Package ‘spsur’

April 22, 2022

Type Package
Title Spatial Seemingly Unrelated Regression Models
Version 1.0.2.1
Date 2022-04-22
Maintainer Roman Minguez <roman.minguez@uclm.es>

Description A collection of functions to test and estimate Seemingly Unrelated Regression (usually called SUR) models, with spatial structure, by maximum likelihood and three-stage least squares. The package estimates the most common spatial specifications, that is, SUR with Spatial Lag of X regressors (called SUR-SLX), SUR with Spatial Lag Model (called SUR-SLM), SUR with Spatial Error Model (called SUR-SEM), SUR with Spatial Durbin Model (called SUR-SDM), SUR with Spatial Durbin Error Model (called SUR-SDEM), SUR with Spatial Autoregressive terms and Spatial Autoregressive Disturbances (called SUR-SARAR), SUR-SARAR with Spatial Lag of X regressors (called SUR-GNM) and SUR with Spatially Independent Model (called SUR-SIM). The methodology of these models can be found in next references: Mur, J., Lopez, F., and Herrera, M. (2010) <doi:10.1080/17421772.2010.516443>; Lopez, F.A., Mur, J., and Angulo, A. (2014) <doi:10.1007/s00168-014-0624-2> and Lopez, F.A., Minguez, R. and Mur, J. (2020) <doi:10.1007/s00168-019-00914-1>.

LazyData true
Encoding UTF-8
License GPL-3

 Depends R (>= 4.1), methods (>= 4.1), stats (>= 4.1)
 Imports car (>= 3.0-12), Formula (>= 1.2-4), ggplot2 (>= 3.3.5), gmodels (>= 2.18.1), gridExtra (>= 2.3), knitr (>= 1.37), lmtest (>= 0.9-40), MASS (>= 7.3-56), Matrix (>= 1.4-0), minqa (>= 1.2.4), numDeriv (>= 2016.8-1.1), rlang (>= 1.0.1), Rdpack (>= 2.1.4), rmarkdown (>= 2.12), sparseMVN (>= 0.2.2), spatialreg (>= 1.2-3), spdep (>= 1.2-2), sphet (>= 2.0)
R topics documented:

Suggests bookdown (>= 0.24), dplyr (>= 1.0.8), sf (>= 1.0.7)

VignetteBuilder knitr

RoxygenNote 7.1.2

Rd Macros Rdpack

URL https://CRAN.R-project.org/package=spsur

BugReports https://github.com/rominsal/spsur/issues

NeedsCompilation no

Author Ana Angulo [aut],
 Fernando A Lopez [aut],
 Roman Minguez [aut, cre],
 Jesus Mur [aut]

Repository CRAN

Date/Publication 2022-04-22 21:50:02 UTC

R topics documented:

dgp_spsur .. 3
impactpsur .. 8
lmtestpsur .. 14
lrtestpsur .. 18
lr_betas .. 21
methods_spsur .. 24
NCOVR.sf .. 25
print.summary.spsur 27
spain.covid .. 27
spain.covid.sf .. 29
spc ... 30
spsur ... 31
spsur3sls ... 34
spsurgs3sls .. 39
spsurml .. 44
spsurtime ... 53
summary.spsur .. 58
wald_betas ... 59
wald_deltas ... 61
Wspec ... 64

Index 65
dgp_spsur

Generation of a random dataset with a spatial SUR structure.

Description

The purpose of the function `dgp_spsur` is to generate a random dataset with the dimensions and spatial structure decided by the user. This function may be useful in pure simulation experiments or with the aim of showing specific properties and characteristics of a spatial SUR dataset and inferential procedures related to them.

The user of `dgp_spsur` should think in terms of a Monte Carlo experiment. The arguments of the function specify the dimensions of the dataset to be generated, the spatial mechanism underlying the data, the intensity of the SUR structure among the equations and the values of the parameters to be used to obtain the simulated data, which includes the error terms, the regressors and the explained variables.

Usage

```r
dgp_spsur(Sigma, Tm = 1, G, N, Betas, Thetas = NULL, rho = NULL, lambda = NULL, p = NULL, listw = NULL, X = NULL, type = "matrix", pdfU = "nvrnorm", pdfX = "nvrnorm")
```

Arguments

- **Sigma**: Covariance matrix between the G equations of the SUR model. This matrix should be definite positive and the user must check for that.
- **Tm**: Number of time periods. Default = 1
- **G**: Number of equations.
- **N**: Number of cross-section or spatial units.
- **Betas**: A row vector of order $(1 \times P)$ showing the values for the beta coefficients. The first P_1 terms correspond to the first equation (where the first element is the intercept), the second P_2 terms to the coefficients of the second equation and so on.
- **Thetas**: Values for the θ coefficients in the G equations of the model, when the type of spatial SUR model to be simulated is a "slx", "sdm" or "sdem". Thetas is a row vector of order $1 \times P\theta$, where $P\theta = p - G$; let us note that the intercept cannot appear among the spatial lags of the regressors. The first $1 \times K\theta_1$ terms correspond to the first equation, the second $1 \times P\theta_2$ terms correspond to the second equation, and so on. Default = NULL.
- **rho**: Values of the coefficients $\rho_g; g = 1, 2, \ldots, G$ related to the spatial lag of the explained variable of the g-th equation. If rho is an scalar and there are G equations in the model, the same value will be used for all the equations. If rho is a row vector, of order $(1 \times G)$, the function `dgp_spsur` will use these values, one for each equation. Default = NULL.
Values of the coefficients $\lambda_g; g = 1, 2, ..., G$ related to the spatial lag of the errors in the G equations. If λ is an scalar and there are G equations in the model, the same value will be used for all the equations. If λ is a row vector, of order $(1 \times G)$, the function dgp_spsur will use these values, one for each equation of the spatial errors. Default = NULL.

Number of regressors by equation, including the intercept. p can be a row vector of order $(1 \times G)$, if the number of regressors is not the same for all the equations, or a scalar, if the G equations have the same number of regressors.

A listw object created for example by nb2listw from spatialreg package; if nb2listw not given, set to the same spatial weights as the listw argument. It can also be a spatial weighting matrix of order $(N \times N)$ instead of a listw object. Default = NULL.

This argument tells the function dgp_spsur which X matrix should be used to generate the SUR dataset. If X is different from NULL, dgp_spsur will upload the X matrix selected in this argument. Note that the X must be consistent with the dimensions of the model. If X is NULL, dgp_spsur will generate the desired matrix of regressors from a multivariate Normal distribution with mean value zero and identity $(P \times P)$ covariance matrix. As an alternative, the user may change this probability distribution function to the uniform case, $U(0, 1)$, through the argument pdfX. Default = NULL.

Selection of the type of output. The alternatives are matrix, df, panel, all. Default matrix

Multivariate probability distribution function, $Mpdf$, from which the values of the error terms will be drawn. The covariance matrix is the Σ matrix specified by the user in the argument. Two alternatives "lognvrnorm", "nvrnorm". Default "nvrnorm".

Sigma. The function dgp_spsur provides two Mpdf, the multivariate Normal, which is the default, and the log-Normal distribution function which means just exponentiate the sampling drawn form a $N(0, \Sigma)$ distribution. Default = "nvrnorm".

Multivariate probability distribution function (Mpdf), from which the values of the regressors will be drawn. The regressors are assumed to be independent. dgp_spsur provides two Mpdf, the multivariate Normal, which is the default, and the uniform in the interval $U(0, 1]$, using the dunif function. dunif, from the stats package. Two alternatives "nvrunif", "nvrnorm". Default "nvrnorm".

The purpose of the function dgp_spsur is to generate random datasets, of a SUR nature, with the spatial structure decided by the user. The function requires certain information to be supplied externally because, in fact, dgp_spsur constitutes a Data Generation Process, DGP. The following aspects should be addressed:

- The user must define the dimensions of the dataset, that is, number of equations, G, number of time periods, Tm, and number of cross-sectional units, N.
- The user must choose the type of spatial structure desired for the model from among the list of candidates of "sim", "slx", "slm", "sem", "sdm", "sdem" or "sarar". The default is the
"sim" specification which does not have spatial structure. The decision is made implicitly, just omitting the specification of the spatial parameters which are not involved in the model (i.e., in a "slm" there are no \(\lambda \) parameters but appear \(\rho \) parameters; in a "sdem" model there are \(\lambda \) and \(\theta \) parameters but no \(\rho \) coefficients).

- If the user needs a model with spatial structure, a \((N\times N)\) weighting matrix, \(W \), should be chosen.
- The next step builds the equations of the SUR model. In this case, the user must specify the number of regressors that intervene in each equation and the coefficients, \(\beta \) parameters, associated with each regressor. The first question is solved through the argument \(p \) which, if a scalar, indicates that the same number of regressors should appear in all the equations of the model; if the user seeks for a model with a different number of regressors in the \(G \) equations, the argument \(p \) must be a \((1\times G)\) row vector with the required information. It must be remembered that \texttt{dgp_spsur} assumes that an intercept appears in all equations of the model.
- The second part of the problem posited above is solved through the argument \(\text{Betas} \), which is a row vector of order \((1\times p)\) with the information required for this set of coefficients.
- The user must specify, also, the values of the spatial parameters corresponding to the chosen specification; we are referring to the \(\rho_g \), \(\lambda_g \) and \(\theta_g \), for \(g = 1, \ldots, G \) parameters. This is done through the arguments \(\text{rho, lambda} \) and \(\text{theta} \). The first two, \(\text{rho} \) and \(\text{lambda} \), work as \(K \): if they are scalar, the same value will be used in the \(G \) equations of the SUR model; if they are \((1\times G)\) row vectors, a different value will be assigned for each equation.
- Moreover, \(\text{Theta} \) works like the argument \(\text{Betas} \). The user must define a row vector of order \(1\times P\text{Theta} \) showing these values. It is worth to remember that in no case the intercept will appear among the lagged regressors.
- With the argument \(\text{type} \) the user take the decision of the output format. See Value section.
- Finally, the user must decide which values of the regressors and of the error terms are to be used in the simulation. The regressors can be uploaded from an external matrix generated previously by the user. This is the argument \(X \). It is the responsibility of the user to check that the dimensions of the external matrix are consistent with the dataset required for the SUR model. A second possibility implies the regressors to be generated randomly by the function \texttt{dgp_spsur}. In this case, the user must select the probability distribution function from which the corresponding data (of the regressors and the error terms) are to be drawn.

dgp_spsur provides two multivariate distribution functions, namely, the Normal and the log-Normal for the errors (the second should be taken as a clear departure from the standard assumption of normality). In both cases, random matrices of order \((T\times N\times G)\) are obtained from a multivariate normal distribution, with a mean value of zero and the covariance matrix specified in the argument \(\text{Sigma} \); then, this matrix is exponentiated for the log-Normal case. Roughly, the same procedure applies for drawing the values of the regressor. There are two distribution functions available, the normal and the uniform in the interval \([0, 1]\); the regressors are always independent.

Value

The default output ("matrix") is a list with a vector \(Y \) of order \((T\times N\times G)\) with the values generated for the explained variable in the \(G \) equations of the SUR and a matrix \(XX \) of order \((T\times N\times k)\), with the values generated for the regressors of the SUR, including an intercept for each equation.

In case of \(T = 1 \) or \(G = 1 \) several alternatives output can be select:
• If the user select type = "df" the output is a data frame where each column is a variable.
• If the user select type = "panel" the output is a data frame in panel format including two factors. The first factor point out the observation of the individual and the second the equation for different Tm or G.
• Finally, if type = "all" is select the output is a list including all alternatives format.

Author(s)

Fernando Lopez <fernando.lopez@upct.es>
Roman Minguez <roman.minguez@uclm.es>
Jesus Mur <jmur@unizar.es>

References

See Also

spsurml, spsur3sls, spsurt ime

Examples

```R
## VIP: The output of the whole set of the examples can be examined
## by executing demo(demo_dgp_spsur, package="spsur")

############################################################
### PANEL DATA (Tm = 1 or G = 1) ###
############################################################

############################################################
#### Example 1: DGP SLM model. G equations
############################################################
rm(list = ls()) # Clean memory
Tm <- 1 # Number of time periods
G <- 3 # Number of equations
N <- 200 # Number of spatial elements
p <- 3 # Number of independent variables
Sigma <- matrix(0.3, ncol = G, nrow = G)
diag(Sigma) <- 1
Betas <- c(1, 2, 3, 1, -1, 0.5, 1, -0.5, 2)
rho <- 0.5 # level of spatial dependence
lambda <- 0.0 # spatial autocorrelation error term = 0
## random coordinates
go <- cbind(runif(N,0,1),runif(N,0,1))
```
lw <- spdep::nb2listw(spdep::knn2nb(spdep::knearneigh(co, k = 5, longlat = FALSE)))

DGP <- dgp_spsur(Sigma = Sigma, Betas = Betas, rho = rho, lambda = lambda, Tm = Tm, G = G, N = N, p = p, listw = lw)

SLM <- spsurml(X = DGP$X, Y = DGP$Y, Tm = Tm, N = N, G = G, p = c(3, 3, 3), listw = lw, type = "slm")

summary(SLM)

##
Example 2: DGP SEM model with Tm>1; G=1 and different p for each equation
##
rm(list = ls()) # Clean memory
Tm <- 3 # Number of time periods
G <- 1 # Number of equations
N <- 500 # Number of spatial elements
p <- c(2,3,4) # Number of independent variables
Sigma <- matrix(0.8, ncol = Tm, nrow = Tm)
diag(Sigma) <- 1
Betas <- c(1,2,1,2,3,1,2,3,4)
rho <- 0 # level of spatial dependence = 0
lambda <- c(0.2,0.5,0.8)

summary(SLM)

SEM2 <- spsurml(X = DGP2$X, Y = DGP2$Y, Tm = Tm, N = N, G = G, p = c(2,3,4), listw = lw, type = "sem")

summary(SEM2)

##
Example 3: DGP SEM model with Tm>1; G=1 and different p for each equation. Output "df"
##
rm(list = ls()) # Clean memory
Tm <- 3 # Number of time periods
G <- 1 # Number of equations
N <- 500 # Number of spatial elements
p <- c(2,3,4) # Number of independent variables
Sigma <- matrix(0.8, ncol = Tm, nrow = Tm)
diag(Sigma) <- 1
Betas <- c(1,2,1,2,3,1,2,3,4)
rho <- 0 # level of spatial dependence = 0
lambda <- c(0.2,0.5,0.8)
impactspsur

Direct, indirect and total effects estimated for a spatial SUR model

Description

This function is a wrapper for impacts method used in spatialreg package. Nevertheless, in this case the same method is used for both lagsarlm and lmSLX objects. For details of implementation, see the documentation of impacts function in spatialreg package.
The function obtains the multiplier effects, on the explained variable, of a change in a regressor for the model that has been estimated. For reasons given below, this function only applies to models with an autoregressive structure ("slm", "sdm", "sarar" and "gnm") or with spatial lags of the regressors ("slx", "sdem").

