diag(cmat)<- 0` is not provided, `weigen` internally replaces all the diagonals of W with zeros.

For a binary connectivity-based W (i.e. weig1 to weig4), $\lambda_l/\lambda_1 > 0.25$ is a standard threshold for the eigenvector selection; this criterion attempts to consider roughly 95% of the variations attributable to positive spatial dependence (Griffith and Chun, 2014). This thresholding is implemented by default. This threshold value can be changed. For example, $\lambda_l/\lambda_1 > 0.00$ is implemented as follows:

```r
weig6  <- weigen( cmat = cmat, threshold = 0 )
```

Outputs from the `weigen` function is used to estimate low rank spatial econometric models.

3.2. Low rank spatial lag model

The low rank spatial lag model (LSLM) approximates the following model:

\[
\begin{align*}
\mathbf{y} &= \mathbf{\beta}_1 \mathbf{1} + \mathbf{z} + \mathbf{\epsilon} \\
\mathbf{z} &= \rho \mathbf{Wz} + \mathbf{X}_{-1} \mathbf{\beta}_{-1} + \mathbf{u}
\end{align*}
\]

where $\mathbf{X} = [\mathbf{1}, \mathbf{X}_{-1}]$ and $\mathbf{\beta} = [\mathbf{\beta}_1, \mathbf{\beta}_{-1}]$. \mathbf{z} is defined by the classical spatial lag model (SLM) with parameters ρ and σ^2. Just like the original SLM, ρ takes a value between 1 and $1/\lambda_N (< 0)$. $\rho > 0$ in the presence of positive spatial dependence while $\rho < 0$ in the presence of negative spatial dependence. σ^2 represents the variance of the residual spatial dependence (remember that $\mathbf{z} = (\mathbf{I} - \rho \mathbf{W})^{-1}\mathbf{X}_{-1}\mathbf{\beta}_{-1} + (\mathbf{I} - \rho \mathbf{W})^{-1}\mathbf{u}$) while σ^2 represents the variance of independent data noise6.

The main differences between LSLM and SLM are as follows: (i) LSLM considers

6 Intuitively, the $\{\sigma^2, \sigma_u^2, \rho\}$ parameters correspond to the nugget, the partial-sill, and the range parameter in geostatistical models.
independent data noise while SLM ignores it; (ii) LSLM is faster than SLM. Due to the difference (i), the parameters estimated from LSLM and SLM can be different especially if data is noisy.

The LSLM is model is estimated using the lslm function. A sample code is as follows:

```r
> y <- data[, "ln_price"]
> x <- data[, c("station", "tokyo", "city", "flood")]
> coords <- data[, c("px", "py")]
> weig <- weigen(coords = coords)
> lslm_res <- lslm(y = y, x = x, weig = weig, boot = TRUE)
```

If `boot = TRUE`, a nonparametric bootstrapping is performed to estimate the 95% confidence intervals (CIs) for the σ_u^2 and ρ parameters, and the direct and indirect effects, which we will explain later. Default is FALSE.

The estimated coefficients are displayed by the following command:

```r
> lslm_res$b

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>t_value</th>
<th>p_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>9.843516</td>
<td>0.065549</td>
<td>150.17</td>
<td>0.0000</td>
</tr>
<tr>
<td>station</td>
<td>-0.056975</td>
<td>0.006047</td>
<td>-9.42</td>
<td>0.0000</td>
</tr>
<tr>
<td>tokyo</td>
<td>-0.000934</td>
<td>0.000373</td>
<td>-2.51</td>
<td>0.0125</td>
</tr>
<tr>
<td>city</td>
<td>0.605456</td>
<td>0.025501</td>
<td>23.74</td>
<td>0.0000</td>
</tr>
<tr>
<td>flood</td>
<td>-0.004771</td>
<td>0.012234</td>
<td>-0.39</td>
<td>0.6967</td>
</tr>
</tbody>
</table>
```

