Package ‘spsurvey’

December 18, 2019

Title Spatial Survey Design and Analysis
Version 4.1.1
Date 2019-12-17
Maintainer Marc Weber <Weber.Marc@epa.gov>
Depends R (>= 3.5.0), methods, sf, sp
Suggests knitr, testthat, rmarkdown
Description These functions provide procedures for selecting sites for spatial surveys using spatially balanced algorithms applied to discrete points, linear networks, or polygons. The probability survey designs available include independent random samples, stratified random samples, and unequal probability random samples (categorical or probability proportional to size). Design-based estimation based on the results from surveys is available for estimating totals, means, quantiles, CDFs, and linear models. The analyses rely on package survey for most results. Variance estimation options include a local neighborhood variance estimator that is appropriate for spatially-balanced survey designs. A reference for the survey design portion of the package is: D. L. Stevens, Jr. and A. R. Olsen (2004), "Spatially-balanced sampling of natural resources.", Journal of the American Statistical Association 99(465): 262-278, <DOI:10.1198/016214504000000250>. Additional helpful references for this package are A. R. Olsen, T. M. Kincaid, and Q. Payton (2012) and T. M. Kincaid and A. R. Olsen (2012), both of which are chapters in the book "Design and Analysis of Long-Term Ecological Monitoring Studies" (R. A. Gitzen, J. J. Millsbaugh, A. B. Cooper, and D. S. Licht (eds.), Cambridge University Press, New York, <Online ISBN:9781139022422>.
License GPL (>= 3)
Imports crossdes, deldir, foreign, graphics, grDevices, Hmisc, MASS, parallel, rgeos, stats
VignetteBuilder knitr
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
R topics documented:

spsurvey-package .. 5
adjwgt ... 6
alberseod ... 7
ash1.wgt ... 8
attrisk.analysis ... 9
attrisk.est ... 12
attrisk.var ... 15
cat.analysis ... 18
category.est ... 22
catvar.prop .. 25
catvar.size ... 27
cdf.decon .. 29
cdf.est ... 33
cdf.nresp .. 37
cdf.plot ... 38
cdf.prop ... 40
cdf.size.prop .. 41
cdf.size.total .. 42
cdf.test ... 43
cdf.test.prop ... 48
cdf.test.size.prop .. 49
cdf.total ... 50
cdfvar.prop .. 51
cdfvar.size.prop ... 53
cdfvar.size.total ... 55
cdfvar.test ... 57
cdfvar.total ... 60
cell.wt ... 62
cellWeight .. 63
change.analysis ... 63
change.est ... 68
changevar.mean .. 73
changevar.prop .. 75
changevar.size .. 77
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>constructAddr</td>
<td>80</td>
</tr>
<tr>
<td>cont.analysis</td>
<td>80</td>
</tr>
<tr>
<td>cont.cdfplot</td>
<td>85</td>
</tr>
<tr>
<td>cont.cdf.test</td>
<td>87</td>
</tr>
<tr>
<td>cov.panel.dsgn</td>
<td>91</td>
</tr>
<tr>
<td>dcdf.prop</td>
<td>93</td>
</tr>
<tr>
<td>dcdf.size.prop</td>
<td>94</td>
</tr>
<tr>
<td>dcdf.size.total</td>
<td>95</td>
</tr>
<tr>
<td>dcdf.total</td>
<td>96</td>
</tr>
<tr>
<td>dcdfvar.prop</td>
<td>97</td>
</tr>
<tr>
<td>dcdfvar.size.prop</td>
<td>99</td>
</tr>
<tr>
<td>dcdfvar.size.total</td>
<td>101</td>
</tr>
<tr>
<td>dcdfvar.total</td>
<td>104</td>
</tr>
<tr>
<td>decon_data</td>
<td>106</td>
</tr>
<tr>
<td>dframe.check</td>
<td>107</td>
</tr>
<tr>
<td>dsgnsum</td>
<td>108</td>
</tr>
<tr>
<td>examine</td>
<td>109</td>
</tr>
<tr>
<td>FL_lakes</td>
<td>110</td>
</tr>
<tr>
<td>framesum</td>
<td>111</td>
</tr>
<tr>
<td>geodalbers</td>
<td>113</td>
</tr>
<tr>
<td>grts</td>
<td>113</td>
</tr>
<tr>
<td>grtsarea</td>
<td>116</td>
</tr>
<tr>
<td>grtslin</td>
<td>117</td>
</tr>
<tr>
<td>grtspts</td>
<td>118</td>
</tr>
<tr>
<td>input.check</td>
<td>119</td>
</tr>
<tr>
<td>input.format</td>
<td>121</td>
</tr>
<tr>
<td>inside.AreaGridCell</td>
<td>122</td>
</tr>
<tr>
<td>inside.LinearGridCell</td>
<td>122</td>
</tr>
<tr>
<td>interp.axis</td>
<td>123</td>
</tr>
<tr>
<td>interp.cdf</td>
<td>124</td>
</tr>
<tr>
<td>IN_streams</td>
<td>124</td>
</tr>
<tr>
<td>irs</td>
<td>125</td>
</tr>
<tr>
<td>irsarea</td>
<td>128</td>
</tr>
<tr>
<td>irsline</td>
<td>128</td>
</tr>
<tr>
<td>irspts</td>
<td>129</td>
</tr>
<tr>
<td>isotonic</td>
<td>129</td>
</tr>
<tr>
<td>localmean.cov</td>
<td>130</td>
</tr>
<tr>
<td>localmean.df</td>
<td>131</td>
</tr>
<tr>
<td>localmean.var</td>
<td>131</td>
</tr>
<tr>
<td>localmean.weight</td>
<td>132</td>
</tr>
<tr>
<td>localmean.weight2</td>
<td>133</td>
</tr>
<tr>
<td>Luck_Ash_streams</td>
<td>133</td>
</tr>
<tr>
<td>make_grid</td>
<td>134</td>
</tr>
<tr>
<td>marinus</td>
<td>135</td>
</tr>
<tr>
<td>mdmarea</td>
<td>135</td>
</tr>
<tr>
<td>mdmlin</td>
<td>136</td>
</tr>
<tr>
<td>mdmpts</td>
<td>137</td>
</tr>
<tr>
<td>NE_lakes</td>
<td>137</td>
</tr>
</tbody>
</table>
R topics documented:

- NLA_2007 ... 138
- NRSA_2009 ... 139
- numLevels ... 139
- panel_summary .. 140
- pickFiniteSamplePoints ... 142
- pickGridCells .. 142
- pickSamplePoints ... 143
- plot_powerpaneldesign .. 144
- power.dsgn .. 146
- ranho ... 149
- read.dbf .. 149
- read.sas .. 150
- read.shape ... 151
- relrisk.analysis .. 151
- relrisk.est .. 155
- relrisk.var ... 158
- revisit_bibd .. 160
- revisit_dsgn .. 162
- revisit_rand .. 165
- sbcframe .. 166
- sbcsamp ... 167
- SC_estuaries .. 168
- selectFeatureID ... 169
- selectframe .. 169
- selectpts .. 170
- simex ... 171
- sorted ... 171
- sp2shape .. 172
- SpatialDesign-class ... 173
- spbalance ... 175
- spsurvey.analysis .. 177
- total.est .. 182
- total.var .. 186
- uniqueID .. 188
- UT_ecoregions ... 188
- vecprint .. 189
- warnprnt ... 190
- wnas ... 190
- write.object .. 191

Index ... 193
Description

This package provides functions for design and analysis of probability surveys. The functions in spsurvey can select generalized random-tesselation stratified (GRTS) and independent random sample (IRS) survey designs. Although the function can be used with a wide range of environmental survey designs, the spsurvey analysis functions were written to accommodate data generated by a GRTS sampling design. The functions in spsurvey are applicable to finite (discrete units, zero-dimensional), linear (one-dimensional), and areal (two-dimensional) resources. Examples of these resource are lakes in the United States (a finite resource), rivers and streams in Oregon (a linear resource), and Chesapeake Bay (an areal resource). The design functions can select stratified and unstratified sampling designs. The analysis functions can accommodate stratified and unstratified designs, both of which can utilize single-stage or two-stage sampling. Analytical capabilities accommodate both categorical and continuous data. For categorical data, estimates of proportion and size of each category (class) can be obtained. For a finite resource, size is the number of units in the resource. For an extensive (linear or areal) resource, size is the measure (extent) of the resource, i.e., length, area, or volume. In addition, for categorical data that contains bivariate (two categories) response variables and bivariate explanatory (stressor) variables, relative risk estimates and attributable risk estimates can be calculated. For continuous data, estimates of the cumulative distribution function (CDF) and percentiles can be obtained in addition to estimation of the population mean, total, variance, and standard deviation. Optionally, for continuous data, estimation of the deconvoluted CDF and estimation of percentiles using the deconvoluted CDF are available.

Author(s)

Maintainer: Marc Weber <Weber.Marc@epa.gov>
Authors:

- Tom Kincaid <Kincaid.Tom@epa.gov>
- Tony Olsen <Olsen.Tony@epa.gov>

Other contributors:

- Don Stevens [contributor]
- Christian Platt [contributor]
- Denis White [contributor]
- Richard Remington [contributor]
adjwgt Adjust Survey Design Weights by Categories

Description

Purpose of this function is to adjust initial survey design weights when implementation results in use of oversample sites or when it is desired to have final weights sum to known frame size. Adjusted weights are equal to initial weight * framesize/sum(initial weights). The adjustment is done separately for each category specified in wtcat.

Usage

adjwgt(sites, wgt, wtcat, framesize)

Arguments

sites Vector of the logical value for each site, where TRUE = include the site and FALSE = do not include the site.
wgt Vector of the initial weight (inverse of the sample inclusion probability) for each site.
wtcat Vector of the weight adjustment category name for each site.
framesize Vector of the known size of the frame for each category name in wtcat, which must have the names attribute set to match the category names used in wtcat.

Value

Vector of adjusted weights, where the adjusted weight is set to zero for sites that have the logical value in the sites argument set to FALSE.

Author(s)

Tony Olsen <olsen.tony@epa.gov>

Examples

sites <- as.logical(rep(rep(c("TRUE","FALSE"), c(9,1)), 5))
wgt <- runif(50, 10, 100)
wtcat <- rep(c("A","B"), c(30, 20))
framesize <- c(15, 10)
names(framesize) <- c("A","B")
adjwgt(sites, wgt, wtcat, framesize)
albersgeod

Project Albers Projection in Plane to Latitude and Longitude (Spheroid)

Description

Convert x-coordinates and y-coordinates given in Albers projection to latitude and longitude in Clarke1866, GRS80 or WGS84 spheroid with specified parameters.

Usage

albersgeod(x, y, sph = "GRS80", clon = -96, clat = 23, sp1 = 29.5, sp2 = 45.5)

Arguments

x Vector of Albers x-coordinates to be projected to latitude/longitude.
y Vector of Albers y-coordinates to be projected to latitude/longitude.
sph Spheroid options: Clarke1866, GRS80, WGS84. The default is GRS80.
clon Center longitude (decimal degrees). The default is -96.
clat Origin latitude (decimal degrees). The default is 23.
sp1 Standard parallel 1 (decimal degrees). The default is 29.5.
sp2 Standard parallel 2 (decimal degrees). The default is 45.5.

Value

A data frame of latitude and longitude projections for Albers x-coordinates and y-coordinates

Author(s)

Tony Olsen <Olsen.Tony@epa.gov>

References

J. Snyder, USGS Professional Paper 1395.
Compute the Average Shifted Histogram (ASH) for Weighted Data

Description

Calculate the average shifted histogram estimate of a density based on data from a survey design with weights.

Usage

ash1.wgt(x, wgt = rep(1, length(x)), m = 5, nbin = 50, ab = NULL, support = "Continuous")

Arguments

- **x** Vector of data used to estimate the density. NAs are allowed
- **wgt** Vector of Weights for each observation from a probability sample. The default is equal weights (equal probability).
- **m** The number of empty bins to add to the ends when the range is not completely specified. The default is 5.
- **nbin** The number of bins for density estimation. The default is 50.
- **ab** Optional range for support associated with the density. Both values may be equal to NA. If equal to NA, then corresponding limit will be based on nicerange(). The default is NULL.
- **support** The type of support. If equal to "Continuous", then data are from a continuous distribution. If equal to "Ordinal", then data are from a discrete distribution defined for integers only. The default is "Continuous".

Value

A list containing the ASH density estimate. List consists of

- **tcen** - x-coordinate for center of bin
- **f** - y-coordinate for density estimate height

Author(s)

Tony Olsen <Olsen.tony@epa.gov>

References

Examples

```r
x <- rnorm(100, 10, sqrt(10))
wgt <- runif(100, 10, 100)
rslt <- ash1.wgt(x, wgt)
plot(rslt)
```

attrisk.analysis
Attributable Risk Analysis for Probability Survey Data

Description

This function organizes input and output for attributable risk analysis of categorical data generated by a probability survey.

Usage

```r
attrisk.analysis(sites = NULL, subpop = NULL, design, data.ar,
        response.var, stressor.var, response.levels = rep(list(c("Poor","Good")), length(response.var)), stressor.levels = rep(list(c("Poor","Good")), length(stressor.var)), popcorrect = FALSE, pcfsize = NULL,
        N.cluster = NULL, stage1size = NULL, sizeweight = FALSE,
        vartype = "Local", conf = 95)
```

Arguments

- **sites** Data frame consisting of two variables: the first variable is site IDs, and the second variable is a logical vector indicating which sites to use in the analysis. The default is NULL.
- **subpop** Data frame describing sets of populations and subpopulations for which estimates will be calculated. The first variable is site IDs. Each subsequent variable identifies a Type of population, where the variable name is used to identify Type. A Type variable identifies each site with one of the subpopulations of that Type. The default is NULL.
- **design** Data frame consisting of design variables. Variables should be named as follows:
 - **siteID** Vector of site IDs
 - **wgt** Vector of weights, which are either the weights for a single-stage sample or the stage two weights for a two-stage sample
 - **xcoord** Vector of x-coordinates for location, which are either the x-coordinates for a single-stage sample or the stage two x-coordinates for a two-stage sample
 - **ycoord** Vector of y-coordinates for location, which are either the y-coordinates for a single-stage sample or the stage two y-coordinates for a two-stage sample
attrisk.analysis

stratum Vector of the stratum codes for each site
cluster Vector of the stage one sampling unit (primary sampling unit or cluster) codes for each site
wgt1 Vector of stage one weights in a two-stage design
xcoord1 Vector of the stage one x-coordinates for location in a two-stage design
ycoord1 Vector of the stage one y-coordinates for location in a two-stage design
support Vector of support values - for a finite resource, the value one (1) for a site. For an extensive resource, the measure of the sampling unit associated with a site. Required for calculation of finite and continuous population correction factors.
swgt Vector of size-weights, which is the stage two size-weight for a two-stage design.
swgt1 Vector of stage one size-weights for a two-stage design.

Data frame of categorical response and stressor variables, where each variable consists of two categories. If response or stressor variables include more than two categories, occurrences of those categories must be removed or replaced with missing values. The first column of this argument is site IDs. Subsequent columns are response and stressor variables. Missing data (NA) is allowed.

Character vector providing names of columns in argument data.ar that contain a response variable, where names may be repeated. Each name in this argument is matched with the corresponding value in the stressor.var argument.

Character vector providing names of columns in argument data.ar that contain a stressor variable, where names may be repeated. Each name in this argument is matched with the corresponding value in the response.var argument. This argument must be the same length as argument response.var.

List providing the category values (levels) for each element in the response.var argument. This argument must be the same length as argument response.var. The default is a list containing the values "Poor" and "Good" for the first and second levels, respectively, of each element in the response.var argument.

List providing the category values (levels) for each element in the stressor.var argument. This argument must be the same length as argument stressor.var. The default is a list containing the values "Poor" and "Good" for the first and second levels, respectively, of each element in the stressor.var argument.

Logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for argument pcfsize and for the support variable of the design argument. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster and stage1size, and for the support variable of the design argument.

Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample
this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

N.cluster The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

stage1size Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., “Stratum 1&Cluster 1”. The default is NULL.

sizeweight Logical value that indicates whether size-weights should be used in the analysis, where TRUE = use the size-weights and FALSE = do not use the size-weights. The default is FALSE.

vartype The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator. The default is "Local".

conf Numeric value for the confidence level. The default is 95.

Value

A data frame of attributable risk estimates for all combinations of population Types, subpopulations within Types, and response variables. Standard error and confidence interval estimates also are provided.

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

References

See Also

attrisk.est computes the attributable risk estimate
dframe.check check site IDs, the sites data frame, the subpop data frame, and the data.ar data frame to assure valid contents and, as necessary, create the sites data frame and the subpop data frame

uniqueID creates unique site IDs by appending a unique number to each occurrence of a site ID
input.check check input values for errors, consistency, and compatibility with psurvey.analysis analytical functions
Examples

```r
mysiteID <- paste("Site", 1:100, sep="")
mysites <- data.frame(
  siteID=mysiteID,
  Active=rep(TRUE, 100))
mysubpop <- data.frame(
  siteID=mysiteID,
  All.Sites=rep("All Sites", 100),
  Resource.Class=rep(c("Agr", "Forest"), c(55,45)))
mydesign <- data.frame(
  siteID=mysiteID,
  wgt=runif(100, 10, 100),
  xcoord=runif(100),
  ycoord=runif(100),
  stratum=rep(c("Stratum1", "Stratum2"), 50))
mydata.ar <- data.frame(
  siteID=mysiteID,
  RespVar1=sample(c("Poor", "Good"), 100, replace=TRUE),
  RespVar2=sample(c("Poor", "Good"), 100, replace=TRUE),
  StressVar=sample(c("Poor", "Good"), 100, replace=TRUE))
attrisk.analysis(sites=mysites, subpop=mysubpop, design=mydesign,
  data.ar=mydata.ar, response.var=c("RespVar1", "RespVar2"),
  stressor.var=rep("StressVar", 2))
```

attrisk.est

Compute the Attributable Risk Estimate

Description

This function calculates the attributable risk estimate for a 2x2 table of cell counts defined by a categorical response variable and a categorical explanatory (stressor) variable for an unequal probability design (Van Sickle and Paulsen, 2008). The attributable risk of the stressor variable is the percent reduction in the first level of the response variable that would result from elimination of the stressor variable. Cell totals are estimated using the Horvitz-Thompson estimator. The standard error of the log of the attributable risk estimate and confidence limits for the estimate also are calculated. The standard error is calculated using a first-order Taylor series linearization (Sarndal et al, 1992).

Usage

```r
attrisk.est(response, stressor, response.levels = c("Poor", "Good"),
  stressor.levels = c("Poor", "Good"), wgt, xcoord = NULL,
  ycoord = NULL, stratum = NULL, cluster = NULL, wgt1 = NULL,
  xcoord1 = NULL, ycoord1 = NULL, popcorrect = FALSE,
  pcfsize = NULL, N.cluster = NULL, stagelsize = NULL,
  support = NULL, sizeweight = FALSE, swgt = NULL, swgt1 = NULL,
  vartype = "Local", conf = 95, check.ind = TRUE, warn.ind = NULL,
  warn.df = NULL, warn.vec = NULL)
```
Arguments

response Vector of the categorical response variable values.

stressor Vector of the categorical explanatory (stressor) variable values.

response.levels Vector of category values (levels) for the categorical response variable, where the first level is used for calculating the numerator and the denominator of the attributable risk estimate. If response.levels is not supplied, then values "Poor" and "Good" are used for the first level and second level of the response variable, respectively. The default is c("Poor", "Good").

stressor.levels Vector of category values (levels) for the categorical stressor variable, where the first level is used for calculating the numerator of the attributable risk estimate and the second level is used for calculating the denominator of the estimate. If stressor.levels is not supplied, then values "Poor" and "Good" are used for the first level and second level of the stressor variable, respectively. The default is c("Poor", "Good").

wgt Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.

xcoord Vector of x-coordinates for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample. The default is NULL.

ycoord Vector of y-coordinate for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample. The default is NULL.

stratum Vector of the stratum values for each site. The default is NULL.

cluster Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site. The default is NULL.

wgt1 Vector of the final adjusted stage one weight for each site. The default is NULL.

xcoord1 Vector of the stage one x-coordinate for location for each site. The default is NULL.

ycoord1 Vector of the stage one y-coordinate for location for each site. The default is NULL.

popcorrect Logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.

pcfsize The size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.
N.cluster The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

stage1size The size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1". The default is NULL.

support The support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from an extensive resource, which is required for calculation of finite and continuous population correction factors. The default is NULL.

sizeweight Logical value that indicates whether size-weights should be used in the analysis, where TRUE = use the size-weights and FALSE = do not use the size-weights. The default is FALSE.

swgt The size-weight for each site, which is the stage two size-weight for two-stage sample. The default is NULL.

swgt1 The stage one size-weight for each site. The default is NULL.

vartype The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator. The default is "Local".

conf Numeric value for the confidence level. The default is 95.

check.ind A logical value that indicates whether compatibility checking of the input values is conducted, where TRUE = conduct compatibility checking and FALSE = do not conduct compatibility checking. The default is TRUE.

warn.ind A logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated. The default is NULL.

warn.df A data frame for storing warning messages. The default is NULL.

warn.vec A vector that contains names of the population type, the subpopulation, and an indicator. The default is NULL.

Value

If the function was called directly, then value is the Results list, which contains the following components:

- AttRisk - the attributable risk estimate
- ARlog.se - standard error for the log of the attributable risk estimate
- Conflimits - confidence limits for the attributable risk estimate
- WeightTotal - sum of the final adjusted weights
- CellCounts - cell and margin counts for the 2x2 table
attrisk.var

- CellProportions - estimated cell proportions for the 2x2 table

If the function was called by the attrisk.analysis function, then the result is a list containing the following components:

- Results - Results list. See above for list contents
- warn.ind - a logical value indicating whether warning messages were generated
- warn.df - a data frame containing warning messages

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

References

Examples

```r
response <- sample(c("Poor", "Good"), 100, replace=TRUE)
stressor <- sample(c("Poor", "Good"), 100, replace=TRUE)
wgt <- runif(100, 10, 100)
attrisk.est(response, stressor, wgt=wgt, vartype="SRS")

xcoord <- runif(100)
ycoord <- runif(100)
attrisk.est(response, stressor, wgt=wgt, xcoord=xcoord, ycoord=ycoord)
```

attrisk.var

Compute the Variance Estimate for Attributable Risk

Description

This function calculates the variance-covariance estimate for the cell totals used to calculate the attributable risk estimate. Either the simple random sampling (SRS) variance estimator or the local mean variance estimator is calculated, which is subject to user control. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. The function can accommodate single-stage and two-stage samples.
attrisk.var(response, stressor, response.levels, stressor.levels, wgt, x, y, stratum.ind, stratum.level, cluster.ind, cluster, wgt1, x1, y1, pcfactor.ind, pcfsize, N.cluster, stagelsize, support, vartype, warn.ind, warn.df, warn.vec)

Arguments

response
Vector of the categorical response variable.

stressor
Vector of the categorical stressor variable.

response.levels
Vector of category values (levels) for the categorical response variable. If response.levels equals NULL, then values "Poor" and "Good" are used for the first level and second level of the response variable, respectively. The default is NULL.

stressor.levels
Vector of category values (levels) for the categorical stressor variable. If stressor.levels equals NULL, then values "Poor" and "Good" are used for the first level and second level of the stressor variable, respectively. The default is NULL.

wgt
Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.

x
Vector of x-coordinate for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample.

y
Vector of y-coordinate for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample.

stratum.ind
Logical value that indicates whether the sample is stratified, where TRUE = a stratified sample and FALSE = not a stratified sample.

stratum.level
Vector of the stratum levels for the sites.

ccluster.ind
Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.

ccluster
Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.

wgt1
Vector of the final adjusted stage one weight for each site.

x1
Vector of the stage one x-coordinate for location for each site.

y1
Vector of the stage one y-coordinate for location for each site.

pcfactor.ind
Logical value that indicates whether the population correction factor is used during variance estimation, where TRUE = use the population correction factor and FALSE = do not use the factor. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.
pcfsize Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

N.cluster The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

stage1size Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., “Stratum 1&Cluster 1”.

support Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from a continuous resource, which is required for calculation of finite and continuous population correction factors.

vartype The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.

warn.ind Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated.

warn.df A data frame for storing warning messages.

warn.vec Vector that contains names of the population type, the subpopulation, and an indicator.

Value

An object in list format composed of a vector named varest, which contains the variance-covariance estimate, a logical variable named warn.ind, which is the indicator for warning messages, and a data frame named warn.df, which contains warning messages.

Other Functions Required

localmean.cov calculate the variance/covariance matrix using the local mean estimator
localmean.weight calculate the weighting matrix for the local mean variance estimator

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

See Also

attrisk.est for estimating single relative risk and attrisk.analysis for estimating relative risk for multiple variables or subpopulations.
Description

This function organizes input and output for analysis of categorical data generated by a probability survey. Input can be either an object of class spsurvey.analysis (see the documentation for function spsurvey.analysis) or through use of the other arguments to this function.

Usage

cat.analysis(sites = NULL, subpop = NULL, design = NULL,
data.cat = NULL, psize = NULL, popcorrect = FALSE,
pcfsize = NULL, N.cluster = NULL, stage1size = NULL,
sizeweight = FALSE, vartype = "Local", conf = 95,
spsurvey.obj = NULL)

Arguments

sites Data frame consisting of two variables: the first variable is site IDs, and the second variable is a logical vector indicating which sites to use in the analysis. If spsurvey.obj is not provided, then this argument is required. The default is NULL.

subpop Data frame describing sets of populations and subpopulations for which estimates will be calculated. The first variable is site IDs. Each subsequent variable identifies a Type of population, where the variable name is used to identify Type. A Type variable identifies each site with one of the subpopulations of that Type. If spsurvey.obj is not provided, then this argument is required. The default is NULL.

design Data frame consisting of design variables. If spsurvey.obj is not provided, then this argument is required. The default is NULL. Variables should be named as follows:

- **siteID** Vector of site IDs
- **wgt** Vector of weights, which are either the weights for a single-stage sample or the stage two weights for a two-stage sample
- **xcoord** Vector of x-coordinates for location, which are either the x-coordinates for a single-stage sample or the stage two x-coordinates for a two-stage sample
- **ycoord** Vector of y-coordinates for location, which are either the y-coordinates for a single-stage sample or the stage two y-coordinates for a two-stage sample
- **stratum** Vector of the stratum codes for each site
- **cluster** Vector of the stage one sampling unit (primary sampling unit or cluster) codes for each site
- **wgt1** Vector of stage one weights in a two-stage design
xcoord1 Vector of the stage one x-coordinates for location in a two-stage design

ycoord1 Vector of the stage one y-coordinates for location in a two-stage design

support Vector of support values - for a finite resource, the value one (1) for a site. For an extensive resource, the measure of the sampling unit associated with a site. Required for calculation of finite and continuous population correction factors.

swgt Vector of size-weights, which is the stage two size-weight for a two-stage design.

swgt1 Vector of stage one size-weights for a two-stage design.

data.cat Data frame of categorical response variables. The first variable is site IDs. Subsequent variables are response variables. Missing data (NA) is allowed. If spsurvey.obj is not provided, then this argument is required. The default is NULL.

popsize Known size of the resource, which is used to perform ratio adjustment to estimators expressed using measurement units for the resource and to calculate strata proportions for calculating estimates for a stratified sample. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. The argument must be in the form of a list containing an element for each population Type in the subpop data frame, where NULL is a valid choice for a population Type. The list must be named using the column names for the population Types in subpop. If a population Type doesn’t contain subpopulations, then each element of the list is either a single value for an unstratified sample or a vector containing a value for each stratum for a stratified sample, where elements of the vector are named using the stratum codes. If a population Type contains subpopulations, then each element of the list is a list containing an element for each subpopulation, where the list is named using the subpopulation names. The element for each subpopulation will be either a single value for an unstratified sample or a named vector of values for a stratified sample. The default is NULL.

Example popsize for a stratified sample:

```r
cat.analyze`popsize = list("Pop 1"=c("Stratum 1"=750, "Stratum 2"=500, "Stratum 3"=250),
"Pop 2"=list("SubPop 1"=c("Stratum 1"=350, "Stratum 2"=250, "Stratum 3"=150),
"SubPop 2"=c("Stratum 1"=250, "Stratum 2"=150, "Stratum 3"=100),
"SubPop 3"=c("Stratum 1"=150, "Stratum 2"=150, "Stratum 3"=75)),
"Pop 3"=NULL)
```

Example popsize for an unstratified sample:

```r
cat.analyze`popsize = list("Pop 1"=1500,
```

"Pop 2"=list("SubPop 1"=750,
"SubPop 2"=500,
"SubPop 3"=375),
"Pop 3"=NULL)

popcorrect Logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for argument pcfsize and for the support variable of the design argument. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster and stage1size, and for the support variable of the design argument.

pcfsize Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

N.cluster Number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

stage1size Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1". The default is NULL.

sizeweight Logical value that indicates whether size-weights should be used in the analysis, where TRUE = use the size-weights and FALSE = do not use the size-weights. The default is FALSE.

vartype The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator. The default is "Local".

conf Numeric value for the confidence level. The default is 95.

spsurvey.obj List of class spsurvey.analysis that was produced by the function spsurvey.analysis. Depending on input to that function, some elements of the list may be NULL. The default is NULL.