The measurement of the multiplier effects is a bit more complicated than in a pure time series context because, due to the spatial structure of the model, part of the impacts spills over non uniformly over the space. Using the notation introduced by LeSage and Pace (2009) we distinguish between:

- **Average Direct effects**: The average over the \(N \) spatial units and \(T_m \) time periods of the effect of a unitary change in the value of an explanatory variable on the contemporaneous value of the corresponding explained variable, located in the same point of the intervened regressor. This calculus is solved for all the regressors that appear in the \(G \) equations of the model.

- **Average Indirect effects**: The average over the \(N \) spatial units and \(T_m \) time periods of the effects of a unitary change in the value of an explanatory variable on the contemporaneous value of the corresponding explained variable, located in a different spatial unit that of the intervened regressor. This calculus is solved for all the regressors that appear in the \(G \) equations of the model.

- **Average total effects**: The sum of Direct and Indirect effects.

The information on the three estimated effects is supplement with an indirect measure of statistical significance obtained from the randomization approach introduced in LeSage and Pace (2009).

Usage

```r
impactspsur (obj, ..., tr = NULL, R = NULL, listw = NULL, evalues = NULL, tol = 1e-06, empirical = FALSE, Q = NULL)
```

Arguments

- `obj`: An `spsur` object created by `spsurml`, `spsur3sls` or `spsurtime`.
- `...`: Arguments passed through to methods in the `coda` package.
- `tr`: A vector of traces of powers of the spatial weights matrix created using `trW`, for approximate impact measures; if not given, `listw` must be given for exact measures (for small to moderate spatial weights matrices); the traces must be for the same spatial weights as were used in fitting the spatial regression, and must be row-standardised.
- `R`: If given, simulations are used to compute distributions for the impact measures, returned as `mcmc` objects; the objects are used for convenience but are not output by an MCMC process.
- `listw`: If `tr` is not given, a spatial weights object as created by `nb2listw`; they must be the same spatial weights as were used in fitting the spatial regression, but do not have to be row-standardised.
- `evalues`: vector of eigenvalues of spatial weights matrix for impacts calculations.
- `tol`: Argument passed to `mvnrnorm`: tolerance (relative to largest variance) for numerical lack of positive-definiteness in the coefficient covariance matrix.
empirical

Argument passed to mvrnorm (default FALSE): if true, the coefficients and their covariance matrix specify the empirical not population mean and covariance matrix.

Q

default NULL, else an integer number of cumulative power series impacts to calculate if tr is given.

Details

LeSage and Pace (2009) adapt the classical notion of 'economic multiplier' to the problem of measuring the impact that a unitary change in the value of a regressor, produced in a certain point in space, has on the explained variable. The question is interesting because, due to the spatial structure of the model, the impacts of such change spill non uniformly over the space. In fact, the reaction of the explained variable depends on its relative location in relation to the point of intervention.

To simplify matters, LeSage and Pace (2009) propose to obtain aggregated multipliers for each regressor, just averaging the N^2 impacts that results from intervening the value of each regressor on each of the N points in Space, on the explained variable, measured also in each of the N points in space. This aggregated average is the so-called Total effect.

Part of this impact will be absorbed by the explained variable located in the same point of the regressor whose value has been changed (for example, the k-th regressor in the g-th equation, in the n-th spatial unit) or, in other words, we expect that $\frac{dy_{tgn}}{dx_{ktgn}} ne 0$. The aggregated average for the N points in space (n=1,2,...,N) and Tm time periods is the so-called Direct effect. The difference between the Total effect and the Direct effect measures the portion of the impact on the explained variable that leaks to other points in space, $\frac{dy_{tgn}}{dx_{ktgm}} for n ne 0$; this is the Indirect effect.

impacts obtains the three multipliers together with an indirect measure of statistical significance, according to the randomization approach described in Lesage and Pace (2009). Briefly, they suggest to obtain a sequence of $nsim$ random matrices of order $(NTmG)$ from a multivariate normal distribution $N(0; Sigma)$, being Sigma the estimated covariance matrix of the G equations in the SUR model. These random matrices, combined with the observed values of the regressors and the estimated values of the parameters of the corresponding spatial SUR model, are used to obtain simulated values of the explained variables. Then, for each one of the $nsim$ experiments, the SUR model is estimated, and the effects are evaluated. The function impacts obtains the standard deviations of the $nsim$ estimated effects in the randomization procedure, which are used to test the significance of the estimated effects for the original data.

Finally, let us note that this is a SUR model where the G equations are connected only through the error terms. This means that if we intervene a regressor in equation g, in any point is space, only the explained variable of the same equation g should react. The impacts do not spill over equations. Moreover, the impact of a regressor, intervened in the spatial unit n, will cross the borders of this spatial unit only if in the right hand side of the equation there are spatial lags of the explained variables or of the regressors. In other words, the Indirect effect is zero for the "sim" and "sem" models. impacts produces no output for these two models. Lastly, it is clear that all the impacts are contemporaneous because the equations in the SUR model have no time dynamics.

Value

A list of G objects either of class lagImpact or WXImpact.

For each of the G objects of the list, if no simulation is carried out the object returned is a list with:

direct numeric vector
and a matching Qres list attribute if Q was given.

On the other hand, for each of the G objects of the list, if simulation is carried out the object returned is a list with:

- **res** a list with three components as for the non-simulation case, with a matching Qres list attribute if Q was given.
- **sres** a list with three mcmc matrices, for the direct, indirect and total impacts with a matching Qmcmc list attribute if Q was given.

Author(s)

Fernando Lopez
Roman Minguez
Jesus Mur

References

See Also

- impacts, spsurml, spsur3sls

Examples

```r
## VIP: The output of the whole set of the examples can be examined
## by executing demo(demo_impactspsur, package="spsur")
```

```
#-------------------------------
### PURE CROSS SECTIONAL DATA(G>1; Tm=1) ######
#-------------------------------
```
Example 1: Spatial Phillips-Curve. Anselin (1988, p. 203)

```r
rm(list = ls()) # Clean memory
data(spc)
lwspc <- spdep::mat2listw(Wspc, style = "W")
Tformula <- WAGE83 | WAGE81 ~ UN83 + NMR83 + SMSA | UN80 + NMR80 + SMSA
## For SLM, SDM and SARAR models the output is a list of "lagImpact" objects
## See spatialreg::impacts for details.
spcsur_slm <- spsurml(formula = Tformula, data = spc,
                       type = "slm", listw = lwspc)
summary(spcsur_slm)
impacts_slm <- impactspsur(spcsur_slm, listw = lwspc, R = 1000)
## Impacts equation 1
summary(impacts_slm[[1]], zstats = TRUE, short = TRUE)
## Impacts equation 2
summary(impacts_slm[[2]], zstats = TRUE, short = TRUE)
## For SLX and SDEM models the output is a list of "WXImpact" objects
## See spatialreg::impacts for details.
## A SUR-SLX model
spcsur_slx <- spsurml(formula = Tformula, data = spc,
                      type = "slx", listw = lwspc)
summary(spcsur_slx)
impacts_slx <- impactspsur(spcsur_slx, listw = lwspc)
summary(impacts_slx[[1]], zstats = TRUE, short = TRUE)
summary(impacts_slx[[2]], zstats = TRUE, short = TRUE)
## A SUR-SDM model
spcsur_sdm <- spsurml(formula = Tformula, data = spc,
                       type = "sdm", listw = lwspc)
impacts_sdm <- impactspsur(spcsur_sdm, listw = lwspc, R = 1000)
summary(impacts_sdm[[1]], zstats = TRUE, short = TRUE)
summary(impacts_sdm[[2]], zstats = TRUE, short = TRUE)
## A SUR-SDM model with different spatial lags in each equation
TformulaD <- ~ UN83 + NMR83 + SMSA | UN80
spcsur_sdm2 <- spsurml(formula = Tformula, data = spc, type = "sdm",
                        listw = lwspc, Durbin = TformulaD)
summary(spcsur_sdm2)
impacts_sdm2 <- impactspsur(spcsur_sdm2, listw = lwspc, R = 1000)
summary(impacts_sdm2[[1]], zstats = TRUE, short = TRUE)
summary(impacts_sdm2[[2]], zstats = TRUE, short = TRUE)
## A SUR-SLX model with different spatial lags in each equation
spcsur_slx2 <- spsurml(formula = Tformula, data = spc,
                       type = "slx", listw = lwspc, Durbin = TformulaD)
summary(spcsur_slx2)
impacts_slx2 <- impactspsur(spcsur_slx2, listw = lwspc)
summary(impacts_slx2[[1]], zstats = TRUE, short = TRUE)
summary(impacts_slx2[[2]], zstats = TRUE, short = TRUE)
## A SUR-SDEM model
spcsur_sdem <- spsurml(formula = Tformula, data = spc,
                       type = "sdem", listw = lwspc)
impacts_sdem <- impactspsur(spcsur_sdem, listw = lwspc)
summary(impacts_sdem[[1]], zstats = TRUE, short = TRUE)
summary(impacts_sdem[[2]], zstats = TRUE, short = TRUE)
```
A SUR-SARAR model

```r
spcsur_sarar <- spsurlm(formula = Tformula, data = spc,
                         type = "sarar", listw = lwspc,
                         control = list(tol = 0.01))
impacts_sarar <- impactspsur(spcsur_sarar, listw = lwspc, R = 1000)
summary(impacts_sarar[[1]], zstats = TRUE, short = TRUE)
summary(impacts_sarar[[2]], zstats = TRUE, short = TRUE)
```

A SUR-GNM model

```r
spcsur_gnm <- spsurlm(formula = Tformula, data = spc,
                       type = "gnm", listw = lwspc,
                       control = list(tol = 0.1))
impacts_gnm <- impactspsur(spcsur_gnm, listw = lwspc, R = 1000)
summary(impacts_gnm[[1]], zstats = TRUE, short = TRUE)
summary(impacts_gnm[[2]], zstats = TRUE, short = TRUE)
```

A SUR-GNM model with different spatial lags in each equation

```r
TformulaD <- ~ UN83 + NMR83 + SMSA | UN80
spcsur_gnm2 <- spsurlm(formula = Tformula, data = spc, type = "gnm",
                        listw = lwspc, Durbin = TformulaD,
                        control = list(tol = 0.1))
summary(spcsur_gnm2)
impacts_gnm2 <- impactspsur(spcsur_gnm2, listw = lwspc, R = 1000)
summary(impacts_gnm2[[1]], zstats = TRUE, short = TRUE)
summary(impacts_gnm2[[2]], zstats = TRUE, short = TRUE)
```

A SUR-SLM model

```r
NCOVRSUR_slm <- spsurlm(formula = Tformula, data = NCOVR.sf,
                         type = "slm", listw = lwncovr,
                         method = "Matrix", zero.policy = TRUE,
                         control = list(fdHess = TRUE))
summary(NCOVRSUR_slm)
```

A SUR-SDM model

```r
NCOVRSUR_sdm <- spsurlm(formula = Tformula, data = NCOVR.sf,
                         type = "sdm", listw = lwncovr,
                         method = "Matrix", zero.policy = TRUE,
                         control = list(fdHess = TRUE))
summary(NCOVRSUR_sdm)
```
lmtestspsur

Testing for the presence of spatial effects in Seemingly Unrelated Re-
gressions

Description

The function spsurml reports a collection of Lagrange Multipliers designed to test for the presence of different forms of spatial dependence in a SUR model of the "sim" type. That is, the approach of this function is from 'specific to general'. As said, the model of the null hypothesis is the "sim" model whereas the model of the alternative depends on the effect whose omission we want to test.

The collection of Lagrange Multipliers obtained by lmtestspsur are standard in the literature and take into account the multivariate nature of the SUR model. As a limitation, note that each Multiplier tests for the omission of the same spatial effects in all the cross-sections of the G equations.

Usage

lmtestspsur(...)

S3 method for class 'formula'

further arguments passed to the method.

...
formula An object type Formula similar to objects created with the package Formula describing the equations to be estimated in the model. This model may contain several responses (explained variables) and a varying number of regressors in each equation.

data An object of class data.frame or a matrix.

listw A listw object created for example by nb2listw from spatialreg package; if nb2listw not given, set to the same spatial weights as the listw argument. It can also be a spatial weighting matrix of order (NxN) instead of a listw object. Default = NULL.

na.action A function (default options("na.action")), can also be na.omit or na.exclude with consequences for residuals and fitted values. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations.

time time index for the spatial panel SUR data.

Tm Number of time periods.

zero.policy Similar to the corresponding parameter of lagsarlm function in spatialreg package. If TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA - causing spsurlm() to terminate with an error. Default = NULL.

R A row vector of order (1xpr) with the set of r linear constraints on the beta parameters. The first restriction appears in the first p terms, the second restriction in the next p terms and so on. Default = NULL.

b A column vector of order (rx1) with the values of the linear restrictions on the beta parameters. Default = NULL.

Y A column vector of order (NTmGx1), with the observations of the explained variables. The ordering of the data must be (first) equation, (second) time dimension and (third) cross-sectional/spatial units. The specification of Y is only necessary if not available a Formula and a data frame. Default = NULL.

X A data matrix of order (NTmGxp) with the observations of the regressors. The number of covariates in the SUR model is \(p = \sum(p_g) \) where \(p_g \) is the number of regressors (including the intercept) in the g-th equation, \(g = 1, \ldots, G \). The specification of “X” is only necessary if not available a Formula and a data frame. Default = NULL.

G Number of equations.

N Number of cross-section or spatial units

p Number of regressors by equation, including the intercept. p can be a row vector of order (1xG), if the number of regressors is not the same for all the equations, or a scalar, if the G equations have the same number of regressors. The specification of p is only necessary if not available a Formula and a data frame.

Details

lmtestspsur tests for the omission of spatial effects in the "sim" version of the SUR model:
$y_{tg} = X_{tg} \beta_g + u_{tg}$

$E[u_{tg} u_{th}'] = \sigma_{gh} I_N \quad E[u_{tg} u_{sh}'] = 0$ if $t \neq s$

where y_{tg} and u_{tg} are $(N \times 1)$ vectors, corresponding to the g-th equation and time period t; X_{tg} is the matrix of exogenous variables, of order $(N \times p_g)$. Moreover, β_g is an unknown $(p_g \times 1)$ vector of coefficients and $\sigma_{gh} I_N$ the covariance between equations g and h, being σ_{gh} and scalar and I_N the identity matrix of order N.

