Package ‘sport’

October 14, 2022

Type Package
Title Sequential Pairwise Online Rating Techniques
Version 0.2.0
Depends R (>= 3.0)
Maintainer Dawid Kałędkowski <dawid.kaledkowski@gmail.com>
Description Calculates ratings for two-player or multi-player challenges. Methods included in package such as are able to estimate ratings (players strengths) and their evolution in time, also able to predict output of challenge. Algorithms are based on Bayesian Approximation Method, and they don't involve any matrix inversions nor likelihood estimation. Parameters are updated sequentially, and computation doesn't require any additional RAM to make estimation feasible. Additionally, base of the package is written in C++ what makes sport computation even faster. Methods used in the package refers to Mark E. Glickman (1999) <http://www.glicko.net/research/glicko.pdf>; Mark E. Glickman (2001) <doi:10.1080/02664760120059219>; Ruby C. Weng, Chih-Jen Lin (2011) <http://jmlr.csail.mit.edu/papers/volume12/weng11a/weng11a.pdf>; W. Penny, Stephen J. Roberts (1999) <doi:10.1109/IJCNN.1999.832603>.

BugReports https://github.com/gogonzo/sport/issues
Imports Rcpp, data.table, ggplot2
LinkingTo Rcpp
License GPL-2
Encoding UTF-8
Language en-US
URL https://github.com/gogonzo/sport
LazyData true
RoxygenNote 7.0.2
Suggests dplyr, knitr, lobstr, magrittr, pkgdown, rmarkdown, spelling, testthat
bbt_run

VignetteBuilder knitr

NeedsCompilation yes

Author Dawid Kałędkowski [aut, cre] (<https://orcid.org/0000-0001-9533-457X>)

Repository CRAN

Date/Publication 2020-01-07 09:10:02 UTC

R topics documented:

- `bbt_run` .. 2
- `dbl_run` .. 4
- `glicko2_run` ... 6
- `glicko_run` .. 9
- `gpheats` .. 11
- `gpsquads` ... 12
- `plot.rating` ... 12
- `predict.rating` .. 13
- `rating_run` .. 13
- `summary.rating` ... 15

Index 17

bbt_run

Bayesian Bradley-Terry

Description

Bayesian Bradley-Terry

Usage

```r
bbt_run(
  formula,
  data,
  r = numeric(0),
  rd = numeric(0),
  init_r = 25,
  init_rd = 25/3,
  lambda = NULL,
  share = NULL,
  weight = NULL,
  kappa = 0.5
)
```
Arguments

formula
- formula which specifies the model. RHS Allows only player rating parameter and it should be specified in following manner:
 - rank \mid id \sim \text{player(name)}.
 - rank player position in event.
 - id event identifier in which pairwise comparison is assessed.
 - player(name) name of the contestant. In this case \text{player(name)} helps algorithm point name of the column where player names are stored.

Users can also specify formula in a different way: rank \mid id \sim \text{player(name|team)}.
Which means that players are playing in teams, and results are observed for teams not for players. For more see vignette.

data
- data.frame which contains columns specified in formula, and optional columns defined by lambda, weight.

r
- named vector of initial players ratings estimates. If not specified then r will be created automatically for parameters specified in formula with initial value init_r.

rd
- rd named vector of initial rating deviation estimates. If not specified then rd will be created automatically for parameters specified in formula with initial value init_rd.

init_r
- initial values for r if not provided. Default (glicko = 1500, glicko2 = 1500, bbt = 25, dbl = 0)

init_rd
- initial values for rd if not provided. Default (glicko = 350, glicko2 = 350, bbt = 25/3, dbl = 1)

lambda
- name of the column in ‘data’ containing lambda values or one constant value (e.g. lambda = colname or lambda = 0.5). Lambda impact prior variance, and uncertainty of the matchup result. The higher lambda, the higher prior variance and more uncertain result of the matchup. Higher lambda flattens chances of winning.

share
- name of the column in ‘data’ containing player share in team efforts. It’s used to first calculate combined rating of the team and then redistribute ratings update back to players level. Warning - it should be used only if formula is specified with players nested within teams (‘player(player|team)’).

weight
- name of the column in ‘data’ containing weights values or one constant (e.g. weight = colname or weight = 0.5). Weights increasing (weight > 1) or decreasing (weight < 1) update change. Higher weight increasing impact of event result on rating estimate.

kappa
- controls rd shrinkage not to be greater than rd*(1 - kappa). ‘kappa=1’ means that rd will not be decreased.