Value

A data frame of population estimates for all combinations of population Types, subpopulations within Types, response variables, and categories within each response variable. Estimates are provided for proportion and size of the population plus standard error and confidence interval estimates.
Other Functions Required

dframe.check check site IDs, the sites data frame, the subpop data frame, and the data.cat data frame to assure valid contents and, as necessary, create the sites data frame and the subpop data frame

veccprint takes an input vector and outputs a character string with line breaks inserted

uniqueID creates unique site IDs by appending a unique number to each occurrence of a site ID

input.check check input values for errors, consistency, and compatibility with analytical functions

category.est estimate proportion (expressed as percent) and size of a resource in each of a set of categories

Author(s)

Tony Olsen <Olsen.Tony@epa.gov>
Tom Kincaid <Kincaid.Tom@epa.gov>

References

See Also

category.est

Examples

Categorical variable example for two resource classes:
mysiteID <- paste("Site", 1:100, sep="")
mysites <- data.frame(
 siteID=mysiteID,
 Active=rep(TRUE, 100))
mysubpop <- data.frame(
 siteID=mysiteID,
 All.Sites=rep("All Sites", 100),
 Resource.Class=rep(c("Good","Poor"), c(55,45)))
mydesign <- data.frame(
 siteID=mysiteID,
 wgt=runif(100, 10, 100),
 xcoord=runif(100),
 ycoord=runif(100),
 stratum=rep(c("Stratum1","Stratum2"), 50))
mydata.cat <- data.frame(
 siteID=mysiteID,
 CatVar=rep(c("north","south","east","west"), 25))
mypopsize <- list(
 All.Sites=c(Stratum1=3500, Stratum2=2000),
Resource.Class=list(Good=c(Stratum1=2500, Stratum2=1500), Poor=c(Stratum1=1000, Stratum2=500))
cat.analysis(sites=mysites, subpop=mysubpop, design=mydesign, data.cat=mydata.cat, popsize=mypopsize)

Exclude category "south" from the analysis:
mysites <- data.frame(
 siteID=mysiteID,
 Active=rep(c(TRUE, FALSE, TRUE, TRUE), 25))
cat.analysis(sites=mysites, subpop=mysubpop, design=mydesign, data.cat=mydata.cat, popsize=mypopsize)

category.est

Category Proportion and Size Estimates

Description

This function estimates proportion (expressed as percent) and size of a resource in each of a set of categories and can also be used to estimate proportion and size for site status categories. Upper and lower confidence bounds also are estimated. Proportion estimates are calculated using the Horvitz-Thompson ratio estimator, i.e., the ratio of two Horvitz-Thompson estimators. The numerator of the ratio estimates the size of the category. The denominator of the ratio estimates the size of the resource. Variance estimates for the proportion estimates are calculated using either the local mean variance estimator or the simple random sampling (SRS) variance estimator. The choice of variance estimator is subject to user control. The local mean variance estimator requires the x-coordinate and the y-coordinate of each site. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. Confidence bounds are calculated using a Normal distribution multiplier. For a finite resource size is the number of units in the resource. For an extensive resource size is the measure (extent) of the resource, i.e., length, area, or volume. Size estimates are calculated using the Horvitz-Thompson estimator. Variance estimates for the size estimates are calculated using either the local mean variance estimator or the SRS variance estimator. The function can accommodate a stratified sample. For a stratified sample, separate estimates and standard errors are calculated for each stratum, which are used to produce estimates and standard errors for all strata combined. Strata that contain a single value are removed. For a stratified sample, when either the size of the resource or the sum of the size-weights for the resource is provided for each stratum, those values are used as stratum weights for calculating the estimates and standard errors for all strata combined. In addition, when either of those known values is provided for each stratum, size estimates are obtained by multiplying the proportion estimate, i.e., the Horvitz-Thompson ratio estimator, by the known value for the stratum. For a stratified sample when neither the size of the resource nor the sum of the size-weights of the resource is provided for each stratum, estimated values are used as stratum weights for calculating the estimates and standard errors for all strata combined. The function can accommodate single-stage and two-stage samples for both stratified and unstratified sampling designs. Finite population and continuous population correction factors can be utilized in variance estimation. The function checks for compatibility of input values and removes missing values.
Usage

category.est(catvar, wgt, x = NULL, y = NULL, stratum = NULL,
cluster = NULL, wgt1 = NULL, x1 = NULL, y1 = NULL,
popsizes = NULL, popcorrect = FALSE, pcfsize = NULL,
N.cluster = NULL, stage1size = NULL, support = NULL,
sizeweight = FALSE, swgt = NULL, swgt1 = NULL, vartype = "Local",
conf = 95, check.ind = TRUE, warn.ind = NULL, warn.df = NULL,
warn.vec = NULL)

Arguments

catvar Vector of the value of the categorical response variable or the site status for each site.
wgt Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
x Vector of x-coordinate for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample. The default is NULL.
y Vector of y-coordinate for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample. The default is NULL.
stratum Vector of the stratum for each site. The default is NULL.
cluster Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site. The default is NULL.
wgt1 Vector of the final adjusted stage one weight for each site. The default is NULL.
x1 Vector of the stage one x-coordinate for location for each site. The default is NULL.
y1 Vector of the stage one y-coordinate for location for each site. The default is NULL.
popsizes Known size of the resource, which is used to perform ratio adjustment to estimators expressed using measurement units for the resource and to calculate strata proportions for calculating estimates for a stratified sample. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.
popcorrect Logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.
pcfsize
Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

N.cluster
Number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

stage1size
Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1". The default is NULL.

support
Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from an extensive resource, which is required for calculation of finite and continuous population correction factors. The default is NULL.

sizeweight
Logical value that indicates whether size-weights should be used in the analysis, where TRUE = use the size-weights and FALSE = do not use the size-weights. The default is FALSE.

swgt
Vector of the size-weight for each site, which is the stage two size-weight for a two-stage sample. The default is NULL.

swgt1
Vector of the stage one size-weight for each site. The default is NULL.

vartype
The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator. The default is "Local".

conf
Numeric value for the confidence level. The default is 95.

check.ind
Logical value that indicates whether compatibility checking of the input values is conducted, where TRUE = conduct compatibility checking and FALSE = do not conduct compatibility checking. The default is TRUE.

warn.ind
Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated. The default is TRUE.

warn.df
Data frame for storing warning messages. The default is NULL.

warn.vec
Vector that contains names of the population type, the subpopulation, and an indicator. The default is NULL.

Value

If the function was called by the `cat.analysis` function, then output is an object in list format composed of the `Results` data frame, which contains estimates and confidence bounds, and the `warn.df` data frame, which contains warning messages. If the function was called directly, then output is the `Results` data frame.
catvar.prop

Other Functions Required

input.check check input values for errors, consistency, and compatibility with analytical functions
wnas remove missing values
vecprint takes an input vector and outputs a character string with line breaks inserted
catvar.prop calculate variance of the proportion estimates
catvar.size calculate variance of the size estimates

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

References

Examples

```r
catvar <- rep(c("north", "south", "east", "west"), rep(25, 4))
wgt <- runif(100, 10, 100)
category.est(catvar, wgt, vartype="SRS")
x <- runif(100)
y <- runif(100)
category.est(catvar, wgt, x, y)
```

catvar.prop
Variance Estimates of Estimated Proportions

Description

This function calculates variance estimates of the estimated proportion in each of a set of categories. Either the simple random sampling (SRS) variance estimator or the local mean variance estimator is calculated, which is subject to user control. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. The function can accommodate single-stage and two-stage samples.

Usage

```r
catvar.prop(z, wgt, x, y, prop, stratum.ind, stratum.level, cluster.ind, 
cluster, wgt1, x1, y1, pcfactor.ind, pcfsize, N.cluster, stagelsize, 
support, vartype, warn.ind, warn.df, warn.vec)
```
Arguments

z Vector of the value of the categorical response variable or the site status for each site.
wgt Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
x Vector of the x-coordinate for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample.
y Vector of the y-coordinate for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample.
prop Vector of the proportion estimates.
stratum.ind Logical value that indicates whether the sample is stratified, where TRUE = a stratified sample and FALSE = not a stratified sample.
stratum.level The stratum level.
cluster.ind Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.
class Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.
wgt1 Vector of the final adjusted stage one weight for each site.
x1 Vector of the stage one x-coordinate for location for each site.
y1 Vector of the stage one y-coordinate for location for each site.
pcf.factor.ind Logical value that indicates whether the population correction factor is used during variance estimation, where TRUE = use the population correction factor and FALSE = do not use the factor. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.
pcfsize Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.
N.cluster The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.
stage1size Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1".
Support Vector

Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from a continuous resource, which is required for calculation of finite and continuous population correction factors.

Vartype

The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.

Warn.ind

Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated.

Warn.df

Data frame for storing warning messages.

Warn.vec

Vector that contains names of the population type, the subpopulation, and an indicator.

Value

An object in list format composed of a vector named varest, which contains variance estimates, a logical variable named warn.ind, which is the indicator for warning messages, and a data frame named warn.df, which contains warning messages.

Other Functions Required

- `localmean.weight` - calculate the weighting matrix for the local mean variance estimator
- `localmean.var` - calculate the local mean variance estimator

Author(s)

Tom Kincaid <kincaid.tom@epa.gov>

Description

This function calculates variance estimates of the estimated size in each of a set of categories. Either the simple random sampling (SRS) variance estimator or the local mean variance estimator is calculated, which is subject to user control. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. The function can accommodate single-stage and two-stage samples.

Usage

```r
catvar.size(z, wgt, x, y, size, stratum.ind, stratum.level, cluster.ind, cluster, wgt1, x1, y1, pcfactor.ind, pcfsize, N.cluster, stage1size, support, vartype, warn.ind, warn.df, warn.vec)
```
Arguments

- **z**
 Vector of the values of the categorical response variable or the site status for each site.

- **wgt**
 Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.

- **x**
 Vector of the x-coordinates for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample.

- **y**
 Vector of the y-coordinates for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample.

- **size**
 Vector of the size values for each site.

- **stratum.ind**
 Logical value that indicates whether the sample is stratified, where TRUE = a stratified sample and FALSE = not a stratified sample.

- **stratum.level**
 Vector of the stratum for each site.

- **cluster.ind**
 Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.

- **cluster**
 Vector of the stage one sampling units (primary sampling unit or cluster) code for each site.

- **wgt1**
 Vector of the final adjusted stage one weight for each site.

- **x1**
 Vector of the stage one x-coordinates for location for each site.

- **y1**
 Vector of the stage one y-coordinates for location for each site.

- **pcf.ind**
 Logical value that indicates whether the population correction factor is used during variance estimation, where TRUE = use the population correction factor and FALSE = do not use the factor. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcf.size and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1.size, and support.

- **pcf.size**
 Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

- **N.cluster**
 The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

- **stage1.size**
 Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1".
support Vector of the support value for each site - the value one (1) for a site from a
finite resource or the measure of the sampling unit associated with a site from a
continuous resource, which is required for calculation of finite and continuous
population correction factors.

vartype The choice of variance estimator, where "Local" = local mean estimator and
"SRS" = SRS estimator.

warn.ind Logical value that indicates whether warning messages were generated, where
TRUE = warning messages were generated and FALSE = warning messages
were not generated.

warn.df A data frame for storing warning messages.

warn.vec A vector that contains names of the population type, the subpopulation, and an
indicator.

Value
An object in list format composed of a vector named varest, which contains variance estimates,
a logical variable named warn.ind, which is the indicator for warning messages, and a data frame
named warn.df, which contains warning messages.

Other Functions Required
 localmean.weight calculate the weighting matrix for the local mean variance estimator
 localmean.var calculate the local mean variance estimator

Author(s)
Tom Kincaid <kincaid.tom@epa.gov>

cdf.decon Deconvolution Estimate of the Cumulative Distribution Function

Description
This function calculates an estimate of the deconvoluted cumulative distribution function (CDF)
for the proportion (expressed as percent) and the total of a response variable, where the response
variable may be defined for either a finite or an extensive resource. Optionally, for a finite resource,
the size-weighted CDF can be calculated. In addition the standard error of the estimated CDF and
confidence bounds are calculated. The simulation extrapolation deconvolution method (Stefanski
and Bay, 1996) is used to deconvolute measurement error variance from the response. The user can
supply the set of values at which the CDF is estimated. For the CDF of a proportion, the Horvitz-
Thompson ratio estimator, i.e., the ratio of two Horvitz-Thompson estimators, is used to calculate
the CDF estimate. For the CDF of a total, the user can supply the known size of the resource or the
known sum of the size-weights of the resource, as appropriate. For the CDF of a total when either
the size of the resource or the sum of the size-weights of the resource is provided, the classic ratio
estimator is used to calculate the CDF estimate, where that estimator is the product of the known
value and the Horvitz-Thompson ratio estimator. For the CDF of a total when neither the size
of the resource nor the sum of the size-weights of the resource is provided, the Horvitz-Thompson
estimator is used to calculate the CDF estimate. Variance estimates for the estimated CDF are calcu-
lated using either the local mean variance estimator or the simple random sampling (SRS) variance
estimator. The choice of variance estimator is subject to user control. The local mean variance
estimator requires the x-coordinate and the y-coordinate of each site. The SRS variance estimator
uses the independent random sample approximation to calculate joint inclusion probabilities. Con-
fidence bounds are calculated using a Normal distribution multiplier. In addition the function uses
the estimated CDF to calculate percentile estimates. Estimated confidence bounds for the percentile
estimates are calculated. The user can supply the set of values for which percentiles estimates are
desired. Optionally, the user can use the default set of percentiles. The function can accommodate
a stratified sample. For a stratified sample, separate estimates and standard errors are calculated
for each stratum, which are used to produce estimates and standard errors for all strata combined.
Strata that contain a single value are removed. For a stratified sample, when either the size of the
resource or the sum of the size-weights of the resource is provided for each stratum, those values
are used as stratum weights for calculating the estimates and standard errors for all strata combined.
For a stratified sample when neither the size of the resource nor the sum of the size-weights of the
resource is provided for each stratum, estimated values are used as stratum weights for calculating
the estimates and standard errors for all strata combined. The function can accommodate single-
stage and two-stage samples for both stratified and unstratified sampling designs. Finite population
and continuous population correction factors can be utilized in variance estimation. The function
checks for compatibility of input values and removes missing values.

Usage

cdf.decon(z, wgt, sigma, var.sigma = NULL, x = NULL, y = NULL,
stratum = NULL, cluster = NULL, wgt1 = NULL, x1 = NULL,
y1 = NULL, popsize = NULL, popcorrect = FALSE, pcfsize = NULL,
N.cluster = NULL, stage1size = NULL, support = NULL,
sizeweight = FALSE, swgt = NULL, swgt1 = NULL, vartype = “Local”,
conf = 95, cdfval = NULL, pctval = c(5, 10, 25, 50, 75, 90, 95),
check.ind = TRUE, warn.ind = NULL, warn.df = NULL,
warn.vec = NULL)

Arguments

z Vector of the response values for each site.
wgt Vector of the final adjusted weight (inverse of the sample inclusion probability)
 for each site, which is either the weight for a single-stage sample or the stage
two weight for a two-stage sample.
sigma Measurement error variance.
var.sigma Variance of the measurement error variance. The default is NULL.
x Vector of x-coordinates for location for each site, which is either the x-coordinate
 for a single-stage sample or the stage two x-coordinate for a two-stage sample.
 The default is NULL.
y Vector of y-coordinates for location for each site, which is either the y-coordinate
 for a single-stage sample or the stage two y-coordinate for a two-stage sample.
 The default is NULL.
stratum Vector of the stratum value for each site. The default is NULL.
cluster Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site. The default is NULL.
wgt1 Vector of the final adjusted stage one weight for each site. The default is NULL.
x1 Vector of the stage one x-coordinates for location for each site. The default is NULL.
y1 Vector of the stage one y-coordinates for location for each site. The default is NULL.
popsizes Known size of the resource, which is used to perform ratio adjustment to estimators expressed using measurement units for the resource and to calculate strata proportions for calculating estimates for a stratified sample. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.
popcorrect Logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.
pcfsize Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.
N.cluster The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.
stage1size Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1". The default is NULL.
support Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from an extensive resource, which is required for calculation of finite and continuous population correction factors. The default is NULL.
sizeweight Logical value that indicates whether size-weights should be used in the analysis, where TRUE = use the size-weights and FALSE = do not use the size-weights. The default is FALSE.

swgt Vector of the size-weight for each site, which is the stage two size-weight for a two-stage sample. The default is NULL.

swgt1 Vector of the stage one size-weight for each site. The default is NULL.

vartype The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator. The default is "Local".

conf The confidence level. The default is 95.

cdfval The set of values at which the CDF is estimated. If a set of values is not provided, then the sorted set of unique values of the response variable is used. The default is NULL.

pctval The set of values at which percentiles are estimated. The default set is: 5, 10, 25, 50, 75, 90, 95.

check.ind Logical value that indicates whether compatability checking of the input values is conducted, where TRUE = conduct compatibility checking and FALSE = do not conduct compatibility checking. The default is TRUE.

warn.ind Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated. The default is NULL.

warn.df A data frame for storing warning messages. The default is NULL.

warn.vec Vector that contains names of the population type, the subpopulation, and an indicator. The default is NULL.

Value

If the function was called by the cont.analysis function, then output is an object in list format composed of a list named Results, which contains estimates and confidence bounds, and a data frame named warn.df, which contains warning messages. The Results list is composed of two data frames: one data frame named CDF, which contains the CDF estimates, and a second data frame named Pct, which contains the percentile estimates. If the function was called directly, then output is the Results list.

Other Functions Required

input.check check input values for errors, consistency, and compatibility with analytical functions

wnas remove missing values

vecprint takes an input vector and outputs a character string with line breaks inserted

cdf.nresp calculate the number of response values less than or equal to each of the set of values at which the CDF is estimated

simex perform deconvolution of the response values

dcdf.prop calculate the deconvoluted CDF for the proportion

dcdf.total calculate the deconvoluted CDF for the total
cdf.est

Calculated Distribution Function Estimate for Survey Design

Description

This function calculates an estimate of the cumulative distribution function (CDF) for the proportion (expressed as percent) and the total of a response variable, where the response variable may be defined for either a finite or an extensive resource. Optionally, for a finite resource, the size-weighted CDF can be calculated. In addition, the standard error of the estimated CDF and confidence bounds are calculated. The user can supply the set of values at which the CDF is estimated. For the CDF of a proportion, the Horvitz-Thompson ratio estimator, i.e., the ratio of two Horvitz-Thompson estimators, is used to calculate the CDF estimate. For the CDF of a total, the user can supply the known size of the resource or the known sum of the size-weights of the resource, as appropriate. For the CDF of a total when either the size of the resource or the sum of the size-weights of the resource is provided, the classic ratio estimator is used to calculate the CDF estimate, where that estimator is the product of the known value and the Horvitz-Thompson ratio estimator. For the CDF of a total when neither the size of the resource nor the sum of the size-weights of the resource is provided, the Horvitz-Thompson estimator is used to calculate the CDF estimate. Variance estimates for the estimated CDF are calculated using either the local mean variance estimator or the simple random sampling (SRS) variance estimator. The choice of variance estimator is subject to user control. The local mean variance estimator requires the x-coordinate and the y-coordinate of each site. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion

```
dcdf.size.prop calculate the size-weighted deconvoluted CDF for the proportion
ndcdf.size.total calculate the size-weighted deconvoluted CDF for the total
ndcdfvar.prop calculate variance of the deconvoluted CDF for the proportion
ndcdfvar.total calculate variance of the deconvoluted CDF for the total
ndcdfvar.size.prop calculate variance of the size-weighted deconvoluted CDF for the proportion
ndcdfvar.size.total calculate variance of the size-weighted deconvoluted CDF for the total
isotonic perform isotonic regression

Author(s)

Tom Kincaid <kincaid.tom@epa.gov>

Examples

```r
z <- rnorm(100, 10, 1)
wgt <- runif(100, 10, 100)
cdfval <- seq(min(z), max(z), length=20)
cdf.decon(z, wgt, sigma=0.25, var.sigma=0.1, vartype="SRS", cdfval=cdfval)

x <- runif(100)
y <- runif(100)
cdf.decon(z, wgt, sigma=0.25, var.sigma=0.1, cdfval=cdfval)
```
probabilities. Confidence bounds are calculated using a Normal distribution multiplier. In addition the function uses the estimated CDF to calculate percentile estimates. Estimated confidence bounds for the percentile estimates are calculated. The user can supply the set of values for which percentiles estimates are desired. Optionally, the user can use the default set of percentiles. The function can accommodate a stratified sample. For a stratified sample, separate estimates and standard errors are calculated for each stratum, which are used to produce estimates and standard errors for all strata combined. Strata that contain a single value are removed. For a stratified sample, when either the size of the resource or the sum of the size-weights of the resource is provided for each stratum, those values are used as stratum weights for calculating the estimates and standard errors for all strata combined. For a stratified sample when neither the size of the resource nor the sum of the size-weights of the resource is provided for each stratum, estimated values are used as stratum weights for calculating the estimates and standard errors for all strata combined. The function can accommodate single-stage and two-stage samples for both stratified and unstratified sampling designs. Finite population and continuous population correction factors can be utilized in variance estimation. The function checks for compatibility of input values and removes missing values.

Usage

cdf.est(z, wgt, x = NULL, y = NULL, stratum = NULL, cluster = NULL,
wgt1 = NULL, x1 = NULL, y1 = NULL, popsize = NULL,
popcorrect = FALSE, pcfsize = NULL, N.cluster = NULL,
stage1size = NULL, support = NULL, sizeweight = FALSE,
swgt = NULL, swgt1 = NULL, vartype = "Local", conf = 95,
cdfval = NULL, pctval = c(5, 10, 25, 50, 75, 90, 95),
check.ind = TRUE, warn.ind = NULL, warn.df = NULL,
warn.vec = NULL)

Arguments

z Vector of the response value for each site.
wgt Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
x Vector of the x-coordinate for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample. The default is NULL.
y Vector y-coordinate for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample. The default is NULL.
stratum Vector of the stratum for each site. The default is NULL.
cluster Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site. The default is NULL.
wgt1 Vector of the final adjusted stage one weight for each site. The default is NULL.
x1 Vector of the stage one x-coordinate for location for each site. The default is NULL.
y1 Vector of the stage one y-coordinate for location for each site. The default is NULL.
cdf.est

**popsize**
Known size of the resource, which is used to perform ratio adjustment to estimators expressed using measurement units for the resource and to calculate strata proportions for calculating estimates for a stratified sample. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

**popcorrect**
Logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.

**pcfsize**
Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

**N.cluster**
The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

**stage1size**
Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1". The default is NULL.

**support**
The support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from an extensive resource, which is required for calculation of finite and continuous population correction factors. The default is NULL.

**sizeweight**
Logical value that indicates whether size-weights should be used in the analysis, where TRUE = use the size-weights and FALSE = do not use the size-weights. The default is FALSE.

**swgt**
The size-weight for each site, which is the stage two size-weight for two-stage sample. The default is NULL.

**swgt1**
Vector of the stage one size-weight for each site. The default is NULL.

**vartype**
The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator. The default is "Local".

**conf**
Numeric value for the confidence level. The default is 95.
cdfval  The set of values at which the CDF is estimated. If a set of values is not provided, then the sorted set of unique values of the response variable is used. The default is NULL.

pctval  The set of values at which percentiles are estimated. The default set is: 5, 10, 25, 50, 75, 90, 95.

check.ind  Logical value that indicates whether compatibility checking of the input values is conducted, where TRUE = conduct compatibility checking and FALSE = do not conduct compatibility checking. The default is TRUE.

warn.ind  Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated. The default is NULL.

warn.df  A data frame for storing warning messages. The default is NULL.

warn.vec  A vector that contains names of the population type, the subpopulation, and an indicator. The default is NULL.

Value

If the function was called by the cont.analysis function, then output is an object in list format composed of a list named Results, which contains estimates and confidence bounds, and a data frame named warn.df, which contains warning messages. The Results list is composed of two data frames: one data frame named CDF, which contains the CDF estimates, and a second data frame named Pct, which contains the percentile estimates. If the function was called directly, then output is the Results list.

Other Functions Required

input.check  check input values for errors, consistency, and compatibility with analytical functions
wnas  remove missing values
vecprint  takes an input vector and outputs a character string with line breaks inserted
cdf.nresp  calculate the number of response values less than or equal to each of the set of values at which the CDF is estimated
cdf.prop  calculate the CDF for the proportion
cdf.total  calculate the CDF for the total
cdf.size.prop  calculate the size-weighted CDF for the proportion
cdf.size.total  calculate the size-weighted CDF for the total
cdfvar.prop  calculate variance of the CDF for the proportion
cdfvar.total  calculate variance of the CDF for the total
cdfvar.size.prop  calculate variance of the size-weighted CDF for the proportion
cdfvar.size.total  calculate variance of the size-weighted CDF for the total

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>
**Examples**

```r
z <- rnorm(100, 10, 1)
wgt <- runif(100, 10, 100)
cdfval <- seq(min(z), max(z), length=20)
cdf.est(z, wgt, vartype="SRS", cdfval=cdfval)
```

```r
x <- runif(100)
y <- runif(100)
cdf.est(z, wgt, x, y, cdfval=cdfval)
```

---

**cdf.nresp**  
*Internal Function: Count Number of Responses Less Than a Set of Values*

**Description**

This function calculates the number of response values less than or equal to each of the set of values at which the cumulative distribution function (CDF) is estimated.

**Usage**

```r
cdf.nresp(z, val)
```

**Arguments**

- `z`: Vector of the response values.
- `val`: Vector of the set of values at which the CDF is estimated.

**Value**

Output is the number of response values for each CDF estimation value.

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>
cdf.plot

Plot a Cumulative Distribution Function

Description

This function creates a CDF plot. Input data for the plots is provided by a data frame utilizing the same structure as the data frame named "CDF" that is included in the output object produced by function cont.analysis, but the data frame includes only the values for a single CDF. Confidence limits for the CDF also are plotted.

Usage

```r
cdf.plot(cdfest, units.cdf = "Percent", type.cdf = "Continuous", logx = "", xlbl = NULL, ylbl = "Percent", ylbl.r = NULL, figlab = NULL, legloc = "BR", confcut = 5, conflev = 95, cex.main = 1.2, ...)
```

Arguments

- `cdfest`: Data frame utilizing the same structure as the data frame named "CDF" that is included in the output object produced by function cont.analysis. The data frame must contain only a single cdf estimate.
- `units.cdf`: Indicator for the type of units in which the CDF is plotted, where "Percent" means the plot is in terms of percent of the population, and "Units" means the plot is in terms of units of the population. The default is "Percent".
- `type.cdf`: Character string consisting of the value "Continuous" or "Ordinal" that controls the type of CDF plot for each indicator. The default is "Continuous".
- `logx`: Character string consisting of the value "" or "x" that controls whether the x axis uses the original scale ("") or the base 10 logarithmic scale ("x"). The default is "".
- `xlbl`: Character string providing the x-axis label. If this argument equals NULL, then the indicator name is used as the label. The default is NULL.
- `ylbl`: Character string providing the y-axis label. The default is "Percent".
- `ylbl.r`: Character string providing the label for the right side y-axis, where NULL means a label is not created, and "Same" means the label is the same as the left side label (i.e., argument ylbl). The default is NULL.
- `figlab`: Character string providing the plot title. The default is NULL.
- `legloc`: Indicator for location of the plot legend, where "BR" means bottom right, "BL" means bottom left, "TR" means top right, and "TL" means top left. The default is "BR".
- `confcut`: Numeric value that controls plotting confidence limits at the CDF extremes. Confidence limits for CDF values (percent scale) less than confcut or greater than 100 minus confcut are not plotted. A value of zero means confidence limits are plotted for the complete range of the CDF. The default is 5.
cdf.plot

conflev Numeric value of the confidence level used for confidence limits. The default is 95.
cex.main Expansion factor for the plot title. The default is 1.2.
... Additional arguments passed to the plot function.

Value

A plot of the CDF and its associated confidence limits.

Other Functions Required

interp.cdf interpolate CDF values at a set of percentiles
interp.axis create right side y-axis labels for a CDF plot

Author(s)

Tony Olsen <Olsen.Tony@epa.gov>
Tom Kincaid <Kincaid.Tom@epa.gov>

Examples

mysiteID <- paste("Site", 1:100, sep="")
mysites <- data.frame(siteID=mysiteID, Active=rep(TRUE, 100))
mysubpop <- data.frame(siteID=mysiteID, All.Sites=rep("All Sites",100),
  Resource.Class=rep(c("Good","Poor"), c(55,45)))
mydesign <- data.frame(siteID=mysiteID, wgt=runif(100, 10, 100),
  xcoord=runif(100), ycoord=runif(100), stratum=rep(c("Stratum1","Stratum2"), 50))
ContVar <- rnorm(100, 10, 1)
mydata.cont <- data.frame(siteID=mysiteID, ContVar=ContVar)
mypopsize <- list(All.Sites=c(Stratum1=3500, Stratum2=2000),
  Resource.Class=list(Good=c(Stratum1=2500, Stratum2=1500),
  Poor=c(Stratum1=1000, Stratum2=500)))
myanalysis <- cont.analysis(sites=mysites, subpop=mysubpop,
  design=mydesign, data.cont=mydata.cont, popsize=mypopsize)
keep <- myanalysis$CDF$Type == "Resource.Class" &
  myanalysis$CDF$Subpopulation == "Good"
par(mfrow=c(2,1))
cdf.plot(myanalysis$CDF[keep,], xlbl="ContVar",
  ylbl="Percent of Stream Length", ylbl.r="Stream Length (km)",
  figlab="Estimates for Resource Class: Good")
cdf.plot(myanalysis$CDF[keep,], xlbl="ContVar",
  ylbl="Percent of Stream Length", ylbl.r="Same",
  figlab="Estimates for Resource Class: Good")
Description

This function calculates an estimate of the cumulative distribution function (CDF) for the proportion of a finite or an extensive resource. The set of values at which the CDF is estimated is supplied to the function. The Horvitz-Thompson ratio estimator, i.e., the ratio of two Horvitz-Thompson estimators, is used to calculate the estimate. The numerator of the ratio estimates the total of the resource equal to or less than a specified value. The denominator of the ratio estimates the size of the resource. For a finite resource size is the number of units in the resource. For an extensive resource size is the extent (measure) of the resource, i.e., length, area, or volume. The function can accommodate single-stage and two-stage samples.

Usage

cdf.prop(z, wgt, val, cluster.ind, cluster, wgt1)

Arguments

z Vector of the response value for each site.
wgt Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
val Vector of the set of values at which the CDF is estimated.
cluster.ind Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.
cluster Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.
wgt1 Vector of the final adjusted stage one weight for each site.

Value

The CDF estimate.

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>
cdf.size.prop

Size-weighted Cumulative Distribution Function Estimate

Description

This function calculates an estimate of the size-weighted cumulative distribution function (CDF) for the proportion of a finite resource. The set of values at which the CDF is estimated is supplied to the function. The Horvitz-Thompson ratio estimator, i.e., the ratio of two Horvitz-Thompson estimators, is used to calculate the estimate. The numerator of the ratio estimates the size-weighted total of the resource equal to or less than a specified value. The denominator of the ratio estimates the sum of the size-weights for the resource. The function can accommodate single-stage and two-stage samples.

Usage

cdf.size.prop(z, wgt, val, cluster.ind, cluster, wgt1, swgt, swgt1)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>Vector of the response value for each site.</td>
</tr>
<tr>
<td>wgt</td>
<td>Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.</td>
</tr>
<tr>
<td>val</td>
<td>Vector of the set of values at which the CDF is estimated.</td>
</tr>
<tr>
<td>cluster.ind</td>
<td>Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.</td>
</tr>
<tr>
<td>cluster</td>
<td>Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.</td>
</tr>
<tr>
<td>wgt1</td>
<td>Vector of the final adjusted stage one weight for each site.</td>
</tr>
<tr>
<td>swgt</td>
<td>Vector of the size-weight for each site, which is the stage two size-weight for a two-stage sample.</td>
</tr>
<tr>
<td>swgt1</td>
<td>Vector of the stage one size-weight for each site.</td>
</tr>
</tbody>
</table>

Value

The size-weighted CDF estimate.

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>
cdf.size.total  \hspace{5mm} \textit{Size-weighted Cumulative Distribution Function Estimate for Total} \\

\textbf{Description} \\
This function calculates an estimate of the size-weighted cumulative distribution function (CDF) for the total of a finite resource. The set of values at which the CDF is estimated is supplied to the function. If the known sum of the size-weights of the resource is provided, the classic ratio estimator is used to calculate the estimate. That estimator is the product of the known sum of the size-weights of the resource and the Horvitz-Thompson ratio estimator, where the latter is the ratio of two Horvitz-Thompson estimators. The numerator of the ratio estimates the size-weighted total of the resource equal to or less than a specified value. The denominator of the ratio estimates the sum of the size-weights of the resource. If the known sum of the size-weights of the resource is not provided, the Horvitz-Thompson estimator of the size-weighted total of the resource equal to or less than a specified value is used to calculate the estimate. The function can accomodate single-stage and two-stage samples.

\textbf{Usage} \\
cdf.size.total(z, wgt, val, cluster.ind, cluster, wgt1, popsize, swgt, swgt1)

\textbf{Arguments} \\
\begin{itemize} \\
\item \texttt{z} \hspace{5mm} Vector of the response value for each site. \\
\item \texttt{wgt} \hspace{5mm} Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample. \\
\item \texttt{val} \hspace{5mm} Vector of the set of values at which the CDF is estimated. \\
\item \texttt{cluster.ind} \hspace{5mm} Logical value that indicates whether the sample is a two-stage sample, where \texttt{TRUE} = a two-stage sample and \texttt{FALSE} = not a two-stage sample. \\
\item \texttt{cluster} \hspace{5mm} Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site. \\
\item \texttt{wgt1} \hspace{5mm} Vector of the final adjusted stage one weight for each site. \\
\item \texttt{popsize} \hspace{5mm} Known size of the resource, which is used to perform ratio adjustment to estimators expressed using measurement units for the resource. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. \\
\item \texttt{swgt} \hspace{5mm} Vector of the size-weight for each site, which is the stage two size-weight for a two-stage sample. \\
\item \texttt{swgt1} \hspace{5mm} Vector of the stage one size-weight for each site. \\
\end{itemize}
Value

The size-weighted CDF estimate.

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

cdf.test

Test for Difference Between Two Estimated Cumulative Distribution Functions

Description

This function tests for differences between cumulative distribution functions (CDFs) generated by probability surveys. The function returns a variety of test statistics along with their degrees of freedom and p values. The inferential procedures divide the CDFs into a discrete set of intervals (classes) and then utilize procedures that have been developed for analysis of categorical data from probability surveys. The function calculates the Wald, Rao-Scott first order corrected (mean eigenvalue corrected), and Rao-Scott second order corrected (Satterthwaite corrected) test statistics. Both standard versions of the three statistics, which are distributed as Chi-squared random variables, and alternate version of the statistics, which are distributed as F random variables, are available. The default test statistic is the F distribution version of the Wald statistic. The user supplies the set of upper bounds that define the intervals (classes) into which the CDFs are divided (binned). The minimum number of classes is three. The Horvitz-Thompson ratio estimator, i.e., the ratio of two Horvitz-Thompson estimators, is used to calculate estimates of the class proportions for the CDFs. Variance estimates for the test statistics are calculated using either the local mean variance estimator or the simple random sampling (SRS) variance estimator. The choice of variance estimator is subject to user control. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. The function can accommodate a stratified sample. For a stratified sample, separate class proportion estimates and associated covariance estimates are calculated for each stratum, which are used to produce estimates for all strata combined. Strata that contain a single value are removed. For a stratified sample, when either the size of the resource or the sum of the size-weights of the resource is provided for each stratum, those values are used as stratum weights for calculating the estimates for all strata combined. For a stratified sample when neither the size of the resource nor the sum of the size-weights of the resource is provided for each stratum, estimated values are used as stratum weights for calculating the estimates for all strata combined. The function can accommodate single-stage and two-stage samples for both stratified and unstratified sampling designs. Finite population and continuous population correction factors can be utilized in variance estimation. The function checks for compatibility of input values and removes missing values.

Usage

cdf.test(bounds, z_1, wgt_1, x_1 = NULL, y_1 = NULL, z_2, wgt_2, x_2 = NULL, y_2 = NULL, stratum_1 = NULL, stratum_2 = NULL, cluster_1 = NULL, cluster_2 = NULL, wgt1_1 = NULL, x1_1 = NULL, y1_1 = NULL, wgt1_2 = NULL, x1_2 = NULL, y1_2 = NULL,
cdf.test