The Lagrange Multipliers reported by this function are the followings:

- **LM-SUR-LAG**: Tests for the omission of a spatial lag of the explained variable in the right hand side of the "sim" equation. The model of the alternative is:

 $y_{tg} = \rho_g W y_{tg} + X_{tg} \beta_g + u_{tg}$

 The null and alternative hypotheses are:

 $H_0 : \rho_g = 0 (\text{forall} g)$ vs $H_A : \rho_g \neq 0 (\text{exist} g)$

- **LM-SUR-ERR**: Tests for the omission of spatial dependence in the equation of the errors of the "sim" model. The model of the alternative is:

 $y_{tg} = X_{tg} \beta_g + u_{tg}; u_{tg} = \lambda_g W u_{tg} + \epsilon_{tg}$

 The null and alternative hypotheses are:

 $H_0 : \lambda_g = 0 (\text{forall} g)$ vs $H_A : \lambda_g \neq 0 (\text{exist} g)$

- **LM-SUR-SARAR**: Tests for the simultaneous omission of a spatial lag of the explained variable in the right hand side of the "sim" equation and spatial dependence in the equation of the errors. The model of the alternative is:

 $y_{tg} = \rho_g W y_{tg} + X_{tg} \beta_g + u_{tg}; u_{tg} = \lambda_g W u_{tg} + \epsilon_{tg}$

 The null and alternative hypotheses are:

 $H_0 : \rho_g = \lambda_g = 0 (\text{forall} g)$ vs $H_A : \rho_g \neq 0 \text{or } \lambda_g \neq 0 (\text{exist} g)$

- **LM*-SUR-SLM and LM*-SUR-SEM**: These two test are the robustified version of the original, raw Multipliers, LM-SUR-SLM and LM-SUR-SEM, which can be severely oversized if the respective alternative hypothesis is misspecified (this would be the case if, for example, we are testing for omitted lags of the explained variable whereas the problem is that there is spatial dependence in the errors, or vice-versa). The null and alternative hypotheses of both test are totally analogous to their twin non robust Multipliers.

Value

A list of `htest` objects each one including the Wald statistic, the corresponding p-value and the degrees of freedom.

Author(s)

Fernando Lopez
<fernando.lopez@upct.es>

Roman Minguez
<roman.minguez@uclm.es>

Jesus Mur
<jmur@unizar.es>
References

- Anselin, L. (1988) *Spatial econometrics: methods and models* Chap. 9 Dordrecht

See Also

`spsurml, anova`

Examples

```
#################################################
######## CROSS SECTION DATA (G>1; Tm=1) # #######
#################################################

rm(list = ls()) # Clean memory
data("spc")
Tformula <- WAGE83 | WAGE81 ~ UN83 + NMR83 + SMSA | UN80 + NMR80 + SMSA
lwspc <- spdep::mat2listw(Wspc, style = "W")
lmtestspsur(formula = Tformula, data = spc, listw = lwspc)
## VIP: The output of the whole set of the examples can be examined
## by executing demo(demo_lmtestspsur, package="spsur")

#################################################
######## PANEL DATA (G>1; Tm>1) ########
#################################################

#### Example 2: Homicides & Socio-Economics (1960-90)
# Homicides and selected socio-economic characteristics for
# continental U.S. counties.
# https://geodacenter.github.io/data-and-lab/ncovr/
data(NCOVR, package="spsur")
nbncovr <- spdep::poly2nb(NCOVR.sf, queen = TRUE)
### Some regions with no links...
lwncovr <- spdep::nb2listw(nbncovr, style = "W", zero.policy = TRUE)```
### With different number of exogenous variables in each equation

```r
tformula <- HR70 | HR80 | HR90 ~ PS70 + UE70 | PS80 + UE80 + RD80 | PS90 + UE90 + RD90 + PO90
lmtestspsr(formula = tformula, data = NCOVR.sf,
 listw = lwncovr)
```

```
lrtestspsr
```

---

**lrtestspsr**

*Likelihood Ratio tests for the specification of spatial SUR models.*

**Description**

The function computes a set of Likelihood Ratio tests, LR, that help the user to select the spatial structure of the SUR model. To achieve this goal, `lrtestspsr` needs to estimate the nested SUR models (options: "sim", "slx", "slm", "sem", "sdm", "sdem", and "sarar"), using the function `spsurml`.

The nested models listed above are compared using ANOVA tables and LR tests.

**Usage**

```r
lrtestspsr(objectr, objectu = NULL)
```

**Arguments**

- **objectr** An `spsur` object created by `spsurml`, `spsur3sls` or `spsurtime`.
- **objectu** An `spsur` object created by `spsurml`, `spsur3sls` or `spsurtime` which nests `objectr`. Default = NULL
Details

A fundamental result in maximum-likelihood estimation shows that if model A is nested in model B, by a set of \( n \) restrictions on the parameters of model B, then, as the sample size increases, the test statistic: 
\[-2 \log [l(H_0)/l(H_A)]\] is a \( \chi^2(n) \), being \( l(H_0) \) the estimated likelihood under the null hypothesis (model A) and \( l(H_A) \) the estimated likelihood under the alternative hypothesis (model B).

The list of (spatial) models that can be estimated with the function \texttt{spsurml} includes the following (in addition to the "slx" and "sdem"):

- "sim": SUR model with no spatial effects
  \[ y_{tg} = X_{tg} \beta_g + \epsilon_{tg} \]

- "slm": SUR model with spatial lags of the explained variables
  \[ y_{tg} = \rho_g Wy_{tg} + X_{tg} \beta_g + \epsilon_{tg} \]

- "sem": SUR model with spatial errors
  \[ y_{tg} = X_{tg} \beta_g + u_{tg} \]
  \[ u_{tg} = \lambda_g Wu_{tg} + \epsilon_{tg} \]

- "sdm": SUR model of the Spatial Durbin type
  \[ y_{tg} = \rho_g Wy_{tg} + X_{tt} \beta_g + WX_{tg} \theta_g + \epsilon_{tg} \]

- "sarar": SUR model with spatial lags of the explained variables and spatial errors
  \[ y_{tg} = \rho_g Wy_{tg} + X_{tg} \beta_g + u_{tg} \]
  \[ u_{tg} = \lambda_g Wu_{tg} + \epsilon_{tg} \]

This collection of models can be compared, on objective bases, using the LR principle and the following nesting relations:

- "sim" vs either "slx", slm", "sem", "sdm", "sarar"
- "slm" vs either "sdm", "sarar"
- "sem" vs either "sdm", "sdem", "sarar"
- "slx" vs either "sdm", "sdem"

Value

Object of \texttt{anova} class including, the list of models and, for each model, the logLik, degrees of freedom and AIC. If two nested models have been included as arguments, the corresponding LR-test and its p-value associated.

Author(s)
References


See Also

`spsurml, lmtestspsur`

Examples

```r
Example 1: Spatial Phillips-Curve. Anselin (1988, p. 203)
rm(list = ls()) # Clean memory
data("spc", package = "spsur")
lwspc <- spdep::mat2listw(Wspc, style = "W")
Tformula <- WAGE83 | WAGE81 ~ UN83 + NMR83 + SMSA | UN80 + NMR80 + SMSA
spcsur.slm <- spsurml(formula = Tformula, data = spc,
type = "slm", listw = lwspc)
ANOVA Table SLM model
lrtestspsur(spcsur.slm)
Test ANOVA SIM versus SLM
spcsur.sim <- spsurml(formula = Tformula, data = spc,
type = "sim", listw = lwspc)
lrtestspsur(spcsur.sim, spcsur.slm)
VIP: If you want to examine a particular example eliminate '#' and
execute the code of the example (they have been commented to
pass the checking time in CRAN)
VIP: The output of the whole set of the examples can be examined
by executing demo(demo_lrtestspsur, package="spsur")
Test ANOVA SLM vs SDM
spcsur.sdm <- spsurml(formula = Tformula, data = spc,
type = "sdm", listw = lwspc)
lrtestspsur(spcsur.slm, spcsur.sdm)
Test ANOVA SEM vs SDM
```

Fernando Lopez  <fernando.lopez@upct.es>
Roman Minguez  <roman.minguez@uclm.es>
Jesus Mur  <jmur@unizar.es>
lr_betas

Likelihood ratio for testing homogeneity constraints on beta coefficients of the SUR equations.

Description

Function *lr_betas* obtains a Likelihood Ratio test, LR in what follows, with the purpose of testing if some of the $\beta$ coefficients in the $G$ equations of the SUR model are equal. This function has a straightforward application, especially when $G = 1$, to the case of testing for the existence of structural breaks in the $\beta$ parameters.

The function can test for the homogeneity of only one coefficient, of a few of them or even the homogeneity of all the slope terms. The testing procedure implies, first, the estimation of both a constrained and an unconstrained model and, second, the comparison of the log-likelihoods to compute the LR statistics.

@usage lr_betas (obj, R, b)

Usage

lr_betas(obj, R, b)

Arguments

obj
An spsur object created by *spsurml, spsur3sls* or *spsurtime*.

R
A row vector of order $(1 \times Pr)$ showing the set of $r$ linear constraints on the $\beta$ parameters. The *first* restriction appears in the first $K$ terms in $R$, the *second* restriction in the next $K$ terms and so on.

b
A column vector of order $(rx1)$ with the values of the linear restrictions on the $\beta$ parameters.

Value

Object of *htest* including the LR statistic, the corresponding p-value, the degrees of freedom and the values of the sample estimates.

Author(s)

Fernando Lopez  <fernando.lopez@upct.es>
Roman Minguez  <roman.minguez@uclm.es>
Jesus Mur  <jmur@unizar.es>
References


See Also

`spsurml, spsurtime, wald_betas`

Examples

```r
VIP: The output of the whole set of the examples can be examined
by executing demo(demo_lr_betas, package="spsur")

#' ##
#' CROSS SECTION DATA (G>1; Tm=1) #
#' ##

rmlist = ls()) # Clean memory
data(spc)
lwpc <- spdep::mat2listw(Wspc, style = "W")
Tformula <- WAGE83 | WAGE81 ~ UN83 + NMR83 + SMSA | UN80 + NMR80 + SMSA
H0: equal beta for SMSA in both equations.
R <- matrix(c(0,0,0,1,0,0,0,-1), nrow=1)
b <- matrix(0, ncol=1)
spcsur.slm <- spsurml(formula = Tformula, data = spc,
type = "slm", listw = lwpc)
summary(spcsur.slm)
lr_betas(spcsur.slm, R = R, b = b)

Estimate restricted SUR-SLM model
spcsur.slmr <- spsurml(formula = Tformula, data = spc,
type = "slm", listw = lwpc,
R = R, b = b)
summary(spcsur.slmr)

Example 2: Homicides + Socio-Economics (1960-90)
Homicides and selected socio-economic characteristics for continental
U.S. counties.
\url{https://geodacenter.github.io/data-and-lab/ncovr/}
rmlist = ls()) # Clean memory
data(NCOVR, package="spsur")
nbncovr <- spdep::poly2nb(NCOVR.sf, queen = TRUE)
```

```
Some regions with no links...

```r
lwncovr <- spdep::nb2listw(nbncovr, style = "W", zero.policy = TRUE)
```

H0: equal beta for PS80 and PS90 in both equations.

```r
NCOVRSUR.slm <- spsurml(formula = Tformula, data = NCOVR.sf,
                         type = "slm", listw = lwncovr,
                         method = "LU", zero.policy = TRUE,
                         control = list(fdHess = TRUE))
```

Summary of `NCOVRSUR.slm`:
```r
summary(NCOVRSUR.slm)
```

Restricted model

```r
NCOVRSUR.slmr <- spsurml(formula = Tformula, data = NCOVR.sf,
                          type = "slm", listw = lwncovr,
                          method = "LU", zero.policy = TRUE,
                          control = list(fdHess = TRUE),
                          R = R, b = b)
```

Summary of `NCOVRSUR.slmr`:
```r
summary(NCOVRSUR.slmr)
```

PANEL DATA: TEMPORAL CORRELATIONS (nG=1; nT>1)

Example 3: with classical panel data set. Database is a spatio-temporal panel

```r
N <- nrow(NCOVR.sf)
Tm <- 4
index_time <- rep(1:Tm, each = N)
index_indiv <- rep(1:N, Tm)
pHR <- c(NCOVR.sf$HR60, NCOVR.sf$HR70, NCOVR.sf$HR80, NCOVR.sf$HR90)
pPS <- c(NCOVR.sf$PS60, NCOVR.sf$PS70, NCOVR.sf$PS80, NCOVR.sf$PS90)
pUE <- c(NCOVR.sf$UE60, NCOVR.sf$UE70, NCOVR.sf$UE80, NCOVR.sf$UE90)
pNCOVR <- data.frame(indiv = index_indiv, time = index_time,
                     HR = pHR, PS = pPS, UE = pUE)
form_pHR <- HR ~ PS + UE
## H0: equal PS beta coefficient in equations 1, 3, and 4
## Fit with spsurtime and fit_method = "ml"

```r
pHR.slm <- spsurtime(formula = form_pHR, data = pNCOVR,
 time = pNCOVR$time,
 type = "slm", listw = lwncovr,
 zero.policy = TRUE,
 fit_method = "ml", method = "LU",
 control = list(fdHess = TRUE))
```

Summary of `pHR.slm`:
```r
summary(pHR.slm)
```

### H0: equal betas for PS in equations 1, 3 and 4.

```r
R <- matrix(c(0, 1, 0, 0, -1, 0), nrow = 1)
b <- matrix(0, ncol = 1)
lr_betas(pHR.slm, R = R, b = b)
```
Description

The `anova()` function provides tables of fitted `spsur` models including information criteria (AIC and BIC), log-likelihood and degrees of freedom of each fitted model. The argument `lrtest` allows to perform LR tests between nested models. The `plot()` function allows the user to plot both beta and spatial coefficients for all equations of the `spsur` model. The argument `viewplot` is used to choose between interactive or non-interactive plots. The `print()` function is used to print short tables including the values of beta and spatial coefficients as well as p-values of significance test for each coefficient. This can be used as an alternative to `summary.spsur` when a brief output is needed. The rest of methods works in the usual way.

Usage

```
S3 method for class 'spsur'
anova(object, ..., lrtest = TRUE)

S3 method for class 'spsur'
coef(object, ...)

S3 method for class 'spsur'
fitted(object, ...)

S3 method for class 'spsur'
logLik(object, ...)

S3 method for class 'spsur'
residuals(object, ...)

S3 method for class 'spsur'
vcov(object, ...)