The estimated ρ (`sp_rho`) and σ_u^2 (`sp_SE`) parameters are shown as follows:

```r
> lslm_res$s

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>CI_lower</th>
<th>CI_upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp_rho</td>
<td>0.562711</td>
<td>0.436695</td>
<td>0.635649</td>
</tr>
<tr>
<td>sp_SE</td>
<td>0.411269</td>
<td>0.396951</td>
<td>0.552454</td>
</tr>
</tbody>
</table>
```

CI_lower and CI_upper represent the lower and upper bounds of the 95% CIs, which are stiamted by the botstrapping.
The error statistics shows that the LSLM model is fairly accurate:

```r
> lslm_res$e
          stat
resid_SE 0.2450407
adjR2(cond) 0.8549657
rlogLik -240.4682106
AIC 496.9364212
BIC 532.7151916
```

As with the original SLM, LSLM is useful to estimate the direct effects (DEs) and indirect effects (IEs). DE quantifies the impact of a unit change of \(x_{i,k} \) on the same site while IE quantifies the impact on the neighborhoods (i.e., spatial spill-over effect) (see LeSage and Pace, 2009).

The estimated DEs and IEs are returned as follows:

```r
> lslm_res$de
          Estimate CI_lower CI_upper   p_value
station -0.0641208 -0.0769161 -0.0498209  0.00
tokyo -0.0010513 -0.0019170 -2.4876e-05  0.06
city  0.6813874  0.6195325  0.7407356  0.00
flood -0.0053697 -0.0307107  0.2410228  0.84

> lslm_res$ie
          Estimate CI_lower CI_upper   p_value
station -0.03938728 -0.0514623 -0.0247147  0.00
tokyo -0.00064579 -0.0012035 -1.0138e-05  0.06
city  0.41855330  0.2715995  0.5239090  0.00
flood -0.00329845 -0.0197049  0.1481439  0.84
```

The result suggests that station (-) and city (+) have statistically significant DE and IE at the 1 % level while tokyo (-) has significant DE and IE at the 10 % level. Note that the p-values for the DE and IE estimated from LSLM are always the same just like the original SLM. Low rank spatial Durbin model, which relaxes this limitation and estimates these effects flexibly, will be implemented in a later update.
3.3. Low rank spatial error model

The low rank spatial error model (LSEM) approximates the following model:

\[
y = \beta_1 \mathbf{1} + \mathbf{z} + \mathbf{e} \quad \mathbf{e} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})
\]

\[
\mathbf{z} = \mathbf{X}_- \beta_0 + \mathbf{e} \quad \mathbf{e} = \lambda \mathbf{W} \mathbf{e} + \mathbf{u} \quad \mathbf{u} \sim N(\mathbf{0}, \sigma_u^2 \mathbf{I})
\]

\(\mathbf{z}\) is defined by the classical spatial error model (SEM) with parameters \(\lambda\) and \(\sigma_u^2\). \(\lambda\) takes a value between 1 and \(1/\lambda N\) (< 0). \(\lambda\) takes a positive value in the presence of positive spatial dependence while \(\rho < 0\) in the presence of negative spatial dependence. \(\sigma_u^2\) represents the variance of the residual spatial dependence. The LSEM estimation is faster than the (maximum likelihood) estimation of the original SEM. Besides, unlike SEM, LSEM considers independent data noise, which corresponds to the nugget effect in geostatistics.

The estimated coefficients, \(\lambda\) (sp_lambda) and \(\sigma_u^2\) (sp_SE) are displayed as follows:

```r
> lsem_res$b
                          Estimate       SE     t_value     p_value
(Intercept)         10.0134044 0.08505686  117.72599 0.00000e+00
station             -0.07983052 0.00828624  -9.634106 0.00000e+00
tokyo               -0.00139162 0.00074160  -1.876506 0.06106739
city                0.65119670 0.03106698  20.961054 0.00000e+00
flood               -0.00925906 0.01472357  -0.628860 0.52967818

> lsem_res$s
                        Estimate
sp_lambda    0.9125101
sp_SE        0.2352453
```

The errors statistics shows a similar accuracy with LSLM:

```r
> lslm_res$s

stat
resid_SE        0.2477682
adjR2(cond) 0.8517190
rlogLik       -234.5039323
AIC            485.0078645
BIC            520.7866349
```
4. Tips for fast computation