```
popsize_1 = NULL, popsize_2 = NULL, popcorrect_1 = FALSE,
pcfsize_1 = NULL, N.cluster_1 = NULL, stage1size_1 = NULL,
support_1 = NULL, popcorrect_2 = FALSE, pcfsize_2 = NULL,
N.cluster_2 = NULL, stage1size_2 = NULL, support_2 = NULL,
sizeweight_1 = FALSE, swgt_1 = NULL, swgt1_1 = NULL,
sizeweight_2 = FALSE, swgt_2 = NULL, swgt1_2 = NULL,
vartype_1 = "Local", vartype_2 = "Local", check.ind = TRUE,
warn.ind = NULL, warn.df = NULL, warn.vec = NULL)
```

Arguments

- **bounds**: Vector of upper bounds that define classes for the CDFs, which must contain at least two values.
- **z_1**: Vector of response value for each sample one site.
- **wgt_1**: Vector of final adjusted weight (inverse of the sample inclusion probability) for each sample one site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
- **x_1**: Vector of x-coordinate for location for each sample one site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample. The default is NULL.
- **y_1**: Vector of y-coordinate for location for each sample one site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample. The default is NULL.
- **z_2**: Vector of response value for each sample two site.
- **wgt_2**: Vector of final adjusted weight (inverse of the sample inclusion probability) for each sample two site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
- **x_2**: Vector of x-coordinate for location for each sample two site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample. The default is NULL.
- **y_2**: Vector of y-coordinate for location for each sample two site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample. The default is NULL.
- **stratum_1**: Vector of the stratum for each sample one site. The default is NULL.
- **stratum_2**: Vector of the stratum for each sample two site. The default is NULL.
- **cluster_1**: Vector of the stage one sampling unit (primary sampling unit or cluster) code for each sample one site. The default is NULL.
- **cluster_2**: Vector of the stage one sampling unit (primary sampling unit or cluster) code for each sample two site. The default is NULL.
- **wgt1_1**: Vector of the final adjusted stage one weight for each sample one site. The default is NULL.
- **x1_1**: Vector of the stage one x-coordinate for location for each sample one site. The default is NULL.
- **y1_1**: Vector of the stage one y-coordinate for location for each sample one site. The default is NULL.
wgt1_2 Vector of the final adjusted stage one weight for each sample two site. The default is NULL.

x1_2 Vector of the stage one x-coordinate for location for each sample two site. The default is NULL.

y1_2 Vector of the stage one y-coordinate for location for each sample two site. The default is NULL.

popsize_1 The known size of the sample one resource - the total number of sampling units of a finite resource or the measure of an extensive resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample, this variable also is used to calculate strata weights. For a stratified sample, this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

popsize_2 The known size of the sample two resource - the total number of sampling units of a finite resource or the measure of an extensive resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample, this variable also is used to calculate strata weights. For a stratified sample, this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

popcorrect_1 Logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation for sample one, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize_1 and support_1. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster_1, stage1size_1, and support_1.

pcfsize_1 Size of the sample one resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

N.cluster_1 The number of stage one sampling units in the sample one resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

stage1size_1 Size of the stage one sampling units of a two-stage sample for sample one, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1". The default is NULL.

support_1 Vector of the support value for each sample one site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with
a site from an extensive resource, which is required for calculation of finite and continuous population correction factors. The default is NULL.

**popcorrect_2**
Logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation for sample two, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize_2 and support_2. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster_2, stage1size_2, and support_2.

**pcfsiz_2**
Size of the sample two resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

**N.cluster_2**
The number of stage one sampling units in the sample two resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

**stage1size_2**
Vector of the size of the stage one sampling units of a two-stage sample for sample two, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1". The default is NULL.

**support_2**
Vector of the support value for each sample two site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from an extensive resource, which is required for calculation of finite and continuous population correction factors. The default is NULL.

**sizeweight_1**
Logical value that indicates whether size-weights should be used in the analysis for sample one, where TRUE = use the size-weights and FALSE = do not use the size-weights. The default is FALSE.

**swgt_1**
Vector of the size-weight for each sample one site, which is the stage two size-weight for a two-stage sample. The default is NULL.

**swgt1_1**
Vector of the stage one size-weight for each sample one site. The default is NULL.

**sizeweight_2**
Logical value that indicates whether size-weights should be used in the analysis for sample two, where TRUE = use the size-weights and FALSE = do not use the size-weights. The default is FALSE.

**swgt_2**
Vector of the size-weight for each sample two site, which is the stage two size-weight for a two-stage sample. The default is NULL.

**swgt1_2**
Vector of the stage one size-weight for each sample two site. The default is NULL.

**vartype_1**
The choice of variance estimator for sample one, where "Local" = local mean estimator and "SRS" = SRS estimator. The default is "Local".
The choice of variance estimator for sample two, where "Local" = local mean estimator and "SRS" = SRS estimator. The default is "Local".

Logical value that indicates whether compatibility checking of the input values is conducted, where TRUE = conduct compatibility checking and FALSE = do not conduct compatibility checking. The default is TRUE.

Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated. The default is NULL.

A data frame for storing warning messages. The default is NULL.

Vector that contains names of the population type, the subpopulation, and an indicator. The default is NULL.

An object in data frame format containing the test statistic, degrees of freedom (two values labeled Degrees of Freedom_1 and Degrees of Freedom_2), and p value for the Wald, mean eigenvalue, and Satterthwaite test procedures, which includes both Chi-squared distribution and F distribution versions of the procedures. For the Chi-squared versions of the test procedures, Degrees of Freedom_1 contains the relevant value and Degrees of Freedom_2 is set to missing (NA). For the F-based versions of the test procedures Degrees of Freedom_1 contains the numerator degrees of freedom and Degrees of Freedom_2 contains the denominator degrees of freedom.

input.check check input values for errors, consistency, and compatibility with analytical functions
wnas remove missing values
vecprint takes an input vector and outputs a character string with line breaks inserted
cdf.test.prop calculates an estimate of the population proportions in the set of classes
cdf.test.size.prop calculates a size-weighted estimate of the population proportions in the set of classes
cdfvar.test calculates estimates of the variance-covariance matrix of the population proportions in the set of classes

Tom Kincaid <Kincaid.Tom@epa.gov>

n <- 100
resp <- rnorm(n, 10, 1)
wgt <- runif(n, 10, 100)
sample1 <- list(z=resp, wgt=wgt)
sample2 <- list(z=resp+0.5, wgt=wgt)
bounds <- sort(c(sample1$z, sample2$z))[floor(seq((2*n)/3, (2*n), length=3))]
cdf.test(prop)

cdf.test(bounds=bounds, z_1=sample1$z, wgt_1=sample1$wgt, z_2=sample2$z, wgt_2=sample2$wgt, vartype_1="SRS", vartype_2="SRS")

xcoord <- runif(n)
ycoord <- runif(n)
sample1 <- list(z=resp, wgt=wgt, x=xcoord, y=ycoord)
sample2 <- list(z=1.05*resp, wgt=wgt, x=xcoord, y=ycoord)
cdf.test(bounds=bounds, z_1=sample1$z, wgt_1=sample1$wgt, x_1=sample1$x, y_1=sample1$y, z_2=sample2$z, wgt_2=sample2$wgt, x_2=sample2$x, y_2=sample2$y)

cdf.test.prop

Estimate of Population Proportion for Classes

Description

This function calculates an estimate of the population proportion in a set of intervals (classes). The set of values defining the upper bound of each class is supplied to the function. The Horvitz-Thompson ratio estimator, i.e., the ratio of two Horvitz-Thompson estimators, is used to calculate the estimate. The numerator of the ratio estimates the total of the resource within a class. The denominator of the ratio estimates the size of the resource. For a finite resource size is the number of units in the resource. For an extensive resource size is the extent (measure) of the resource, i.e., length, area, or volume. The function can accommodate single stage and two-stage samples.

Usage

cdf.test.prop(z, wgt, bounds, cluster.ind, cluster, wgt1)

Arguments

z  Vector of the response value for each site.
wgt  Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
bounds  Upper bounds for calculating classes for the CDF.
cluster.ind  Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.
cluster  Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.
wgt1  Vector of the final adjusted stage one weight for each site.

Value

The class proportion estimates.
Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

---

cdf.test.size.prop  Size-Weighted Estimate of Population Proportion for Classes

Description

This function calculates a size-weighted estimate of the population proportions in a set of intervals (classes). The set of values defining the upper bound of each class is supplied to the function. The Horvitz-Thompson ratio estimator, i.e., the ratio of two Horvitz-Thompson estimators, is used to calculate the estimate. The numerator of the ratio estimates the total of the resource within a class. The denominator of the ratio estimates the size of the resource. For a finite resource size is the number of units in the resource. For an extensive resource size is the extent (measure) of the resource, i.e., length, area, or volume. The function can accommodate single stage and two-stage samples.

Usage

cdf.test.size.prop(z, wgt, bounds, cluster.ind, cluster, wgt1, swgt, swgt1)

Arguments

- **z**: Vector of the response value for each site.
- **wgt**: Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
- **bounds**: Upper bounds for calculating classes for the CDF.
- **cluster.ind**: Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.
- **cluster**: Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.
- **wgt1**: Vector of the final adjusted stage one weight for each site. a two-stage sample.
- **swgt**: Vector of the size-weight for each site, which is the stage two size-weight for a two-stage sample.
- **swgt1**: Vector of the stage one size-weight for each site.

Value

The class proportion estimates.

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>
**cdf.total**  
*Estimate of Cumulative Distribution Function for a Total*

**Description**

This function calculates an estimate of the cumulative distribution function (CDF) for the total of a finite or an extensive resource. The set of values at which the CDF is estimated is supplied to the function. If the known extent of the resource is provided, the classic ratio estimator is used to calculate the estimate. That estimator is the product of the known extent of the resource and the Horvitz-Thompson ratio estimator, where the latter is the ratio of two Horvitz-Thompson estimators. The numerator of the ratio estimates the total of the resource equal to or less than a specified value. The denominator of the ratio estimates the extent of the resource. If the known extent of the resource is not provided, the Horvitz-Thompson estimator of the total of the resource equal to or less than a specified value is used to calculate the estimate. For a finite resource, size is the number of units in the resource. For an extensive resource, size is the measure of the resource, i.e., length, area, or volume. The function can accommodate single-stage and two-stage samples.

**Usage**

cdf.total(z, wgt, val, cluster.ind, cluster, wgt1, popsize)

**Arguments**

- **z** = Vector of the response value for each site.
- **wgt** = Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
- **val** = Vector of values at which the CDF is estimated.
- **cluster.ind** = Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.
- **cluster** = Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.
- **wgt1** = Vector of the final adjusted stage one weight for each site.
- **popsize** = Known size of the resource, which is used to perform ratio adjustment to estimators expressed using measurement units for the resource. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

**Value**

The CDF estimate.
cdfvar.prop

Author(s)
Tom Kincaid <Kincaid.Tom@epa.gov>

cdfvar.prop  Variance Estimate for Cumulative Distribution Function for a Proportion

Description
This function calculates variance estimates of the estimated cumulative distribution function (CDF) for the proportion of a finite or a continuous resource. The set of values at which the CDF is estimated is supplied to the function. Either the simple random sampling (SRS) variance estimator or the local mean variance estimator is calculated, which is subject to user control. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. The function can accommodate single-stage and two-stage samples. Finite population and continuous population correction factors can be utilized in variance estimation.

Usage
cdfvar.prop(z, wgt, x, y, val, cdfest, stratum.ind, stratum.level, cluster.ind, cluster, wgt1, x1, y1, pcfactor.ind, pcfsize, N.cluster, stagelsize, support, vartype, warn.ind, warn.df, warn.vec)

Arguments
z  Vector of the response value for each site.
wgt  Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
x  Vector of x-coordinate for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample.
y  Vector of y-coordinate for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample.
val  Vector of the set of values at which the CDF is estimated.
cdfest  The CDF estimate.
stratum.ind  Logical value that indicates whether the sample is stratified, where TRUE = a stratified sample and FALSE = not a stratified sample.
stratum.level  Vector of the stratum level.
cluster.ind  Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.
cluster  Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.
wgt1  Vector of the final adjusted stage one weight for each site.
Vector of the stage one x-coordinate for location for each site.

Vector of the stage one y-coordinate for location for each site.

Logical value that indicates whether the population correction factor is used during variance estimation, where TRUE = use the population correction factor and FALSE = do not use the factor. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.

Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1".

The support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from a continuous resource, which is required for calculation of finite and continuous population correction factors.

The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.

Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated.

A data frame for storing warning messages.

Vector that contains names of the population type, the subpopulation, and an indicator.

An object in list format composed of a vector named varest, which contains variance estimates, a logical variable named warn.ind, which is the indicator for warning messages, and a data frame named warn.df, which contains warning messages.

Other Functions Required

- localmean.weight calculate the weighting matrix for the local mean variance estimator
- localmean.var calculate the local mean variance estimator
**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>

---

### cdfvar.size.prop

**Variance Estimate for Size-Weighted Cumulative Distribution Function for a Proportion**

### Description

This function calculates variance estimates of the estimated size-weighted cumulative distribution function (CDF) for the proportion of a finite resource. The set of values at which the CDF is estimated is supplied to the function. Either the simple random sampling (SRS) variance estimator or the local mean variance estimator is calculated, which is subject to user control. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. The function can accommodate single-stage and two-stage samples. Finite population and continuous population correction factors can be utilized in variance estimation.

### Usage

```r
cdfvar.size.prop(z, wgt, x, y, val, cdfest, stratum.ind, stratum.level,
cluster.ind, cluster, wgt1, x1, y1, pcfactor.ind, pcfsize, N.cluster,
stagelsize, support, swgt, swgt1, vartype, warn.ind, warn.df, warn.vec)
```

### Arguments

- **z**: Vector of the response value for each site.
- **wgt**: Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
- **x**: Vector of x-coordinate for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample.
- **y**: Vector of y-coordinate for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample.
- **val**: Vector of the set of values at which the CDF is estimated.
- **cdfest**: The CDF estimate.
- **stratum.ind**: Logical value that indicates whether the sample is stratified, where TRUE = a stratified sample and FALSE = not a stratified sample.
- **stratum.level**: Vector of the stratum level.
- **cluster.ind**: Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.
- **cluster**: Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.
- **wgt1**: Vector of the final adjusted stage one weight for each site.
Vector of the stage one x-coordinate for location for each site.

Vector of the stage one y-coordinate for location for each site.

Logical value that indicates whether the population correction factor is used during variance estimation, where TRUE = use the population correction factor and FALSE = do not use the factor. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.

Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1".

Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from a continuous resource, which is required for calculation of finite and continuous population correction factors.

Vector of the size-weight for each site, which is the stage two size-weight for a two-stage sample.

Vector of the stage one size-weight for each site.

The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.

Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated.

Data frame for storing warning messages.

Vector that contains names of the population type, the subpopulation, and an indicator.

An object in list format composed of a vector named varest, which contains variance estimates, a logical variable named warn.ind, which is the indicator for warning messages, and a data frame named warn.df, which contains warning messages.
**Other Functions Required**

- `localmean.weight` calculate the weighting matrix for the local mean variance estimator
- `localmean.var` calculate the local mean variance estimator

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>

---

**cdfvar.size.total**  
Variance Estimate for Size-weighted Cumulative Distribution Function for a Total

**Description**

This function calculates variance estimates of the estimated size-weighted cumulative distribution function (CDF) for the total of a finite resource. The set of values at which the CDF is estimated is supplied to the function. Either the simple random sampling (SRS) variance estimator or the local mean variance estimator is calculated, which is subject to user control. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. The function can accommodate single-stage and two-stage samples.

**Usage**

```r
cdfvar.size.total(z, wgt, x, y, val, cdfest, stratum.ind, stratum.level, cluster.ind, cluster, wgt1, x1, y1, popsize, pcfactor.ind, pcfsize, N.cluster, stage1size, support, swgt, swgt1, vartype, warn.ind, warn.df, warn.vec)
```

**Arguments**

- `z`: Vector of the response value for each site.
- `wgt`: Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
- `x`: Vector of x-coordinate for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample.
- `y`: Vector of y-coordinate for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample.
- `val`: Vector of the set of values at which the CDF is estimated.
- `cdfest`: The CDF estimate.
- `stratum.ind`: Logical value that indicates whether the sample is stratified, where TRUE = a stratified sample and FALSE = not a stratified sample.
- `stratum.level`: Vector of the stratum level.
cluster.ind Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.

cluster Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.

wgt1 Vector of the final adjusted stage one weight for each site.

x1 Vector of the stage one x-coordinate for location for each site.

y1 Vector of the stage one y-coordinate for location for each site.

popsize Known size of the resource, which is used to perform ratio adjustment to estimators expressed using measurement units for the resource. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

pcfactor.ind Logical value that indicates whether the population correction factor is used during variance estimation, where TRUE = use the population correction factor and FALSE = do not use the factor. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.

pcfsize size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

N.cluster The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

stage1size Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1".

support Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from a continuous resource, which is required for calculation of finite and continuous population correction factors.

swgt Vector of the size-weight for each site, which is the stage two size-weight for a two-stage sample.

swgt1 Vector of the stage one size-weight for each site.

type The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.
**Value**

An object in list format composed of a vector named `varest`, which contains variance estimates, a logical variable named `warn.ind`, which is the indicator for warning messages, and a data frame named `warn.df`, which contains warning messages.

**Other Functions Required**

- `localmean.weight` calculate the weighting matrix for the local mean variance estimator
- `localmean.var` calculate the local mean variance estimator

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>

---

**Description**

This function calculates estimates of the variance-covariance matrix of the population proportions in a set of intervals (classes). The set of values defining upper bounds for the classes is supplied to the function. Either the simple random sampling (SRS) variance estimator or the local mean variance estimator is calculated, which is subject to user control. The simple random sampling variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. The function can accommodate single-stage and two-stage samples. Finite population and continuous population correction factors can be utilized in variance estimation.

**Usage**

```r
cdfvar.test(z, wgt, x, y, bounds, phat, stratum.ind, stratum.level, cluster.ind, cluster, wgt1, x1, y1, popsize, pcfactor.ind, pcfsize, N.cluster, stagelsize, support, swgt.ind, swgt, swgt1, vartype, warn.ind, warn.df, warn.vec)
```
Arguments

- **z**: Vector of the response value for each site.
- **wgt**: Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
- **x**: Vector of x-coordinate for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample.
- **y**: Vector of y-coordinate for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample.
- **bounds**: Vector of upper bounds for calculating classes for the CDF.
- **phat**: The class proportions estimate.
- **stratum.ind**: Logical value that indicates whether the sample is stratified, where TRUE = a stratified sample and FALSE = not a stratified sample.
- **stratum.level**: Vector of the stratum level.
- **cluster.ind**: Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.
- **cluster**: Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.
- **wgt1**: Vector of the final adjusted stage one weight for each site.
- **x1**: Vector of the stage one x-coordinate for location for each site.
- **y1**: Vector of the stage one y-coordinate for location for each site.
- **popsize**: Known size of the resource, which is used to perform ratio adjustment to estimators expressed using measurement units for the resource. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.
- **pcfactor.ind**: Logical value that indicates whether the population correction factor is used during variance estimation, where TRUE = use the population correction factor and FALSE = do not use the factor. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.
- **pcfsize**: Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.
- **N.cluster**: The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.
stage1size  Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1".

support  Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from a continuous resource, which is required for calculation of finite and continuous population correction factors.

swgt.ind  Logical value that indicates whether the sample includes size-weights, where TRUE = the sample includes size-weights and FALSE = the sample does not include size-weights.

swgt  Vector of the size-weight for each site, which is the stage two size-weight for a two-stage sample.

swgt1  Vector of the stage one size-weight for each site.

vartype  The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.

warn.ind  Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated.

warn.df  dat A frame for storing warning messages.

warn.vec  Vector that contains names of the population type, the subpopulation, and an indicator.

Value

Object in list format composed of a vector named nbin, which contains the number of response values in each class, a vector named varest, which contains variance estimates, a numeric value named df, which contain degrees of freedom of the variance estimates, a logical variable named warn.ind, which is the indicator for warning messages, and a data frame named warn.df, which contains warning messages.

Other Functions Required

localmean.weight  calculate the weighting matrix for the local mean variance estimator
localmean.cov  calculate the variance/covariance matrix using the local mean estimator
localmean.var  calculate the local mean variance estimator

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>
cdfvar.total  Variance Estimate for Cumulative Distribution Function for a Total

Description

This function calculates variance estimates of the estimated cumulative distribution function (CDF) for the total of a finite or a continuous resource. The set of values at which the CDF is estimated is supplied to the function. Either the simple random sampling (SRS) variance estimator or the local mean variance estimator is calculated, which is subject to user control. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. The function can accommodate single-stage and two-stage samples. Finite population and continuous population correction factors can be utilized in variance estimation.

Usage

cdfvar.total(z, wgt, x, y, val, cdfest, stratum.ind, stratum.level, cluster.ind, cluster, wgt1, x1, y1, popsize, pcfactor.ind, pcfsize, N.cluster, stagelsize, support, vartype, warn.ind, warn.df, warn.vec)

Arguments

z  Vector of the response value for each site.
wgt  Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.x  Vector of x-coordinate for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample.y  Vector of y-coordinate for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample.val  Vector of the set of values at which the CDF is estimated.cdfest  The CDF estimate.stratum.ind  Logical value that indicates whether the sample is stratified, where TRUE = a stratified sample and FALSE = not a stratified sample.stratum.level  The stratum level.cluster.ind  Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.cluster  Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.wgt1  Vector of the final adjusted stage one weight for each site.x1  Vector of the stage one x-coordinate for location for each site.y1  Vector of the stage one y-coordinate for location for each site.
**cdflvar.total**

**popsizesize**  Known size of the resource, which is used to perform ratio adjustment to estimators expressed using measurement units for the resource. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

**pcfactor.ind**  Logical value that indicates whether the population correction factor is used during variance estimation, where TRUE = use the population correction factor and FALSE = do not use the factor. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.

**pcfsize**  Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

**N.cluster**  The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

**stage1size**  Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1".

**support**  Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from a continuous resource, which is required for calculation of finite and continuous population correction factors.

**vartype**  The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.

**warn.ind**  Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated.

**warn.df**  A data frame for storing warning messages.

**warn.vec**  Vector that contains names of the population type, the subpopulation, and an indicator.

**Value**

An object in list format composed of a vector named varest, which contains variance estimates, a logical variable named warn.ind, which is the indicator for warning messages, and a data frame named warn.df, which contains warning messages.
Other Functions Required

- **localmean.weight** calculate the weighting matrix for the local mean variance estimator
- **localmean.var** calculate the local mean variance estimator

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

Description

Total Inclusion Probability for Matrix of Cells

Usage