S3 method for class 'spsur'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

S3 method for class 'spsur'
plot(x, ci = 0.95, viewplot = TRUE, ...)
```

Arguments

- `object` a `spsur` object created by `spsurml`, `spsur3sls` or `spsurtime`.
- `...` further arguments passed to or from other methods.
- `lrtest` logical value to compute likelihood ratio test for nested models in ‘anova’ method. Default = TRUE.
x

digits

ci

viewplot

**Author(s)**

Fernando Lopez  <fernando.lopez@upct.es>
Roman Minguez  <roman.minguez@uclm.es>
Jesus Mur  <jmur@unizar.es>

**Examples**

```r
rml(list = ls()) # Clean memory
data(spc)
Tformula <- WAGE83 | WAGE81 ~ UN83 + NMR83 + SMSA | UN80 + NMR80 + SMSA
spcsur.sim <- spsurml(formula = Tformula, data = spc, type = "sim")
Print Table
print(spcsur.sim)

spcsur.slm <- spsurml(formula = Tformula, data = spc, type = "slm",
listw = Wspc)
ANOVA table and LR test for nested models:
anova(spcsur.sim, spcsur.slm)
Plot spatial and beta coefficients
Interactive plot
plot(spcsur.slm)
Non-interactive plot
if (require(gridExtra)) {
 pl <- plot(spcsur.slm, viewplot = FALSE)
 grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
 pl$lpldeltas, nrow = 3)
}
```

**Description**

Usage

NCOVR.sf

Format

An spatial feature (sf) object with 3085 rows and 41 variables:

NAME County coded as a name (factor)
STATE_NAME state fips code (factor)
FIPS state fips code (factor)
SOUTH dummy variable for Southern counties (South = 1)
HR60, HR70, HR80, HR90 homicide rate per 100,000 (1960, 1970, 1980, 1990)
HC60, HC70, HC80, HC90 homicide count, three year average centered on 1960, 1970, 1980, 1990
PO60, PO70, PO80, PO90 county population, 1960, 1970, 1980, 1990
RD60, RD70, RD80, RD90 resource deprivation 1960, 1970, 1980, 1990 (principal component, see Codebook for details)
PS60, PS70, PS80, PS90 population structure 1960, 1970, 1980, 1990 (principal component, see Codebook for details)
UE60, UE70, UE80, UE90 unemployment rate 1960, 1970, 1980, 1990
DV60, DV70, DV80, DV90 divorce rate 1960, 1970, 1980, 1990 (% males over 14 divorced)
MA60, MA70, MA80, MA90 median age 1960, 1970, 1980, 1990
FP59, FP69, FP79, FP89 % families below poverty 1960, 1970, 1980, 1990 (see Codebook for details)

geometry Multipolygon geometry of the spatial feature object

Source


References

print.summary.spsur  

Print method for objects of class summary.spsur.

Description

Print method for objects of class summary.spsur.

Usage

## S3 method for class 'summary.spsur'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

- **x**: object of class `summary.spsur`.
- **digits**: number of digits to show in printed tables. Default: \(\max(3L, \text{getOption("digits")} - 3L)\).
- **...**: further arguments passed to or from other methods.

Author(s)

Fernando Lopez  <fernando.lopez@upct.es>
Roman Minguez  <roman.minguez@uclm.es>
Jesus Mur  <jmur@unizar.es>

See Also

`summary.spsur`.

Examples

# See examples for \code{\link{spsurl}} or
# \code{\link{spsur3ls}} functions.

spain.covid  Within/Exit mobility index and incidence COVID-19 at Spain provinces
Description

Weekly within/exit mobility indices and COVID-19 incidence in Spain at provincial level. A total of 17 weeks from February 21 to May 21. Every week starts on a Friday and ends on the following Thursday. All travels are expressed with respect to the pre-COVID week of February 14th-20th, 2020 (week0). A value lower than 1 indicate a reduction of the mobility. Upper values than 1 indicate an increase in the mobility with respect to the reference week (week0).

Usage

spain.covid

Format

A data frame with 850 rows and 11 variables:

- **province** Province name coded as a factor
- **indiv** Province coded as a number
- **time** Number of week after pre-COVID (week0: February 14th-20th, 2020). time=1 (week1, February 21th-27th); time=2 (week2, February 28th-March 5th);....
- **Within** Mobility index within of the province. See details for a formal definition
- **Exits** Mobility index of exits of the province. See details for a formal definition
- **Emergence** Dummy variable. 1 if the Emergence State ("Estado de Alarma") is active in the week "time" but economic activity of essential services are allowed. 0 in another case. The Emergence State was active in Spain from February 14th, 2020 to May 21th, 2020
- **EmergenceTotal** Dummy variable. 1 if the Emergence State ("Estado de Alarma") is active in the week "time" and economic activity of essential services are not allowed. 0 in another case
- **Old65** Percentage of population aged 65 and older in the province
- **Density** Inhabitants (in thousands) per km^2 in the province
- **Essential** Percentage of firms in the province "indiv" with essential activities (food, health) over the total of firms in the province "indiv" in the province (e.g., food, heath and some economic subsectors of industry and construction)
- **Incidence** Weekly incidence in the week "time-1" in logs

Details

- **Mobility**

  The mobility indices Within and Exits has been obtained as ratio of the total number of weekly travels in reference to the total number of travels in the week of reference (week0).

  In particular,

  $$Within = \frac{\text{Number of travels within the province 'indiv' in the week 'time'}}{\text{Number of travels within the province 'indiv' in the reference week (week0)}}$$

  $$Exits = \frac{\text{Number of travels with origin in the province 'indiv' and arrival to another province in the week 'time'}}{\text{Number of travels with origin in the province 'indiv' and arrival to another province in the reference week (week0)}}$$
A ‘travel’ is a displacement from an origin to a destination of at least 500m. A travel can have several stages. These stages of the same travel are calculated based on the duration of the intermediate stop. For example, if I move from origin A to destination B with a stop at a point C of long duration, it is considered two travels, but if the stop is short, it is considered a single travel. For example, I can go by train from Madrid to Alicante, and there takes a bus to Benidorm. The travel will be one (Madrid-Benidorm). If I do the same but the stop in Alicante is long (or an overnight stay, for example), two travels will be considered (Madrid-Alicante, and Alicante-Benidorm). Similarly, if I go by car from Madrid to Alicante and stop for 15 minutes to take a coffee, it is also considered only one travel and not two. The travels considered in this study are always from 500m, due to the limitation of source data that is based on mobile telephony and its antennas. But one travel can be 600 meters or 600km.

• Incidence

\[
Incidence = \log \left( \frac{\text{total diagnostic cases of COVID-19, PCR test in the week 'time' at the province 'indiv'}}{\text{total population in the province 'indiv'}} \right)
\]

• Essential activities

Essential activities. Economic activities whose activities are essential for the population. By example, essential activities are healthcare, food supply, State security, media and communication, refuse collection, management and public transport, etc. Non essential activities are by example, restaurants, hotels, hairdressers, etc. A full list in the Spanish official bulletin


Source

Ministerio de Transportes, Movilidad y Agenda Urbana. Spain Government.
https://www.mitma.gob.es/ministerio/covid-19/evolucion-movilidad-big-data

The National Statistics Institute

Instituto de Salud Carlos III
https://cnecovid.isciii.es/covid19/

spain.covid.sf  Spain geometry

Description

A sf object with the Spanish geometry
Usage

spain.covid.sf

Format

A sf object with the Spanish geometry

PROVINCIA province name coded as a factor
ID_INE province coded as a number

spc  A classical Spatial Phillips-Curve

Description


Usage

spc

Format

A data frame with 25 rows and 10 variables:

COUNTY County coded as a name.
WAGE83 Changes in wage rates for 1983.
UN83 Inverse unemployment rate in 1983.
NMR83 Net migration rate 1983.
SMSA Dummy variable to identify counties defined as Standard Metropolitan Statistical Areas (SMSA = 1).
WAGE82 Changes in wage rates for 1982.
WAGE81 Changes in wage rates for 1981.
UN80 Inverse unemployment rate in 1980.
NMR80 Net migration rate 1983.
WAGE80 Changes in wage rates.

Source

Anselin (1988, p. 203-211)

References

Description

`spsur` offers the user a collection of functions to estimate Spatial Seemingly Unrelated Regression (SUR) models by maximum likelihood or three-stage least squares, using spatial instrumental variables. Moreover, `spsur` obtains a collection of misspecification tests for omitted or wrongly specified spatial structure. The user will find spatial models more popular in applied research such as the SUR-SLX, SUR-SLM, SUR-SEM, SUR-SDM, SUR-SDEM SUR-SARAR and SUR-GNM plus the spatially independent SUR, or SUR-SIM.

Details

Some functionalities that have been included in `spsur` package are:

1. Testing for spatial effects

The function `lmtestspsur` provides a collection of Lagrange Multipliers, LM, for testing different forms of spatial dependence in SUR models. They are extended versions of the well-known LM tests for omitted lags of the explained variable in the right hand side of the equation, LM-SLM, the LM tests for omitted spatial errors, LM-SEM, the join test of omitted spatial lags and spatial errors, LM-SARAR, and the robust version of the first two Lagrange Multipliers, LM*-SLM and LM*-SEM.

These tests can be applied to models always with a SUR nature. Roughly, we may distinguish two situations:

- Datasets with a single equation \( G=1 \), for different time periods \( T_m>1 \) and a certain number of spatial units in the cross-sectional dimension, \( N \). This is what we call spatial panel datasets. In this case, the SUR structure appears in form of (intra) serial dependence in the errors of each spatial unit.

- Datasets with a several equations \( G>1 \), different time periods \( T_m>1 \) and a certain number of spatial units, \( N \). The SUR structure appears, as usual, because the errors of the spatial units for different equations are contemporaneously correlated.

2. Estimation of the Spatial SUR models

As indicated above, `spsur` package may work with a list of different spatial specifications. They are the following:

- **SUR-SIM**: SUR model without spatial effects

\[
y_{tg} = X_{tg} \beta_g + \epsilon_{tg}
\]

- **SUR-SLX**: SUR model with spatial lags of the regressors

\[
y_{tg} = X_{tg} \beta_g + WX_{tg} \theta_g + \epsilon_{tg}
\]
• **SUR-SLM**: SUR model with spatial lags of the endogenous

\[ y_{tg} = \rho_g W y_{tg} + X_{tg} \beta_g + \epsilon_{tg} \]

• **SUR-SEM**: SUR model with spatial errors

\[ y_{tg} = X_{tg} \beta_g + u_{tg} \]

\[ u_{tg} = \lambda_g W u_{tg} + \epsilon_{tg} \]

• **SUR-SDM**: SUR model with spatial lags of the endogenous variable and of the regressors or Spatial Durbin model

\[ y_{tg} = \rho_g W y_{tg} + X_{tg} \beta_g + WX_{tg} \theta_g + \epsilon_{tg} \]

• **SUR-SDEM**: SUR model with spatial errors and spatial lags of the endogenous variable and of the regressors

\[ y_{tg} = X_{tg} \beta_g + WX_{tg} \theta_g + u_{tg} \]

\[ u_{tg} = \lambda_g W u_{tg} + \epsilon_{tg} \]

• **SUR-SARAR**: Spatial lag model with spatial errors

\[ y_{tg} = \rho_g W y_{tg} + X_{tg} \beta_g + u_{tg} \]

\[ u_{tg} = \lambda_g W u_{tg} + \epsilon_{tg} \]

• **SUR-GNM**: SUR model with spatial lags of the explained variables, regressors and spatial errors

\[ y_{tg} = \rho_g W y_{tg} + X_{tg} \beta_g + WX_{tg} \theta_g + u_{tg} \]

\[ u_{tg} = \lambda_g W u_{tg} + \epsilon_{tg} \]

where \( y_{tg}, u_{tg} \) and \( \epsilon_{tg} \) are \((N \times 1)\) vectors; \( X_{tg} \) is a matrix of regressors of order \((N \times P)\); \( \rho_g \) and \( \lambda_g \) are parameters of spatial dependence and \( W \) is the \((N \times N)\) spatial weighting matrix.

These specifications can be estimated by maximum-likelihood methods, using the function `spsurml`. Moreover, the models that include spatial lags of the explained variables in the right-hand side of the equations, and the errors are assumed to be spatially incorrelated (namely, the SUR-SLM and the SUR-SDM), can also be estimated using three-stage least-squares, `spsur3sls`, using spatial instrumental variable to correct for the problem of endogeneity present in these cases.

### 3. Diagnostic tests

Testing for inconsistencies or misspecifications in the results of an estimated (SUR) model should be a primary task for the user. `spsur` focuses, specifically, on two main questions such as omitted or wrongly specified spatial structure and the existence of structural breaks or relevant restrictions in the parameters of the model. In this sense, the user will find:

1. **Marginal tests**

   The Marginal Multipliers test for omitted or wrongly specified spatial structure in the equations. They are routinely part of the output of the maximum-likelihood estimation, shown by `spsurml`. In particular, the LM(\( \rho \mid \lambda \)) tests for omitted spatial lags in a model specified with spatial errors (SUR-SEM; SUR-SDEM). The LM(\( \lambda \mid \rho \)) tests for omitted spatial error in a model specified with spatial lags of the explained variable (SUR-SLM; SUR-SDM).
2. Coefficients stability tests

*spsur* includes two functions designed to test for linear restrictions on the $\beta$ coefficients of the models and on the spatial coefficients ($\rho$s and $\lambda$s terms). The function for the first case is *wald_betas* and *wald_deltas* that of the second case. The user has ample flexibility to define different forms of linear restrictions, so that it is possible, for example, to test for their time constancy to identify structural breaks.

4. Marginal effects

In recent years, since the publication of LeSage and Pace (2009), it has become popular in spatial econometrics to evaluate the multiplier effects that a change in the value of a regressor, in a point in the space, has on the explained variable. *spsur* includes a function, *impacts*, that computes these effects. Specifically, *impacts* obtains the average, over the $N$ spatial units and $Tm$ time periods, of such a change on the contemporaneous value of the explained variable located in the same point as the modified variable. This is the so-called Average Direct effect. The Average Indirect effect measure the proportion of the impact that spills-over to other locations. The sum of the two effects is the Average Total effect.

These estimates are complemented with a measure of statistical significance, following the randomization approach suggested by LeSage and Pace (2009).

5. Additional functionalities

A particular feature of *spsur* is that the package allows to obtain simulated datasets with a SUR nature and the spatial structure decided by the user. This is the purpose of the function *dgp_spsur*. The function can be inserted into a more general code to solve, for example, Monte Carlo studies related to these type of models or, simply, to show some of the stylized characteristics of a SUR model with certain spatial structure.

Datasets

*spsur* includes three different datasets: spc, NCOVR and spain.covid. These sets are used to illustrate the capabilities of different functions. Briefly, their main characteristics are the following

- The *spc* dataset (Spatial Phillips-Curve) is a classical dataset taken from Anselin (1988, p. 203), of small dimensions.
- The *spain.covid* dataset comprises Within and Exit mobility index together with the weekly incidence COVID-19 at Spain provinces from February 21 to May 21 2020. [https://www.mitma.gob.es/ministerio/covid-19/evolucion-movilidad-big-data](https://www.mitma.gob.es/ministerio/covid-19/evolucion-movilidad-big-data)

Author(s)

Fernando Lopez <fernando.lopez@upct.es>
Roman Minguez <roman.minguez@uclm.es>
Jesus Mur <jmur@unizar.es>
References


---

**spsur3sls**

*Three Stages Least Squares estimation, 3sls, of spatial SUR models.*

**Description**

The function estimates spatial SUR models using three stages least squares, where the instruments are obtained from the spatial lags of the $X$ variables, assumed to be exogenous. The number of equations, time periods and spatial units is not restricted. The user can choose between a Spatial Durbin Model or a Spatial Lag Model, as described below. The estimation procedure allows for the introduction of linear restrictions on the $\beta$ parameters associated to the regressors.

**Usage**