Value

A "rating" object is returned:

- final_r named vector containing players ratings.
• `final_rd` named vector containing players ratings deviations.
• `r` data.frame with evolution of the ratings and ratings deviations estimated at each event.
• `pairs` pairwise combinations of players in analysed events with prior probability and result of a challenge.
• `class` of the object.
• `method` type of algorithm used.
• `settings` arguments specified in function call.

Examples

```r
# the simplest example
data <- data.frame(
  id = c(1, 1, 1, 1),
  team = c("A", "A", "B", "B"),
  player = c("a", "b", "c", "d"),
  rank_team = c(1, 1, 2, 2),
  rank_player = c(3, 4, 1, 2)
)

bbt <- dbl_run(
  formula = rank_player | id ~ player(player),
  data = data,
  r = setNames(c(25, 23.3, 25.83, 28.33), c("a", "b", "c", "d")),
  rd = setNames(c(4.76, 0.71, 2.38, 7.14), c("a", "b", "c", "d"))
)

# nested matchup
bbt <- dbl_run(
  formula = rank_team | id ~ player(player | team),
  data = data,
)
```

dbl_run

Dynamic Bayesian Logit

Description

Dynamic Bayesian Logit

Usage

dbl_run(
 formula,
 data,
 r = NULL,
 rd = NULL,
)
$$
\lambda = \text{NULL}, \\
\text{weight} = \text{NULL}, \\
\kappa = 0.95, \\
\text{init}_r = 0, \\
\text{init}_\text{rd} = 1
$$

Arguments

- **formula**: formula which specifies the model. Unlike other algorithms in the packages (glicko_run, glicko2_run, bbt_run), this method doesn’t allow players nested in teams with ‘player(player | team)’ and user should matchup in formula using ‘player(player)’. DBL allows user specify multiple parameters also in interaction with others.

- **data**: data.frame which contains columns specified in formula, and optional columns defined by `lambda`, `weight`.

- **r**: named vector of initial players ratings estimates. If not specified then `r` will be created automatically for parameters specified in `formula` with initial value `init_r`.

- **rd**: rd named vector of initial rating deviation estimates. If not specified then `rd` will be created automatically for parameters specified in `formula` with initial value `init_rd`.

- **lambda**: name of the column in ‘data’ containing lambda values or one constant value (eg. `lambda = \text{colname}` or `lambda = 0.5`). Lambda impact prior variance, and uncertainty of the matchup result. The higher lambda, the higher prior variance and more uncertain result of the matchup. Higher lambda flattens chances of winning.

- **weight**: name of the column in ‘data’ containing weights values or one constant (eg. `weight = \text{colname}` or `weight = 0.5`). Weights increasing (weight > 1) or decreasing (weight < 1) update change. Higher weight increasing impact of event result on rating estimate.

- **kappa**: controls rd shrinkage not to be greater than \(\text{rd} \times (1 - \kappa) \). ‘kappa=1’ means that rd will not be decreased.

- **init_r**: initial values for `r` if not provided. Default (glicko = 1500, glicko2 = 1500, bbt = 25, dbl = 0)

- **init_rd**: initial values for `rd` if not provided. Default (glicko = 350, glicko2 = 350, bbt = 25/3, dbl = 1)

Value

A "rating" object is returned:

- `final_r` named vector containing players ratings.
- `final_rd` named vector containing players ratings deviations.
- `r` data.frame with evolution of the ratings and ratings deviations estimated at each event.
pairs pairwise combinations of players in analysed events with prior probability and result of a challenge.

- class of the object.
- method type of algorithm used.
- settings arguments specified in function call.

Examples

the simplest example

data <- data.frame(
id = c(1, 1, 1, 1),
name = c("A", "B", "C", "D"),
rank = c(3, 4, 1, 2),
gate = c(1, 2, 3, 4),
factor1 = c("a", "a", "b", "b"),
factor2 = c("a", "b", "a", "b")
)

dbl <- dbl_run(
data = data,
formula = rank | id ~ player(name)
)

dbl <- dbl_run(
data = data,
formula = rank | id ~ player(name) + gate * factor1)

glicko2_run

Glicko2 rating algorithm

Description

Glicko2 rating algorithm

Usage

glicko2_run(
formula,
data,
r = numeric(0),
rd = numeric(0),
sigma = numeric(0),
lambda = NULL,
share = NULL,
weight = NULL,
init_r = 1500,
init_rd = 350,
\begin{verbatim}
glicko2_run

 init_sigma = 0.05, kappa = 0.5, tau = 0.5

)

Arguments

formula formula which specifies the model. RHS Allows only player rating parameter
and it should be specified in following manner:
 rank | id ~ player(name).
 • rank player position in event.
 • id event identifier in which pairwise comparison is assessed.
 • player(name) name of the contestant. In this case player(name) helps
 algorithm point name of the column where player names are stored.