```r
cell.wt(cel, xc, yc, dx, dy, pts)
```

Arguments

- `cel` = the index value for a cell.
- `xc` = x-coordinates that define the cells.
- `yc` = y-coordinates that define the cells.
- `dx` = width of the cells along the x-axis.
- `dy` = width of the cells along the y-axis.
- `pts` = an ‘sf’ data frame containing x-coordinates and y-coordinates in the geometry list-column, and mdm values.

Details

Calculates the total inclusion probability for a cell. Used to evaluate spatial balance of a survey design realization.

Value

The total inclusion probability for a cell.

Author(s)

Tony Olsen <Olsen.Tony@epa.gov>
Marc Weber <Weber.Marc@epa.gov>
**cellWeight**  
*Total Inclusion Probability for a Grid Cell*

**Description**
Calculates the total inclusion probability for each grid cell from a GRTS survey design.

**Usage**

cellWeight(xc, yc, dx, dy, sfobject)

**Arguments**
- **xc**: x-coordinates that define the cells.
- **yc**: y-coordinates that define the cells.
- **dx**: The x-axis grid cell dimension.
- **dy**: The y-axis grid cell dimension.
- **sfobject**: the sf object containing the survey frame.

**Value**
Vector containing the total inclusion probability for each cell.

**Author(s)**
Tom Kincaid <Kincaid.Tom@epa.gov>

---

**change.analysis**  
*Estimation of Change between Two Time Periods in a Probability Survey*

**Description**
This function organizes input and output for estimation of change between two probability surveys.

**Usage**

change.analysis(sites, repeats = NULL, subpop = NULL, design,  
data.cat = NULL, data.cont = NULL, revisitwgt = FALSE,  
test = "mean", popsize_1 = NULL, popsize_2 = NULL,  
popcorrect_1 = FALSE, popcorrect_2 = FALSE, pcfsize_1 = NULL,  
pcfsize_2 = NULL, n.cluster_1 = NULL, n.cluster_2 = NULL,  
stagelsize_1 = NULL, stagelsize_2 = NULL, sizeweight_1 = FALSE,  
sizeweight_2 = FALSE, vartype_1 = "Local", vartype_2 = "Local",  
conf = 95)
Arguments

sites Data frame consisting of three variables: the first variable is site IDs, and the other variables are logical vectors indicating which sites to use in the analysis. The first logical vector indicates the complete set of sites for the first survey. The second logical vector indicates the complete set of sites for the second survey.

repeats Data frame that identifies site IDs for repeat visit sites from the two surveys. The first variable is site IDs for survey one. The second variable is site IDs for survey two. For each row of the data frame, the two site IDs must correspond to the same site. This argument should equal NULL when repeat visit sites are not present. The default is NULL.

subpop Data frame describing sets of populations and subpopulations for which estimates will be calculated. The first variable is site IDs. Each subsequent variable identifies a Type of population, where the variable name is used to identify Type. A Type variable identifies each site with one of the subpopulations of that Type. The default is NULL.

design Data frame consisting of design variables. If spsurvey.obj is not provided, then this argument is required. The default is NULL. Variables should be named as follows:

siteID Vector of site IDs
wgt Vector of weights, which are either the weights for a single-stage sample or the stage two weights for a two-stage sample
xcoord Vector of x-coordinates for location, which are either the x-coordinates for a single-stage sample or the stage two x-coordinates for a two-stage sample
ycoord Vector of y-coordinates for location, which are either the y-coordinates for a single-stage sample or the stage two y-coordinates for a two-stage sample
stratum Vector of the stratum codes for each site
cluster Vector of the stage one sampling unit (primary sampling unit or cluster) codes for each site
wgt1 Vector of stage one weights in a two-stage design
xcoord1 Vector of the stage one x-coordinates for location in a two-stage design
ycoord1 Vector of the stage one y-coordinates for location in a two-stage design
support Vector of support values - for a finite resource, the value one (1) for a for site. For an extensive resource, the measure of the sampling unit associated with a site. Required for calculation of finite and continuous population correction factors.
swgt Vector of size-weights, which is the stage two size-weight for a two-stage design.
swgt1 Vector of stage one size-weights for a two-stage design.
data.cat Data frame of categorical response variables. The first variable is site IDs. Subsequent variables are response variables. Missing data (NA) is allowed. The default is NULL.
data.cont Data frame of continuous response variables. The first variable is site IDs. Subsequent variables are response variables. Missing data (NA) is allowed. The default is NULL.
**revisitwgt** Logical value that indicates whether each repeat visit site has the same survey design weight in the two surveys, where TRUE = the weight for each repeat visit site is the same and FALSE = the weight for each repeat visit site is not the same. When this argument is FALSE, all of the repeat visit sites are assigned equal weights when calculating the covariance component of the change estimate standard error. The default is FALSE.

**test** Character string or character vector providing the location measure(s) to use for change estimation for continuous variables. The choices are "mean", "median", or c("mean", "median"). The default is "mean".

**popsize_1** Known size of the resource for survey one, which is used to perform ratio adjustment to estimators expressed using measurement units for the resource and to calculate strata proportions for calculating estimates for a stratified sample. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. The argument must be in the form of a list containing an element for each population Type in the subpop data frame, where NULL is a valid choice for a population Type. The list must be named using the column names for the population Types in subpop. If a population Type doesn’t contain subpopulations, then each element of the list is either a single value for an unstratified sample or a vector containing a value for each stratum for a stratified sample, where elements of the vector are named using the stratum codes. If a population Type contains subpopulations, then each element of the list is a list containing an element for each subpopulation, where the list is named using the subpopulation names. The element for each subpopulation will be either a single value for an unstratified sample or a named vector of values for a stratified sample. The default is NULL.

Example popsize for a stratified sample:
```r
class(popsize) = "list",
popsize = list("Pop 1" = c("Stratum 1" = 750, "Stratum 2" = 500, "Stratum 3" = 250), "Pop 2" = list("SubPop 1" = c("Stratum 1" = 350, "Stratum 2" = 250, "Stratum 3" = 150), "SubPop 2" = c("Stratum 1" = 250, "Stratum 2" = 150, "Stratum 3" = 100), "SubPop 3" = c("Stratum 1" = 150, "Stratum 2" = 150, "Stratum 3" = 75)), "Pop 3" = NULL)
```

Example popsize for an unstratified sample:
```r
class(popsize) = "list",
popsize = list("Pop 1" = 1500, "Pop 2" = list("SubPop 1" = 750, "SubPop 2" = 500, "SubPop 3" = 375),
```


"Pop 3"=NULL)

**popsize_2**
Known size of the resource for survey two. The default is NULL.

**popcorrect_1**
Logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation for survey one, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for argument `pcfsize_1` and for the support variable of the design argument. To employ the correction factor for a two-stage sample, values must be supplied for arguments `N.cluster_1` and `stage1size_1` and for the support variable of the design argument.

**popcorrect_2**
Logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation for survey two, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for argument `pcfsize_2` and for the support variable of the design argument. To employ the correction factor for a two-stage sample, values must be supplied for arguments `N.cluster_2` and `stage1size_2` and for the support variable of the design argument.

**pcfsize_1**
Size of the resource for survey one, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

**pcfsize_2**
Size of the resource for survey two. The default is NULL.

**N.cluster_1**
Number of stage one sampling units in the resource for survey one, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

**N.cluster_2**
Number of stage one sampling units in the resource for survey two. The default is NULL.

**stage1size_1**
Size of the stage one sampling units of a two-stage sample for survey one, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1". The default is NULL.

**stage1size_2**
Size of the stage one sampling units of a two-stage sample for survey two. The default is NULL.

**sizeweight_1**
Logical value that indicates whether size-weights should be used in the analysis of survey one, where TRUE = use the size-weights and FALSE = do not use the size-weights. The default is FALSE.

**sizeweight_2**
Logical value that indicates whether size-weights should be used in the analysis of survey two. The default is FALSE.
The choice of variance estimator for survey one, where "Local" = local mean estimator and "SRS" = SRS estimator. The default is "Local".

The choice of variance estimator for survey two. The default is "Local".

Numeric value for the confidence level. The default is 95.

List of change estimates composed of three items: (1) catsum contains change estimates for categorical variables, (2) contsum_mean contains estimates for continuous variables using the mean, and (3) contsum_median contains estimates for continuous variables using the median. The items in the list will contain NULL for estimates that were not calculated. Each data frame includes estimates for all combinations of population Types, subpopulations within Types, response variables, and categories within each response variable (for categorical variables and continuous variables using the median). Change estimates are provided plus standard error estimates and confidence interval estimates.

Other Functions Required

dframe.check check site IDs, the sites data frame, the subpop data frame, and the data.cat data frame to assure valid contents and, as necessary, create the sites data frame and the subpop data frame

vecprint takes an input vector and outputs a character string with line breaks inserted

uniqueID creates unique site IDs by appending a unique number to each occurrence of a site ID

input.check check input values for errors, consistency, and compatibility with analytical functions

change.est estimate change between two surveys

Author(s)
Tom Kincaid <Kincaid.Tom@epa.gov>

Examples

# Categorical variable example for three resource classes
mysiteID <- paste("Site", 1:200, sep="")
mysites <- data.frame(
  siteID=mysiteID,
  Survey1=rep(c(TRUE, FALSE), c(100,100)),
  Survey2=rep(c(FALSE, TRUE), c(100,100)))
myrepeats <- data.frame(
  siteID_1=paste("Site", 1:40, sep=""),
  siteID_2=paste("Site", 101:140, sep=""))
mysubpop <- data.frame(
  siteID=mysiteID,
  All_Sites=rep("All Sites", 200),
  Region=rep(c("North","South"), 100))
mydesign <- data.frame(
  siteID=mysiteID,
  wgt=runif(200, 10, 100),
change.est

Estimate Change between Two Surveys

Description

This function estimates change between two probability surveys. The function can accommodate both categorical and continuous response variables. For a categorical response variable, change is estimated by the difference in category estimates for the two surveys, where a category estimate is the estimated proportion of values in a category. Note that a separate change estimate is calculated for each category of a categorical response variable. For a continuous response variable, change can be estimated for the mean, the median, or for both the mean and median. For a continuous response variable using the mean, change is estimated by the difference in estimated mean values for the two surveys. For change estimates using the median, the first step is to calculate an estimate of the median for the first survey. The estimated median from the first survey is then used to define two categories: (1) values that are less than or equal to the estimated median and (2) values that are greater than the estimated median. Once the categories are defined, change analysis for the median is identical to change analysis for a categorical variable, i.e., change is estimated by the difference in category estimates for the two surveys. In addition to change estimates, the standard error of the change estimates and confidence bounds are calculated. Variance estimates are calculated using either the local mean variance estimator or the simple random sampling (SRS) variance estimator. The choice of variance estimator is subject to user control. The local mean variance estimator requires the x-coordinate and y-coordinate of each site. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. Confidence bounds are calculated using a Normal distribution multiplier. The function can accommodate a stratified sample. For a stratified sample, separate estimates and standard errors are calculated for each stratum, which are used to produce estimates and standard errors for all strata combined. Strata that contain a single value are removed. For a stratified sample, when either the size of the resource or the sum of the size-weights of the resource is provided for each stratum, those values are used as stratum weights for calculating the estimates and standard errors for all strata combined. For a stratified sample when neither the size of the resource nor the sum of the size-weights of the resource is provided for each stratum, estimated values are used as stratum weights for calculating the estimates and standard errors for all strata combined. The function can accommodate single-stage and two-stage samples for both stratified and unstratified sampling designs. It is assumed that both surveys employ the same type of survey design. Finite population and continuous population correction factors can be utilized in variance estimation. The function checks for compatibility of input values and removes missing values.
Usage

```r
change.est(resp.ind, z_1, wgt_1, x_1 = NULL, y_1 = NULL, repeat_1, z_2,
 wgt_2, x_2 = NULL, y_2 = NULL, repeat_2, revisitwgt = FALSE,
 test = "mean", stratum_1 = NULL, stratum_2 = NULL,
 cluster_1 = NULL, cluster_2 = NULL, wgt1_1 = NULL, x1_1 = NULL,
 y1_1 = NULL, wgt1_2 = NULL, x1_2 = NULL, y1_2 = NULL,
 popsize_1 = NULL, popsize_2 = NULL, popcorrect_1 = FALSE,
 pcfsize_1 = NULL, N.cluster_1 = NULL, stage1size_1 = NULL,
 support_1 = NULL, popcorrect_2 = FALSE, pcfsize_2 = NULL,
 N.cluster_2 = NULL, stage1size_2 = NULL, support_2 = NULL,
 sizeweight_1 = FALSE, swgt_1 = NULL, swgt1_1 = NULL,
 sizeweight_2 = FALSE, swgt_2 = NULL, swgt1_2 = NULL,
 vartype_1 = "Local", vartype_2 = "Local", conf = 95,
 check.ind = TRUE, warn.ind = NULL, warn.df = NULL,
 warn.vec = NULL)
```

Arguments

- **resp.ind**: A character value that indicates the type of response variable, where "cat" indicates a categorical variable and "cont" indicates a continuous variable.
- **z_1**: Vector of response value for each survey one site.
- **wgt_1**: Vector of final adjusted weight (inverse of the sample inclusion probability) for each survey one site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
- **x_1**: Vector of x-coordinate for location for each survey one site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample. The default is NULL.
- **y_1**: Vector of y-coordinate for location for each survey one site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample. The default is NULL.
- **repeat_1**: Logical variable that identifies repeat visit sites for survey one.
- **z_2**: Vector of response value for each survey two site.
- **wgt_2**: Vector of final adjusted weight for each survey two site.
- **x_2**: Vector of x-coordinate for location for each survey two site. The default is NULL.
- **y_2**: Vector of y-coordinate for location for each survey two site. The default is NULL.
- **repeat_2**: Logical variable that identifies repeat visit sites for survey two.
- **revisitwgt**: Logical value that indicates whether each repeat visit site has the same survey design weight in the two surveys, where TRUE = the weight for each repeat visit site is the same and FALSE = the weight for each repeat visit site is not the same. When this argument is FALSE, all of the repeat visit sites are assigned equal weights when calculating the covariance component of the change estimate standard error. The default is FALSE.
In this section, we have:

- **test**: A character string or character vector providing the location measure(s) to use for change estimation for continuous variables. The choices are "mean", "median", or c("mean", "median"). The default is "mean".

- **stratum_1**: Vector of the stratum for each survey one site. The default is NULL.

- **stratum_2**: Vector of the stratum for each survey two site. The default is NULL.

- **cluster_1**: Vector of the stage one sampling unit (primary sampling unit or cluster) code for each survey one site. The default is NULL.

- **cluster_2**: Vector of the stage one sampling unit (primary sampling unit or cluster) code for each survey two site. The default is NULL.

- **wgt1_1**: Vector of the final adjusted stage one weight for each survey one site. The default is NULL.

- **x1_1**: Vector of the stage one x-coordinate for location for each survey one site. The default is NULL.

- **y1_1**: Vector of the stage one y-coordinate for location for each survey one site. The default is NULL.

- **wgt1_2**: Vector of the final adjusted stage one weight for each survey two site. The default is NULL.

- **x1_2**: Vector of the stage one x-coordinate for location for each survey two site. The default is NULL.

- **y1_2**: Vector of the stage one y-coordinate for location for each survey two site. The default is NULL.

- **popsize_1**: Vector of the stage one sampling unit (primary sampling unit or cluster) code for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

- **popsize_2**: Vector of the stage one sampling unit (primary sampling unit or cluster) code for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

- **popcorrect_1**: a logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation for survey one, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize_1 and support_1. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster_1, stage1size_1, and support_1.

- **pcfsize_1**: Size of the survey one resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

- **N.cluster_1**: The number of stage one sampling units in the survey one resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector...
containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

**stage1size_1** Size of the stage one sampling units of a two-stage sample for survey one, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1". The default is NULL.

**support_1** Vector of the support value for each survey one site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from an extensive resource, which is required for calculation of finite and continuous population correction factors. The default is NULL.

**popcorrect_2** Logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation for survey two, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize_2 and support_2. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster_2, stage1size_2, and support_2.

**pcfsize_2** Size of the survey two resource. The default is NULL.

**N.cluster_2** The number of stage one sampling units in the survey two resource. The default is NULL.

**stage1size_2** Size of the stage one sampling units of a two-stage survey for survey two. The default is NULL.

**support_2** Vector of the support value for each survey two site. The default is NULL.

**sizeweight_1** Logical value that indicates whether size-weights should be used in the analysis for survey one, where TRUE = use the size-weights and FALSE = do not use the size-weights. The default is FALSE.

**swgt_1** Vector of size-weight for each survey one site, which is the stage two size-weight for a two-stage sample. The default is NULL.

**swgt1_1** Vector of the stage one size-weight for each survey one site. The default is NULL.

**sizeweight_2** Logical value that indicates whether size-weights should be used in the analysis for survey two. The default is FALSE.

**swgt_2** Vector of the size-weight for each survey two site. The default is NULL.

**swgt1_2** Vector of the stage one size-weight for each survey two site. The default is NULL.

**vartype_1** The choice of variance estimator for survey one, where "Local" = local mean estimator and "SRS" = SRS estimator. The default is "Local".

**vartype_2** The choice of variance estimator for survey two. The default is "Local".

**conf** Numeric value for the confidence level. The default is 95.
check.ind Logical value that indicates whether compatibility checking of the input values is conducted, where TRUE = conduct compatibility checking and FALSE = do not conduct compatibility checking. The default is TRUE.

warn.ind Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated. The default is NULL.

warn.df Data frame for storing warning messages. The default is NULL.

warn.vec Vector that contains names of the population type, the subpopulation, and an indicator. The default is NULL.

Value

If the function was called by the change.analysis function, then output is an object in list format composed of the Results data frame, which contains estimates and confidence bounds, and the warn.df data frame, which contains warning messages. If the function was called directly, then output is the Results data frame.

Other Functions Required

input.check check input values for errors, consistency, and compatibility with analytical functions

wnas remove missing values

vecprint takes an input vector and outputs a character string with line breaks inserted

category.est estimate proportion (expressed as percent) and size of a resource in each of a set of categories

changevar.prop calculate covariance or correlation estimates of the estimated change in class proportion estimates between two probability surveys

cdf.est estimate the cumulative distribution function (CDF) for the proportion (expressed as percent) and the total of a response variable

total.est estimate the population total, mean, variance, and standard deviation of a response variable

changevar.mean calculate the covariance or correlation estimate of the estimated change in means between two probability surveys

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

Examples

z_1 <- sample(c("Good","Fair","Poor"), 100, replace=TRUE)
z_2 <- sample(c("Good","Fair","Poor"), 100, replace=TRUE)
wgt_1 <- runif(100, 10, 100)
wgt_2 <- runif(100, 10, 100)
repeat_1 <- rep(c(TRUE,FALSE), c(20,80))
repeat_2 <- rep(c(TRUE,FALSE), c(20,80))
change.est(resp.ind="cat", z_1=z_1, wgt_1=wgt_1, repeat_1=repeat_1,
\[ z_2 = z_2, \ wgt_2 = wgt_2, \ \text{repeat}_2 = \text{repeat}_2, \ \text{vartype}_1 = \text{"SRS"}, \ \text{vartype}_2 = \text{"SRS"}) \]

\[ z_1 \leftarrow \text{rnorm}(100, 10, 10) \]
\[ z_2 \leftarrow \text{rnorm}(12, 10) \]

\[ \text{change.est}(\text{resp.ind} = \text{"cont"}, \ z_1 = z_1, \ wgt_1 = wgt_1, \ \text{repeat}_1 = \text{repeat}_1, \ z_2 = z_2, \ wgt_2 = wgt_2, \ \text{repeat}_2 = \text{repeat}_2, \ \text{vartype}_1 = \text{"SRS"}, \ \text{vartype}_2 = \text{"SRS"}) \]

---

**changevar.mean**

*Covariance or Correlation Matrix Estimate of Change in Means between Two Surveys*

**Description**

This function calculates estimates of the variance-covariance matrix of the population proportions in a set of intervals (classes). The set of values defining upper bounds for the classes is supplied to the function. Either the simple random sampling (SRS) variance estimator or the local mean variance estimator is calculated, which is subject to user control. The simple random sampling variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. The function can accommodate single-stage and two-stage samples. Finite population and continuous population correction factors can be utilized in variance estimation.

**Usage**

\[ \text{changevar.mean}(z_1, \ z_2, \ wgt, \ x, \ y, \ \text{revisitwgt}, \ \text{mean}_1, \ \text{mean}_2, \ \text{stratum.ind}, \ \text{stratum.level}, \ \text{cluster.ind}, \ \text{cluster}, \ \text{wgt}_1, \ x_1, \ y_1, \ \text{pcfactor.ind}, \ \text{pcfsize}, \ \text{N.cluster}, \ \text{stagelsize}, \ \text{support}, \ \text{vartype}, \ \text{warn.ind}, \ \text{warn.df}, \ \text{warn.vec}) \]

**Arguments**

- **z1** Vector of the response value for each site for survey one.
- **z2** Vector of the response value for each site for survey two.
- **wgt** Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
- **x** Vector of x-coordinate for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample.
- **y** Vector of y-coordinate for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample.
- **revisitwgt** Logical value that indicates whether each repeat visit site has the same survey design weight in the two surveys, where TRUE = the weight for each repeat visit site is the same and FALSE = the weight for each repeat visit site is not the same. When this argument is FALSE, all of the repeat visit sites are assigned equal weights when calculating the covariance component of the change estimate standard error.
- **mean1** The estimated mean for survey one.
mean2
stratum.ind
stratum.level
cluster.ind
cluster
wgt1
x1
y1
pcffactor.ind
pcfsize
N.cluster
stage1size
support
vartype
warn.ind
warn.df
warn.vec

The estimated mean for survey two.
Logical value that indicates whether the sample is stratified, where TRUE = a stratified sample and FALSE = not a stratified sample.
The stratum level.
Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.
Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.
Vector of the final adjusted stage one weight for each site.
Vector of the stage one x-coordinate for location for each site.
Vector of the stage one y-coordinate for location for each site.
Logical value that indicates whether the population correction factor is used during variance estimation, where TRUE = use the population correction factor and FALSE = do not use the factor. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.
Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.
The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.
Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1".
Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from a continuous resource, which is required for calculation of finite and continuous population correction factors.
The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.
Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated.
Data frame for storing warning messages.
Vector that contains names of the population type, the subpopulation, and an indicator.
**Value**

An object in list format composed of a vector named `rslt`, which contains the covariance or correlation estimate, a logical variable named `warn.ind`, which is the indicator for warning messages, and a data frame named `warn.df`, which contains warning messages.

**Other Functions Required**

- `localmean.weight` calculate the weighting matrix for the local mean variance estimator
- `localmean.cov` calculate the variance/covariance matrix using the local mean estimator

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>

---

**Description**

This function uses the repeat visit sites for two probability surveys to calculate either covariance or correlation estimates of estimated change in the proportion in each of a set of categories. Covariance estimates are calculated when the revisits sites have the same survey design weight in both surveys. Correlation estimates are calculated when the revisit sites do not have the same weight in both surveys, in which case the sites are assigned equal weights. The `revisitwgt` argument controls whether covariance or correlation estimates are calculated. Either the simple random sampling (SRS) variance/covariance estimator or the local mean variance/covariance estimator is calculated, which is subject to user control. The simple random sampling variance/covariance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. The function can accommodate single-stage and two-stage samples. Finite population and continuous population correction factors can be utilized in variance estimation.

**Usage**

```r
changevar.prop(catvar.levels, catvar1, catvar2, wgt, x, y, revisitwgt, prop1, prop2, stratum.ind, stratum.level, cluster.ind, cluster, wgt1, x1, y1, pcfactor.ind, pcfsize, N.cluster, stage1size, support, vartype, warn.ind, warn.df, warn.vec)
```

**Arguments**

- `catvar.levels` Vector of the set of categorical response values.
- `catvar1` Vector of the response value for each site for survey one.
- `catvar2` Vector of the response value for each site for survey two.
changevar.prop

wgt  Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.

x  Vector of x-coordinate for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample.

y  Vector of y-coordinate for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample.

revisitwgt  Logical value that indicates whether each repeat visit site has the same survey design weight in the two surveys, where TRUE = the weight for each repeat visit site is the same and FALSE = the weight for each repeat visit site is not the same. When this argument is FALSE, all of the repeat visit sites are assigned equal weights when calculating the covariance component of the change estimate standard error.

prop1  The set of category proportion estimates for survey one.

prop2  The set of category proportion estimates for survey two.

stratum.ind  Logical value that indicates whether the sample is stratified, where TRUE = a stratified sample and FALSE = not a stratified sample.

stratum.level  The stratum level.

cluster.ind  Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.

cluster  Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.

wgt1  Vector of the final adjusted stage one weight for each site.

x1  Vector of the stage one x-coordinate for location for each site.

y1  Vector of the stage one y-coordinate for location for each site.

pcfactor.ind  Logical value that indicates whether the population correction factor is used during variance estimation, where TRUE = use the population correction factor and FALSE = do not use the factor. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.

pcfsize  Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

N.cluster  The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

stage1size  Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify
both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1".

support Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from a continuous resource, which is required for calculation of finite and continuous population correction factors.

vartype The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.

warn.ind Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated.

warn.df Data frame for storing warning messages.

warn.vec Vector that contains names of the population type, the subpopulation, and an indicator.

Value

An object in list format composed of a vector named rslt, which contains the covariance or correlation estimates, a logical variable named warn.ind, which is the indicator for warning messages, and a data frame named warn.df, which contains warning messages.

Other Functions Required

localmean.weight calculate the weighting matrix for the local mean variance estimator
localmean.cov calculate the variance/covariance matrix using the local mean estimator

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

Covariance or Correlation Matrix Estimate of Change in Class Resource Sizes between Two Surveys

Description

This function uses the repeat visit sites for two probability surveys to calculate either covariance or correlation estimates of estimated change in resource size in each of a set of categories. Covariance estimates are calculated when the revisit sites have the same survey design weight in both surveys. Correlation estimates are calculated when the revisit sites do not have the same weight in both surveys, in which case the sites are assigned equal weights. The revisitwg argument controls whether covariance or correlation estimates are calculated. Either the simple random sampling (SRS) variance/covariance estimator or the local mean variance/covariance estimator is calculated, which is subject to user control. The simple random sampling variance/covariance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. The function can accommodate single-stage and two-stage samples. Finite population and continuous population correction factors can be utilized in variance estimation.
Usage

changevar.size(catvar.levels, catvar1, catvar2, wgt, x, y, revisitwgt,
size1, size2, stratum.ind, stratum.level, cluster.ind, cluster, wgt1, x1,
y1, pcfactor.ind, pcfsize, N.cluster, stage1size, support, vartype,
warn.ind, warn.df, warn.vec)

Arguments

catvar.levels Vector of the set of categorical response values.
catvar1 Vector of the response value for each site for survey one.
catvar2 Vector of the response value for each site for survey two.
wgt Vector of the final adjusted weight (inverse of the sample inclusion probability)
for each site, which is either the weight for a single-stage sample or the stage
two weight for a two-stage sample.
x Vector of x-coordinate for location for each site, which is either the x- coordinate
for a single-stage sample or the stage two x-coordinate for a two-stage sample.
y Vector of y-coordinate for location for each site, which is either the y- coordinate
for a single-stage sample or the stage two y-coordinate for a two-stage sample.
revisitwgt Logical value that indicates whether each repeat visit site has the same survey
design weight in the two surveys, where TRUE = the weight for each repeat
visit site is the same and FALSE = the weight for each repeat visit site is not
the same. When this argument is FALSE, all of the repeat visit sites are as-
signed equal weights when calculating the covariance component of the change
estimate standard error.
size1 The set of category size estimates for survey one.
size2 The set of category size estimates for survey two.
stratum.ind Logical value that indicates whether the sample is stratified, where TRUE = a
stratified sample and FALSE = not a stratified sample.
stratum.level The stratum level.
cluster.ind Logical value that indicates whether the sample is a two- stage sample, where
TRUE = a two-stage sample and FALSE = not a two-stage sample.
cluster Vector of the stage one sampling unit (primary sampling unit or cluster) code
for each site.
wgt1 Vector of the final adjusted stage one weight for each site.
x1 Vector of the stage one x-coordinate for location for each site.
y1 Vector of the stage one y-coordinate for location for each site.
pcfactor.ind Logical value that indicates whether the population correction factor is used
during variance estimation, where TRUE = use the population correction factor
and FALSE = do not use the factor. To employ the correction factor for a single-
stage sample, values must be supplied for arguments pcfsize and support. To
employ the correction factor for a two-stage sample, values must be supplied for
arguments N.cluster, stage1size, and support.
changevar.size

pcfsize  Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

N.cluster  The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

stage1size  Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1".

support  Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from a continuous resource, which is required for calculation of finite and continuous population correction factors.

vartype  The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.

warn.ind  Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated.

warn.df  Data frame for storing warning messages.

warn.vec  Vector that contains names of the population type, the subpopulation, and an indicator.

Value

An object in list format composed of a vector named rslt, which contains the covariance or correlation estimates, a logical variable named warn.ind, which is the indicator for warning messages, and a data frame named warn.df, which contains warning messages.

Other Functions Required

localmean.weight  calculate the weighting matrix for the local mean variance estimator

localmean.cov  calculate the variance/covariance matrix using the local mean estimator

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>
**constructAddr**

*Construct the Hierarchical Addresses for a Generalized Random-Tessellation Stratified (GRTS) Survey Design*

**Description**

This function constructs the hierarchical addresses for a GRTS survey design.

**Usage**

```r
constructAddr(xc, yc, dx, dy, nlev)
```

**Arguments**

- `xc`: Vector of x-coordinates for the grid cells.
- `yc`: Vector of y-coordinates for the grid cells.
- `dx`: The x-axis grid cell dimension.
- `dy`: The y-axis grid cell dimension.
- `nlev`: Number of hierarchical levels for the grid.

**Value**

Vector of hierarchical addresses.

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>

---

**cont.analysis**

*Continuous Variable Data Analysis for Probability Survey Data*

**Description**

This function organizes input and output for analysis of continuous data generated by a probability survey. Input can be either an object of class spsurvey.analysis (see the documentation for function spsurvey.analysis) or through use of the other arguments to this function.

**Usage**

```r
cont.analysis(sites = NULL, subpop = NULL, design = NULL,
 data.cont = NULL, sigma = NULL, var.sigma = NULL, popsize = NULL,
 popcorrect = FALSE, pcfsize = NULL, N.cluster = NULL,
 stagelsize = NULL, sizeweight = FALSE, total = FALSE,
 vartype = "Local", conf = 95, pctval = c(5, 10, 25, 50, 75, 90, 95),
 spsurvey.obj = NULL)
```
Arguments

sites Data frame consisting of two variables: the first variable is site IDs, and the second variable is a logical vector indicating which sites to use in the analysis. If spsurvey.obj is not provided, then this argument is required. The default is NULL.

subpop Data frame describing sets of populations and subpopulations for which estimates will be calculated. The first variable is site IDs. Each subsequent variable identifies a Type of population, where the variable name is used to identify Type. A Type variable identifies each site with one of the subpopulations of that Type. If spsurvey.obj is not provided, then this argument is required. The default is NULL.

design Data frame consisting of design variables. If spsurvey.obj is not provided, then this argument is required. The default is NULL. Variables should be named as follows:

siteID Vector of site IDs
wgt Vector of weights, which are either the weights for a single-stage sample or the stage two weights for a two-stage sample
xcoord Vector of x-coordinates for location, which are either the x-coordinates for a single-stage sample or the stage two x-coordinates for a two-stage sample
ycoord Vector of y-coordinates for location, which are either the y-coordinates for a single-stage sample or the stage two y-coordinates for a two-stage sample
stratum Vector of the stratum codes for each site
cluster Vector of the stage one sampling unit (primary sampling unit or cluster) codes for each site
wgt1 Vector of stage one weights in a two-stage design
xcoord1 Vector of the stage one x-coordinates for location in a two-stage design
ycoord1 Vector of the stage one y-coordinates for location in a two-stage design
support Vector of support values - for a finite resource, the value one (1) for a for site. For an extensive resource, the measure of the sampling unit associated with a site. Required for calculation of finite and continuous population correction factors.
swgt Vector of size-weights, which is the stage two size-weight for a two-stage design.
swgt1 Vector of stage one size-weights for a two-stage design.
data.cont Data frame of continuous response variables. The first variable is site IDs. Subsequent variables are response variables. Missing data (NA) is allowed. The default is NULL.
sigma Measurement error variance. This variable must be a vector containing a value for each response variable and must have the names attribute set to identify the response variable names. Missing data (NA) is allowed. The default is NULL.
var.sigma Variance of the measurement error variance. This variable must be a vector containing a value for each response variable and must have the names attribute set to identify the response variable names. Missing data (NA) is allowed. The default is NULL.
set to identify the response variable names. Missing data (NA) is allowed. The default is NULL.

**popsize**

Known size of the resource, which is used to perform ratio adjustment to estimators expressed using measurement units for the resource and to calculate strata proportions for calculating estimates for a stratified sample. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. The argument must be in the form of a list containing an element for each population Type in the subpop data frame, where NULL is a valid choice for a population Type. The list must be named using the column names for the population Types in subpop. If a population Type doesn’t contain subpopulations, then each element of the list is either a single value for an unstratified sample or a vector containing a value for each stratum for a stratified sample, where elements of the vector are named using the stratum codes. If a population Type contains subpopulations, then each element of the list is a list containing an element for each subpopulation, where the list is named using the subpopulation names. The element for each subpopulation will be either a single value for an unstratified sample or a named vector of values for a stratified sample. The default is NULL.

Example popsize for a stratified sample:

```r
popsizes = list("Pop 1"=c("Stratum 1"=750,
 "Stratum 2"=500,
 "Stratum 3"=250),
 "Pop 2"=list("SubPop 1"=c("Stratum 1"=350,
 "Stratum 2"=250,
 "Stratum 3"=150),
 "SubPop 2"=c("Stratum 1"=250,
 "Stratum 2"=150,
 "Stratum 3"=100),
 "SubPop 3"=c("Stratum 1"=150,
 "Stratum 2"=150,
 "Stratum 3"=75)),
 "Pop 3"=NULL)
```

Example popsize for an unstratified sample:

```r
popsizes = list("Pop 1"=1500,
 "Pop 2"=list("SubPop 1"=750,
 "SubPop 2"=500,
 "SubPop 3"=375),
 "Pop 3"=NULL)
```

**popcorrect**

Logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for argument pcfsize and for the support variable of the design.
argument. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster and stage1size, and for the support variable of the design argument.

**pcfsize**  
Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

**N.cluster**  
The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

**stage1size**  
Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., “Stratum 1&Cluster 1”. The default is NULL.

**sizeweight**  
Logical value that indicates whether size-weights should be used in the analysis, where TRUE = use the size-weights and FALSE = do not use the size-weights. The default is FALSE.

**total**  
Logical value that indicates whether the population total estimate should be included in the output Pct data frame, where TRUE = include the total estimate and FALSE = do not include the estimate. The default is FALSE.

**vartype**  
The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator. The default is "Local".

**conf**  
Numeric value for the confidence level. The default is 95.

**pctval**  
Vector of the set of values at which percentiles are estimated. The default set is: 5, 10, 25, 50, 75, 90, 95.

**spsurvey.obj**  
List of class spsurvey.analysis that was produced by the function spsurvey.analysis. Depending on input to that function, some elements of the list may be NULL. The default is NULL.

**Value**

A list containing either two or four data frames of population estimates for all combinations of population Types, subpopulations within Types, and response variables. The data frames containing deconvoluted CDF estimates and deconvoluted percentile estimates are only included in the output list when an input value for measurement error variance is provided to the function. CDF estimates are calculated for both proportion and size of the population. Standard error estimates and confidence interval estimates also are calculated.

The four data frames are:

- **CDF** data frame containing the CDF estimates
cont.analysis

Pct  data frame containing the percentile estimates plus population mean, standard deviation, and variance estimates
CDF.D  data frame containing the deconvoluted CDF estimates
Pct.D  data frame containing the deconvoluted percentile estimates

If an input value for measurement error variance is not provided to the function, then CDF.D and Pct.D are assigned the value NULL.

Other Functions Required

dframe.check  check site IDs, the sites data frame, the subpop data frame, and the data.cat data frame to assure valid contents and, as necessary, create the sites data frame and the subpop data frame
vecprint  takes an input vector and outputs a character string with line breaks inserted
uniqueID  creates unique site IDs by appending a unique number to each occurrence of a site ID
input.check  check input values for errors, consistency, and compatibility with analytical functions
cdf.est  estimate the cumulative distribution function (CDF) for the proportion (expressed as percent) and the total of a response variable
cdf.decon  estimate the deconvoluted CDF for the proportion and the total of a response variable
total.est  estimate the population total, mean, variance, and standard deviation of a response variable

Author(s)

Tony Olsen <Olsen.Tony@epa.gov>
Tom Kincaid <Kincaid.Tom@epa.gov>

Examples

# Continuous variable example:
mysiteID <- paste("Site", 1:100, sep="")
mysites <- data.frame(
  siteID=mysiteID,
  Active=rep(TRUE, 100))
mysubpop <- data.frame(
  siteID=mysiteID,
  All.Sites=rep("All Sites",100),
  Resource.Class=rep(c("Good","Poor"), c(55,45)))
mydesign <- data.frame(
  siteID=mysiteID,
  wgt=runif(100, 10, 100),
  xcoord=runif(100),
  ycoord=runif(100),
  stratum=rep(c("Stratum1", "Stratum2"), 50))
ContVar <- rnorm(100, 10, 1)
mydata.cont <- data.frame(
  siteID=mysiteID,
  ContVar=ContVar)
cont.cdfplot <- list(
  AllSites=c(Stratum1=3500, Stratum2=2000),
  Resource.Class=list(Good=c(Stratum1=2500, Stratum2=1500),
                     Poor=c(Stratum1=1000, Stratum2=500)))
cont.analysis(sites=mysites, subpop=mysubpop, design=mydesign,
             data.cont=mydata.cont, popsize=mypopsize)

# Include deconvolution estimates:
mydata.cont <- data.frame(
  siteID=mysiteID,
  ContVar=ContVar,
  ContVar1=ContVar + rnorm(100, 0, sqrt(0.25)),
  ContVar2=ContVar + rnorm(100, 0, sqrt(0.50)))
mysigma <- c(ContVar=NA, ContVar1=0.25, ContVar2=0.50)
cont.analysis(sites=mysites, subpop=mysubpop[,1:2], design=mydesign,
             data.cont=mydata.cont, sigma=mysigma, popsize=mypopsize[1])

---

cont.cdfplot

Plot Multiple Cumulative Distribution Functions

Description

This function creates CDF plots. Input data for the plots is provided by a data frame utilizing the
same structure as the data frame named "CDF" that is included in the output object produced by
function cont.analysis. Plots are produced for every combination of Type of population, subpopu-
lation within Type, and indicator. Output from the function is placed in a PDF file.

Usage