```r
spsur3sls (formula = NULL, data = NULL, na.action,
R = NULL, b = NULL, listw = NULL,
zero.policy = NULL, X= NULL, Y = NULL, G = NULL,
N = NULL, Tm = NULL, p = NULL,
type = "slm", Durbin = NULL, maxlagW = NULL,
trace = TRUE)
```

**Arguments**

- **formula** An object type `Formula` similar to objects created with the package `Formula` describing the equations to be estimated in the model. This model may contain several responses (explained variables) and a varying number of regressors in each equation.
**data**
An object of class data.frame or a matrix.

**na.action**
A function (default options("na.action")), can also be na.omit or na.exclude with consequences for residuals and fitted values. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations.

**R**
A row vector of order (1xpr) with the set of r linear constraints on the beta parameters. The first restriction appears in the first p terms, the second restriction in the next p terms and so on. Default = NULL.

**b**
A column vector of order (rx1) with the values of the linear restrictions on the beta parameters. Default = NULL.

**listw**
A listw object created for example by nb2listw from spatialreg package; if nb2listw not given, set to the same spatial weights as the listw argument. It can also be a spatial weighting matrix of order (NxN) instead of a listw object. Default = NULL.

**zero.policy**
Similar to the corresponding parameter of lagsarlm function in spatialreg package. If TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA - causing spsurml() to terminate with an error. Default = NULL.

**X**
A data matrix of order (NTmGxp) with the observations of the regressors. The number of covariates in the SUR model is \( p = \sum(p_g) \) where \( p_g \) is the number of regressors (including the intercept) in the g-th equation, \( g = 1, ..., G \). The specification of "X" is only necessary if not available a Formula and a data frame. Default = NULL.

**Y**
A column vector of order (NTmGx1), with the observations of the explained variables. The ordering of the data must be (first) equation, (second) time dimension and (third) cross-sectional/spatial units. The specification of Y is only necessary if not available a Formula and a data frame. Default = NULL.

**G**
Number of equations.

**N**
Number of cross-section or spatial units

**Tm**
Number of time periods.

**p**
Number of regressors by equation, including the intercept. \( p \) can be a row vector of order (1xG), if the number of regressors is not the same for all the equations, or a scalar, if the \( G \) equations have the same number of regressors. The specification of \( p \) is only necessary if not available a Formula and a data frame.

**type**
Type of spatial model, restricted to cases where lags of the explained variable appear in the right hand side of the equations. There are two possibilities: "slm" or "sdm". Default = "slm".

**Durbin**
If a formula object and model is type "sdm" the subset of explanatory variables to lag for each equation.

**maxlagW**
Maximum spatial lag order of the regressors employed to produce spatial instruments for the spatial lags of the explained variables. Default = 2. Note that in case of type="sdm", the default value for maxlagW is set to 3 because the first lag of the regressors, \( WX_{tg} \), can not be used as spatial instruments.

**trace**
A logical value to show intermediate results during the estimation process. Default = TRUE.
spsur3sls can be used to estimate two groups of spatial models:

- "slm": SUR model with spatial lags of the endogenous in the right hand side of the equations
  \[ y_{tg} = \rho_g W y_{tg} + X_{tg} \beta_g + \epsilon_{tg} \]

- "sdm": SUR model of the Spatial Durbin type
  \[ y_{tg} = \rho_g W y_{tg} + X_{tg} \beta_g + WX_{tg} \theta_g + \epsilon_{tg} \]

where \( y_{tg} \) and \( \epsilon_{tg} \) are \((N \times 1)\) vectors, corresponding to the \(g\)-th equation and time period \(t\); \( X_{tg} \) is the matrix of regressors, of order \((N \times p_g)\). Moreover, \( \rho_g \) is a spatial coefficient and \( W \) is a \((N \times N)\) spatial weighting matrix.

By default, the input of this function is an object created with Formula and a data frame. However, spsur3sls also allows for the direct specification of vector \( Y \) and matrix \( X \), with the explained variables and regressors respectively, as inputs (these terms may be the result, for example, of dgp_spsur).

spsur3sls is a Least-Squares procedure in three-stages designed to circumvent the endogeneity problems due to the presence of spatial lags of the explained variable in the right hand side of the equations do the SUR. The instruments are produced internally by spsur3sls using a sequence of spatial lags of the \( X \) variables, which are assumed to be exogenous. The user must define the number of (spatial) instruments to be used in the procedure, through the argument \texttt{maxlagW} (i.e. \texttt{maxlagW = 3}). Then, the collection of instruments generated is \([WX_{tg}; W*WX_{tg}; W*W*WX_{tg}].\) In the case of a SDM, the first lag of the \( X \) matrix already is in the equation and cannot be used as instrument. In the example above, the list of instruments for a SDM model would be \([W^2 X_{tg}; W^3 X_{tg}].\)

The first stage of the procedure consists in the least squares of the \( Y \) variables on the set of instruments. From this estimation, the procedure retains the estimates of \( Y \) in the so-called \( Yls \) variables. In the second stage, the \( Y \) variables that appear in the right hand side of the equation are substituted by \( Yls \) and the SUR model is estimated by Least Squares. The third stage improves the estimates of the second stage through a Feasible Generalized Least Squares estimation of the parameters of the model, using the residuals of the second stage to estimate the \( \Sigma \) matrix.

The arguments \( R \) and \( b \) allows to introduce linear restrictions on the \( \beta \) coefficients of the \( G \) equations. spsur3sls, first, introduces the linear restrictions in the SUR model and builds, internally, the corresponding constrained SUR model. Then, the function estimates the restricted model which is shown in the output. The function does not compute the unconstrained model nor test for the linear restrictions. The user may ask for the unconstrained estimation using another spsurml estimation. Moreover, the function \\texttt{wald_betas} obtains the Wald test of a set of linear restrictions for an object created previously by spsurml or spsur3sls.

Value

Object of \texttt{spsur} class with the output of the three-stages least-squares estimation of the specified spatial model. A list with:

- \texttt{call} Matched call.
- \texttt{type} Type of model specified.
spsur3sls

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durbin</td>
<td>Value of Durbin argument.</td>
</tr>
<tr>
<td>coefficients</td>
<td>Estimated coefficients for the regressors.</td>
</tr>
<tr>
<td>deltas</td>
<td>Estimated spatial coefficients.</td>
</tr>
<tr>
<td>rest.se</td>
<td>Estimated standard errors for the estimates of $\beta$ coefficients.</td>
</tr>
<tr>
<td>deltas.se</td>
<td>Estimated standard errors for the estimates of the spatial coefficients.</td>
</tr>
<tr>
<td>resvar</td>
<td>Estimated covariance matrix for the estimates of $\beta$‘s and spatial coefficients.</td>
</tr>
<tr>
<td>R2</td>
<td>Coefficient of determination for each equation, obtained as the squared of the correlation coefficient between the corresponding explained variable and its estimates.</td>
</tr>
<tr>
<td>Sigma</td>
<td>Estimated covariance matrix for the residuals of the $G$ equations.</td>
</tr>
<tr>
<td>residuals</td>
<td>Residuals of the model.</td>
</tr>
<tr>
<td>df.residuals</td>
<td>Degrees of freedom for the residuals.</td>
</tr>
<tr>
<td>fitted.values</td>
<td>Estimated values for the dependent variables.</td>
</tr>
<tr>
<td>G</td>
<td>Number of equations.</td>
</tr>
<tr>
<td>N</td>
<td>Number of cross-sections or spatial units.</td>
</tr>
<tr>
<td>Tm</td>
<td>Number of time periods.</td>
</tr>
<tr>
<td>p</td>
<td>Number of regressors by equation (including intercepts).</td>
</tr>
<tr>
<td>Y</td>
<td>If data is NULL, vector $Y$ of the explained variables of the SUR model.</td>
</tr>
<tr>
<td>X</td>
<td>If data is NULL, matrix $X$ of the regressors of the SUR model.</td>
</tr>
<tr>
<td>W</td>
<td>Spatial weighting matrix.</td>
</tr>
<tr>
<td>zero.policy</td>
<td>Logical value of zero.policy.</td>
</tr>
<tr>
<td>listw_style</td>
<td>Style of neighborhood matrix $W$.</td>
</tr>
</tbody>
</table>

**Author(s)**

Fernando Lopez  <fernando.lopez@upct.es>
Roman Minguez    <roman.minguez@uclm.es>
Jesus Mur        <jmur@unizar.es>

**References**


**See Also**

`spsurml, stsls, wald_betas`
Examples

#################################################
######## CLASSIC PANEL DATA (G=1; Tm>1) ########
#################################################

## A SUR model without spatial effects
rm(list = ls()) # Clean memory
data(spc)
lwspc <- spdep::mat2listw(Wspc, style = "W")
Tformula <- WAGE83 | WAGE81 ~ UN83 + NMR83 + SMSA | UN80 + NMR80 + SMSA

## A SUR-SLM model (3SLS Estimation)
spcsur_slm_3sls <- spsur3sls(formula = Tformula, data = spc,
                              type = "slm", listw = lwspc)
summary(spcsur_slm_3sls)
print(spcsur_slm_3sls)
if (require(gridExtra)) {
  pl <- plot(spcsur_slm_3sls, viewplot = FALSE)
  grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
                pl$pldeltas, nrow = 3)
}

## VIP: The output of the whole set of the examples can be examined
## by executing demo(demo_spsur3sls, package="spsur")

## A SUR-SDM model (3SLS Estimation)
spcsur_sdm_3sls <- spsur3sls(formula = Tformula, data = spc,
                              type = "sdm", listw = lwspc)
summary(spcsur_sdm_3sls)
if (require(gridExtra)) {
  pl <- plot(spcsur_sdm_3sls, viewplot = FALSE)
  grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
                pl$pldeltas, nrow = 3)
}
rm(spcsur_sdm_3sls)

## A SUR-SDM model with different spatial lags in each equation
TformulaD <- ~ UN83 + NMR83 + SMSA | UN80 + NMR80
spcsur_sdm2_3sls <- spsur3sls(formula = Tformula, data = spc,
                               type = "sdm", listw = lwspc,
                               Durbin = TformulaD)
summary(spcsur_sdm2_3sls)
if (require(gridExtra)) {
  pl <- plot(spcsur_sdm2_3sls, viewplot = FALSE)
  grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
                pl$pldeltas, nrow = 3)
}
rm(spcsur_sdm2_3sls)
### MULTI-DIMENSIONAL PANEL DATA (G>1; Tm>1) ###

#### Example 3: Homicides + Socio-Economics (1960-90) ####

# Homicides and selected socio-economic characteristics for continental 
# U.S. counties. 
# https://geodacenter.github.io/data-and-lab/ncovr/

```r
rm(list = ls()) # Clean memory
data(NCOVR, package = "spsur")
nbncovr <- spdep::poly2nb(NCOVR.sf, queen = TRUE)
Some regions with no links...
lwncovr <- spdep::nb2listw(nbncovr, style = "W", zero.policy = TRUE)
Tformula <- HR80 | HR90 ~ PS80 + UE80 | PS90 + UE90
A SUR-SLM model
NCOVRSUR_slm_3sls <- spsur3sls(formula = Tformula, data = NCOVR.sf,
type = "slm", zero.policy = TRUE,
listw = lwncovr, trace = FALSE)
```

```
summary(NCOVRSUR_slm_3sls)
if (require(gridExtra)) {
 pl <- plot(NCOVRSUR_slm_3sls, viewplot = FALSE)
 grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
 pl$pldeltas, nrow = 3)
}
rm(NCOVRSUR_slm_3sls)
```

---

**spsur3sls**

*General Spatial 3SLS for systems of spatial equations.*

### Description###

The function estimates spatial SUR models using general spatial three stages least squares. This is a system instrumental variable procedure which also include GMM estimation when there is spatial correlations in the errors. The procedure allows for additional endogenous regressors in addition to spatial lags of the dependent variable. It could be applied to "slm", "sdm", "sem" and "sarar" spatial models. Furthermore, for non-spatial models including endogenous regressors ("iv"), it could be used to estimate using instrumental variables and Feasible Generalized Least Squares.

### Usage###

```r
spsur3sls(formula = NULL, data = NULL, na.action,
 listw = NULL, zero.policy = NULL,
 type = "slm", Durbin = FALSE,
```

```
Arguments

formula An object type Formula similar to objects created with the package Formula describing the equations to be estimated in the model. This model may contain several responses (explained variables) and a varying number of regressors in each equation.

data An object of class data.frame or a matrix.

na.action A function (default options("na.action")), can also be na.omit or na.exclude with consequences for residuals and fitted values. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations.

listw A listw object created for example by nb2listw from spatialreg package; if nb2listw not given, set to the same spatial weights as the listw argument. It can also be a spatial weighting matrix of order (NxN) instead of a listw object. Default = NULL.

zero.policy Similar to the corresponding parameter of lagsarlm function in spatialreg package. (NxN) instead of a listw object. Default = NULL.

type Type of spatial model specification: "sim", "iv", "slm", "sem", "sdm" or "sarar". Default = "slm".

Durbin If a formula object and model is type "sdm" the subset of explanatory variables to lag for each equation.

derog Additional endogenous variables. Default NULL. If not NULL should be specified as a formula with no dependent variable. Examples: ~ x1 | x2 (x1 endogeneous regressor for the first equation and x2 endogeneous regressor for the second equation) or ~ x1 | . (x1 endogeneous regressor for the first equation and none endogeneous regressors for the second equation)

instruments external instruments. Default NULL. If not NULL should be specified as a formula with no dependent variable in the same way than previous endog argument.

lag.instr should the external instruments be spatially lagged?

initial.value the initial value for rho. It can be either numeric (default is 0.2) or set to 'SAR', in which case the optimization will start from the estimated coefficient of a regression of the 2SLS residuals over their spatial lag (i.e. a spatial AR model)

het default FALSE: if TRUE uses the methods developed for heteroskedasticity for each equation. Wrapper using spreg function.

trace A logical value to show intermediate results during the estimation process. Default = TRUE.

Details

spsурсs3ls generalize the spreg function to multiequational spatial SUR models. The methodology to estimate spatial SUR models by Generalized 3SLS follows the steps outlined in Kelejian and Piras (pp. 304-305). The summary of the algorithm is the next one:
• Estimate each equation by 2SLS and obtain the estimated residuals \hat{u}_j for each equation.
• If the model includes a spatial lag for the errors (that is, it is a SEM/SARAR model), apply GMM to obtain the spatial parameters $\hat{\lambda}_j$ for the residuals in each equation. In this case the \texttt{spreg} function is used as a wrapper for the GMM estimation. If the model does not include a spatial lag for the errors (that is, it is a "sim", "iv", "slm" or "sdm" model), then $\hat{\lambda}_j = 0$
• Compute
 \[\hat{v}_j = \hat{u}_j - \hat{\lambda}_j W \hat{u}_j \]
 and the covariances
 \[\hat{\sigma}_{i,j} = N^{-1} \hat{v}_i \hat{v}_j \]
 Build $\Sigma = \{ \hat{\sigma}_{i,j} \}$
• Compute
 \[y^*_j = y_j - \hat{\lambda}_j W y_j \]
 and
 \[X^*_j = X_j - \hat{\lambda}_j W X_j \]
Compute
 \[\hat{X}^*_j = H_j (H_j^T H_j)^{-1} H_j^T X^*_j \]
where H_j is the matrix including all the instruments and the exogenous regressors for each equation. That is, \hat{X}^*_j is the projection of X^*_j using the instruments matrix H_j.
• Compute, in a multi-equational way, the Feasible Generalized Least Squares estimation using the new variables \hat{y}^*_j, \hat{X}^*_j and Σ. This is the 3sls step.