 Users can also specify formula in in different way: rank | id ~ player(name|team).
 Which means that players are playing in teams, and results are observed for
 teams not for players. For more see vignette.

data data.frame which contains columns specified in formula, and optional columns
 defined by lambda, weight.

r named vector of initial players ratings estimates. If not specified then r will
 be created automatically for parameters specified in formula with initial value
 init_r.

rd rd named vector of initial rating deviation estimates. If not specified then rd will
 be created automatically for parameters specified in formula with initial value
 init_rd.

sigma (only for glicko2) named vector of initial players ratings estimates. If not speci-
 fied then sigma will be created automatically for parameters specified in formula
 with initial value init_sigma.

lambda name of the column in 'data' containing lambda values or one constant value
 (eg. lambda = colname or lambda = 0.5). Lambda impact prior variance, and
 uncertainty of the matchup result. The higher lambda, the higher prior variance
 and more uncertain result of the matchup. Higher lambda flattens chances of
 winning.

share name of the column in 'data' containing player share in team efforts. It’s used to
 first calculate combined rating of the team and then redistribute ratings update
 back to players level. Warning - it should be used only if formula is specified
 with players nested within teams (‘player(player|team)’).

weight name of the column in 'data' containing weights values or one constant (eg.
 weight = colname or weight = 0.5). Weights increasing (weight > 1) or de-
 creasing (weight < 1) update change. Higher weight increasing impact of event
 result on rating estimate.

init_r initial values for r if not provided. Default (glicko = 1500, glicko2 = 1500,
 bbt = 25, dbl = 0)

init_rd initial values for rd if not provided. Default (glicko = 350, glicko2 = 350, bbt
 = 25/3, dbl = 1)
\end{verbatim}
init_sigma initial values for sigma if not provided. Default = 0.5
kappa controls rd shrinkage not to be greater than rd*(1 - kappa). 'kappa=1' means that rd will not be decreased.
tau The system constant. Which constrains the change in volatility over time. Reasonable choices are between 0.3 and 1.2 (default = 0.5), though the system should be tested to decide which value results in greatest predictive accuracy. Smaller values of tau prevent the volatility measures from changing by large amounts, which in turn prevent enormous changes in ratings based on very improbable results. If the application of Glicko-2 is expected to involve extremely improbable collections of game outcomes, then 'tau' should be set to a small value, even as small as, say, tau= 0.

Value

A "rating" object is returned:

- **final_r** named vector containing players ratings.
- **final_rd** named vector containing players ratings deviations.
- **final_sigma** named vector containing players ratings volatile.
- **r** data.frame with evolution of the ratings and ratings deviations estimated at each event.
- **pairs** pairwise combinations of players in analysed events with prior probability and result of a challenge.
- **class** of the object.
- **method** type of algorithm used.
- **settings** arguments specified in function call.

Examples

```r
# the simplest example
data <- data.frame(
id = c(1, 1, 1, 1),
team = c("A", "A", "B", "B"),
player = c("a", "b", "c", "d"),
rank_team = c(1, 1, 2, 2),
rank_player = c(3, 4, 1, 2)
)

# Example from Glickman
glicko2 <- glicko2_run(
data = data,
formula = rank_player | id ~ player(player),
r = setNames(c(1500.0, 1400.0, 1550.0, 1700.0), c("a", "b", "c", "d")),
rd = setNames(c(200.0, 30.0, 100.0, 300.0), c("a", "b", "c", "d"))
)

# nested matchup
glicko2 <- glicko2_run(
data = data,
formula = rank_player | id ~ player(player),
r = setNames(c(1500.0, 1400.0, 1550.0, 1700.0), c("a", "b", "c", "d")),
rd = setNames(c(200.0, 30.0, 100.0, 300.0), c("a", "b", "c", "d"))
)
```
glicko_run

```r
formula = rank_team | id ~ player(player | team)
```

Glicko rating algorithm

Description

Glicko rating algorithm

Usage

```r
glicko_run(
data, 
formula, 
r = numeric(0), 
rd = numeric(0), 
init_r = 1500, 
init_rd = 350, 
lambda = numeric(0), 
share = numeric(0), 
weight = numeric(0), 
kappa = 0.5
)
```