```r
cont.cdfplot(pdffile = "cdf2x2.pdf", cdfest, units.cdf = "Percent",
 ind.type = rep("Continuous", nind), logx = rep("", nind),
 xlbl = NULL, ylbl = "Percent", ylbl.r = NULL, legloc = "BR",
 cdf.page = 4, width = 10, height = 8, confcut = 5,
 cex.main = 1.2, ...)
```

Arguments

- `pdffile` Name of the PDF file. The default is "cdf2x2.pdf".
- `cdfest` Data frame utilizing the same structure as the data frame named "CDF" that is
  included in the output object produced by function cont.analysis.
- `units.cdf` Indicator for the type of units in which the CDF is plotted, where "Percent"
  means the plot is in terms of percent of the population, and "Units" means the
  plot is in terms of units of the population. The default is "Percent".
- `ind.type` Character vector consisting of the values "Continuous" or "Ordinal" that controls
  the type of CDF plot for each indicator. The default is "Continuous" for every
  indicator.
logx

Character vector consisting of the values "" or "x" that controls whether the x axis uses the original scale (""") or the base 10 logarithmic scale ("x") for each indicator. The default is "" for every indicator.

xlab

Character vector consisting of the x-axis label for each indicator. If this argument equals NULL, then indicator names are used as the labels. The default is NULL.

ylab

Character string providing the y-axis label. The default is "Percent".

ylab.r

Character string providing the label for the right side y-axis, where NULL means a label is not created, and "Same" means the label is the same as the left side label (i.e., argument ylab). The default is NULL.

legloc

Indicator for location of the plot legend, where "BR" means bottom right, "BL" means bottom left, "TR" means top right, and "TL" means top left. The default is "BR".

cdf.page

Number of CDF plots on each page, which must be chosen from the values: 1, 2, 4, or 6. The default is 4.

width

Width of the graphic region in inches. The default is 10.

height

Height of the graphic region in inches. The default is 8.

confcut

Numeric value that controls plotting confidence limits at the CDF extremes. Confidence limits for CDF values (percent scale) less than confcut or greater than 100 minus confcut are not plotted. A value of zero means confidence limits are plotted for the complete range of the CDF. The default is 5.

cex.main

Expansion factor for the plot title. The default is 1.2.

... Additional arguments passed to the cdf.plot function.

Value

A PDF file containing the CDF plots.

Other Functions Required

cdf.plot plot the CDF and associated confidence limits

Author(s)

Tony Olsen <Olsen.Tony@epa.gov>
Tom Kincaid <Kincaid.Tom@epa.gov>

Examples

# Not run:
mysiteID <- paste("Site", 1:100, sep="")
mysites <- data.frame(siteID=mysiteID, Active=rep(TRUE, 100))
mysubpop <- data.frame(
  siteID=mysiteID,
  All.Sites=rep("All Sites",100),
  Resource.Class=rep(c("Good","Poor"), c(55,45)))
mydesign <- data.frame(
cont.cdftest

```r
siteID=mysiteID, wgt=runif(100, 10, 100),
xcoord=runif(100),
ycoord=runif(100),
stratum=rep(c("Stratum1", "Stratum2"), 50))
ContVar <- rnorm(100, 10, 1)
mydata.cont <- data.frame(
 siteID=mysiteID, ContVar=ContVar)
mypopsize <- list(
 All.Sites=c(Stratum1=3500, Stratum2=2000),
 Resource.Class=list(Good=c(Stratum1=2500, Stratum2=1500),
 Poor=c(Stratum1=1000, Stratum2=500)))
myanalysis <- cont.analysis(sites=mysites, subpop=mysubpop, design=mydesign,
data.cont=mydata.cont, popsize=mypopsize)
cont.cdfplot("myanalysis.pdf", myanalysis$CDF, ylbl.r="Stream Length (km)")
```

## End(Not run)

---

**cont.cdftest**  
*Cumulative Distribution Function Inference for a Probability Survey*

**Description**

This function organizes input and output for conducting inference regarding cumulative distribution functions (CDFs) generated by a probability survey. Input can be either an object of class spsurvey.analysis (see the documentation for function spsurvey.analysis) or through use of the other arguments to this function. For every response variable and every population Type, differences between CDFs are tested for every pair of subpopulations within a Type. The inferential procedures divide the CDFs into a discrete set of intervals (classes) and then utilize procedures that have been developed for analysis of categorical data from probability surveys. Choices for inference are the Wald, Rao-Scott first order corrected (mean eigenvalue corrected), and Rao-Scott second order corrected (Satterthwaite corrected) test statistics. Both standard versions of the three statistics, which are distributed as Chi-squared random variables, and alternate version of the statistics, which are distributed as F random variables, are available. The default test statistic is the F distribution version of the Wald statistic.

**Usage**

```r
cont.cdftest(sites = NULL, subpop = NULL, design = NULL,
data.cont = NULL, popsize = NULL, popcorrect = FALSE,
pcfsize = NULL, N.cluster = NULL, stage1size = NULL,
sizeweight = FALSE, vartype = "Local", testname = "Wald_F",
nclass = 3, spsurvey.obj = NULL)
```

**Arguments**

- **sites**  
  Data frame consisting of two variables: the first variable is site IDs, and the second variable is a logical vector indicating which sites to use in the analysis.
If spsurvey.obj is not provided, then this argument is required. The default is NULL.

**subpop**

Data frame describing sets of populations and subpopulations for which estimates will be calculated. The first variable is site IDs. Each subsequent variable identifies a Type of population, where the variable name is used to identify Type. A Type variable identifies each site with one of the subpopulations of that Type. If spsurvey.obj is not provided, then this argument is required. The default is NULL.

**design**

Data frame consisting of design variables. If spsurvey.obj is not provided, then this argument is required. The default is NULL. Variables should be named as follows:

- **siteID** Vector of site IDs
- **wgt** Vector of weights, which are either the weights for a single-stage sample or the stage two weights for a two-stage sample
- **xcoord** Vector of x-coordinates for location, which are either the x-coordinates for a single-stage sample or the stage two x-coordinates for a two-stage sample
- **ycoord** Vector of y-coordinates for location, which are either the y-coordinates for a single-stage sample or the stage two y-coordinates for a two-stage sample
- **stratum** Vector of the stratum codes for each site
- **cluster** Vector of the stage one sampling unit (primary sampling unit or cluster) codes for each site
- **wgt1** Vector of stage one weights in a two-stage design
- **xcoord1** Vector of the stage one x-coordinates for location in a two-stage design
- **ycoord1** Vector of the stage one y-coordinates for location in a two-stage design
- **support** Vector of support values - for a finite resource, the value one (1) for a for site. For an extensive resource, the measure of the sampling unit associated with a site. Required for calculation of finite and continuous population correction factors.
- **swgt** Vector of size-weights, which is the stage two size-weight for a two-stage design.
- **swgt1** Vector of stage one size-weights for a two-stage design.

**data.cont**

Data frame of continuous response variables. The first variable is site IDs. Subsequent variables are response variables. Missing data (NA) is allowed. If spsurvey.obj is not provided, then this argument is required. The default is NULL.

**popsize**

Known size of the resource, which is used to perform ratio adjustment to estimators expressed using measurement units for the resource. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. The argument must be in the form of a list containing an element for each population Type in the subpop data frame, where NULL is a valid choice for a population Type. The list must be named using the column names for the population Types in subpop. If a population Type doesn’t contain
subpopulations, then each element of the list is either a single value for an unstratified sample or a vector containing a value for each stratum for a stratified sample, where elements of the vector are named using the stratum codes. If a population Type contains subpopulations, then each element of the list is a list containing an element for each subpopulation, where the list is named using the subpopulation names. The element for each subpopulation will be either a single value for an unstratified sample or a named vector of values for a stratified sample. The default is NULL.

Example popsize for a stratified sample:
```r
popsize = list("Pop 1"=c("Stratum 1"=750,
"Stratum 2"=500,
"Stratum 3"=250),
"Pop 2"=list("SubPop 1"=c("Stratum 1"=350,
"Stratum 2"=250,
"Stratum 3"=150),
"SubPop 2"=c("Stratum 1"=250,
"Stratum 2"=150,
"Stratum 3"=100),
"SubPop 3"=c("Stratum 1"=150,
"Stratum 2"=150,
"Stratum 3"=75)),
"Pop 3"=NULL)
```

Example popsize for an unstratified sample:
```r
popsize = list("Pop 1"=1500,
"Pop 2"=list("SubPop 1"=750,
"SubPop 2"=500,
"SubPop 3"=375),
"Pop 3"=NULL)
```

**popcorrect**
Logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for argument pcfsize and for the support variable of the design argument. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster and stage1size, and for the support variable of the design argument.

**pcfsize**
Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

**N.cluster**
The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.
stage1size  Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1". The default is NULL.

sizeweight  Logical value that indicates whether size-weights should be used in the analysis, where TRUE = use the size-weights and FALSE = do not use the size-weights. The default is FALSE.

testname  Name of the test statistic to be reported in the output data frame. Choices for the name are: "Wald", "Wald_F", "Mean_Eigenvalue", "Mean_Eigenvalue_F", "Satterthwaite", and "Satterthwaite_F". The default is "Wald_F".

class  Number of classes into which the CDFs will be divided (binned), which must equal at least two. The default is 3.

spsurvey.obj  A list of class spsurvey.analysis that was produced by the function spsurvey.analysis. Depending on input to that function, some elements of the list may be NULL. The default is NULL.

Value

Data frame of CDF test results for all pairs of subpopulations within each population Type for every response variable. The data frame includes the test statistic specified by argument testname plus its degrees of freedom and p-value.

Other Functions Required

dframe.check  check site IDs, the sites data frame, the subpop data frame, and the data.cat data frame to assure valid contents and, as necessary, create the sites data frame and the subpop data frame

vecprint  takes an input vector and outputs a character string with line breaks inserted

uniqueID  creates unique site IDs by appending a unique number to each occurrence of a site ID

input.check  check input values for errors, consistency, and compatibility with analytical functions

cdf.test  test for differences between cumulative distribution functions (CDFs)

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

Examples

```r
mysiteID <- paste("Site", 1:100, sep="")
n <- 200
mysiteID <- paste("Site", 1:n, sep="")
```
mysites <- data.frame(
    siteID=mysiteID,
    Active=rep(TRUE, n))

mysubpop <- data.frame(
    siteID=mysiteID,
    Resource_Class=sample(c("Agr", "Forest", "Urban"), n, replace=TRUE))

mydesign <- data.frame(
    siteID=mysiteID,
    wgt=runif(n, 10, 100),
    xcoord=runif(n),
    ycoord=runif(n),
    stratum=rep(c("Stratum1", "Stratum2"), n/2))

mypopsize <- list(
    Resource_Class=list(Agr=c(Stratum1=2500, Stratum2=1500),
                        Forest=c(Stratum1=1000, Stratum2=500),
                        Urban=c(Stratum1=600, Stratum2=450)))

ContVar <- numeric(n)
tst <- mysubpop$Resource_Class == "Agr"
ContVar[tst] <- rnorm(sum(tst), 10, 1)
tst <- mysubpop$Resource_Class == "Forest"
ContVar[tst] <- rnorm(sum(tst), 10.1, 1)
tst <- mysubpop$Resource_Class == "Urban"
ContVar[tst] <- rnorm(sum(tst), 10.5, 1)

mydata.cont <- data.frame(
    siteID=mysiteID,
    ContVar=ContVar)

c.cont.dftest(sites=mysites, subpop=mysubpop, design=mydesign,
              data.cont=mydata.cont, popsize=mypopsize, testname="Mean_Eigenvalue")

cov.panel.dsgn

Covariance Matrix for a Panel Design

Description

Covariance structure accounts for the panel design and the four variance components: unit variation, period variation, unit by period interaction variation and index (or residual) variation. The model incorporates unit, period, unit by period, and index variance components. It also includes a provision for unit correlation and period autocorrelation.

Usage

cov.panel.dsgn(paneldsgn = matrix(50, 1, 10), nrepeats = 1,
              unit.var = NULL, period.var = NULL, unitperiod.var = NULL,
              index.var = NULL, unit.rho = 1, period.rho = 0)

Arguments

paneldsgn A matrix (dimensions: number of panels (rows) by number of periods (columns)) containing the number of units visited for each combination of panel and period.
cov.panel.dsgn

Default is matrix(50, 1, 10) which is a single panel of 50 units visited 10 times, typical time is a period.

nrepeats Either NULL or a list of matrices the same length as paneldsgn specifying the number of revisits made to units in a panel in the same period for each design. Specifying NULL indicates that number of revisits to units is the same for all panels and for all periods and for all panel designs. The default is NULL, a single visit. Names must match list names in paneldsgn.

unit.var The variance component estimate for unit (the default is Null)
period.var The variance component estimate for period (the default is Null)
unitperiod.var The variance component estimate for unit by period interaction (the default is Null)
index.var The variance component estimate for index error (the default is Null)
unit.rho unit correlation across periods (the default is 1)
period.rho period autocorrelation (the default is 0)

Details

Covariance structure accounts for the panel design and the four variance components: unit variation, period variation, unit by period interaction variation and index (or residual) variation. Uses the model structure defined by Urquhart.

If nrepeats is NULL, then no units sampled more than once in a specific panel, period combination) and then unit by period and index variances are added together or user may have only estimated unit, period and unit by period variance components so that index component is zero It calculates the covariance matrix for the simple linear regression. The standard error for a linear trend coefficient is the square root of the variance.

Value

A list containing the covariance matrix (cov) for the panel design, the input panel design (paneldsgn), the input nrepeats design (nrepeats.dsgn) and the function call.

Author(s)

Tony Olsen <Olsen.Tony@epa.gov>

References


dcdf.prop


See Also

- revisit_dsgn create a panel revisit design
- revisit_bibd create a balanced incomplete block panel revisit design
- revisit_rand create a revisit design with random assignment to panels and time periods
- panel_summary summarize characteristics of a revisit panel design
- power.dsgn power calculation for multiple panel designs
- plot_powerpaneldesign plot power curves for panel designs

---

### dcdf.prop

*Deconvoluted Cumulative Distribution Function Estimate for Proportion*

**Description**

This function calculates an estimate of the deconvoluted cumulative distribution function (CDF) for the proportion of a discrete or an extensive resource. The simulation extrapolation deconvolution method (Stefanski and Bay, 1996) is use to deconvolute measurement error variance from the response. The Horvitz-Thompson ratio estimator, i.e., the ratio of two Horvitz-Thompson estimators, is used to calculate the estimate. The numerator of the ratio estimates the total of the resource equal to or less than a specified value. The denominator of the ratio estimates the size of the resource. For a discrete resource size is the number of units in the resource. For an extensive resource size is the extent (measure) of the resource, i.e., length, area, or volume. The function can accommodate single-stage and two-stage samples.

**Usage**

```r
dcdf.prop(g, wgt, cluster.ind, cluster, wgt1)
```

**Arguments**

- `g` Vector of the values of the deconvolution function g(.) evaluated at a specified value for the response value for each site.
- `wgt` Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
- `cluster.ind` Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.
- `cluster` Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.
- `wgt1` Vector of the final adjusted stage one weight for each site.
Value

The deconvoluted CDF estimate.

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

---

**dcdf.size.prop**

*Deconvoluted Size-Weighted Cumulative Distribution Function for Proportion*

---

**Description**

This function calculates an estimate of the size-weighted, deconvoluted cumulative distribution function (CDF) for the proportion of a discrete resource. The simulation extrapolation deconvolution method (Stefanski and Bay, 1996) is used to deconvolute measurement error variance from the response. The Horvitz-Thompson ratio estimator, i.e., the ratio of two Horvitz-Thompson estimators, is used to calculate the estimate. The numerator of the ratio estimates the size-weighted total of the resource equal to or less than a specified value. The denominator of the ratio estimates the sum of the size-weights for the resource. The function can accommodate single-stage and two-stage samples.

**Usage**

```
dcdf.size.prop(g, wgt, cluster.ind, cluster, wgt1, swgt, swgt1)
```

**Arguments**

- `g`: Vector of the values of the deconvolution function g(.) evaluated at a specified value for the response value for each site.
- `wgt`: Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
- `cluster.ind`: Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.
- `cluster`: Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.
- `wgt1`: Vector of the final adjusted stage one weight for each site.
- `swgt`: Vector of the size-weight for each site, which is the stage two size-weight for a two-stage sample.
- `swgt1`: Vector of the stage one size-weight for each site.

**Value**

The deconvoluted CDF estimate.
dcdf.size.total

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

dcdf.size.total  Deconvoluted Size-weighted Cumulative Distribution function for Total

Description

This function calculates an estimate of the size-weighted, deconvoluted cumulative distribution function (CDF) for the total of a discrete resource. The simulation extrapolation deconvolution method (Stefanski and Bay, 1996) is use to deconvolute measurement error variance from the response. If the known sum of the size-weights of the resource is provided, the classic ratio estimator is used to calculate the estimate. That estimator is the product of the known sum of the size-weights of the resource and the Horvitz-Thompson ratio estimator, where the latter is the ratio of two Horvitz-Thompson estimators. The numerator of the ratio estimates the size-weighted total of the resource equal to or less than a specified value. The denominator of the ratio estimates the sum of the size-weights of the resource. If the known sum of the size-weights of the resource is not provided, the Horvitz-Thompson estimator of the size-weighted total of the resource equal to or less than a specified value is used to calculate the estimate. The function can accommodate single-stage and two-stage samples.

Usage

dcdf.size.total(g, wgt, cluster.ind, cluster, wgt1, popsize, swgt, swgt1)

Arguments

g  Vector of the values of the deconvolution function g(.) evaluated at a specified value for the response value for each site.
wgt  Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
cluster.ind  Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.
ccluster  Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.
wgt1  Vector of the final adjusted stage one weight for each site.
popsize  Known size of the resource, which is used to perform ratio adjustment to estimators expressed using measurement units for the resource. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.
Vector of the size-weight for each site, which is the stage two size-weight for a two-stage sample.

Vector of the stage one size-weight for each site.

The deconvoluted CDF estimate.

Tom Kincaid <Kincaid.Tom@epa.gov>

This function calculates an estimate of the deconvoluted cumulative distribution function (CDF) for the total of a discrete or an extensive resource. The simulation extrapolation deconvolution method (Stefanski and Bay, 1996) is used to deconvolute measurement error variance from the response. If the known extent of the resource is provided, the classic ratio estimator is used to calculate the estimate. That estimator is the product of the known extent of the resource and the Horvitz-Thompson ratio estimator, where the latter is the ratio of two Horvitz-Thompson estimators. The numerator of the ratio estimates the total of the resource equal to or less than a specified value. The denominator of the ratio estimates the extent of the resource. If the known extent of the resource is not provided, the Horvitz-Thompson estimator of the total of the resource equal to or less than a specified value is used to calculate the estimate. For a discrete resource, size is the number of units in the resource. For an extensive resource, size is the measure of the resource, i.e., length, area, or volume. The function can accommodate single-stage and two-stage samples.

Usage

dcdf.total(g, wgt, cluster.ind, cluster, wgt1, popsize)

Arguments

g Vector of the values of the deconvolution function g(.) evaluated at a specified value for the response value for each site.

wgt Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.

cluster.ind Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.

cluster Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.

wgt1 Vector of the final adjusted stage one weight for each site.
**`popsize`**

Known size of the resource, which is used to perform ratio adjustment to estimators expressed using measurement units for the resource. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

**Value**

The deconvoluted CDF estimate.

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>

---

**Description**

This function calculates variance estimates of the estimated, deconvoluted cumulative distribution function (CDF) for the proportion of a discrete or a continuous resource. Either the simple random sampling (SRS) variance estimator or the local mean variance estimator is calculated, which is subject to user control. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. When variance of the estimated measurement error variance is nonzero, a correction factor is added to the estimated variance of the CDF. The function can accomodate single-stage and two-stage samples. Finite population and continuous population correction factors can be utilized in variance estimation.

**Usage**

```r
dcdfvar.prop(g, dg, var.sigma, wgt, x, y, cdfest, stratum.ind, stratum.level, cluster.ind, cluster, wgt1, x1, y1, pcfactor.ind, pcfsize, N.cluster, stage1size, support, vartype, warn.ind, warn.df, warn.vec)
```

**Arguments**

- **`g`**
  Vector of the values of the deconvolution function g(.) evaluated at a specified value for the response value for each site.

- **`dg`**
  Vector of the values of the derivative of the deconvolution function g(.) evaluated at val for the response value for each site.

- **`var.sigma`**
  Variance of the measurement error variance.

- **`wgt`**
  Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
x Vector of the x-coordinate for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample.

y Vector of the y-coordinate for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample.

cdfest The CDF estimate.

stratum.ind Logical value that indicates whether the sample is stratified, where TRUE = a stratified sample and FALSE = not a stratified sample.

stratum.level The stratum level.

cluster.ind Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.

cluster Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.

wgt1 Vector of the final adjusted stage one weight for each site.

x1 Vector of the stage one x-coordinate for location for each site.

y1 Vector of the stage one y-coordinate for location for each site.

pcfactor.ind Logical value that indicates whether the population correction factor is used during variance estimation, where TRUE = use the population correction factor and FALSE = do not use the factor. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.

pcfsize Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

N.cluster The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

stage1size Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1".

support Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from a continuous resource, which is required for calculation of finite and continuous population correction factors.

vartype The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.
warn.ind  Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated.

warn.df  Data frame for storing warning messages.

warn.vec  Vector that contains names of the population type, the subpopulation, and an indicator.

Value

An object in list format composed of a vector named varest, which contains variance estimates, a logical variable named warn.ind, which is the indicator for warning messages, and a data frame named warn.df, which contains warning messages.

Other Functions Required

localmean.weight  calculate the weighting matrix for the local mean variance estimator

localmean.var  calculate the local mean variance estimator

Author(s)

Tom Kincaid <kincaid.tom@epa.gov>

dcdfvar.size.prop  Variance Estimate for Deconvoluted Size-weighed CDF for Proportion

Description

This function calculates variance estimates of the estimated, deconvoluted, size-weighted cumulative distribution function (CDF) for the proportion of a discrete resource. Either the simple random sampling (SRS) variance estimator or the local mean variance estimator is calculated, which is subject to user control. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. When variance of the estimated measurement error variance is nonzero, a correction factor is added to the estimated variance of the CDF. The function can accommodate single-stage and two-stage samples. Finite population and continuous population correction factors can be utilized in variance estimation.

Usage

dcdfvar.size.prop(g, dg, var.sigma, wgt, x, y, cdfest, stratum.ind, stratum.level, cluster.ind, cluster, wg1, x1, y1, pcfactor.ind, pcfsize, N.cluster, stage1size, support, swgt, swg1, vartype, warn.ind, warn.df, warn.vec)
Arguments

g Vector of the values of the deconvolution function \( g(.) \) evaluated at a specified value for the response value for each site.

dg Vector of the values of the derivative of the deconvolution function \( g(.) \) evaluated at \( \text{val} \) for the response value for each site.

var.sigma Variance of the measurement error variance.

wgt Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.

x Vector of \( x \)-coordinate for location for each site, which is either the \( x \)-coordinate for a single-stage sample or the stage two \( x \)-coordinate for a two-stage sample.

y Vector of \( y \)-coordinate for location for each site, which is either the \( y \)-coordinate for a single-stage sample or the stage two \( y \)-coordinate for a two-stage sample.

cdfest The CDF estimate.

stratum.ind Logical value that indicates whether the sample is stratified, where TRUE = a stratified sample and FALSE = not a stratified sample.

stratum.level The stratum level.

cluster.ind Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.

cluster Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.

wgt1 Vector of the final adjusted stage one weight for each site.

x1 Vector of the stage one \( x \)-coordinate for location for each site.

y1 Vector of the stage one \( y \)-coordinate for location for each site.

pcfactor.ind Logical value that indicates whether the population correction factor is used during variance estimation, where TRUE = use the population correction factor and FALSE = do not use the factor. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcysize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.

pcysize Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

N.cluster The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

stage1size Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify
both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1".

**support**
Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from a continuous resource, which is required for calculation of finite and continuous population correction factors.

**swgt**
Vector of the size-weight for each site, which is the stage two size-weight for a two-stage sample.

**swgt1**
Vector of the stage one size-weight for each site.

**vartype**
The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.

**warn.ind**
Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated.

**warn.df**
Data frame for storing warning messages.

**warn.vec**
Vector that contains names of the population type, the subpopulation, and an indicator.

**Value**
An object in list format composed of a vector named varest, which contains variance estimates, a logical variable named warn.ind, which is the indicator for warning messages, and a data frame named warn.df, which contains warning messages.

**Other Functions Required**
- **localmean.weight** calculate the weighting matrix for the local mean variance estimator
- **localmean.var** calculate the local mean variance estimator

**Author(s)**
Tom Kincaid <Kincaid.Tom@epa.gov>

---

dcdfvar.size.total Variance Estimate of Deconvoluted Size-weighted CDF for Total

**Description**
This function calculates variance estimates of the estimated, deconvoluted, size-weighted cumulative distribution function (CDF) for the total of a discrete resource. Either the simple random sampling (SRS) variance estimator or the local mean variance estimator is calculated, which is subject to user control. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. When variance of the estimated measurement error variance is nonzero, a correction factor is added to the estimated variance of the CDF. The function can accommodate single-stage and two-stage samples. Finite population and continuous population correction factors can be utilized in variance estimation.
Usage

dcdfvar.size.total(g, dg, var.sigma, wgt, x, y, cdfest, stratum.ind,
stratum.level, cluster.ind, cluster, wgt1, x1, y1, popsize, pcfactor.ind,
pcfsize, N.cluster, stage1size, support, swgt, swgt1, vartype, warn.ind,
warn.df, warn.vec)

Arguments

g Vector of the values of the deconvolution function g(.) evaluated at a specified
value for the response value for each site.
dg Vector of the values of the derivative of the deconvolution function g(.) evaluated
at val for the response value for each site.
var.sigma Variance of the measurement error variance.
wgt Vector of the final adjusted weight (inverse of the sample inclusion probability)
for each site, which is either the weight for a single-stage sample or the stage
two weight for a two-stage sample.
x Vector of the x-coordinate for location for each site, which is either the x-
coordinate for a single-stage sample or the stage two x-coordinate for a two-
stage sample.
y Vector of the y-coordinate for location for each site, which is either the y-
coordinate for a single-stage sample or the stage two y-coordinate for a two-
stage sample.
cdfest The CDF estimate.
stratum.ind Logical value that indicates whether the sample is stratified, where TRUE = a
stratified sample and FALSE = not a stratified sample.
stratum.level The stratum level.
cluster.ind Logical value that indicates whether the sample is a two-stage sample, where
TRUE = a two-stage sample and FALSE = not a two-stage sample.
cluster Vector of the stage one sampling unit (primary sampling unit or cluster) code
for each site.
wgt1 Vector of the final adjusted stage one weight for each site.
x1 Vector of the stage one x-coordinate for location for each site.
y1 Vector of the stage one y-coordinate for location for each site.
popsize Known size of the resource, which is used to perform ratio adjustment to estima-
tors expressed using measurement units for the resource. For a finite resource,
this argument is either the total number of sampling units or the known sum of
size-weights. For an extensive resource, this argument is the measure of the re-
source, i.e., either known total length for a linear resource or known total area
for an areal resource. For a stratified sample this variable must be a vector con-
taining a value for each stratum and must have the names attribute set to identify
the stratum codes.
pcfactor.ind Logical value that indicates whether the population correction factor is used
during variance estimation, where TRUE = use the population correction factor
and FALSE = do not use the factor. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.

**pcfsize**  
Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

**N.cluster**  
The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

**stage1size**  
Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1".

**support**  
Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from a continuous resource, which is required for calculation of finite and continuous population correction factors.

**swgt**  
Vector of the size-weight for each site, which is the stage two size-weight for a two-stage sample.

**swgt1**  
Vector of the stage one size-weight for each site.

**vartype**  
The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.

**warn.ind**  
Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated.

**warn.df**  
Data frame for storing warning messages.

**warn.vec**  
Vector that contains names of the population type, the subpopulation, and an indicator.

**Value**

An object in list format composed of a vector named varest, which contains variance estimates, a logical variable named warn.ind, which is the indicator for warning messages, and a data frame named warn.df, which

**Other Functions Required**

- `localmean.weight` calculate the weighting matrix for the local mean variance estimator
- `localmean.var` calculate the local mean variance estimator
dcdfvar.total

Variance Estimate of Deconvoluted CDF for Total

Description
This function calculates variance estimates of the estimated, deconvoluted cumulative distribution function (CDF) for the total of a discrete or a continuous resource. Either the simple random sampling (SRS) variance estimator or the local mean variance estimator is calculated, which is subject to user control. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. When variance of the estimated measurement error variance is nonzero, a correction factor is added to the estimated variance of the CDF. The function can accommodate single-stage and two-stage samples. Finite population and continuous population correction factors can be utilized in variance estimation.

Usage

dcdfvar.total(g, dg, var.sigma, wgt, x, y, cdfest, stratum.ind, stratum.level, cluster.ind, cluster, wgt1, x1, y1, popsize, pcfactor.ind, pcfsize, N.cluster, stage1size, support, vartype, warn.ind, warn.df, warn.vec)

Arguments

- **g**: Vector of the values of the deconvolution function \( g(.) \) evaluated at a specified value for the response value for each site.
- **dg**: Vector of the derivative of the deconvolution function \( g(.) \) evaluated at val for the response value for each site.
- **var.sigma**: Variance of the measurement error variance.
- **wgt**: Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
- **x**: Vector of x-coordinate for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample.
- **y**: Vector of y-coordinate for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample.
- **cdfest**: The CDF estimate.
- **stratum.ind**: Logical value that indicates whether the sample is stratified, where TRUE = a stratified sample and FALSE = not a stratified sample.
- **stratum.level**: The stratum level.
- **cluster.ind**: Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster</td>
<td>Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.</td>
</tr>
<tr>
<td>wgt1</td>
<td>Vector of the final adjusted stage one weight for each site.</td>
</tr>
<tr>
<td>x1</td>
<td>Vector of the stage one x-coordinate for location for each site.</td>
</tr>
<tr>
<td>y1</td>
<td>Vector of the stage one y-coordinate for location for each site.</td>
</tr>
<tr>
<td>popsize</td>
<td>Known size of the resource, which is used to perform ratio adjustment to estimators expressed using measurement units for the resource. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.</td>
</tr>
<tr>
<td>pcfactor.ind</td>
<td>Logical value that indicates whether the population correction factor is used during variance estimation, where TRUE = use the population correction factor and FALSE = do not use the factor. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.</td>
</tr>
<tr>
<td>pcfsize</td>
<td>Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.</td>
</tr>
<tr>
<td>N.cluster</td>
<td>The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.</td>
</tr>
<tr>
<td>stage1size</td>
<td>Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the &amp; symbol, e.g., &quot;Stratum 1&amp;Cluster 1&quot;.</td>
</tr>
<tr>
<td>support</td>
<td>Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from a continuous resource, which is required for calculation of finite and continuous population correction factors.</td>
</tr>
<tr>
<td>vartype</td>
<td>The choice of variance estimator, where &quot;Local&quot; = local mean estimator and &quot;SRS&quot; = SRS estimator.</td>
</tr>
<tr>
<td>warn.ind</td>
<td>Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated.</td>
</tr>
<tr>
<td>warn.df</td>
<td>Data frame for storing warning messages.</td>
</tr>
<tr>
<td>warn.vec</td>
<td>Vector that contains names of the population type, the subpopulation, and an indicator.</td>
</tr>
</tbody>
</table>
Value

An object in list format composed of a vector named varest, which contains variance estimates, a logical variable named warn.ind, which is the indicator for warning messages, and a data frame named warn.df, which

Other Functions Required

localmean.weight calculate the weighting matrix for the local mean variance estimator
localmean.var calculate the local mean variance estimator

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

---

deon_data  Small Lakes in Florida for Examining CDF Deconvolution

Description

A dataset containing attributes for small lakes in Florida that can be used to examine CDF deconvolution.

Usage

deon_data

Format

A data frame with 930 rows and 6 attributes:

xcoord simulated x-coordinate value.
ycoord simulated y-coordinate value.
Richness simulated species richness value.
Richness_25 species richness value plus 25% measurement error variance.
Richness_50 species richness value plus 50% measurement error variance.
Richness_100 species richness value plus 100% measurement error variance.
dframe.check

**Description**

This function checks site IDs, the sites data frame, the subpop data frame, the data.cat data frame, the data.cont data frame, the data.ar data frame, and the data.rr data frame to assure valid contents. If they do not exist, then the sites data frame and the subpop data frame are created.

**Usage**