\textbf{Value}

Object of \texttt{spsur} class with the output of the three-stages least-squares estimation of the specified spatial model. A list with:

- \texttt{call} Matched call.
- \texttt{type} Type of model specified.
- \texttt{Durbin} Value of Durbin argument.
- \texttt{coefficients} Estimated coefficients for the regressors.
- \texttt{deltas} Estimated spatial coefficients.
- \texttt{rest.se} Estimated standard errors for the estimates of β coefficients.
- \texttt{deltas.se} Estimated standard errors for the estimates of the spatial coefficients.
- \texttt{resvar} Estimated covariance matrix for the estimates of beta’s and spatial coefficients.
- \texttt{R2} Coefficient of determination for each equation, obtained as the squared of the correlation coefficient between the corresponding explained variable and its estimates.
- \texttt{Sigma} Estimated covariance matrix for the residuals of the G equations.
- \texttt{residuals} Residuals of the model.
- \texttt{df.residuals} Degrees of freedom for the residuals.
- \texttt{fitted.values} Estimated values for the dependent variables.
- \texttt{G} Number of equations.
- \texttt{N} Number of cross-sections or spatial units.
- \texttt{Tm} Number of time periods.
- \texttt{p} Number of regressors by equation (including intercepts).
- \texttt{Y} If \texttt{data} is \texttt{NULL}, vector Y of the explained variables of the SUR model.
- \texttt{X} If \texttt{data} is \texttt{NULL}, matrix X of the regressors of the SUR model.
Spatial weighting matrix.

zero.policy Logical value of zero.policy.

listw_style Style of neighborhood matrix W.

Author(s)

Fernando Lopez <fernando.lopez@upct.es>
Roman Minguez <roman.minguez@uclm.es>
Jesus Mur <jmur@unizar.es>

References

See Also

spreg, spsur3sls, stsls, spsurml

Examples

```r
### Example 1: Spatial Phillips-Curve. Anselin (1988, p. 203)
rm(list = ls()) # Clean memory
data(spc)
lwspc <- spdep::mat2listw(Wspc, style = "W")
## No endogenous regressors
Tformula <- WAGE83 | WAGE81 ~ UN83 + NMR83 + SMSA | UN80 + NMR80 + SMSA
## Endogenous regressors and Instruments
Tformula2 <- WAGE83 | WAGE81 ~ NMR83 | NMR80
## Endogenous regressors: UN83 , UN80
## Instrumental variable: SMSA

## A IV model with endogenous regressors only in first equation
spciv <- spsurgs3sls(formula = Tformula2, data = spc,
```

```r
data(spc)
lwspc <- spdep::mat2listw(Wspc, style = "W")
## No endogenous regressors
Tformula <- WAGE83 | WAGE81 ~ UN83 + NMR83 + SMSA | UN80 + NMR80 + SMSA
## Endogenous regressors and Instruments
Tformula2 <- WAGE83 | WAGE81 ~ NMR83 | NMR80
## Endogenous regressors: UN83 , UN80
## Instrumental variable: SMSA

## A IV model with endogenous regressors only in first equation
spciv <- spsurgs3sls(formula = Tformula2, data = spc,
```
type = "iv", listw = lwspc,
endog = ~ UN83 | .,
instruments = ~ SMSA | .)

summary(spciv)
print(spciv)

###
A SLM model with endogenous regressors
spcslm <- spsurgs3sls(formula = Tformula2, data = spc,
endog = ~ UN83 | .,
instruments = ~ SMSA | .,
type = "slm",
listw = lwspc)

summary(spcslm)
print(spcslm)

impacts_spcslm <- impactspsur(spcslm, listw = lwspc, R = 1000)
summary(impacts_spcslm[[1]], zstats = TRUE, short = TRUE)
summary(impacts_spcslm[[2]], zstats = TRUE, short = TRUE)

###
A SDM model with endogenous regressors
spcsdm <- spsurgs3sls(formula = Tformula2, data = spc,
endog = ~ UN83 | UN80,
instruments = ~ SMSA | SMSA,
type = "sdm", listw = lwspc,
Durbin = ~ NMR83 | NMR80)

summary(spcsdm)

Durbin only in one equation
spcsdm2 <- spsurgs3sls(formula = Tformula2, data = spc,
endog = ~ UN83 | UN80,
instruments = ~ SMSA | SMSA,
type = "sdm", listw = lwspc,
Durbin = ~ NMR83 | .)

summary(spcsdm2)

###
A SEM model with endogenous regressors
spcssem <- spsurgs3sls(formula = Tformula2, data = spc,
endog = ~ UN83 | UN80,
instruments = ~ SMSA | SMSA,
type = "sem", listw = lwspc)

summary(spcsem)
print(spcsem)

###
A SARAR model with endogenous regressors
spcsarar <- spsurgs3sls(formula = Tformula2, data = spc,
endog = ~ UN83 | UN80,
instruments = ~ SMSA | SMSA,
type = "sarar", listw = lwspc)

summary(spcsarar)
print(spcsarar)

impacts_spcsarar <- impactspsur(spcsarar, listw = lwspc, R = 1000)
summary(impacts_spcsarar[[1]], zstats = TRUE, short = TRUE)
summary(impacts_spcsarar[[2]], zstats = TRUE, short = TRUE)
spsurml

Maximum likelihood estimation of spatial SUR model.

Description

This function estimates spatial SUR models using maximum-likelihood methods. The number of equations, time periods and cross-sectional units is not restricted. The user can choose between different spatial specifications as described below. The estimation procedure allows for the introduction of linear restrictions on the β parameters associated to the regressors.

Usage

spsurml(formula = NULL, data = NULL, na.action, listw = NULL, type = "sim", Durbin = NULL, method = "eigen", zero.policy = NULL, interval = NULL, trs = NULL, R = NULL, b = NULL, X = NULL, Y = NULL, G = NULL, N = NULL, Tm = NULL,p = NULL, control = list())

Arguments

formula An object type Formula similar to objects created with the package Formula describing the equations to be estimated in the model. This model may contain several responses (explained variables) and a varying number of regressors in each equation.
data An object of class data.frame or a matrix.
na.action A function (default options("na.action")), can also be na.omit or na.exclude with consequences for residuals and fitted values. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations.
listw A listw object created for example by nb2listw from spatialreg package; if nb2listw not given, set to the same spatial weights as the listw argument. It can also be a spatial weighting matrix of order (NxN) instead of a listw object. Default = NULL.
type Type of spatial model specification: "sim", "slx", "slm", "sem", "sdm", "sdem", "sarar" or "gnm". Default = "sim".
Durbin If a formula object and model is type "sdm", "sdem" or "slx" the subset of explanatory variables to lag for each equation.
method Similar to the corresponding parameter of lagsarlm function in spatialreg package. "eigen" (default) - the Jacobian is computed as the product of (1 - rho*eigenvalue) using eigenw, and "spam" or "Matrix_J" for strictly symmetric weights lists of styles "B" and "C", or made symmetric by similarity (Ord, 1975, Appendix C) if possible for styles "W" and "S", using code from the spam or Matrix packages to calculate the determinant; "Matrix" and "spam_update" provide updating Cholesky decomposition methods; "LU" provides an alternative sparse
matrix decomposition approach. In addition, there are "Chebyshev" and Monte Carlo "MC" approximate log-determinant methods; the Smirnov/Anselin (2009) trace approximation is available as "moments". Three methods: "SE_classic", "SE_whichMin", and "SE_interp" are provided experimentally, the first to attempt to emulate the behaviour of Spatial Econometrics toolbox ML fitting functions. All use grids of log determinant values, and the latter two attempt to ameliorate some features of "SE_classic".

zero.policy

Similar to the corresponding parameter of lagsarlm function in spatialreg package. If TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA - causing spsurml() to terminate with an error. Default = NULL.

interval

Search interval for autoregressive parameter. Default = NULL.

trs

Similar to the corresponding parameter of lagsarlm function in spatialreg package. Default NULL, if given, a vector of powered spatial weights matrix traces output by trW.

R

A row vector of order (1xpr) with the set of r linear constraints on the beta parameters. The first restriction appears in the first p terms, the second restriction in the next p terms and so on. Default = NULL.

b

A column vector of order (rx1) with the values of the linear restrictions on the beta parameters. Default = NULL.

X

A data matrix of order (NTmGxp) with the observations of the regressors. The number of covariates in the SUR model is \(p = \sum(p_g) \) where \(p_g \) is the number of regressors (including the intercept) in the g-th equation, \(g = 1,\ldots,G \). The specification of "X" is only necessary if not available a Formula and a data frame. Default = NULL.

Y

A column vector of order (NTmGx1), with the observations of the explained variables. The ordering of the data must be (first) equation, (second) time dimension and (third) cross-sectional/spatial units. The specification of Y is only necessary if not available a Formula and a data frame. Default = NULL.

G

Number of equations.

N

Number of cross-section or spatial units

Tm

Number of time periods.

p

Number of regressors by equation, including the intercept. \(p \) can be a row vector of order (1xG), if the number of regressors is not the same for all the equations, or a scalar, if the G equations have the same number of regressors. The specification of \(p \) is only necessary if not available a Formula and a data frame.

control

List of additional control arguments.

Details

The list of (spatial) models that can be estimated with the spsurml function are:

- "sim": SUR model with no spatial effects

\[y_{tg} = X_{tg} \beta_g + \epsilon_{tg} \]
• "slx": SUR model with spatial lags of the regressors
 \[y_{tg} = X_{tg} \beta_g + WX_{tg} \theta_g + \epsilon_{tg} \]

• "slm": SUR model with spatial lags of the explained variables
 \[y_{tg} = \rho_g W y_{tg} + X_{tg} \beta_g + \epsilon_{tg} \]

• "sem": SUR model with spatial errors
 \[y_{tg} = X_{tg} \beta_g + u_{tg} \]
 \[u_{tg} = \lambda_g W u_{tg} + \epsilon_{tg} \]

• "sdm": SUR model of the Spatial Durbin type
 \[y_{tg} = \rho_g W y_{tg} + X_{tg} \beta_g + WX_{tg} \theta_g + \epsilon_{tg} \]

• "sdem": SUR model with spatial lags of the regressors and spatial errors
 \[y_{tg} = X_{tg} \beta_g + WX_{tg} \theta_g + u_{tg} \]
 \[u_{tg} = \lambda_g W u_{tg} + \epsilon_{tg} \]

• "sarar": SUR model with spatial lags of the explained variables and spatial errors
 \[y_{tg} = \rho_g W y_{tg} + X_{tg} \beta_g + u_{tg} \]
 \[u_{tg} = \lambda_g W u_{tg} + \epsilon_{tg} \]

• "gnm": SUR model with spatial lags of the explained variables, regressors and spatial errors
 \[y_{tg} = \rho_g W y_{tg} + X_{tg} \beta_g + WX_{tg} \theta_g + u_{tg} \]
 \[u_{tg} = \lambda_g W u_{tg} + \epsilon_{tg} \]

Value

Object of `spsur` class with the output of the maximum-likelihood estimation of the specified spatial SUR model. A list with:

call Matched call.
type Type of model specified.
method Value of `method` argument to compute the Jacobian
Durbin Value of `Durbin` argument.
coefficients Estimated coefficients for the regressors.
deltas Estimated spatial coefficients.
deltas.se Estimated standard errors for the estimates of `beta`.
rest.se Estimated standard errors for the estimates of the spatial coefficients (deltas).
deltas.se Estimated standard errors for the estimates of the spatial coefficients (deltas).
resvar Estimated covariance matrix for the estimates of `beta`'s and spatial coefficients (deltas).
LL Value of the likelihood function at the maximum-likelihood estimates.
R2 Coefficient of determination for each equation, obtained as the squared of the correlation coefficient between the explained variable and its estimate.
Sigma Estimated covariance matrix for the residuals of the \(G \) equations.
Logical value of `fdHess` argument when computing numerical covariances.

Residuals of the model.

Degrees of freedom for the residuals.

Estimated values for the dependent variables.

Value of the Breusch-Pagan statistic to test the null hypothesis of diagonality among the errors of the `G` equations.

Marginal Lagrange Multipliers, `LM(\rho|\lambda)` and `LM(\lambda|\rho)`, to test for omitted spatial effects in the specification.

Number of equations.

Number of cross-sections or spatial units.

Number of time periods.

Number of regressors by equation (including intercepts).

If `data` is `NULL`, vector `Y` of the explained variables of the SUR model.

If `data` is `NULL`, matrix `X` of the regressors of the SUR model.

Spatial weighting matrix.

Logical value of `zero.policy`.

Search interval for spatial parameter.

Style of neighborhood matrix `W`.

Either `NULL` or vector of powered spatial weights matrix traces output by `trW`.

Logical value to check if `is.null(trs)`.

Control arguments

Numerical value for the tolerance for the estimation algorithm until convergence. Default = `1e-3`.

Maximum number of iterations until convergence; it must be an integer value. Default = `200`.

A logical value to show intermediate results during the estimation process. Default = `TRUE`.

Compute variance-covariance matrix using the numerical hessian. Suited for large samples. Default = `FALSE`.