Arguments

- **data**: data.frame which contains columns specified in formula, and optional columns defined by lambda, weight.
- **formula**: formula which specifies the model. RHS Allows only player rating parameter and it should be specified in following manner:
  ```r
  rank | id ~ player(name).
  ```
 - rank player position in event.
 - id event identifier in which pairwise comparison is assessed.
 - player(name) name of the contestant. In this case player(name) helps algorithm point name of the column where player names are stored.
 Users can also specify formula in in different way: rank | id ~ player(name|team). Which means that players are playing in teams, and results are observed for teams not for players. For more see vignette.
- **r**: named vector of initial players ratings estimates. If not specified then r will be created automatically for parameters specified in formula with initial value init_r.
- **rd**: rd named vector of initial rating deviation estimates. If not specified then rd will be created automatically for parameters specified in formula with initial value init_rd.
init_r initial values for r if not provided. Default (glicko = 1500, glicko2 = 1500, bbt = 25, dbl = 0)
init_rd initial values for rd if not provided. Default (glicko = 350, glicko2 = 350, bbt = 25/3, dbl = 1)
lambda name of the column in 'data' containing lambda values or one constant value (eg. lambda = colname or lambda = 0.5). Lambda impact prior variance, and uncertainty of the matchup result. The higher lambda, the higher prior variance and more uncertain result of the matchup. Higher lambda flattens chances of winning.
share name of the column in 'data' containing player share in team efforts. It's used to first calculate combined rating of the team and then redistribute ratings update back to players level. Warning - it should be used only if formula is specified with players nested within teams ('player(player|team)').
weight name of the column in 'data' containing weights values or one constant (eg. weight = colname or weight = 0.5). Weights increasing (weight > 1) or decreasing (weight < 1) update change. Higher weight increasing impact of event result on rating estimate.
kappa controls rd shrinkage not to be greater than rd*(1 - kappa). ‘kappa=1’ means that rd will not be decreased.

Value
A "rating" object is returned:
- final_r named vector containing players ratings.
- final_rd named vector containing players ratings deviations.
- r data.frame with evolution of the ratings and ratings deviations estimated at each event.
- pairs pairwise combinations of players in analysed events with prior probability and result of a challenge.
- class of the object.
- method type of algorithm used.
- settings arguments specified in function call.

Examples
the simplest example
data <- data.frame(
id = c(1, 1, 1, 1),
team = c("A", "A", "B", "B"),
player = c("a", "b", "c", "d"),
rank_team = c(1, 1, 2, 2),
rank_player = c(3, 4, 1, 2)
)

Example from Glickman
glicko <- glicko_run(
data = data,
gpheats

formula = rank_player | id ~ player(player),
r = setNames(c(1500.0, 1400.0, 1550.0, 1700.0), c("a", "b", "c", "d")),
r_d = setNames(c(200.0, 30.0, 100.0, 300.0), c("a", "b", "c", "d"))

nested matchup
glicko <- glicko_run(
data = data,
formula = rank_team | id ~ player(player | team)
)

gpheats

Heat results of Speedway Grand-Prix

Description

Actual dataset containing heats results of all Speedway Grand-Prix tournaments gpheats.

Format

A data frame with >19000 rows and 11 variables:

- **id** event identifier
- **season** year of Grand-Prix, 1995-now
- **date** date of tournament
- **round** round in season
- **name** Turnament name
- **heat** heat number, 1-23
- **field** number of gate, 1-4
- **rider** rider name, string
- **points** paints gained, integer
- **position** position at finish line, string
- **rank** rank at finish line, integer

Source

internal
gpsquads

Tournament results of Speedway Grand-Prix

Description

Actual dataset containing tournament results of all Speedway Grand-Prix events.

Format

A data frame with >4000 rows and 9 variables:

- **id**: event identifier
- **season**: year of Grand-Prix, 1995-now
- **date**: date of tournament
- **place**: stadium of event
- **round**: round in season
- **name**: Tournament name
- **rider**: rider names, 1-6
- **points**: points gained, integer
- **classification**: classification after an event

Source

internal

plot.rating

Plot rating object

Description

Plot rating object

Usage

```r
## S3 method for class 'rating'
plot(x, n = 10, players, ...)
```

Arguments

- `x`: of class rating
- `n`: number of teams to be plotted
- `players`: optional vector with names of the contestants (coefficients) to plot their evolution in time.
- `...`: optional arguments
Predict rating model

Description

Predict rating model

Usage

```r
## S3 method for class 'rating'
predict(object, newdata, ...)
```

Arguments

- `object` of class rating
- `newdata` data.frame with data to predict
- `...` optional arguments

Value

Probabilities of winning challenge by player over his opponent in all provided events.