```r
dframe.check(sites, design, subpop, data.cat, data.cont, data.risk, design.names)
```

**Arguments**

- `sites` The sites data frame.
- `design` The design data frame.
- `subpop` The subpop data frame.
- `data.cat` The data.cat data frame of categorical response variables.
- `data.cont` The data.cont data frame of continuous response variables.
- `data.risk` The data.ar or data.rr data frame of categorical response and stressor variables.
- `design.names` The names for the design data frame.

**Value**

List consisting of the sites data frame, design data frame, subpop data frame, data.cat data frame, and data.cont data frame.

**Other Functions Required**

- `vecprint` takes an input vector and outputs a character string with line breaks inserted

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>
**dsgnsum**

Summary of a Survey Design

**Description**

This function summarizes the sites selected for a survey design by producing contingency tables containing the cross-tabulation of number of sites for survey design variables and, optionally, for auxiliary variables.

**Usage**

```r
dsgnsum(spsample, auxvar = NULL)
```

**Arguments**

- `spsample`: An object of class `SpatialDesign` produced by either the grts or irs functions that contains survey design information and additional attribute (auxiliary) variables.
- `auxvar`: Vector containing the names of columns in the data slot of the

**Value**

A list containing two components named DesignSum and AuxVarSum. DesignSum is a list of contingency tables containing the cross-tabulation of number of sites for the following combinations of survey design variables:

- multidensity category (mdcaty) and stratum
- stratum and panel
- mdcaty, panel, and stratum

AuxVarSum is a list of contingency tables containing the cross-tabulation of number of sites for each auxiliary variable and the design variables mdcaty, panel, and stratum.

In addition the output list plus labeling information is printed to the console.

**Other Functions Required**

- `vecprint` takes an input vector and outputs a character string with line breaks inserted

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>
Examples

```r
Not run:

design <- list(
 Stratum1=list(panel=c(PanelOne=50), seldtype="Equal", over=10),
 Stratum2=list(panel=c(PanelOne=50, PanelTwo=50), seldtype="Unequal",
 caty.n=c(CatyOne=25, CatyTwo=25, CatyThree=25, CatyFour=25), over=75))
samp <- grts(design=design, DesignID="Test.Site", type.frame="area",
 src.frame="shapefile", in.shape="shapefile", stratum="stratum",
 mdcaty="mdcaty", shapefile=TRUE, out.shape="sample.shp")
dsgnsum(samp, auxvar=c("ecoregion", "state"))

End(Not run)
```

`examine` Examine Variables in a Data Frame

Description

This function examines variables in a data frame by printing either a table or the results of a call to the `describe` function in the Hmisc package.

Usage

```r
examine(dframe, subpop = NULL, ord = TRUE, cmax = 50)
```

Arguments

dframe Data frame.

subpop Character string identifying a variable in `dframe` that is used to group output. A separate table or call to the `describe` function is printed for each unique value in the variable. The default value is `NULL`.

ord Logical value that controls the order in which the variables in `dframe` are processed. `TRUE` means that variables are processed in sorted order. `FALSE` means that variables are processed in the order in which they occur in `dframe`. The default value is `TRUE`.

cmax Numeric value that controls whether a call to `table` or a call to `describe` is used to process variables in `dframe`. If the number of unique values in a variable is less than or equal to `cmax`, then `table` is called. If the number of unique values in a variable is greater than `cmax`, then `describe` is called. The default value is `50`.

Value

Tables and/or the output from calls to describe are printed. The function returns `NULL` invisibly.
FL_lakes

Small Lakes in Florida

Description
A dataset containing attributes for small lakes in Florida.

Usage
FL_lakes

Format
A data frame with 930 rows and 11 attributes:
siteID site ID value.
xcoord Albers projection x-coordinate.
ycoord Albers projection y-coordinate.
wgt survey design weight.
Basin stream basin code.
Status site evaluation status code.
TNT target or nontarget category for the site evaluation status code.
pH_Cat pH category.
Coliform_Cat fecal coliform count category.
Oxygen dissolved oxygen value.
Turbidity turbidity value.
framesum

Summary of the Sample Frame for a Survey Design

Description

This function summarizes the frame for a survey design. When type.frame equals "finite", summary is a count of number of units in att.frame for cross-tabulation of stratum, mdcaty, and auxvar. When type.frame equals "linear" or "area", summary is the sum of length or area for units for cross-tabulation of stratum, mdcaty, and auxvar. If argument mdcaty or argument stratum equals NULL or if both arguments equal NULL, then the cross-tabulation is performed without use of the design variable(s).

Usage

framesum(att.frame, design, type.frame = "finite", stratum = NULL, mdcaty = NULL, auxvar = NULL, units.in = "Number", scale = 1, units.out = "Number")

Arguments

att.frame Data frame composed of attributes associated with elements in the frame, which must contain the columns used for stratum and mdcaty (if required by the survey design).

design Named list of stratum design specifications which are also lists. Stratum names must be subset of values in stratum argument. Each stratum list has four components:

panel named vector of sample sizes for each panel in stratum

seltype the type of random selection, which must be one of following: "Equal" - equal probability selection, "Unequal" - unequal probability selection by the categories specified in caty.n and mdcaty, or "Continuous" - unequal probability selection proportional to auxiliary variable mdcaty

caty.n if seltype equals "Unequal", a named vector of sample sizes for each category specified by mdcaty, where sum of the sample sizes must equal sum of the panel sample sizes, and names must be a subset of values in mdcaty

over number of replacement sites ("oversample" sites) for the entire design, which is set equal to 0 if none are required)

Example design:

design=list( Stratum1=list(panel=c(PanelOne=50), seltype="Equal", over=10), Stratum2=list(panel=c(PanelOne=50, PanelTwo=50), seltype="Unequal", caty.n=c(CatyOne=25, CatyTwo=25, CatyThree=25, CatyFour=25), over=75))

type.frame The type of frame, which must be one of following: "finite", "linear", or "area". The default is "finite".

stratum Name of the column from att.frame that identifies stratum membership for each element in the frame. If stratum equals NULL, the design is unstratified. The default is NULL.
framesum

mdcaty   Name of the column from att.frame that identifies the unequal probability category for each element in the frame. The default is NULL.

auxvar   Vector containing the names of columns from att.frame that identify auxiliary variables to be used to summarize frame size. The default is NULL.

units.in Character string giving the name of units used to measure size in the frame. The default is "Number".

scale    The scale factor used to change units.in to units.out. For example, use 1000 to change "Meters" to "Kilometers". The default is 1.

units.out Character string giving the name of units used to measure size in the results. The default is "Number".

Value

A list containing two components named DesignSize and AuxVarSize. DesignSize summarizes the frame for survey design variables, and AuxVarSize summarizes the frame for auxiliary variables. DesignSize is either a table (for type.frame equals "finite") or an array (for type.frame equals "linear" or "area") that contains the cross-tabulation of frame extent for design variables multidensity category (mdcaty) and stratum, where extent of the frame is the number of sites for type.frame equals "finite", the sum of resource length for type.frame equals "linear", or the sum of resource area for type.frame equals "area". AuxVarSize is a list containing a component for each auxiliary variable, where each component of the list is one of the following: (1) if the type of random selection does not equal "Continuous" for any stratum, each component is either a table (for type.frame equals "finite") or an array (for type.frame equals "linear" or "area") that contains the cross-tabulation of frame extent for mdcaty, stratum, and the auxiliary variable or (2) if type of random selection equals "Continuous" for all strata, each component is either a table (finite frame) or an array (linear or area frame) containing the cross-tabulation of frame extent for stratum and the auxiliary variable. In addition the output list plus labeling information is printed to the console.

Other Functions Required

vecprint takes an input vector and outputs a character string with line breaks inserted

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

Examples

## Not run:
attframe <- read.dbf("shapefile.shp")
design <- list(
  Stratum1=list(panel=c(PanelOne=50), seltype="Equal", over=10),
  Stratum2=list(panel=c(PanelOne=50, PanelTwo=50), seltype="Unequal",
    caty.n=c(CatyOne=25, CatyTwo=25, CatyThree=25, CatyFour=25), over=75))
framesum(att.frame=attframe, design=design, type.frame="area",
  stratum="stratum", mdcaty="mdcaty", auxvar=c("ecoregion",
    "state"), units.in="Meters", scale=1000, units.out="Kilometers")

## End(Not run)
**geodalbers**

*Project Latitude/Longitude to Albers Projection*

**Description**

Project Latitude/Longitude to Albers Projection

**Usage**

```
geodalbers(lon, lat, sph = "GRS80", clon = -96, clat = 23,
 sp1 = 29.5, sp2 = 45.5)
geodalbers()
```

**Arguments**

- **lon**: Vector of longitude (decimal degrees) values to be projected to Albers.
- **lat**: Vector of latitude (decimal degrees) values to be projected to Albers.
- **sph**: Spheroid options: Clarke1866, GRS80, WGS84. The default is GRS80.
- **clon**: Center longitude (decimal degrees). The default is -96.
- **clat**: Origin latitude (decimal degrees). The default is 23.
- **sp1**: Standard parallel 1 (decimal degrees). The default is 29.5.
- **sp2**: Standard parallel 2 (decimal degrees). The default is 45.5.

**Value**

Data frame of Albers x-coordinate and y-coordinate projections for latitude and longitude.

**Author(s)**

Tony Olsen < Olsen.Tony@epa.gov>

---

**grts**

*Select a Generalized Random-Tesselation Stratified (GRTS) Sample*

**Description**

This function select a GRTS sample of a finite, linear, or area resource. Frame elements must be located in 1- or 2-dimensional coordinate system. Sample may be equal probability or unequal probability (either categorical or proportional to auxiliary variable). May designate panels of sites for surveys over time.
Usage

grts(design, DesignID = "Site", SiteBegin = 1, type.frame = NULL,
src.frame = "shapefile", in.shape = NULL, sf.object = NULL,
sp.object = NULL, att.frame = NULL, id = NULL, xcoord = NULL,
ycoord = NULL, stratum = NULL, mdcaty = NULL, startlev = NULL,
maxlev = 11, maxtry = NULL, shift.grid = TRUE,
do.sample = rep(TRUE, length(design)), shapefile = TRUE,
prjfilename = NULL, out.shape = "sample.shp")

Arguments

design Named list of stratum design specifications which are also lists. Stratum names
must be subset of values in stratum argument. Each stratum list has four com-
ponents:

panel named vector of sample sizes for each panel in stratum
seltype the type of random selection, which must be one of following: "Equal"
- equal probability selection, "Unequal" - unequal probability selection by
the categories specified in caty.n and mdcaty, or "Continuous" - unequal
probability selection proportional to auxiliary variable mdcaty
caty.n if seltype equals "Unequal", a named vector of sample sizes for each
category specified by mdcaty, where sum of the sample sizes must equal
sum of the panel sample sizes, and names must be a subset of values in
mdcaty
over number of replacement sites ("oversample" sites for the entire design,
which is set equal to 0 if none are required)

Example design for a stratified sample:
design=list( Stratum1=list(panel=c(PanelOne=50), seltype="Equal", over=10),
Stratum2=list(panel=c(PanelOne=50, PanelTwo=50), seltype="Unequal", caty.n=c(CatyOne=25,
CatyTwo=25, CatyThree=25, CatyFour=25), over=75)) Example design for an
unstratified sample:
design <- list( None=list(panel=c(Panel1=50, Panel2=100, Panel3=50), seltype="Unequal",
caty.n=c("Caty 1"=50, "Caty 2"=25, "Caty 3"=25, "Caty 4"=25, "Caty 5"=75),
over=100))

DesignID Name for the design, which is used to create a site ID for each site. The default
is "Site".
SiteBegin Number to use for first site in the design. The default is 1.
type.frame The type of frame, which must be one of following: "finite", "linear", or "area".
The default is NULL.
src.frame Source of the frame, which equals "sf.object" if the frame is contained in an sf
package object, "shapefile" if the frame is to be read from a shapefile, "sp.object"
if the frame is obtained from an sp package object, or "att.frame" if type.frame
equals "finite" and the frame is included in att.frame. The default is "shapefile".
in.shape Name of a shapefile containing the frame, which is required when src.frame
equals "shapefile". The shapefile name should include the ".shp" extension. If
the name does not include that extension, it will be added. The default is NULL.
**sf.object**
An sf package object containing the frame, which is required when src.frame equals "sf.object". The default is NULL.

**sp.object**
Name of the sp package object when src.frame equals "sp.object". The default is NULL.

**att.frame**
Data frame composed of attributes associated with elements in the frame. If src.frame equals "att.frame", then att.frame must include columns that contain x-coordinates and y-coordinates for each element in the frame. If src.frame does not equal "att.frame" and att.frame is not equal to NULL, then an sf object is created from att.frame and the geometry column from the object named "sf.object" that is created by the function. The default is NULL.

**id**
This argument is deprecated.

**xcoord**
Character string containing the name of the column from att.frame that identifies x-coordinates when src.frame equals "att.frame". If xcoord equals NULL, then xcoord is given the value "x". The default is NULL.

**ycoord**
Character string containing the name of the column from att.frame that identifies y-coordinates when src.frame equals "att.frame". If ycoord equals NULL, then ycoord is given the value "y". The default is NULL.

**stratum**
Character string containing the name of the column from att.frame that identifies stratum membership for each element in the frame. If stratum equals NULL, the design is unstratified, and a column named "stratum" (with all of its elements equal to the stratum name specified in design) is added to att.frame. The default is NULL.

**mdcaty**
Character string containing the name of the column from att.frame that identifies the unequal probability category for each element in the frame. The default is NULL.

**startlev**
Initial number of hierarchical levels to use for the GRTS grid, which must be less than or equal to maxlev (if maxlev is specified) and cannot be greater than 11. The default is NULL.

**maxlev**
Maximum number of hierarchical levels to use for the GRTS grid, which cannot be greater than 11. The default is 11.

**maxtry**
This argument is deprecated.

**shift.grid**
Option to randomly shift the hierarchical grid, where TRUE means shift the grid and FALSE means do not shift the grid, which is useful if one desires strict spatial stratification by hierarchical grid cells. The default is TRUE.

**do.sample**
Named vector that provides the option controlling sample selection for each stratum, where TRUE means select a sample from a stratum and FALSE means return the sample frame for a stratum in reverse hierarchical order. Note that FALSE can only be used when type.frame equals "points" and seltype equals "Equal". Names for the vector must match the names in design. If the vector is not named, then the names in design are used. The default is TRUE for each stratum.

**shapefile**
Option to create a shapefile containing the survey design information, where TRUE equals create a shapefile and FALSE equals do not create a shapefile. The default is TRUE.

**prjfilename**
This argument is deprecated.

**out.shape**
Name of the output shapefile. The default is "sample.shp".
Value

An object of class SpatialDesign containing the survey design information and any additional attribute variables that were provided. Optionally, a shapefile can be created that contains the survey design information.

Other Functions Required

grtsarea select a GRTS sample of an area resource
grtslin select a GRTS sample of a linear resource
grtspts select a GRTS sample of a finite resource
SpatialPoints sp package function to create an object of class SpatialPoints
SpatialPointsDataFrame sp package function to create an object of class SpatialPointsDataFrame

Author(s)

Tom Kincaid email Kincaid.Tom@epa.gov

Examples

```r
Not run:

End(Not run)
```

---

**grtsarea**

Select a Generalized Random-Tessellation Stratified (GRTS) Sample of an Area Resource

Description

This function select a GRTS sample of an area resource. The function uses hierarchical randomization to ensure that the sample will include no more than one point per cell and then picks a point in selected cells.

Usage

```r
grtsarea(areaframe, samplesize = 100, SiteBegin = 1,
 shift.grid = TRUE, startlev = NULL, maxlev = 1, maxtry = NULL)
```
grtslin

Arguments

areaframe The sf object containing attributes: id, mdcaty and mdm.
samplesize Number of points to select in the sample. The default is 100.
SiteBegin First number to start siteID numbering. The default is 1.
shift.grid Option to randomly shift the hierarchical grid. The default is TRUE.
startlev Initial number of hierarchical levels to use for the GRTS grid, which must be less than or equal to maxlev (if maxlev is specified) and cannot be greater than 11. The default is NULL.
maxlev Maximum number of hierarchical levels to use for the GRTS grid, which cannot be greater than 11. The default is 11.
maxtry This argument is deprecated.

Value

Data frame of sample points containing: siteID, id, x, y, mdcaty, and weight.

Other Functions Required

numLevels determines the number of levels for hierarchical randomization
constructAddr constructs the hierarchical address for sample points
ranho constructs the randomized hierarchical address for sample points
pickGridCells selects grid cells that get a sample point
insideAreaGridCell determines feature ID value and clipped polygon area for each feature contained in a selected grid cell
selectFeatureID identifies a feature ID from which to select a sample point
pickSamplePoints selects sample points from an sf object

Author(s)

Tony Olsen <Olsen.Tony@epa.gov>

---

grtslin  Select a Generalized Random-Tesselation Stratified (GRTS) Sample of a Linear Resource

Description

This function select a GRTS sample of a linear resource. The function uses hierarchical randomization to ensure that the sample will include no more than one point per cell and then picks a point in selected cells.

Usage

grtslin(linframe, samplesize = 100, SiteBegin = 1, shift.grid = TRUE,
        startlev = NULL, maxlev = 1)
Arguments

linframe  The sf object containing attributes: id, mdcaty, and mdm.
samplesize Number of points to select in the sample. The default is 100.
SiteBegin  First number to start siteID numbering. The default is 1.
shift.grid  Option to randomly shift the hierarchical grid. The default is TRUE.
startlev  Initial number of hierarchical levels to use for the GRTS grid, which must be
          less than or equal to maxlev (if maxlev is specified) and cannot be greater than
          11. The default is NULL.
maxlev  Maximum number of hierarchical levels to use for the GRTS grid, which cannot
         be greater than 11. The default is 11.

Value

Data frame of sample points containing: siteID, id, x, y, mdcaty, and weight.

Other Functions Required

numLevels  determines the number of levels for hierarchical randomization
constructAddr  constructs the hierarchical address for sample points
ranho  constructs the randomized hierarchical address for sample points
pickGridCells  selects grid cells that get a sample point
insideLinearGridCell  determines feature ID value and clipped linestring length for each feature
 contained in a selected grid cell
selectFeatureID  identifies a feature ID from which to select a sample point
pickSamplePoints  selects sample points from an sf object

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov> Tony Olsen <Olsen.Tony@epa.gov>

---

grtspts  Select a Generalized Random-Tesselation Stratified (GRTS) Sample of
          a Finite Resource

Description

This function selects a GRTS sample of a finite resource. This function uses hierarchical random-
ization to ensure that the sample will include no more than one point per grid cell and then picks a
point in selected cells.

Usage

grtspts(ptsframe, samplesize = 100, SiteBegin = 1, shift.grid = TRUE,
dosample = TRUE, startlev = NULL, maxlev = 11)
Arguments

**ptsframe**  The sf object containing attributes: id, x, y, mdcaty, and mdm.
**samplesize**  Number of points to select in the sample. The default is 100.
**SiteBegin**  First number to start siteID numbering. The default is 1.
**shift.grid**  Option to randomly shift the hierarchical grid. The default is TRUE.
**do.sample**  Option to select a sample, where TRUE means select a sample and FALSE means return the entire sample frame in reverse hierarchical order. The default is TRUE.
**startlev**  Initial number of hierarchical levels to use for the GRTS grid, which must be less than or equal to maxlev (if maxlev is specified) and cannot be greater than 11. The default is NULL.
**maxlev**  Maximum number of hierarchical levels to use for the GRTS grid, which cannot be greater than 11. The default is 11.

Value

Data frame of sample points containing: siteID, id, x, y, mdcaty, and weight.

Other Functions Required

**numLevels**  determines the number of levels for hierarchical randomization
**constructAddr**  constructs the hierarchical address for sample points
**ranho**  constructs the randomized hierarchical address for sample points
**pickGridCells**  selects grid cells that get a sample point
**pickFiniteSamplePoints**  pick sample point(s) from selected cells

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov> Tony Olsen <Olsen.Tony@epa.gov>

---

**input.check**  Check Input Values for Analytical Functions

Description

This function checks input values for errors, consistency, and compatibility with analytical functions.

Usage

```
input.check(nresp, wgt, sigma, var.sigma, xcoord, ycoord, stratum.ind, stratum, stratum.levels, nstrata, cluster.ind, cluster, cluster.levels, ncluster, wgt1, xcoord1, ycoord1, psize, pcfactor.ind, pcfsize, N.cluster, stage1size, support, swgt.ind, swgt, swgt1, vartype, conf, cdfval = NULL, pctval = NULL, subpop = NULL)
```
Arguments

- **nresp**  The number of response values.
- **wgt**  Vector of the final adjusted weights.
- **sigma**  Measurement error variance.
- **var.sigma**  Variance of the measurement error variance.
- **xcoord**  Vector of the x-coordinates for location.
- **ycoord**  Vector of the y-coordinates for location.
- **stratum.ind**  Logical value that indicates whether the sample is stratified, where TRUE = a stratified sample and FALSE = not a stratified sample.
- **stratum**  Vector of the stratum codes.
- **stratum.levels**  Levels of the stratum variable.
- **nstrata**  Number of strata.
- **cluster.ind**  Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.
- **cluster**  Vector of the stage one sampling unit codes.
- **cluster.levels**  Factor levels of the stage one sampling unit codes.
- **ncluster**  The number of stage one sampling units in the sample.
- **wgt1**  Vector of the final adjusted stage one weights.
- **xcoord1**  Vector of the stage one x-coordinates for location.
- **ycoord1**  Vector of the stage one y-coordinates for location.
- **popsize**  Known size of the resource.
- **pcfactor.ind**  Logical value that indicates whether the population correction factor is used during variance estimation, where TRUE = use the population correction factor and FALSE = do not use the factor. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.
- **pcfsiz**  Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.
- **N.cluster**  Number of stage one sampling units in the resource.
- **stage1size**  Known size of the stage one sampling units.
- **support**  Vector of the support for each sampling unit.
- **swgt.ind**  Logical value that indicates whether the sample is a size-weighted sample, where TRUE = a size-weighted sample and FALSE = not a size-weighted sample.
- **swgt**  Vector of the size-weight for each site.
- **swgt1**  Vector of the stage one size-weight for each site.
The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.

The confidence level.

Vector of the set of values at which the CDF is estimated.

Vector of the set of values at which percentiles are estimated.

Data frame describing sets of populations and subpopulations for which estimates will be calculated.

A list consisting of popsize, pcfsize, N.cluster, and stage1size.

vecprint takes an input vector and outputs a character string with line breaks inserted

Tom Kincaid <Kincaid.Tom@epa.gov>

This function formats an input value of class numeric, character, or factor. For a numeric value, the number of digits after the decimal point can be specified. A factor value is converted to character. Missing values are allowed.

input.format(x, n.digits = 2, miss = "NA")

The input value.

The number of digits after the decimal point, which can be zero. The default is 2.

The missing value code expressed as a character string. The default is "NA".

A value of mode character that is one of the following, as appropriate: (1) character representation of a real number with the specified number of digits after the decimal point when the input numeric value is a real number, (2) character representation of an integer when the input numeric value is an integer, (3) the original value when the input value is class character or factor, or (4) the missing value code when the input value is missing.
insideAreaGridCell  

**Calculate Clipped Feature Areas in a Set of Grid Cells**

**Description**

For each grid cell, this function calculates the clipped area of each polygon feature contained in the cell.

**Usage**

```r
insideAreaGridCell(sfobject, rdx.u, xc, yc, dx, dy)
```

**Arguments**

- `sfobject`: The sf polygon object.
- `rdx.u`: Vector of cell IDs.
- `xc`: Vector of x-coordinates for the grid cells.
- `yc`: Vector of y-coordinates for the grid cells.
- `dx`: The x-axis grid cell dimension.
- `dy`: The y-axis grid cell dimension.

**Value**

Data frame containing the following variables: cellID, featureArea, and featureID.

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>

insideLinearGridCell  

**Calculate Clipped Feature Lengths in a Set of Grid Cells**

**Description**

For each grid cell, this function calculates the clipped length of each linestring feature contained in the cell.

**Usage**

```r
insideLinearGridCell(sfobject, rdx.u, xc, yc, dx, dy)
```

**Arguments**

- `sfobject`: The sf polygon object.
- `rdx.u`: Vector of cell IDs.
- `xc`: Vector of x-coordinates for the grid cells.
- `yc`: Vector of y-coordinates for the grid cells.
- `dx`: The x-axis grid cell dimension.
- `dy`: The y-axis grid cell dimension.

**Value**

Data frame containing the following variables: cellID, featureLength, and featureID.

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>
interp.axis

Arguments

- `sobject`: The sf linestring object.
- `rdx.u`: Vector of cell IDs.
- `xc`: Vector of x-coordinates for the grid cells.
- `yc`: Vector of y-coordinates for the grid cells.
- `dx`: The x-axis grid cell dimension.
- `dy`: The y-axis grid cell dimension.

Value

Data frame containing the following variables: cellID, featureLength, and featureID.

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

interp.axis *Create Right-Side y-Axis Lables for a CDF Plot*

Description

This function creates right side y-axis labels for a CDF plot. It assumes that arguments cdfest.l and cdfest.r are strictly increasing. If argument `yl.lab` is less than the first `cdfest.l` value, then the function assumes 0 for both `cdfest.l` and `cdfest.r`.

Usage

`interp.axis(yl.lab, cdfest.l, cdfest.r)`

Arguments

- `yl.lab`: Vector of left side y-axis labels, which are the basis for interpolating `cdfest.r` values.
- `cdfest.l`: Vector of CDF estimates corresponding to the left side y-axis.
- `cdfest.r`: Vector of CDF estimates corresponding to the right side y-axis.

Value

A numeric vector consisting of the right side y-axis labels.

Author(s)

Tony Olsen <Olsen.Tony@epa.gov>
Tom Kincaid <Kincaid.Tom@epa.gov>
**interp.cdf**  
*Interpolate CDF Values at a Set of Percentiles*

**Description**

This function interpolates CDF values at a set of percentiles. The CDF values can be CDF estimates, CDF confidence bound estimates, or values at which the CDF is estimated (i.e., x-axis values). It is assumed that arguments cdfest.p and cdf.value are strictly increasing.

**Usage**

```r
interp.cdf(pctval, cdfest.p, cdf.value)
```

**Arguments**

- `pctval`: Vector of percentiles (expressed as percents) at which the CDF values are to be interpolated.
- `cdfest.p`: Vector of CDF estimates in terms of proportions.
- `cdf.value`: Vector of CDF values to be interpolated.

**Value**

A numeric vector consisting of the interpolated CDF values.

**Author(s)**

Tony Olsen <Olsen.Tony@epa.gov>  
Tom Kincaid <Kincaid.Tom@epa.gov>

---

**IN_streams**  
*Streams in the Upper Wabash Basin in Indiana*

**Description**

A dataset containing attributes for streams in the Upper Wabash Basin in Indiana.

**Usage**

```r
IN_streams
```
Format

A data frame with 100 rows and 11 attributes:

- **siteID**: site ID value.
- **xcoord**: Albers projection x-coordinate.
- **ycoord**: Albers projection y-coordinate.
- **wgt**: survey design weight.
- **Strahler_Cat**: Strahler order category.
- **Status**: site evaluation status code.
- **TNT**: target or nontarget category for the site evaluation status code.
- **IBI_Score**: IBI (index of biotic integrity) score.
- **IBI_Status**: status category of the IBI score.
- **QHEI_Score**: QHEI ((qualitative habitat evaluation index) score).
- **QHEI_Status**: status category of the QHEI score.

---

**irs**

*Select an Independent Random Sample (IRS)*

Description

Select an independent random sample from a point, linear, or areal frame. Frame features must be located in a 1-dimensional or 2-dimensional coordinate system. Sample may be equal probability or unequal probability (either categorical or proportional to an auxiliary variable). May designate panels of sites for surveys over time.

Usage