Default 2; used for preparing the Cholesky decompositions for updating in the Jacobian function

if `NULL` (default), set to `FALSE` to use a simplicial decomposition for the sparse Cholesky decomposition and method `"Matrix"`

default 5; highest power of the approximating polynomial for the Chebyshev approximation

default 16; number of random variates

default 30; number of products of random variates matrix and spatial weights matrix

default "MMD", alternative "RCM";

default 0.1, coefficient value for initial Cholesky decomposition in "spam_update"

default "MC", used with method "moments"; alternatives "mult" and "moments", for use if `trs` is missing

default `TRUE`, used with method "moments" to compute the Smirnov/Anselin correction term

default `TRUE`, used with method "moments" to truncate the Smirnov/Anselin correction term

default "LU", may be "MC"

default 200, as in SE toolbox; the size of the first stage lndet grid; it may be reduced to for example 40

default 2000, as in SE toolbox; the size of the second stage lndet grid

default `NULL`, may be used to pass a pre-computed SE toolbox style matrix of coefficients and their lndet values to `SE_method`

default `FALSE`; used in "LU_prepermutate", note warnings given for `lu` method

default `NULL`; may be used to pass a pre-computed vector of eigenvalues

Author(s)
References

See Also

`spsur3sls, lagsarlm, lmtestspsur, wald_betas, lrtest`

Examples

```r
#################################################
######## CROSS SECTION DATA (G>1; Tm=1) ########
#################################################

### Example 1: Spatial Phillips-Curve. Anselin (1988, p. 203)
rm(list = ls()) # Clean memory
data(spc)
Tformula <- WAGE83 | WAGE81 ~ UN83 + NMR83 + SMSA | UN80 + NMR80 + SMSA
spcsur.sim <- spsurml(formula = Tformula, data = spc, type = "sim")
summary(spcsur.sim)
# All the coefficients in a single table.
print(spcsur.sim)
```
Plot of the coefficients of each equation in different graphs
plot(spcsur.sim)

A SUR-SLX model
(listw argument can be either a matrix or a listw object)
spcsur.slx <- spsurml(formula = Tformula, data = spc, type = "slx",
 listw = Wspc, Durbin = TRUE)
summary(spcsur.slx)
All the coefficients in a single table.
print(spcsur.slx)
Plot of the coefficients in a single graph
if (require(gridExtra)) {
 pl <- plot(spcsur.slx, viewplot = FALSE)
 grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
 nrow = 2)
}

VIP: The output of the whole set of the examples can be examined
by executing demo(demo_spsurml, package="spsur")

A SUR-SLM model
spcsur.slm <- spsurml(formula = Tformula, data = spc, type = "slm",
 listw = Wspc)
summary(spcsur.slm)
if (require(gridExtra)) {
 pl <- plot(spcsur.slm, viewplot = FALSE)
 grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
 pl$pldeltas, nrow = 3)
}

A SUR-SEM model
spcsur.sem <- spsurml(formula = Tformula, data = spc, type = "sem",
 listw = Wspc)
summary(spcsur.sem)
print(spcsur.sem)
if (require(gridExtra)) {
 pl <- plot(spcsur.sem, viewplot = FALSE)
 grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
 pl$pldeltas, nrow = 3)
}

A SUR-SDM model
spcsur.sdm <- spsurml(formula = Tformula, data = spc, type = "sdm",
 listw = Wspc)
summary(spcsur.sdm)
print(spcsur.sdm)
if (require(gridExtra)) {
 pl <- plot(spcsur.sdm, viewplot = FALSE)
 grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
 pl$pldeltas, nrow = 3)
}
A SUR-SDM model with different spatial lags in each equation

TformulaD <- ~ UN83 + NMR83 + SMSA | UN80

spcsur.sdm2 <- spsurml(formula = Tformula, data = spc, type = "sdm",
 listw = Wspc, Durbin = TformulaD)

summary(spcsur.sdm2)
if (require(gridExtra)) {
 pl <- plot(spcsur.sdm2, viewplot = FALSE)
 grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
 pl$pldeltas, nrow = 3)
}

A SUR-SDEM model

spcsur.sdem <- spsurml(formula = Tformula, data = spc, type = "sdem",
 listw = Wspc)

print(spcsur.sdem)
if (require(gridExtra)) {
 pl <- plot(spcsur.sdem, viewplot = FALSE)
 grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
 pl$pldeltas, nrow = 3)
}

A SUR-SARAR model

spcsur.sarar <- spsurml(formula = Tformula, data = spc, type = "sarar",
 listw = Wspc, control = list(tol = 0.1))

print(spcsur.sarar)
if (require(gridExtra)) {
 pl <- plot(spcsur.sarar, viewplot = FALSE)
 grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
 pl$pldeltas, nrow = 3)
}

A SUR-GNM model

spcsur.gnm <- spsurml(formula = Tformula, data = spc, type = "gnm",
 listw = Wspc, control = list(tol = 0.1))

print(spcsur.gnm)
if (require(gridExtra)) {
 pl <- plot(spcsur.gnm, viewplot = FALSE)
 grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
 pl$pldeltas, nrow = 3)
}

A A SUR-GNM model model with different spatial lags in each equation

TformulaD <- ~ UN83 + NMR83 + SMSA | UN80

spcsur.gnm2 <- spsurml(formula = Tformula, data = spc, type = "gnm",
 listw = Wspc, Durbin = TformulaD,
 control = list(tol = 0.1))

print(spcsur.gnm2)
if (require(gridExtra)) {
 pl <- plot(spcsur.gnm2, viewplot = FALSE)
 grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
 pl$pldeltas, nrow = 3)
}
Example 2: Homicides + Socio-Economics (1960-90)
Homicides and selected socio-economic characteristics for continental U.S. counties.
[URL](https://geodacenter.github.io/data-and-lab/ncovr/)

```r
### It usually requires 1-2 minutes maximum...
rm(list = ls()) # Clean memory
### Read NCOVR.sf object
data(NCOVR, package = "spsur")
nbncovr <- spdep::poly2nb(NCOVR.sf, queen = TRUE)
### Some regions with no links...
lwncovr <- spdep::nb2listw(nbncovr, style = "W", zero.policy = TRUE)
Tformula <- HR80 | HR90 ~ PS80 + UE80 | PS90 + UE90
### A SUR-SIM model
NCOVRSUR.sim <- spsurml(formula = Tformula, data = NCOVR.sf, type = "sim")
summary(NCOVRSUR.sim)
if (require(gridExtra)) {
  pl <- plot(NCOVRSUR.sim, viewplot = FALSE)
  grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]], nrow = 3)
}

### A SUR-SLX model
NCOVRSUR.slx <- spsurml(formula = Tformula, data = NCOVR.sf, type = "slx",
                        listw = lwncovr, zero.policy = TRUE)
print(NCOVRSUR.slx)
if (require(gridExtra)) {
  pl <- plot(NCOVRSUR.slx, viewplot = FALSE)
  grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]], nrow = 2)
}

### A SUR-SLM model
### method = "Matrix" (Cholesky) instead of "eigen"
### (fdHess = TRUE to compute numerical covariances)
NCOVRSUR.slm <- spsurml(formula = Tformula, data = NCOVR.sf,
                        type = "slm", listw = lwncovr, method = "Matrix",
                        zero.policy = TRUE, control = list(fdHess = TRUE))
summary(NCOVRSUR.slm)
if (require(gridExtra)) {
  pl <- plot(NCOVRSUR.slm, viewplot = FALSE)
  grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
               pl$lpldeltas, nrow = 3)
}

# LR test for nested models
anova(NCOVRSUR.sim, NCOVRSUR.slm)
```
A SUR-SDM model with different spatial lags in each equation
Analytical covariances (default)
TformulaD <- ~ PS80 + UE80 | PS90
NCOVRSUR.sdm <- spsurml(formula = Tformula, data = NCOVR.sf,
 type = "sdm", listw = lwncovr, method = "Matrix",
 Durbin = TformulaD, zero.policy = TRUE)
print(NCOVRSUR.sdm)
if (require(gridExtra)) {
 pl <- plot(NCOVRSUR.sdm, viewplot = FALSE)
 grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
 pl$pldeltas, nrow = 3)
}

A SUR-SEM model
NCOVRSUR.sem <- spsurml(formula = Tformula, data = NCOVR.sf,
 type = "sem", listw = lwncovr, method = "Matrix",
 zero.policy = TRUE, control = list(fdHess = TRUE))
print(NCOVRSUR.sem)
if (require(gridExtra)) {
 pl <- plot(NCOVRSUR.sem, viewplot = FALSE)
 grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
 pl$pldeltas, nrow = 3)
}

A SUR-SDEM model
NCOVRSUR.sdem <- spsurml(formula = Tformula, data = NCOVR.sf,
 type = "sdem", listw = lwncovr, method = "Matrix",
 zero.policy = TRUE, control = list(fdHess = TRUE))
print(NCOVRSUR.sdem)
if (require(gridExtra)) {
 pl <- plot(NCOVRSUR.sdem, viewplot = FALSE)
 grid.arrange(pl$lplbetas[[1]], pl$lplbetas[[2]],
 pl$pldeltas, nrow = 3)
}

###
MULTI-DIMENSIONAL SUR PANEL G>1; Tm>1
###
Reshape NCOVR in panel format
N <- nrow(NCOVR.sf)
Tm <- 4
index_time <- rep(1:Tm, each = N)
index_indiv <- rep(1:N, Tm)
pHR <- c(NCOVR.sf$HR60, NCOVR.sf$HR70, NCOVR.sf$HR80, NCOVR.sf$HR90)
pPS <- c(NCOVR.sf$PS60, NCOVR.sf$PS70, NCOVR.sf$PS80, NCOVR.sf$PS90)
pUE <- c(NCOVR.sf$UE60, NCOVR.sf$UE70, NCOVR.sf$UE80, NCOVR.sf$UE90)
pDV <- c(NCOVR.sf$DV60, NCOVR.sf$DV70, NCOVR.sf$DV80, NCOVR.sf$DV90)
pFP <- c(NCOVR.sf$FP59, NCOVR.sf$FP70, NCOVR.sf$FP80, NCOVR.sf$FP90)
pSOUTH <- rep(NCOVR.sf$SOUTH, Tm)
pNCOVR <- data.frame(indiv = index_indiv, time = index_time,
 HR = pHR, PS = pPS, UE = pUE, DV = pDV,
 FP = pFP, SOUTH = pSOUTH)
spsurtime

Estimation of SUR models for simple spatial panels (G=1).

Description

This function estimates SUR models for simple spatial panel datasets. *spsurtime* is restricted, specifically, to cases where there is only one equation, \(G=1 \), and a varying number of spatial units, \(N \), and time periods, \(Tm \). The SUR structure appears in form of serial dependence among the error terms corresponding to the same spatial unit. Note that it is assumed that all spatial units share a common pattern of serial dependence.

The user can choose between different types of spatial specifications, as described below, and the estimation algorithms allow for the introduction of linear restrictions on the \(\beta \) parameters associated to the regressors. The spatial panels with SUR structure can be estimated by maximum-likelihood methods or three-stages least squares procedures, using spatial instrumental variables.
Usage

spsurtime(formula, data, time, na.action,
 listw = NULL, type = "sim", Durbin = NULL,
 method = "eigen", fit_method = "ml", maxlagW = NULL,
 zero.policy = NULL, interval = NULL, trs = NULL,
 R = NULL, b = NULL, demean = FALSE, control = list())

Arguments

formula An object type Formula similar to objects created with the package Formula describing the equations to be estimated in the model. This model may contain several responses (explained variables) and a varying number of regressors in each equation.
data An object of class data.frame or a matrix.
time Time variable.
na.action A function (default options("na.action")), can also be na.omit or na.exclude with consequences for residuals and fitted values. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations.
listw A listw object created for example by nb2listw from spatialreg package; if nb2listw not given, set to the same spatial weights as the listw argument. It can also be a spatial weighting matrix of order (NxN) instead of a listw object. Default = NULL.
type Type of spatial model specification: "sim", "slx", "slm", "sem", "sdm", "sdem", "sarar" or "gnm". Default = "sim".
Durbin If a formula object and model is type "sdm", "sdem" or "slx" the subset of explanatory variables to lag for each equation.
method Similar to the corresponding parameter of lagsarlm function in spatialreg package. "eigen" (default) - the Jacobian is computed as the product of (1 - rho*eigenvalue) using eigenw, and "spam" or "Matrix_J" for strictly symmetric weights lists of styles "B" and "C", or made symmetric by similarity (Ord, 1975, Appendix C) if possible for styles "W" and "S", using code from the spam or Matrix packages to calculate the determinant; "Matrix" and "spam_update" provide updating Cholesky decomposition methods; "LU" provides an alternative sparse matrix decomposition approach. In addition, there are "Chebyshev" and Monte Carlo "MC" approximate log-determinant methods; the Smirnov/Anselin (2009) trace approximation is available as "moments". Three methods: "SE_classic", "SE_whichMin", and "SE_interp" are provided experimentally, the first to attempt to emulate the behaviour of Spatial Econometrics toolbox ML fitting functions. All use grids of log determinant values, and the latter two attempt to ameliorate some features of "SE_classic".
fit_method Method of estimation for the spatial panel SUR model, either ml or 3sls. Default = ml.
maxlagW Maximum spatial lag order of the regressors employed to produce spatial instruments for the spatial lags of the explained variables. Default = 2. Note that in
case of type = "sdm", the default value for maxlagw is set to 3 because the first lag of the regressors, WX_{tg}, can not be used as spatial instruments.

zero.policy
Similar to the corresponding parameter of lagsarlm function in spatialreg package. If TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA - causing spsurml() to terminate with an error. Default = NULL.

interval
Search interval for autoregressive parameter. Default = NULL.

trs
Either NULL or vector of powered spatial weights matrix traces output by trW. Default = NULL.

R
A row vector of order (1xpr) with the set of r linear constraints on the beta parameters. The first restriction appears in the first p terms, the second restriction in the next p terms and so on. Default = NULL.

b
A column vector of order (rx1) with the values of the linear restrictions on the beta parameters. Default = NULL.

demean
Logical value to allow for the demeaning of panel data. In this case, spsurml subtracts the individual mean to each spatial or cross-sectional unit. Default = FALSE.

control
List of additional control arguments.

Details

Function spsurtime only admits a formula, created with Formula and a dataset of class data.frame or matrix. That is, the data cannot be uploaded using data matrices Y and X provided for other functions in this package.

The argument time selects the variable, in the data.frame, associated to the time dimension in the panel dataset. Then spsurtime operates as in Anselin (1988), that is, each cross-section is treated as if it were an equation in a SUR model, which now has Tm 'equations' and N individuals.

The SUR structure appears because there is serial dependence in the errors of each individual in the panel. The serial dependence in the errors is not parameterized, but estimated non-parametrically in the Sigma covariance matrix returned by the function. An important constraint to mention is that the serial dependence assumed to be the same for all individuals in the sample. Serial dependence among individuals is excluded from Anselin approach.

Value

An spsur object with the output of the maximum-likelihood or three-stages least-squares estimation of the spatial panel SUR model.