Examples

```r
glicko <- glicko_run(data = gpheats[1:16, ],
                     formula = rank | id ~ player(rider))
predict(glicko, gpheats[17:20, ])
```

Apply rating algorithm

Description

Apply rating algorithm

Usage

```r
rating_run(method, data, formula, r = numeric(0),
           rd = numeric(0), sigma = numeric(0),
           init_r = numeric(0),
           ...)```
init_rd = numeric(0),
init_sigma = numeric(0),
lambda = numeric(0),
share = numeric(0),
weight = numeric(0),
kappa = numeric(0),
tau = numeric(0)
)

Arguments

method          one of c("glicko", "glicko2", "bbt", "dbl")
data            data.frame which contains columns specified in formula, and optional columns defined by lambda, weight.
formula         formula which specifies the model. RHS Allows only player rating parameter and it should be specified in following manner:
rank | id ~ player(name).
    • rank player position in event.
    • id event identifier in which pairwise comparison is assessed.
    • player(name) name of the contestant. In this case player(name) helps algorithm point name of the column where player names are stored.

Users can also specify formula in a different way: rank | id ~ player(name|team).
Which means that players are playing in teams, and results are observed for teams not for players. For more see vignette.

r               named vector of initial players ratings estimates. If not specified then r will be created automatically for parameters specified in formula with initial value init_r.
rd              rd named vector of initial rating deviation estimates. If not specified then rd will be created automatically for parameters specified in formula with initial value init_rd.
sigma          (only for glicko2) named vector of initial players ratings estimates. If not specified then sigma will be created automatically for parameters specified in formula with initial value init_sigma.
init_r          initial values for r if not provided. Default (glicko = 1500, glicko2 = 1500, bbt = 25, dbl = 0)
init_rd         initial values for rd if not provided. Default (glicko = 350, glicko2 = 350, bbt = 25/3, dbl = 1)
init_sigma      initial values for sigma if not provided. Default = 0.5
lambda          name of the column in ‘data’ containing lambda values or one constant value (eg. lambda = colname or lambda = 0.5). Lambda impact prior variance, and uncertainty of the matchup result. The higher lambda, the higher prior variance and more uncertain result of the matchup. Higher lambda flattens chances of winning.
share  
name of the column in ‘data’ containing player share in team efforts. It’s used to first calculate combined rating of the team and then redistribute ratings update back to players level. Warning - it should be used only if formula is specified with players nested within teams (‘player(player|team)’).

weight  
name of the column in ‘data’ containing weights values or one constant (eg. weight = colname or weight = 0.5). Weights increasing (weight > 1) or decreasing (weight < 1) update change. Higher weight increasing impact of event result on rating estimate.

kappa  
controls rd shrinkage not to be greater than rd*(1 - kappa). ‘kappa=1’ means that rd will not be decreased.

tau  
The system constant. Which constrains the change in volatility over time. Reasonable choices are between 0.3 and 1.2 (default = 0.5), though the system should be tested to decide which value results in greatest predictive accuracy. Smaller values of tau prevent the volatility measures from changing by large amounts, which in turn prevent enormous changes in ratings based on very improbable results. If the application of Glicko-2 is expected to involve extremely improbable collections of game outcomes, then ‘tau’ should be set to a small value, even as small as, say, tau= 0.

---

**summary.rating**  
*Summarizing rating objects*

**Description**

Summarizing rating objects Summary for object of class ‘rating’

**Usage**

```r
S3 method for class 'rating'
summary(object, ...)
```

**Arguments**

- `object` of class rating
- `...` optional arguments

**Value**

List with following elements

- formula modeled formula.
- method type of algorithm used.
- Overall Accuracy named vector containing players ratings.
- r data.frame summarized players ratings and model winning probabilities. Probabilities are returned only in models with one variable (ratings)
- name of a player
- r players ratings
- rd players ratings deviation
- 'Model probability' mean predicted probability of winning the challenge by the player.
- 'True probability' mean observed probability of winning the challenge by the player.
- 'Accuracy' Accuracy of prediction.
- 'pairings' number of pairwise occurrences.

Examples

```r
model <- glicko_run(formula = rank | id ~ player(rider),
 data = gpheats[1:102,])
summary(model)
```
Index

bbt_run, 2

dbl_run, 4

glicko2_run, 6
glicko_run, 9
gpheats, 11
gpsquads, 12

plot.rating, 12
predict.rating, 13

rating_run, 13

summary.rating, 15