```r
irs(design, DesignID = "Site", SiteBegin = 1, type.frame = "finite",
 src.frame = "shapefile", in.shape = NULL, sf.object = NULL,
 sp.object = NULL, att.frame = NULL, id = NULL, xcoord = NULL,
 ycoord = NULL, stratum = NULL, mdcaty = NULL, maxtry = NULL,
 shapefile = TRUE, prjfilename = NULL, out.shape = "sample.shp")
```

Arguments

- **design**: Named list of stratum design specifications which are also lists. Stratum names must be subset of values in stratum argument. Each stratum list has four components:
  - **panel**: named vector of sample sizes for each panel in stratum
  - **seltype**: the type of random selection, which must be one of following: "Equal" - equal probability selection, "Unequal" - unequal probability selection by the categories specified in caty.n and mdcaty, or "Continuous" - unequal probability selection proportional to auxiliary variable mdcaty
caty.n if seltype equals "Unequal", a named vector of sample sizes for each category specified by mdcaty, where sum of the sample sizes must equal sum of the panel sample sizes, and names must be a subset of values in mdcaty

over number of replacement sites ("oversample" sites) for the entire design, which is set equal to 0 if none are required)

Example design for a stratified sample:

design=list( Stratum1=list(panel=c(PanelOne=50), seltype="Equal", over=10), Stratum2=list(panel=c(PanelOne=50, PanelTwo=50), seltype="Unequal", caty.n=c(CatyOne=25, CatyTwo=25, CatyThree=25, CatyFour=25), over=75))

Example design for an unstratified sample:

design <- list( None=list(panel=c(Panel1=50, Panel2=100, Panel3=50), seltype="Unequal", caty.n=c("Caty 1"=50, "Caty 2"=25, "Caty 3"=25, "Caty 4"=25, "Caty 5"=75), over=100))

DesignID Name for the design, which is used to create a site ID for each site. The default is "Site".

SiteBegin Number to use for first site in the design. The default is 1.

type.frame The type of frame, which must be one of following: "finite", "linear", or "area". The default is "finite".

src.frame Source of the frame, which equals "sf.object" if the frame is contained in an sf package object, "shapefile" if the frame is to be read from a shapefile, "sp.object" if the frame is obtained from an sp package object, or "att.frame" if type.frame equals "finite" and the frame is included in att.frame. The default is "shapefile".

in.shape Name of a shapefile containing the frame, which is required when src.frame equals "shapefile". The shapefile name should include the ".shp" extension. If the name does not include that extension, it will be added. The default is NULL.

sf.object An sf package object containing the frame, which is required when src.frame equals "sf.object". The default is NULL.

sp.object An sp package object containing the frame, which is required when src.frame equals "sp.object". The default is NULL.

att.frame Data frame composed of attributes associated with elements in the frame. If src.frame equals "att.frame", then att.frame must include columns that contain x-coordinates and y-coordinates for each element in the frame. If src.frame does not equal "att.frame" and att.frame is not equal to NULL, then an sf object is created from att.frame and the geometry column from the object named "sf.object" that is created by the function. The default is NULL.

id This argument is deprecated.

xcoord Character string containing the name of the column from att.frame that identifies x-coordinates, which is required when src.frame equals "att.frame". The default is NULL.

ycoord Character string containing the name of the column from att.frame that identifies y-coordinates, which is required when src.frame equals "att.frame". The default is NULL.
stratum

Character string containing the name of the attribute in sf.object that identifies stratum membership for each feature. If stratum equals NULL, the design is unstratified, and an attribute named "stratum" (with all of its elements equal to the stratum name specified in design) is added to sf.object. The default is NULL.

mdcaty

Character string containing the name of the attribute in sf.object that identifies the unequal probability category for each feature. The default is NULL.

maxtry

This argument is deprecated.

shapefile

Option to create a shapefile containing the survey design information, where TRUE equals create a shapefile and FALSE equals do not create a shapefile. The default is TRUE.

prjfilename

This argument is deprecated.

out.shape

Name of the output shapefile. The default is "sample.shp".

Value

An object of class SpatialDesign containing the survey design information and any additional attribute variables that were provided. Optionally, a shapefile can be created that contains the survey design information.

Other Functions Required

irsarea select an IRS sample of an area resource

irslin select an IRS sample of a linear resource

irspts select an IRS sample of a finite resource

mdmarea calculate multidensity-density multipliers for an area resource

mdmlin calculate multidensity-density multipliers for a linear resource

mdmpts calculate multidensity-density multipliers for a finite resource

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

Examples

```r
Not run:
test_design <- list(
 Stratum1=list(panel=c(PanelOne=50), seltype="Equal", over=10),
 Stratum2=list(panel=c(PanelOne=50, PanelTwo=50), seltype="Unequal",
 caty.n=c(CatyOne=25, CatyTwo=25, CatyThree=25, CatyFour=25), over=75))
test_sfobject <- st_read("test_shapefile.shp")
test_sample <- irs(design=test_design, DesignID="TestSite",
 type.frame="area", src.frame = "sf.object", sf.object=test_sfobject,
 stratum="test_stratum", mdcaty="test_mdcaty")

End(Not run)
```
irsarea  

Select an Independent Random Sample (IRS) of an Area Resource

Description
This function selects an IRS of an area resource.

Usage
irsarea(areaframe, samplesize = 100, SiteBegin = 1)

Arguments
- areaframe: The sf object containing attributes: id, mdcaty, area_mdm, and mdm.
- samplesize: Number of points to select in the sample. The default is 100.
- SiteBegin: First number to start siteID numbering. The default is 1.

Value
An sf object of sample points containing attributes: siteID, id, mdcaty, and wgt.

Author(s)
Tom Kincaid <Kincaid.Tom@epa.gov>

irslin  

Select an Independent Random Sample (IRS) of a Linear Resource

Description
This function selects an IRS of a linear resource.

Usage
irslin(linframe, samplesize = 100, SiteBegin = 1)

Arguments
- linframe: The sf object containing attributes: id, mdcaty, length_mdm, and mdm.
- samplesize: Number of points to select in the sample. The default is 100.
- SiteBegin: First number to start siteID numbering. The default is 1.

Value
An sf object of sample points containing attributes: siteID, id, mdcaty, and wgt.
**irspts**  
*Select an Independent Random Sample (IRS) of a Finite Resource*

**Description**

This function selects an IRS of a finite resource (discrete points).

**Usage**

irspts(ptsframe, samplesize = 100, SiteBegin = 1)

**Arguments**

- **ptsframe**: The sf object containing attributes: id, mdcaty, and mdm.
- **samplesize**: Number of points to select in the sample. The default is 100.
- **SiteBegin**: First number to start siteID numbering. The default is 1.

**Value**

An sf object of sample points containing attributes: siteID, id, mdcaty, and wgt.

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>

---

**isotonic**  
*Internal Function: Isotonic Regression*

**Description**

This function performs isotonic regression of an input set of values so that the output set of values is a nondecreasing sequence. The output set of values is truncated to the range: [minval, maxval].

**Usage**

isotonic(y, minval, maxval)

**Arguments**

- **y**: Vector of the set of values on which to perform isotonic regression.
- **minval**: Minimum value for the output set of values.
- **maxval**: Maximum value for the output set of values.
Value
The revised set of input values
Other Functions Required: sorted - determine whether a set of values is a nondecreasing sequence

Other Functions Required

sorted determines whether a set of values is a nondecreasing sequence

Author(s)
Tom Kincaid <Kincaid.Tom@epa.gov>

---

**localmean.cov**  
*Internal Function: Variance-Covariance Matrix Based on Local Mean Estimator*

Description
This function calculates the variance-covariance matrix using the local mean estimator.

Usage

localmean.cov(zmat, weight.lst)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>zmat</td>
<td>Matrix of weighted response values or weighted residual values for the sample points.</td>
</tr>
<tr>
<td>weight.lst</td>
<td>List from the local mean weight function containing two elements: a matrix named ij composed of the index values of neighboring points and a vector named gwt composed of weights.</td>
</tr>
</tbody>
</table>

Value
The local mean estimator of the variance-covariance matrix.

Author(s)
Tom Kincaid <Kincaid.Tom@epa.gov>
Description

This function calculates the degrees of freedom of the local mean variance-covariance estimator.

Usage

localmean.df(weight.lst)

Arguments

weight.lst List from the local mean weight function containing two elements: a matrix named ij composed of the index values of neighboring points and a vector named gwt composed of weights.

Value

The degrees of freedom of the local mean variance-covariance estimator.

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

Description

This function calculates the local mean variance estimator.

Usage

localmean.var(z, weight.lst)

Arguments

z Vector of weighted response values or weighted residual values for the sample points.

weight.lst List from the local mean weight function containing two elements: a matrix named ij composed of the index values of neighboring points and a vector named gwt composed of weights.
Value

The local mean estimator of the variance.

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

---

**localmean.weight**  
*Internal Function: Local Mean Variance Neighbors and Weights*

---

**Description**

This function calculates the index values of neighboring points and associated weights required by the local mean variance estimator.

**Usage**

```r
localmean.weight(x, y, prb, nbh = 4, vincr = 1e-05 * abs(mean(y)))
```

**Arguments**

- `x`: Vector of x-coordinates for location of the sample points.
- `y`: Vector of y-coordinates for location of the sample points.
- `prb`: Vector of inclusion probabilities for the sample points.
- `nbh`: Number of neighboring points to use in the calculations.
- `vincr`: The variance increment for correcting an La.svd error. The default is 0.00001*abs(mean(y)).

**Value**

List containing two elements: a matrix named `ij` composed of the index values of neighboring points and a vector named `gwt` composed of weights.

**Author(s)**

Don Stevens <Kincaid.Tom@epa.gov>

**See Also**

`localmean.weight2`
localmean.weight2

Internal Function: Recovery from a Singular Value Decomposition Error

Description

This function calculates the initial section of the localmean.weight function and serves to allow recovery from an error in the singular value decomposition function (L.a.svd) that is called by the generalized inverse function (ginv) in the MASS package.

Usage

localmean.weight2(x, y, prb, nbh)

Arguments

- **x**: Vector of x-coordinates for location of the sample points.
- **y**: Vector of y-coordinates for location of the sample points.
- **prb**: Vector of inclusion probabilities for the sample points.
- **nbh**: Number of neighboring points to use in the calculations.

Value

Either an object of class "try-error" when the ginv function terminates with an error or a generalized inverse matrix when the ginv function terminates normally.

Author(s)

Don Stevens Tom Kincaid <Kincaid.Tom@epa.gov>

Luck_Ash_streams Streams in the Luckiamute Watershed in Oregon

Description

A dataset containing attributes for streams in the Luckiamute Watershed in Oregon.

Usage

Luck_Ash_streams
Format

An object of class sf (simple features) containing 429 features and 3 attributes:

- **Per_Int** stream type for the line segment.
- **Level3_Nam** Strahler order category for the line segment.
- **Length_km** length of the line segment in kilometers.

---

**make_grid** \hspace{1cm} *Create the Grid for a GRTS Survey Design*

---

Description

Creates the grid for a GRTS survey design.

Usage

```
make_grid(xc, yc, dx, dy, sfobject)
```

Arguments

- **xc** x-coordinates that define the cells.
- **yc** y-coordinates that define the cells.
- **dx** The x-axis grid cell dimension.
- **dy** The y-axis grid cell dimension.
- **sfobject** the sf object containing the survey frame.

Value

An sf object containing the grid.

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>
**marinus**  
*Marinus Cylindrical Map Projection*

**Description**
This function converts x,y coordinates measured in units of latitude and longitude, i.e., geographic coordinates measured in decimal degrees, to coordinates in the equidistant, cylindric map projection measured in units of kilometers. The projection center is defined as the midpoint in latitude-longitude space. The map projection is here named after Marinus of Tyre (see J.P. Snyder. USGS Prof Paper 1395, p. 90).

**Usage**

```r
marinus(lat, lon)
```

**Arguments**

- `lat`: Vector of latitudes.
- `lon`: Vector of longitudes.

**Value**

Matrix with column names "x" and "y" containing the x and y coordinates in the equidistant, cylindric map projection measured in units of kilometers.

**Author(s)**
Denis White

**Examples**

```r
lat <- 45 + runif(100, -5, 5)
lon <- 120 + runif(100, -10, 10)
marinus(lat, lon)
```

---

**mdmarea**  
*Internal Function: GRTS Multipliers for Multi-Density Categories for Areas*

**Description**
GRTS Multipliers for Multi-density Categories for areas

**Usage**

```r
mdmarea(area, mdcaty, n.desired)
```
**Arguments**

- `area` Vector of polygon areas for each polygon in the sample frame.
- `mdcaty` Vector of multi-density category names for each polygon in the sample frame.
- `n.desired` Expected sample size for each category. Row names must match category names in `mdcaty`.

**Value**

Numeric vector of multipliers that is same length as `area` and `mdcaty`.

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>

---

**Description**

Internal Function: GRTS Multipliers for Multi-Density Categories for Linear Network

**Usage**

```r
dmlin(len, mdcaty, n.desired)
```

**Arguments**

- `len` Vector of segment lengths for each segment in sample frame.
- `mdcaty` Vector of multi-density category groups for each segment in sample frame.
- `n.desired` Expected sample size for each category. Row names must match category names in `mdcaty`.

**Value**

Numeric vector of multipliers that is same length as `len` and `mdcaty`.

**Author(s)**

Tony Olsen <Olsen.Tony@epa.gov>
**mdmpts**

*Internal Function: GRTS Multipliers for Multi-Density Categories for Points*

**Description**

Internal Function: GRTS Multipliers for Multi-Density Categories for Points

**Usage**

`mdmpts(mdcaty, n.desired)`

**Arguments**

- `mdcaty`: Vector of multi-density category groups for each element in sample frame.
- `n.desired`: Expected sample size for each category. Row names must match category names in `mdcaty`.

**Value**

Numeric vector of multipliers that is same length as `mdcaty`.

**Author(s)**

Tony Olsen <Olsen.Tony@epa.gov>

---

**NE_lakes**

*Lakes in the Southern New England Region of the U.S.*

**Description**

A dataset containing attributes for Lakes in the Southern New England Region of the U.S.

A simple features (sf) point data.frame of 6121 lakes that was created from a shapefile of lakes in the southern New England region of the U.S. containing the area category in hectares and coordinates.

The variables are as follows:

**Usage**

`NE_lakes`

`NE_lakes`
Format

An object of class sf (simple features) containing 6,121 features and 4 attributes:

- **xcoord** Albers projection x-coordinate of the lake centroid.
- **ycoord** Albers projection y-coordinate of the lake centroid.
- **State** state code for the lake.
- **Area_Cat** lake surface area category in hectares.

### Western Mountains Ecoregion Lakes

Description

A dataset containing attributes for Western Mountains Ecoregion lakes sampled by the U.S. Environmental Protection Agency (EPA) during the National Lakes Assessment (NLA) survey for 2007.

Usage

**NLA_2007**

Format

A data frame with 236 rows and 15 attributes:

- **siteID** site ID value.
- **xcoord** Albers projection x-coordinate.
- **ycoord** Albers projection y-coordinate.
- **wgt** survey design weight.
- **Lake_Origin** lake origin category.
- **Chla** chlorophyll-a concentration.
- **OE5** value of the index of macroinvertebrate taxa loss.
- **PTL** total phosphorus concentration.
- **NTL** total nitrogen concentration.
- **Turbidity** turbidity value.
- **Chla_cond** condition class category ("Good", "Fair", or "Poor") of the chlorophyll-a value.
- **OE5_cond** condition class category of the macroinvertebrate taxa loss index.
- **PTL_cond** condition class category of the total phosphorus value.
- **NTL_cond** condition class category of the total nitrogen value.
- **Turbidity_cond** condition class category of the turbidity value.
Description

A dataset containing attributes for Western Mountains Ecoregion rivers and streams sampled by the U.S. Environmental Protection Agency (EPA) during the National Rivers and Streams Assessment (NRSA) surveys for 2004-2006 and 2008-2009.

Usage

NRSA_2009

Format

A data frame with 668 rows and 13 attributes:

- **siteID**: site ID value.
- **xcoord**: Albers projection x-coordinate.
- **ycoord**: Albers projection y-coordinate.
- **wgt**: survey design weight.
- **Survey**: survey identifier, which is either WSA or NRSA.
- **Revisit_Site**: identifier of revisit sites for the two surveys, where Y = a revisit site and N = not a revisit site.
- **Stream_Size**: stream size category, which is either large or small.
- **NTL**: total nitrogen concentration.
- **PTL**: total phosphorus concentration.
- **Benthic_MMI**: value of the benthic macroinvertebrate multimetric index (MMI).
- **NTL_Cond**: condition class category of the total nitrogen value.
- **PTL_Cond**: condition class category of the total phosphorus value.
- **Benthic_MMI_Cond**: condition class category of the benthic MMI value.

Description

This function determine the number of levels of hierarchical randomization for a GRTS survey design.
Usage

`numLevels(samplesize, shift.grid, startlev, maxlev, sfobject)`

Arguments

- `samplesize`: The desired sample size.
- `shift.grid`: Logical value indicating whether the GRTS grid should be randomly shifted.
- `startlev`: The initial number of levels for the GRTS grid.
- `maxlev`: The maximum number of levels for the GRTS grid.
- `sfobject`: The sf object containing the survey frame.

Value

A list containing the number of levels, x-coordinates, y-coordinates, x-axis grid cell dimension, y-axis grid cell dimension, cell total weights, and sampling interval.

Other Functions Required

- `cellWeight` calculates total inclusion probability for each cell in a grid

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

---

**panel_summary**

*Summary Characteristics of a Revisit Panel Design*

Description

Revisit panel design characteristics are summarized: number of panels, number of time periods, total number of sample events for the revisit design, total number of sample events for each panel, total number of sample events for each time period and cumulative number of unique units sampled by time periods.

Usage

`panel_summary(paneldsgn, visitdsgn = NULL)`

Arguments

- `paneldsgn`: Two-dimensional array with dimnames specifying revisit panel design. Typically, array is output from revisit_dsgn, revisit_bibd or revisit_rand functions.
- `visitdsgn`: Two-dimensional array with same dimensions as paneldsgn specifying the number of times a sample unit is sampled at each time period. Default is visitdsgn=NULL, where default assumes that a sample unit will be sampled only once at each time period.
Details

The revisit panel design and the visit design (if present) are summarized. Summaries can be useful to know the effort required to complete the survey design. See the values returned for the summaries that are produced.

Value

List of six elements.

- n.panel - number of panels in revisit design
- n.period - number of time periods in revisit design
- n.total - total number of sample events across all panels and all time periods, accounting for visitdsgn, that will be sampled in the revisit design
- n.periodunit - Vector of the number of time periods a unit will be sampled in each panel
- n.unitpnl - Vector of the number of sample units, accounting for visitdsgn, that will be sampled in each panel
- n.unitperiod - Vector of the number of sample units, accounting for visitdsgn, that will be sampled during each time period
- ncum.unit - Vector of the cumulative number of unique units that will be sampled in time periods up to and including the current time period.

Author(s)

Tony Olsen <Olsen.Tony@epa.gov>

See Also

- revisit_dsgn create a panel revisit design
- revisit_bibd create a balanced incomplete block panel revisit design
- revisit_rand create a revisit design with random assignment to panels and time periods
- power.dsgn power calculation for multiple panel designs
- cov.panel.dsgn covariance matrix for a panel design
- plot_powerpaneldesign plot power curves for panel designs

Examples

# Serially alternating panel revisit design summary
sa.dsgn <- revisit_dsgn(20, panels=list(SA60N=list(n=60, pnl_dsgn = c(1, 4),
                                            pnl_n=NA, start_option="None")), begin=1)
panel_summary(sa.dsgn)

# Add visit design where first panel is sampled twice at every time period
sa.visit <- sa.dsgn
sa.visit [sa.visit > 0] <- 1
sa.visit [1, sa.visit[1,] > 0] <- 2
panel_summary(sa.dsgn, sa.visit)
pickFiniteSamplePoints

*Select Sample Points from a Simple Features Point Object*

**Description**
This function selects sample points from an sf object of geometry type point.

**Usage**
pickFiniteSamplePoints(rdx, xc, yc, dx, dy, sfobject)

**Arguments**
- **rdx**: Vector of cell IDs.
- **xc**: Vector of x-coordinates for the grid cells.
- **yc**: Vector of y-coordinates for the grid cells.
- **dx**: The x-axis grid cell dimension.
- **dy**: The y-axis grid cell dimension.
- **sfobject**: The sf point object.

**Value**
Vector containing feature IDs of the selected sample points.

**Author(s)**
Tom Kincaid <Kincaid.Tom@epa.gov>

pickGridCells

*Identify Grid Cells from which Sample Points Will Be Selected*

**Description**
This function identifies grid cells from which sample points will be selected.

**Usage**
pickGridCells(samplesize, idx)

**Arguments**
- **samplesize**: The desired sample size.
- **idx**: Vector of values for identifying cell IDs.
**pickSamplePoints**

**Value**

Vector of grid cells IDs.

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>

---

**Description**

This function selects sample points from an sf object of geometry type polygon or linestring.

**Usage**

```
pickSamplePoints(sfobject, featureID, xc, yc, dx, dy)
```

**Arguments**

- `sfobject` The sf polygon object.
- `featureID` Vector identifying features in sfobject from which a sample point will be selected.
- `xc` Vector of x-coordinates for the grid cells.
- `yc` Vector of y-coordinates for the grid cells.
- `dx` The x-axis grid cell dimension.
- `dy` The y-axis grid cell dimension.

**Value**

Data frame containing x-coordinates and y-coordinates for sample points.

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>
Description

Plot power curves and relative power curves for trend detection for set of panel designs, time periods, indicators, significance levels and trend. Trend may be based on percent change per period in mean or percent change in proportion of cumulative distribution function above or below a fixed cut point. Types of plots are combinations of standard/relative, mean/percent, period/change and design/indicator. Input must be be of class powerpaneldesign and is normally the output of function power.dsgn.

Usage

plot_powerpaneldesign(dsgnpower, plot.type = "standard", trend.type = "mean", xaxis.type = "period", comp.type = "design", dsgns = NULL, indicator = NULL, trend = NULL, period = NULL, alpha = NULL)

Arguments

dsgnpower List object of class powerpaneldesign. Object provides power calculated for a set of panel designs, set of indicators, set of trend values, and set of alpha values. Expect input as list as output from function power.dsgn.
plot.type Default is "standard" which plots standard power curve. If equal to "relative", then plot power of one panel design compared to one or more other panel designs.
trend.type Character value for trend in mean ("mean") or or percent change in proportion ("percent") of cumulative distribution function above or below a fixed cut point. Default is "mean".
xaxis.type Character value equal to "period" or "change" which designates the type of x-axis for power plot where power is plotted on y-axis. For xaxis.type = "period", x-axis is periods in dsgnpower. If xaxis.type = "change", then x-axis is percent per period with secondary x-axes for total percent per period and associated change in mean. Default is "period". Note that xaxis.type controls how the input for "period" and "trend" parameterers is used.
comp.type Character value equal to "design" or "Indicator" which designates the type of power curve comparison that will occur on a single plot. If comp.type = "design", then on a single plot of power curves all panel designs specified in "dsgns" are plotted for a single indicator, single trend value and single alpha. If comp.type = "indicator", then on a single plot of power curves all indicators specified in "indicator" are plotted for a single panel design, single trend value and single alpha. Default is "design".
dsgns Vector of names of panel designs that are to be plotted. Names must be all, or a subset of, names of designs in dsgnpower. Default is NULL which results in only the first panel design in dsgnpower being used.
indicators Vector of indicator names contained in dsgnpower that are to be plotted. Indicator names must be all, or a subset of, indicator names in dsgnpower. Default is NULL which results in only the first indicator in dsgnpower being used.

trend NULL, a single value or vector of values contained in dsgnpower that will be plotted. Values must be all, or a subset of, trend values in dsgnpower. If xaxis.type is equal to "period", then NULL results in maximum trend value being used and a single value or vector of values results in a separate plot for each value specified. If xaxis.type is equal to "change", then NULL results in all trend values in dsgnpower being plotted on x-axis and a vector of values results in all trend values in dsgnpower from minimum value to maximum value specified being plotted on x-axis.

period NULL, a single value or vector of values contained in dsgnpower that will be plotted. Values must be all, or a subset of, period values in dsgnpower. If xaxis.type is equal to "period", then NULL results in all time periods in dsgnpower being plotted on x-axis and a vector of values results in all period values in dsgnpower from minimum value to maximum value specified being plotted on x-axis. If xaxis.type is equal to "change", then NULL results in all time periods in dsgnpower being plotted in separate plots and a vector of values results in time periods specified being plotted in separate plots.

alpha A single value or vector of significance levels (as proportion, e.g. 0.05) contained in dsgnpower to used for power plots. Specifying more than a single value results in multiple plots. Default is NULL which results in the minimum significance level in dsgnpower being used.

Details

By default the plot function produces a standard power curve at end of each time period on the x-axis with y-axis as power. When more than one panel design is in dsgnpower, the first panel design is used. When more than one indicators in dsgnpower, the first indicator is used. When more than one trend value is in dsgnpower, the maximum trend value is used. When more than one significance level, alpha, is in dsgnpower, the minimum significance level is used.

Control of the type of plot produced is governed by plot.type, trend.type, xaxis.type and comp.type. The number of plots produced is governed by the number of panel designs (dsgn) specified, the number of indicators (indicator) specified, the number of time periods (period) specified, the number of trend values (trend) specified and the number of significance levels (alpha) specified.

When the comparison type ("comp.type") is equal to "design", all power curves specified by dsgn are plotted on the same plot. When comp.type is equal to "indicator", all power curves specified by "indicator" are plotted on the same plot. Typically, no more than 4-5 power curves should be plotted on same plot.

Value

One or more power curve plots are created and plotted. User must specify output graphical device if more than one plot is created. See Devices for graphical output options.

Author(s)

Tony Olsen <Olsen.Tony@epa.gov>
See Also

- **revisit_dsgn** create a panel revisit design
- **revisit_bibd** create a balanced incomplete block panel revisit design
- **revisit_rand** create a revisit design with random assignment to panels and time periods
- **panel_summary** summarize characteristics of a revisit panel design
- **power.dsgn** power calculation for multiple panel designs
- **cov.panel.dsgn** covariance matrix for a panel design

Examples

```r
Construct a rotating panel design with sample size of 60
R60N <- revisit_dsgn (20, panels=list(R60N=list(n=60, pnl_dsgn = c(1, NA),
 pnl_n=NA, start_option="None")), begin=1)

Construct a fixed panel design with sample size of 60
F60 <- revisit_dsgn (20, panels=list(F60=list(n=60, pnl_dsgn = c(1, 0),
 pnl_n=NA, start_option="None")), begin=1)

Power for rotating panel with sample size 60
Power.tst <- power.dsgn("Variable_Name", ind.values = 43, unit.var = 280,
 period.var = 4, unitperiod.var = 40, index.var = 90,
 unit.rho = 1, period.rho = 0, panel_dsgn = list(R60N=R60N, F60=F60), nrepeats = NULL,
 trend.type = "mean", trend = c(1.0, 2.0), alpha=0.05)

plot_powerpaneldesign(Power.tst)
plot_powerpaneldesign(Power.tst, dsgns = c("F60", "R60N"))
plot_powerpaneldesign(Power.tst, dsgns = c("F60", "R60N"), trend = 1.0)
Not run:
pdf("Power.tst.pdf")
plot_powerpaneldesign(Power.tst, plot.type = "relative", comp.type = "design",
 trend.type = "mean", trend = c(1, 2), dsgns = c("R60N", "F60"),
 indicator="Variable_Name")
graphics.off()
End(Not run)
```

---

**power.dsgn**  
*Power Calculation for Multiple Panel Designs*

**Description**

Calculates the power for trend detection for one or more variables, for one or more panel designs, for one or more linear trends, and for one or more significance levels. The panel designs create a covariance model where the model includes variance components for units, periods, the interaction of units and periods, and the residual (or index) variance.
power.dsgn

Usage

power.dsgn(ind.names, ind.values, unit.var, period.var, unitperiod.var,
index.var, unit.rho = 1, period.rho = 0, paneldsgn,
nrepeats = NULL, trend.type = "mean", ind.pct = NULL,
ind.tail = NULL, trend = 2, alpha = 0.05)

Arguments

ind.names Vector of indicator names
ind.values Vector of indicator mean values
unit.var Vector of variance component estimates for unit variability for the indicators
period.var Vector of variance component estimates for period variability for the indicators
unitperiod.var Vector of variance component estimates for unit by period interaction variability for the indicators
index.var Vector of variance component estimates for index (residual) error for the indicators
unit.rho Correlation across units. Default is 1
period.rho Correlation across periods. Default is 0
paneldsgn A list of panel designs each as a matrix. Each element of the list is a matrix with dimnames (dimensions: number of panels (rows) by number of periods (columns)) containing the number of units visited for each combination of panel and period. Dimnames for columns must be convertible to an integer (e.g., 2016). All designs must span the same number of periods. Typically, the panel designs are the output of the function revisit_dsgn.
nrepeats Either NULL or a list of matrices the same length as paneldsgn specifying the number of revisits made to units in a panel in the same period for each design. Specifying NULL indicates that number of revisits to units is the same for all panels and for all periods and for all panel designs. The default is NULL, a single visit. Names must match list names in paneldsgn.
trend.type Trend type is either "mean" where trend is applied as percent trend in the indicator mean or "percent" where the trend is applied as percent trend in the proportion (percent) of the distribution that is below or above a fixed value. Default is trend.type="mean"
ind.pct When trend.type is equal to "percent", a vector of the values of the indicator fixed value that defines the percent. Default is NULL
ind.tail When trend.type is equal to "percent", a character vector with values of either "lower" or "upper" for each indicator. "lower" states that the percent is associated with the lower tail of the distribution and "upper" states that the percent is associated with the upper tail of the distribution. Default is NULL.
trend Single value or vector of assumed percent change from initial value in the indicator for each period. Assumes the trend is expressed as percent per period. Note that the trend may be either positive or negative. The default is trend=2.
alpha Single value or vector of significance level for linear trend test, alpha, Type I error, level. The default is 0.05.
Details

Calculates the power for detecting a change in the mean for different panel design structures. The model incorporates unit, period, unit by period, and index variance components as well as correlation across units and across periods. See references for methods.

Value

A list with components trend.type, ind.pct, ind.tail, trend values across periods, periods (all periods included in one or more panel designs), significance levels, a five-dimensional array of power calculations (dimensions: panel design names, periods, indicator names, trend names, alpha.names), an array of indicator mean values for each trend and the function call.

Author(s)

Tony Olsen <Olsen.Tony@epa.gov>

References


See Also

revisit_dsgn create a panel revisit design
revisit_bibd create a balanced incomplete block panel revisit design
revisit_rand create a revisit design with random assignment to panels and time periods
panel_summary summarize characteristics of a revisit panel design
cov.panel.dsgn covariance matrix for a panel design
plot_powerpanel.dsgn plot power curves for panel designs

Examples

# Power for rotating panel with sample size 60
power.dsgn("Variable_Name", ind.values = 43, unit.var = 280, period.var = 4,
unitperiod.var = 40, index.var = 90, unit.rho = 1, period.rho = 0,
panel.dsgn = list(NoR60=revisit_dsgn(20,
panels=list(NoR60=list(n=60, pnl.dsgn = c(1, NA),