4.1. Eigen-decomposition

`meigen_f` performs a fact eigen-approximation, and extracts the first 200 eigenvectors by default. The computation is further accelerated by reducing number of approximated eigenvectors. It is achieved by setting `enum` by a positive integer less than 200. For example, in the case with 5000 samples and `enum = 200` (default), 100, and 50, computational times are as follows:

```r
> coords_test <- cbind(rnorm(5000), rnorm(5000))

----------------- CP time (without approximation) -----------------
> system.time( meig_test <- meigen(coords = coords_test) )
  user  system elapsed
242.28   1.44  243.79

----------------- CP time (with approximation) ----------------------
> system.time( meig_test200 <- meigen_f(coords = coords_test) )
  user  system elapsed
 0.37   0.00   0.38
> system.time( meig_test100 <- meigen_f(coords = coords_test, enum = 100) )
  user  system elapsed
 0.15   0.00   0.16
> system.time( meig_test50 <- meigen_f(coords = coords_test, enum = 50) )
  user  system elapsed
 0.08   0.00   0.08
```

Figure 3 maps the calculated 1st, 10th, and 100th eigenvectors. It is important to note that, while approximated and exact eigenvectors can have different map patterns respectively, both of them describe patterns in similar spatial scales. In other words, in both cases, 1st eigenvectors describe global map patterns, 10th medium-scale patterns, and 100th local patterns.
Figure 3. The 1st, 10th, and 100th eigenvectors extracted from `meigen` and `meigen_f`.

On the other hand, the `weigen` function impalements the ARPACK routine for fast eigen-decomposition by default. The computational times with `enum = 200` (default), 100, and 50 are as follows:

```r
> system.time( weig_test200 <- weigen( coords_test ) )
  user  system elapsed
 9.30   0.07   9.39
> system.time( weig_test100 <- weigen( coords_test, enum = 100 ) )
  user  system elapsed
 3.05   0.04   3.10
> system.time( weig_test50 <- weigen( coords_test, enum = 50 ) )
  user  system elapsed
 1.19   0.03   1.22
```
4.2. Parameter estimation

The basic ESF model is estimated computationally efficiently by setting \(fn = "all" \) in the function \(\text{esf} \). The RE-ESF model is estimated by small computational cost by the function \(\text{resf} \), by default.

In the current version, the M-SVC model is also estimated computationally efficiently in the \(\text{resf_vc} \) function (see Murakami and Griffith, 2018b). The SVC modeling requires an inversion of a \((K_{\text{const}} + K + LK) \times (K_{\text{const}} + K + LK)\) matrix. \(K_{\text{const}} \) and \(K \) are the number of explanatory variables in \(x_{\text{const}} \) and \(x \), respectively. \(L \) is the number of eigen-pairs that is below \(\text{enum} = 200 \) by default. To avoid slow computation, \(\text{resf_vc} \) constraints \((K_{\text{const}} + K + LK)\) to not to exceed \(\text{sizelimit} \) whose default value is 2,000 (in this case, an inversion of a 2,000 \(\times \) 2,000 matrix is the possible heaviest computation in the estimation step). Note that \(\text{sizelimit} \) is effective only when \((K_{\text{const}} + K + LK) > \text{sizelimit}\); roughly speaking, it occurs when the number of SVCs is more than 10.

The following code is an example of the fast SVC model estimation:

```r
> meig <- meigen_f( coords = coords )       # fast approximation
> rv_res  <- resf_vc( y = y, x = xv, xconst = xconst, meig = meig )
```

The SF-UQR model requires a bootstrapping to estimate confidential intervals for the coefficients. However, computational cost for the iteration does not depend on sample size, but only on the number of eigenvectors in \(\text{meig} \) (see, Murakami and Seya, 2017). That is, the SF-UQR is applicable to large data if only \(\text{meig} \) is defined just as mentioned above.

The same holds for the LSLM and LSEM models.

5. Updates in near future

Spatial panel modeling with/without spatially varying coefficients is planned to be implemented in the next update. Low rank spatial Durbin model will also be implemented in that update.
References