Author(s)

Fernando Lopez <fernando.lopez@upct.es>
Roman Minguez <roman.minguez@uclm.es>
Jesus Mur <jmur@unizar.es>
References

See Also

`spsurml, spsur3sls, wald_betas, wald_deltas, lmtestspsur, lrtest`

Examples

```
# Example 1:
rm(list = ls()) # Clean memory
data(spc)
lwspc <- spdep::mat2listw(Wspc, style = "W")
N <- nrow(spc)
Tm <- 2
index_time <- rep(1:Tm, each = N)
index_indiv <- rep(1:N, Tm)
WAGE <- c(spc$WAGE83, spc$WAGE81)
UN <- c(spc$UN83, spc$UN80)
NMR <- c(spc$NMR83, spc$NMR80)
SMSA <- c(spc$SMSA, spc$SMSA)
pspc <- data.frame(index_indiv, index_time, WAGE, UN,
                    NMR, SMSA)
form_pspc <- WAGE ~ UN + NMR + SMSA
form2_pspc <- WAGE | NMR ~ UN | UN + SMSA
# SLM
pspc_slm <- spsurtime(formula = form_pspc, data = pspc,
                      listw = lwspc,
                      time = pspc$index_time,
                      type = "slm", fit_method = "ml")
summary(pspc_slm)

pspc_slm2 <- spsurtime(formula = form2_pspc, data = pspc,
                       listw = lwspc,
                       time = pspc$index_time,
```
```r
summary(pspc_slm2)

## VIP: The output of the whole set of the examples can be examined
## by executing demo(demo_spsurtime, package="spsur")

### Example 2:
rm(list = ls()) # Clean memory
### Read NCOVR.sf object
data(NCOVR, package="spsur")
nbncovr <- spdep::poly2nb(NCOVR.sf, queen = TRUE)
### Some regions with no links...
lwncovr <- spdep::nb2listw(nbncovr, style = "W", zero.policy = TRUE)
N <- nrow(NCOVR.sf)
Tm <- 4
index_time <- rep(1:Tm, each = N)
index_indiv <- rep(1:N, Tm)
pHR <- c(NCOVR.sf$HR60, NCOVR.sf$HR70, NCOVR.sf$HR80, NCOVR.sf$HR90)
pPS <- c(NCOVR.sf$PS60, NCOVR.sf$PS70, NCOVR.sf$PS80, NCOVR.sf$PS90)
pUE <- c(NCOVR.sf$UE60, NCOVR.sf$UE70, NCOVR.sf$UE80, NCOVR.sf$UE90)
pNCOVR <- data.frame(indiv = index_indiv, time = index_time,
                    HR = pHR, PS = pPS, UE = pUE)
form_pHR <- HR ~ PS + UE

## SIM
pHR_sim <- spsurtime(formula = form_pHR, data = pNCOVR,
time = pNCOVR$time, type = "sim", fit_method = "ml")
summary(pHR_sim)

## SLM by 3SLS.
pHR_slm <- spsurtime(formula = form_pHR, data = pNCOVR, listw = lwncovr,
time = pNCOVR$time, type = "slm",
fit_method = "3sls")
summary(pHR_slm)

########################################################################
# Wald tests about betas in spatio-temporal models
# H0: equal betas for PS in equations 1, 3 and 4.
R <- matrix(0, nrow = 2, ncol = 12)
## nrow = number of restrictions
## ncol = number of beta parameters
R[1, 2] <- 1; R[1, 8] <- -1 # PS beta coefficient in equations 1 equal to 3
R[2, 2] <- 1; R[2, 11] <- -1 # PS beta coefficient in equations 1 equal to 4
b <- matrix(0, nrow=2, ncol=1)
wald_betas(pHR_sim, R = R, b = b) # SIM model
wald_betas(pHR_slm, R = R, b = b) # SLM model
########################################################################
# Wald tests about spatial-parameters in
# spatio-temporal models
# H0: equal rhos in slm model for equations 1 and 2.
R2 <- matrix(0, nrow = 1, ncol = 4)
```
R2[1, 1] <- 1; R2[1, 2] <- -1
b2 <- matrix(0, nrow = 1, ncol = 1)
wald_deltas(pHR_slm, R = R2, b = b2)

summary.spsur

Summary of estimated objects of class spsur.

Description

This function summarizes estimated spsur objects. The tables in the output include basic information for each equation. The report also shows other complementary results corresponding to the SUR model like the \((G_xG)\) covariance matrix of the residuals of the equations of the SUR, the estimated log-likelihood, the Breusch-Pagan diagonality test or the Marginal Lagrange Multiplier, LMM, tests of spatial dependence.

Usage

```r
## S3 method for class 'spsur'
summary(object, ...)
```

Arguments

- `object` An spsur object estimated using `spsurml`, `spsur3sls` or `spsurtime` functions.
- `...` further arguments passed to or from other methods.

Value

An object of class `summary.spsur`

Author(s)

Fernando Lopez <fernando.lopez@upct.es>
Roman Minguez <roman.minguez@uclm.es>
Jesus Mur <jmur@unizar.es>

See Also

`print.summary.spsur`; `spsurml`; `spsur3sls`.

Examples

```r
# See examples for \code{\link{spsurml}} or
# \code{\link{spsur3sls}} functions.
```
wald_betas

Wald tests on the beta coefficients of the equation of the SUR model

Description

The function wald_betas can be seen as a complement to the restricted estimation procedures included in the functions spsurml and spsur3sls. wald_betas obtains Wald tests for sets of linear restrictions on the coefficients β of the SUR model. The restrictions may involve coefficients of the same equation or coefficients from different equations. The function has great flexibility in this respect. Note that wald_betas is more general than lr_betas in the sense that the last function only allows to test for restrictions of homogeneity of subsets of β coefficients among the different equations in the SUR model, and in a maximum-likelihood framework.

In order to work with wald_betas, the model on which the linear restrictions are to be tested needs to exists as an spsur object. Using the information contained in the object, wald_betas obtains the corresponding Wald estatistic for the null hypotheses specified by the user through the R row vector and b column vector, used also in spsurml and spsur3sls. The function shows the value of the Wald test statistics and its associated p-values.

Usage

wald_betas (obj, R, b)

Arguments

obj An spsur object created by spsurml, spsur3sls or spsurtime.
R A row vector of order $(1 \times Pr)$ showing the set of r linear constraints on the β parameters. The first restriction appears in the first K terms in R, the second restriction in the next K terms and so on.

b A column vector of order $(r \times 1)$ with the values of the linear restrictions on the β parameters.

Value

Object of htest class including the Wald statistic, the corresponding p-value, the degrees of freedom and the values of the sample estimates.

Author(s)

Fernando Lopez <fernando.lopez@upct.es>
Roman Minguez <roman.minguez@uclm.es>
Jesus Mur <jmur@unizar.es>
References

See Also

`spsurml`, `spsur3sls`, `lr_betas`

Examples

```r
## VIP: The output of the whole set of the examples can be examined
## by executing demo(demo_wald_betas, package="spsur")

#################################################
######## CROSS SECTION DATA (G=1; Tm>1) ########
#################################################

rm(list = ls()) # Clean memory
data(spc)
lwspc <- spdep::mat2listw(Wspc, style = "W")
Tformula <- WAGE83 | WAGE81 ~ UN83 + NMR83 + SMSA | UN80 + NMR80 + SMSA
### Estimate SUR-SLM model
spcsur.slm <- spsurml(formula = Tformula, data = spc,
                      type = "slm", listw = lwspc)
summary(spcsur.slm)
### H_0: equality between SMSA coefficients in both equations.
R1 <- matrix(c(0,0,0,1,0,0,0,-1), nrow=1)
b1 <- matrix(0, ncol=1)
wald_betas(spcsur.slm, R = R1, b = b1)

### Estimate restricted SUR-SLM model
spcsur.slmr <- spsurml(formula = Tformula, data = spc,
                        type = "slm", listw = lwspc,
                        R = R1, b = b1)
summary(spcsur.slmr)
### H_0: equality between intercepts and SMSA coefficients in both equations.
R2 <- matrix(c(1,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,-1),
             nrow = 2, ncol = 8, byrow = TRUE)
b2 <- matrix(c(0,0),ncol=1)
wald_betas(spcsur.slm, R = R2, b = b2)
### Estimate restricted SUR-SLM model
```
wald_deltas

wald_deltas <- wald_deltas(formula = Tformula, data = spc,
 type = "slm", listw = lwspc,
 R = R2, b = b2)

Example 2: Homicides + Socio-Economics (1960-90)
#
rm(list = ls()) # Clean memory
Read NCOVR.sf object
data(NCOVR, package = "spsur")
nbncovr <- spdep::poly2nb(NCOVR.sf, queen = TRUE)
Some regions with no links...
lwncovr <- spdep::nb2listw(nbncovr, style = "W", zero.policy = TRUE)
Tformula <- HR80 | HR90 ~ PS80 + UE80 | PS90 + UE90
A SUR-SLM model
NCOVRSUR.slm <- spsurml(formula = Tformula, data = NCOVR.sf,
 type = "slm", listw = lwncovr,
 method = "Matrix", zero.policy = TRUE,
 control = list(fdHess = TRUE))
summary(NCOVRSUR.slm)
R1 <- matrix(c(0,1,0,0,-1,0), nrow=1)
b1 <- matrix(0, ncol=1)
wald_betas(NCOVRSUR.slm, R = R1, b = b1)
NCOVRSUR.slmr <- spsurml(formula = Tformula, data = NCOVR.sf,
 type = "slm", listw = lwncovr,
 method = "Matrix", zero.policy = TRUE,
 control = list(fdHess = TRUE),
 R = R1, b = b1)
summary(NCOVRSUR.slmr)

wald_deltas

Wald tests for spatial parameters coefficients.

Description

Function `wald_deltas` obtains Wald tests for linear restrictions on the spatial coefficients of a SUR model that has been estimated previously through the function `spsurml`. The restrictions can affect to coefficients of the same equation (i.e., $\lambda_g = \rho_g \forall g$) or can involve coefficients from different equations (i.e., $\lambda_g = \lambda_h$). The function has great flexibility in this respect. Note that `wald_deltas` only works in a maximum-likelihood framework.

In order to work with `wald_betas`, the model on which the linear restrictions are to be tested needs to exists as an `spsur` object. Using the information contained in the object, `wald_deltas` obtains the corresponding Wald statistic for the null hypotheses specified by the user through the `R` row vector and `b` column vector discussed, used also in `spsurml`. The function shows the resulting Wald test statistics and their corresponding p-values.
Usage

wald_deltas (obj, R, b)

Arguments

obj
An spsur object created by spsurml, spsur3sls or spsurtime.

R
A row vector of order \((1 \times G_r)\) or \((1 \times 2G_r)\) showing the set of \(r\) linear constraints on the spatial parameters. The last case is reserved to "sarar" models where there appear \(G\) parameters \(\lambda_g\) and \(G\) parameters \(\rho_g\), \(2G\) spatial in total. The first restriction appears in the first \(G\) terms in \(R\) (\(2G\) for the "sarar" case), the second restriction in the next \(G\) terms (\(2G\) for the "sarar" case) and so on.

b
A column vector of order \((r \times 1)\) with the values of the linear restrictions on the \(\beta\) parameters.

Value

Object of htest including the Wald statistic, the corresponding p-value, the degrees of freedom and the values of the sample estimates.

Author(s)

Fernando Lopez <fernando.lopez@upct.es>
Roman Minguez <roman.minguez@uclm.es>
Jesus Mur <jmur@unizar.es>

See Also

spsurml, spsur3sls

Examples

###
CROSS SECTION DATA (G>1; Tm=1)
###
rm(list = ls()) # Clean memory
data(spc, package = "spsur")
lwspc <- spdep::mat2listw(Wspc, style = "W")
Tformula <- WAGE83 | WAGE81 ~ UN83 + NMR83 + SMSA | UN80 + NMR80 + SMSA

###
Estimate SUR-SLM model
spcsur.slm <- spsurml(formula = Tformula, data = spc, type = "slm", listw = lwspc)
summary(spcsur.slm)
H_0: equality of the lambda parameters of both equations.
wald_deltas

R1 <- matrix(c(1,-1), nrow=1)
b1 <- matrix(0, ncol=1)
wald_deltas(spcsur.slm, R = R1, b = b1)

VIP: The output of the whole set of the examples can be examined
by executing demo(demo_wald_deltas, package="spsur")

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
### Estimate SUR-SEM model
spcsur.sem <-spsurml(form = Tformula, data = spc,
  type = "sem", listw = lwspc)
summary(spcsur.sem)

### H_0: equality of the rho parameters of both equations.
R2 <- matrix(c(1,-1), nrow=1)
b2 <- matrix(0, ncol=1)
wald_deltas(spcsur.sem, R = R2, b = b2)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Estimate SUR-SARAR model
It usually requires 2-3 minutes maximum
spcsur.sarar <-spsurml(formula = Tformula, data = spc,
 type = "sarar", listw = lwspc,
 control = list(tol=0.1))
summary(spcsur.sarar)

H_0: equality of the lambda and rho parameters of both equations.
R3 <- matrix(c(1,-1,0,0,0,0,1,-1), nrow=2, ncol=4, byrow=TRUE)
b3 <- matrix(c(0,0), ncol=1)
wald_deltas(spcsur.sarar, R = R3, b = b3)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
###### G=1; Tm>1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Example 2: Homicides + Socio-Economics (1960-90)
rm(list = ls()) # Clean memory
Read NCOVR.sf object
data(NCOVR, package = "spsur")
nbncovr <- spdep::poly2nb(NCOVR.sf, queen = TRUE)

Some regions with no links...
lwncovr <- spdep::nb2listw(nbncovr, style = "W", zero.policy = TRUE)
Tformula <- HR80 | HR90 ~ PS80 + UE80 | PS90 + UE90

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
### A SUR-SLM model
NCOVRSUR.slm <-spsurml(formula = Tformula, data = NCOVR.sf,
  type = "slm", listw = lwncovr,
  method = "Matrix", zero.policy = TRUE,
  control = list(fdHess = TRUE))
summary(NCOVRSUR.slm)

### H_0: equality of the lambda parameters of both equations.
R1 <- matrix(c(1,-1), nrow=1)
### Estimate SUR-SEM model

```r
NCOVRSUR.sem <- spsurml(formula = Tformula, data = NCOVR.sf,
                         type = "sem", listw = lwncovr,
                         method = "Matrix", zero.policy = TRUE,
                         control = list(fdHess = TRUE))
summary(NCOVRSUR.sem)
```

### H_0: equality of the rho parameters of both equations.

```r
R2 <- matrix(c(1,-1), nrow=1)
b2 <- matrix(0, ncol=1)
wald_deltas(NCOVRSUR.sem, R = R2, b = b2)
```

---

**Wspc**  
*Spatial weight matrix for South-West Ohio Counties to estimate Spatial Phillips-Curve*

---

**Description**

A spatial weight matrix row-standardized based on first order contiguity criterium.

**Usage**

`Wspc`  
*Wspc*

**Format**

A row-standardized squared matrix with 25 rows and columns. The rows and columns follow the same order than provinces included in *spc* data frame.

**Source**

Anselin (1988, p. 207)

**References**

Index

* datasets
  NCOVR.sf, 25
  spain.covid, 27
  spain.covid.sf, 29
  spc, 30
  Wspc, 64

anova, 17
anova (methods_spsur), 24

coef (methods_spsur), 24

dgp_spsur, 3, 5, 33, 36

dunif, 4

eigenw, 44, 54

fitted (methods_spsur), 24
Formula, 15, 34–36, 40, 44, 45, 54, 55

impacts, 8, 10, 11, 33
impact_spsur, 8

lagsarlm, 8, 15, 35, 40, 44, 45, 48, 54, 55
lmSLX, 8
lmtest_spsur, 14, 15, 20, 31, 48, 56
logLik (methods_spsur), 24
lr_betas, 21, 21, 59, 60
lrtest, 48, 56
lrtest_spsur, 18, 18

methods_spsur, 24

nb2listw, 4, 15, 35, 40, 44, 54
NCOVR.sf, 25

plot (methods_spsur), 24
print (methods_spsur), 24
print.summary.spsur, 27, 58

residuals (methods_spsur), 24

spain.covid, 27
spain.covid.sf, 29
spc, 30
spreg, 40–42
spsur, 31
spsur3sls, 6, 9, 11, 18, 21, 24, 32, 34, 36, 42, 48, 56, 58–60, 62
spsurgs3sls, 39
spsurml, 6, 9, 11, 14, 17–22, 24, 32, 36, 37, 42, 44, 55, 56, 58–62
spsurtime, 6, 9, 18, 21, 22, 24, 53, 55, 58, 59, 62
stsls, 37, 42
summary.spsur, 24, 27, 58

trW, 45

vcov (methods_spsur), 24

wald_betas, 22, 33, 36, 37, 48, 56, 59, 59, 61
wald_deltas, 33, 56, 61, 61
Wspc, 64

65