```r

```
ranho

Construct Randomized Hierarchical Addresses for a Generalized Random-Tesselation Stratified (GRTS) Survey Design

Description

This function constructs randomized hierarchical addresses for a GRTS survey design.

Usage

ranho(hadr)

Arguments

hadr

Vector hierarchical addresses.

Value

Vector of randomized hierarchical addresses.

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

read.dbf

Read the dbf File of an ESRI Shapefile

Description

This function reads the dbf file of an ESRI shapefile and creates a data frame.

Usage

read.dbf(filename)

Arguments

filename

Character string containing the name of the shapefile.

Value

Data frame containing contents of the dbf file.
**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>
Marc Weber <Weber.Marc@epa.gov>

---

**read.sas**

*Read a SAS dataset or a SAS XPORT File*

**Description**

This function reads either a SAS dataset or a SAS XPORT (transport) file and creates a data frame.

**Usage**

```r
read.sas(filename, libname = NULL, xport = FALSE,
 sascmd = "C:/Program Files/SASHome/SASFoundation/9.4/sas.exe")
```

**Arguments**

- `filename` If `xport` equals TRUE, a character string giving the full path to the SAS XPORT file, which must include the file extension. If `xport` equals FALSE, either a character string giving the the name of a dataset in the SAS library or a vector of character strings giving the names of datasets in the SAS library, where the dataset names cannot exceed eight characters in length and do not include the file extension.

- `libname` Character string defining the SAS library, which is usually a directory reference. If `xport` equals FALSE and the dataset(s) named in argument `filename` do not reside in the working directory, then this argument is required. The default value is NULL.

- `xport` Logical value indicating whether the input file is a SAS XPORT file. The default value is FALSE.

- `sascmd` Character string giving the full path to SAS executable. This argument is required only when `xport` equals FALSE. The default value is "C:/Program Files/SAS/SAS 9.1/sas.exe".

**Value**

Either a single data frame or a list of data frames.

**Other Functions Required**

- `read.ssd` function in the foreign package that reads a SAS dataset and creates a data frame
- `read.xport` function in the foreign package that reads a SAS XPORT file and creates a data frame

---

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>
**read.shape**

*Read an ESRI Shapefile*

**Description**

This function reads an ESRI shapefile and creates a simple features (sf) object.

**Usage**

```r
read.shape(filename)
```

**Arguments**

- `filename` Character string containing the name of the shapefile. The shapefile name should include the "\.shp" extension. If the name does not include that extension, it will be added.

**Value**

An object belonging to class sf.

**Author(s)**

- Tom Kincaid <Kincaid.Tom@epa.gov>
- Marc Weber <Weber.Marc@epa.gov>

**relrisk.analysis**

*Relative Risk Analysis for Probability Survey Data*

**Description**

This function organizes input and output for relative risk analysis of categorical data generated by a probability survey.
Usage

relrisk.analysis(sites = NULL, subpop = NULL, design, data.rr, response.var, stressor.var, response.levels = rep(list(c("Poor", "Good")), length(response.var)), stressor.levels = rep(list(c("Poor", "Good")), length(stressor.var)), popcorrect = FALSE, pcfsize = NULL, N.cluster = NULL, stagelsize = NULL, sizeweight = FALSE, vartype = "Local", conf = 95)

Arguments

sites Data frame consisting of two variables: the first variable is site IDs, and the second variable is a logical vector indicating which sites to use in the analysis. The default is NULL.

subpop Data frame describing sets of populations and subpopulations for which estimates will be calculated. The first variable is site IDs. Each subsequent variable identifies a Type of population, where the variable name is used to identify Type. A Type variable identifies each site with one of the subpopulations of that Type. The default is NULL.

design Data frame consisting of design variables. If spsurvey.obj is not provided, then this argument is required. The default is NULL. Variables should be named as follows:

- siteID Vector of site IDs
- wgt Vector of weights, which are either the weights for a single-stage sample or the stage two weights for a two-stage sample
- xcoord Vector of x-coordinates for location, which are either the x-coordinates for a single-stage sample or the stage two x-coordinates for a two-stage sample
- ycoord Vector of y-coordinates for location, which are either the y-coordinates for a single-stage sample or the stage two y-coordinates for a two-stage sample
- stratum Vector of the stratum codes for each site
- cluster Vector of the stage one sampling unit (primary sampling unit or cluster) codes for each site
- wgt1 Vector of stage one weights in a two-stage design
- xcoord1 Vector of the stage one x-coordinates for location in a two-stage design
- ycoord1 Vector of the stage one y-coordinates for location in a two-stage design
- support Vector of support values - for a finite resource, the value one (1) for a site. For an extensive resource, the measure of the sampling unit associated with a site. Required for calculation of finite and continuous population correction factors.
- swgt Vector of size-weights, which is the stage two size-weight for a two-stage design.
- swgt1 Vector of stage one size-weights for a two-stage design.

Data frame of categorical response and stressor variables, where each variable consists of two categories. If response or stressor variables include more than
two categories, occurrences of those categories must be removed or replaced with missing values. The first column of this argument is site IDs. Subsequent columns are response and stressor variables. Missing data (NA) is allowed.

**response.var**  
Character vector providing names of columns in argument `data.rr` that contain a response variable, where names may be repeated. Each name in this argument is matched with the corresponding value in the `stressor.var` argument.

**stressor.var**  
Character vector providing names of columns in argument `data.rr` that contain a stressor variable, where names may be repeated. Each name in this argument is matched with the corresponding value in the `response.var` argument. This argument must be the same length as argument `response.var`.

**response.levels**  
List providing the category values (levels) for each element in the `response.var` argument. This argument must be the same length as argument `response.var`. The first level for each element in the list is used for calculating the numerator and the denominator of the relative risk estimate. The default is a list containing the values "Poor" and "Good" for the first and second levels, respectively, of each element in the `response.var` argument.

**stressor.levels**  
List providing the category values (levels) for each element in the `stressor.var` argument. This argument must be the same length as argument `response.var`. The first level for each element in the list is used for calculating the numerator of the relative risk estimate, and the second level for each element in the list is used for calculating the denominator of the estimate. The default is a list containing the values "Poor" and "Good" for the first and second levels, respectively, of each element in the `stressor.var` argument.

**popcorrect**  
Logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for argument `pcfsize` and for the support variable of the design argument. To employ the correction factor for a two-stage sample, values must be supplied for arguments `N.cluster` and `stage1size`, and for the support variable of the design argument.

**pcfsize**  
Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

**N.cluster**  
The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

**stage1size**  
Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify
both stratum codes and stage one sampling unit codes using a convention where
the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1". The
default is NULL.

sizeweight Logical value that indicates whether size-weights should be used in the analysis,
where TRUE = use the size-weights and FALSE = do not use the size-weights.
The default is FALSE.

vartype The choice of variance estimator, where "Local" = local mean estimator and
"SRS" = SRS estimator. The default is "Local".

conf Numeric value for the confidence level. The default is 95.

Value
Data frame of relative risk estimates for all combinations of population Types, subpopulations
within Types, and response variables. Standard error and confidence interval estimates also are
provided.

Other Functions Required

dframe.check check site IDs, the sites data frame, the subpop data frame, and the data.rr data
frame to assure valid contents and, as necessary, create the sites data frame and the subpop
data frame
vecprint takes an input vector and outputs a character string with line breaks inserted
uniqueID creates unique site IDs by appending a unique number to each occurrence of a site ID
input.check check input values for errors, consistency, and compatibility with analytical func-
tions
relrisk.est compute the relative risk estimate

Author(s)
Tom Kincaid <Kincaid.Tom@epa.Gov>

Examples

mysiteID <- paste("Site", 1:100, sep="")
mysites <- data.frame(
    siteID=mysiteID,
    Active=rep(TRUE, 100))
mysubpop <- data.frame(
    siteID=mysiteID,
    All.Sites=rep("All Sites", 100),
    Resource.Class=rep(c("Agr", "Forest"), c(55,45)))
mydesign <- data.frame(
    siteID=mysiteID,
    wgt=runif(100, 10, 100),
    xcoord=runif(100),
    ycoord=runif(100),
    stratum=rep(c("Stratum1", "Stratum2"), 50))
mydata.rr <- data.frame("
relrisk.est

**Description**

This function calculates the relative risk estimate for a 2x2 table of cell counts defined by a categorical response variable and a categorical explanatory (stressor) variable for an unequal probability design. Relative risk is the ratio of two probabilities: the numerator is the probability that the first level of the response variable is observed given occurrence of the first level of the stressor variable, and the denominator is the probability that the first level of the response variable is observed given occurrence of the second level of the stressor variable. The numerator probability and denominator probability are estimated using cell and marginal totals from a 2x2 table of cell counts defined by a categorical response variable and a categorical stressor variable. An estimate of the numerator probability is provided by the ratio of the cell total defined by the first level of response variable and the first level of the stressor variable to the marginal total for the first level of the stressor variable. An estimate of the denominator probability is provided by the ratio of the cell total defined by the second level of the stressor variable to the marginal total for the second level of the stressor variable. Cell and marginal totals are estimated using the Horvitz-Thompson estimator. The standard error of the log of the relative risk estimate and confidence limits for the estimate also are calculated. The standard error is calculated using a first-order Taylor series linearization (Sarndal et al., 1992).

**Usage**

relrisk.est(response, stressor, response.levels = c("Poor", "Good"), stressor.levels = c("Poor", "Good"), wgt, xcoord = NULL, ycoord = NULL, stratum = NULL, cluster = NULL, wgt1 = NULL, xcoord1 = NULL, ycoord1 = NULL, popcorrect = FALSE, pcfsize = NULL, N.cluster = NULL, stage1size = NULL, support = NULL, sizeweight = FALSE, swgt = NULL, swgt1 = NULL, vartype = "Local", conf = 95, check.ind = TRUE, warn.ind = NULL, warn.df = NULL, warn.vec = NULL)

**Arguments**

- `response` Vector of the categorical response variable values.
- `stressor` Vector of the categorical explanatory (stressor) variable values.
response.levels
Vector of category values (levels) for the categorical response variable, where
the first level is used for calculating the numerator and the denominator of the
relative risk estimate. If response.levels is not supplied, then values "Poor" and
"Good" are used for the first level and second level of the response variable,
respectively. The default is c("Poor", "Good").

stressor.levels
Vector of category values (levels) for the categorical stressor variable, where
the first level is used for calculating the numerator of the relative risk estimate
and the second level is used for calculating the denominator of the estimate. If
stressor.levels is not supplied, then values "Poor" and "Good" are used for the
first level and second level of the stressor variable, respectively. The default is
(c("Poor", "Good").

wgt
Vector of the final adjusted weight (inverse of the sample inclusion probability)
for each site, which is either the weight for a single-stage sample or the stage
two weight for a two-stage sample.

xcoord
Vector of x-coordinate for location for each site, which is either the x-coordinate
for a single-stage sample or the stage two x-coordinate for a two-stage sample.
The default is NULL.

ycoord
Vector of y-coordinate for location for each site, which is either the y-coordinate
for a single-stage sample or the stage two y-coordinate for a two-stage sample.
The default is NULL.

stratum
Vector of the stratum for each site. The default is NULL.

cluster
Vector of the stage one sampling unit (primary sampling unit or cluster) code
for each site. The default is NULL.

wgt1
Vector of the final adjusted stage one weight for each site. The default is NULL.

xcoord1
Vector of the stage one x-coordinate for location for each site. The default is
NULL.

ycoord1
Vector of the stage one y-coordinate for location for each site. The default is
NULL.

popcorrect
Logical value that indicates whether finite or continuous population correction
factors should be employed during variance estimation, where TRUE = use the
correction factor and FALSE = do not use the correction factor. The default
is FALSE. To employ the correction factor for a single-stage sample, values
must be supplied for arguments pcfsize and support. To employ the correction
factor for a two-stage sample, values must be supplied for arguments N.cluster,
stage1size, and support.

pcfsize
Size of the resource, which is required for calculation of finite and continuous
population correction factors for a single-stage sample. For a stratified sample
this argument must be a vector containing a value for each stratum and must
have the names attribute set to identify the stratum codes. The default is NULL.

N.cluster
The number of stage one sampling units in the resource, which is required for
calculation of finite and continuous population correction factors for a two-stage
sample. For a stratified sample this argument must be a vector containing a value
for each stratum and must have the names attribute set to identify the stratum
codes. The default is NULL.
stage1size  Size of the stage one sampling units of a two-stage sample, which is required for
calculation of finite and continuous population correction factors for a two-stage
sample and must have the names attribute set to identify the stage one sampling
unit codes. For a stratified sample, the names attribute must be set to identify
both stratum codes and stage one sampling unit codes using a convention where
the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1". The
default is NULL.
support  Vector of the support value for each site - the value one (1) for a site from a
finite resource or the measure of the sampling unit associated with a site from
an extensive resource, which is required for calculation of finite and continuous
population correction factors. The default is NULL.
sizeweight Logical value that indicates whether size-weights should be used in the analysis,
where TRUE = use the size-weights and FALSE = do not use the size-weights.
The default is FALSE.
swgt  Vector of the size-weight for each site, which is the stage two size-weight for
two-stage sample. The default is NULL.
swgt1  Vector of the stage one size-weight for each site. The default is NULL.
vartype  The choice of variance estimator, where "Local" = local mean estimator and
"SRS" = SRS estimator. The default is "Local".
conf  Numeric value for the confidence level. The default is 95.
check.ind = a logical value that indicates whether compatibility checking of the input val-
ues is conducted, where TRUE = conduct compatibility checking and FALSE =
do not conduct compatibility checking. The default is TRUE.
warn.ind  Logical value that indicates whether warning messages were generated, where
TRUE = warning messages were generated and FALSE = warning messages
were not generated. The default is NULL.
warn.df  Data frame for storing warning messages. The default is NULL.
warn.vec  Vector that contains names of the population type, the subpopulation, and an
indicator. The default is NULL.

Value

If the function was called by the relrisk.analysis function, then output is an object in list format
composed of the Results list, which contains estimates and confidence bounds, the warn.ind logical
value, which indicates whether warning messages were generated, and the warn.df data frame,
which contains warning messages. If the function was called directly, then output is the Results list,
which contains the following components:

RelRisk  the relative risk estimate
RRnum numerator ("elevated" risk) of the relative risk estimate
RRdenom denominator ("baseline" risk) of the relative risk estimate
RRlog.se standard error for the log of the relative risk estimate
ConfLimits confidence limits for the relative risk estimate
WeightTotal sum of the final adjusted weights
CellCounts cell and margin counts for the 2x2 table
CellProportions estimated cell proportions for the 2x2 table
Other Functions Required

- **input.check**: check input values for errors, consistency, and compatibility with analytical functions
- **wnas**: remove missing values
- **vecprint**: takes an input vector and outputs a character string with line breaks inserted
- **relrisk.var**: calculate values required for estimating variance of the relative risk estimate

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

Examples

```r
response <- sample(c("Poor", "Good"), 100, replace=TRUE)
stressor <- sample(c("Poor", "Good"), 100, replace=TRUE)
wgt <- runif(100, 10, 100)
relrisk.est(response, stressor, wgt=wgt, vartype="SRS")

xcoord <- runif(100)
ycoord <- runif(100)
relrisk.est(response, stressor, wgt=wgt, xcoord=xcoord, ycoord=ycoord)
```

---

**relrisk.var**  
Variance-Covariance Estimate for the Relative Risk Estimator

Description

This function calculates the variance-covariance estimate for the cell and marginal totals used to calculate the relative risk estimate. Either the simple random sampling (SRS) variance estimator or the local mean variance estimator is calculated, which is subject to user control. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. The function can accommodate single-stage and two-stage samples.

Usage

```r
relrisk.var(response, stressor, response.levels, stressor.levels, wgt, x, y, stratum.ind, stratum.level, cluster.ind, cluster, wgt1, x1, y1, pcfactor.ind, pcfsize, N.cluster, stage1size, support, vartype, warn.ind, warn.df, warn.vec)
```

Arguments

- **response**: Vector of the categorical response variable.
- **stressor**: Vector of the categorical stressor variable.
response.levels
Vector of category values (levels) for the categorical response variable, where
the first level is used for calculating the relative risk estimate. If response.levels
equals NULL, then values "Poor" and "Good" are used for the first level and
second level of the response variable, respectively. The default is NULL.

stressor.levels
Vector of category values (levels) for the categorical stressor variable, where
the first level is used for calculating the numerator of the relative risk estimate
and the second level is used for calculating the denominator of the estimate. If
stressor.levels equals NULL, then values "Poor" and "Good" are used for the
first level and second level of the stressor variable, respectively. The default is
NULL.

wgt
Vector of the final adjusted weight (inverse of the sample inclusion probability)
for each site, which is either the weight for a single-stage sample or the stage
two weight for a two-stage sample.

x
Vector of x-coordinate for location for each site, which is either the x-coordinate
for a single-stage sample or the stage two x-coordinate for a two-stage sample.

y
Vector of y-coordinate for location for each site, which is either the y-coordinate
for a single-stage sample or the stage two y-coordinate for a two-stage sample.

stratum.ind
Logical value that indicates whether the sample is stratified, where TRUE = a
stratified sample and FALSE = not a stratified sample.

stratum.level
The stratum level.

cluster.ind
Logical value that indicates whether the sample is a two-stage sample, where
TRUE = a two-stage sample and FALSE = not a two-stage sample.

cluster
Vector of the stage one sampling unit (primary sampling unit or cluster) code
for each site.

wgt1
Vector of the final adjusted stage one weight for each site.

x1
Vector of the stage one x-coordinate for location for each site.

y1
Vector of the stage one y-coordinate for location for each site.

pcfactor.ind
Logical value that indicates whether the population correction factor is used
during variance estimation, where TRUE = use the population correction factor
and FALSE = do not use the factor. To employ the correction factor for a single-stage
sample, values must be supplied for arguments pcfsize and support. To
employ the correction factor for a two-stage sample, values must be supplied for
arguments N.cluster, stage1size, and support.

pcfsize
Size of the resource, which is required for calculation of finite and continuous
population correction factors for a single-stage sample. For a stratified sample
this argument must be a vector containing a value for each stratum and must
have the names attribute set to identify the stratum codes.

N.cluster
The number of stage one sampling units in the resource, which is required for
calculation of finite and continuous population correction factors for a two-stage
sample. For a stratified sample this variable must be a vector containing a value
for each stratum and must have the names attribute set to identify the stratum
codes.
stage1size  Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1".

support  Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from a continuous resource, which is required for calculation of finite and continuous population correction factors.

vartype  The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.

warn.ind  Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated.

warn.df  Data frame for storing warning messages.

warn.vec  Vector that contains names of the population type, the subpopulation, and an indicator.

Value
Object in list format composed of a vector named varest, which contains the variance-covariance estimate, a logical variable named warn.ind, which is the indicator for warning messages, and a data frame named warn.df, which contains warning messages.

Other Functions Required
localmean.weight  calculate the weighting matrix for the local mean variance estimator
localmean.cov  calculate the variance/covariance matrix using the local mean estimator

Author(s)
Tom Kincaid <Kincaid.Tom@epa.gov>

revisit_bibd  Create a Balanced Incomplete Block Panel Revisit Design

Description
Create a revisit design for panels in a survey that specifies the time periods for the units of each panel to be sampled based on searching for a D-optimal block design that is a member of the class of generalized Youden designs. The resulting design need not be a balanced incomplete block design. Based on algorithmic idea by Cook and Nachtsheim (1989) and implemented by Robert Wheeler.
**Usage**

```r
revisit_bibd(n.period, n.pnl, n.visit, nsamp, panel_name = "BIB",
 begin = 1, skip = 1, iter = 30)
```

**Arguments**

- `n.period`: Number of time periods for the survey design. Typically, number of periods if sampling occurs once per period or number of months if sampling occurs once per month. (v, number of varieties/treatments in BIBD terms)
- `n.pnl`: Number of panels (b, number of blocks in BIBD terms)
- `n.visit`: Number of time periods to be visited in a panel (k, block size in BIBD terms)
- `nsamp`: Number of samples in each panel.
- `panel_name`: Prefix for name of each panel
- `begin`: Numeric name of first sampling occasion, e.g. a specific period.
- `skip`: Number of sampling occasions to skip between planned sampling periods, e.g., sampling will occur only every 5 periods if skip = 5.
- `iter`: Maximum number of iterations in search for D-optimal Generalized Youden Design.

**Details**

The function uses find.BIB function from crossdes package to search for a D-optimal block design. crossdes uses package AlgDesign to search balanced incomplete block designs.

**Value**

A two-dimensional array of sample sizes to be sampled for each panel and each sampling occasion.

**Author(s)**

Tony Olsen <Olsen.Tony@epa.gov>

**References**


**See Also**

- `revisit_dsgn` create a panel revisit design
- `revisit_rand` create a revisit design with random assignment to panels and time periods
- `panel_summary` summarize characteristics of a revisit panel design
- `power.dsgn` power calculation for multiple panel designs
- `cov.panel.dsgn` covariance matrix for a panel design
- `plot_powerpaneldesign` plot power curves for panel designs
Examples

# Balanced incomplete block design with 20 sample occasions, 20 panels, 
# 3 visits to each unit, and 20 units in each panel.
revisit_bibd(n.period = 20, n.pnl = 20, n.visit = 3, nsamp = 20)

Description

Create a revisit design for panels in a survey that specifies the time periods that members of each panel will be sampled. Three basic panel design structures may be created: always revisit panel, serially alternating panels, or rotating panels.

Usage

revisit_dsgn(n.period, panels, begin = 1, skip = 1)

Arguments

- **n.period**: Number of time periods for the panel design. For example, number of periods if sampling occurs once per period or number of months if sampling occurs once per month.
- **panels**: List of lists where each list specifies a revisit panel structure. Each sublist consists of four components: n - sample size for each panel in the sublist, pnl_dsgn - a vector with an even number of elements specifying the panel revisit schedule in terms of the number of consecutive time periods sample units will be sampled, followed by number of consecutive time periods skipped, and then repeated as necessary, pnl_n - number of panels in the sublist, and start_option - option for starting the pnl_dsgn (None, Partial_Begin, or Partial_End). Three basic panel structures are possible: a) if pnl_dsgn ends in 0, then the sample units are visited on all subsequent time periods, b) if pnl_dsgn ends in NA, then panel follows a rotating panel structure, and c) if pnl_dsgn ends in any number > 0, then panel follows a serially alternating panel structure. See details for further information.
- **begin**: Numeric name of first sampling occasion, e.g. a specific period.
- **skip**: Number of time periods to skip between planned sampling periods, e.g., sampling will occur only every 5 periods if skip = 5.

Details

The function creates revisit designs using the concepts in McDonald (2003) to specify the revisit pattern across time periods for each panel. The panel revisit schedule is specified by a vector. Odd positions in vector specify the number of consecutive time periods when panel units are sampled. Even positions in vector specify the number of consecutive time periods when panel units are not sampled.
If last even position is a "0", then a single panel follows an always revisit panel structure. After satisfying the initial revisit schedule specified prior to the "0", units in a panel are always visited for rest of the time periods. The simplest always revisit panel design is to revisit every sample unit on every time period, specified as pnl_dsgn = c(1,0) or using McDonald's notation [1-0].

If the last even position is NA, the panels follow a rotating panel structure. For example, pnl_dsgn = c(1, NA) designates that sample units in a panel will be visited once and then never again, [1-n] in McDonald's notation. pnl_dsgn = c(1, 4, 1, NA) designates that sample units in a panel will be visited once, then not sampled on next four time periods, then sampled again once at the next time period and then never sampled again, [1-4-1-n] in McDonald's notation.

If the last even position is > 0, the panels follow a serially alternating panel structure. For example, pnl_dsgn = c(1, 4) designates that sample units in a panel will be visited once, then not sampled during the next four time periods, then sampled once and not sampled for next four time periods, and that cycle repeated until end of the number of time periods, [1-4] in McDonald's notation. pnl_dsgn = c(2, 3, 1, 4) designates that the cycle has sample units in a panel being visited during two consecutive time periods and then not sampled on next four time periods, and the cycle is repeated until end of the number of time periods, [2-3-1-4] in McDonald's notation.

The number of panels in a single panel design is specified by pnl_n. For an always revisit panel structure, a single panel is created and pnl_n is ignored. For a rotating panel structure, when pnl_n = NA, the number of panels is equal to n.period. Note that this should only be used when the rotating panel structure is the only panel design, i.e., no split panel design (see below for split panel details). If pnl_n = m is specified for a rotating panel design, then then number of panels will be m. For example, pnl_dsgn = c( 1, 4, 1, NA) and and pnl_n = 5 means that only 5 panels will be constructed and the last time period to be sampled will be time period 10. In McDonald’s notation the panel design structure is [(1-4-1-n)^5]. If the number of time periods, n.period, is 20 and no other panel design structure is specified, then the last 10 time periods will not be sampled. For serially alternating panels, when pnl_n = NA, the number of panels will be the sum of the elements in pan_dsgn (ignoring NA). If pnl_n is specified as m, then m panels will be created. For example, pnl_dsgn = c(1, 4, 1, 4) and pnl_n =3, [(1-4-1-4)^3] in McDonald’s notation, will create first three panels of the 510 serially alternating panels specified by pnl_dsgn.

A serially alternating or rotating panel revisit design may not result in the same number of units being sampled during each time period, particularly during the initial start up period. The default is to not specify a startup option ("None"). Start up option "Partial_Begin" initiates the revisit design at the last time period scheduled for sampling in the first panel. For example, a [2-3-1-4] design starts at time period 6 instead of time period 1 under the Partial_Begin option. For a serially alternating panel structure, start up option "Partial_End" initiates the revisit design at the time period that begins the second serially alternating pattern. For example, a [2-3-1-4] design starts at time period 11 instead of time period 1. For a rotating panel structure design, use of Partial_End makes the assumption that the number of panels equals the number of time periods and adds units to the last "m" panels for time periods 1 to "m" as if number of time periods was extended by "m" where "m" is one less than then the sum of the panel design. For example, a [1-4-1-4-1-n] design would result in m = 10. Note that some designs with pnl_n not equal to the number of sample occasions can produce unexpected panel designs. See examples.

Different types of panel structures can be combined, these are termed split panels by many authors, by specifying more than one list for the panels parameter. The total number of panels is the sum of the number of panels in each of the panel structures specified by the split panel design.
Value

A two-dimensional array of sample sizes to be sampled at each combination of panel and time period.

Author(s)

Tony Olsen <Olsen.Tony@epa.gov>

References


See Also

- `revisit_bibd` create a balanced incomplete block panel revisit design
- `revisit_rand` create a revisit design with random assignment to panels and time periods
- `panel_summary` summarize characteristics of a revisit panel design
- `power.dsgn` power calculation for multiple panel designs
- `cov.panel.dsgn` covariance matrix for a panel design
- `plot_powerpaneldesign` plot power curves for panel designs

Examples

# One panel of 60 sample units sampled at every time period: [1-0]
revisit_dsgn(20, panels = list(
  Annual=list(n = 60, pnl_dsgn = c(1, 0), pnl.n = NA,
                 start_option = "None"), begin=1)
)

# Rotating panels of 60 units sampled once and never again: [1-n]. Number
# of panels equal n.period.
revisit_dsgn(20, panels=list(
  R60N=list(n=60, pnl_dsgn = c(1, NA), pnl_n=NA, start_option="None"),
           begin=1 )
)

# Serially alternating panel with three visits to sample unit then skip
# next two time periods: [3-2]
revisit_dsgn(20, panels=list(
  SA60PE=list(n=20, pnl_dsgn = c(3, 2), pnl_n=NA,
               start_option="Partial_End"), begin=1 )
)

# Split panel of sample units combining above two panel designs: [1-0, 1-n]
revisit_dsgn(n.period=20, begin=2017, panels = list(
  Annual=list(n = 60, pnl_dsgn = c(1, 0), pnl.n = NA,
                start_option = "None"),
  R60N=list(n=60, pnl_dsgn = c(1, NA), pnl_n=NA, start_option="None")
))
revisit_rand

Create a Revisit Design with Random Assignment to Panels and Time Periods

Description

Create a revisit design for a survey that specifies the panels and time periods that will be sampled by random selection of panels and time periods. Three options for random assignments are "period" where the number of time periods to be sampled in a panel is fixed, "panel" where the number panels to be sampled in a time period is fixed, and "none" where the number of panel-period combinations is fixed.

Usage

revisit_rand(n.period, n.pnl, rand.control = "period", n.visit, nsamp, panel_name = "Random", begin = 1, skip = 1)

Arguments

n.period Number of time periods for the survey design. Typically, number of periods if sampling occurs once per period or number of months if sampling occurs once per month. (v, number of varieties (or treatments) in BIBD terms)
n.pnl Number of panels
rand.control Character value must be "none", "panel", or "period". Specifies whether the number of sample events will be fixed for each panel ("panel"), for each sample occasion ("occasion"), or for total panel-period combinations ("none"). Default is "panel".
n.visit If rand_control is "panel", this is the number of panels that will be sampled in each time period. If rand_control is "period", this is the number of time periods to be sampled in each panel. If rand_control is "none", this is the total number of panel-period combinations that will have units sampled in the revisit design.
nsamp Number of samples in each panel
panel_name Prefix for name of each panel
begin Numeric name of first sampling occasion, e.g. a specific period.
skip Number of sampling occasions to skip between planned sampling periods, e.g., sampling will occur only every 5 periods if skip = 5.

Details

The revisit design for a survey is created by random selection of panels and time periods that will have sample events. The number of sample occasions that will be visited by a panel is random.

Value

A two-dimensional array of sample sizes to be sampled for each panel and each time period.
sbcframe

Calculate Spatial Balance Grid Cell Extent and Proportion for a Survey Frame

Description

This function calculates spatial balance grid cell extent and proportion for the sample frame.

Usage

sbcframe(sfobject, nrows = 5, dxdy = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sfobject</td>
<td>An object of class sf that contains the survey frame.</td>
</tr>
<tr>
<td>nrows</td>
<td>Number of rows (and columns) for the grid of cells. The default is 5.</td>
</tr>
<tr>
<td>dxdy</td>
<td>Indicator for equal x-coordinate and y-coordinate grid cell increments, where TRUE means the increments are equal and FALSE means the increments are not equal. The default is TRUE.</td>
</tr>
</tbody>
</table>
sbcsamp

Value

List containing the following components:

- **extent** the frame extent for each grid cell
- **prop** the frame proportion for each grid cell
- **xmin** the grid x-coordinate minimum value
- **xmax** the grid x-coordinate maximum value
- **ymin** the grid y-coordinate minimum value
- **ymax** the grid y-coordinate maximum value
- **dx** the grid cell x-coordinate increment value
- **dy** the grid cell y-coordinate increment value
- **xc** the vector of grid cell x-coordinates
- **yc** the vector of grid cell y-coordinates

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

---

sbcsamp  Calculate Spatial Balance Grid Cell Extent and Proportions for a Survey Design

Description

This function calculates spatial balance grid cell extent and proportions for a survey design. The user must provide either sbc.frame or values for dx, dy, xc, and yc.

Usage

```
sbcsamp(spsample, sbc.frame = NULL, dx = NULL, dy = NULL,
 xc = NULL, yc = NULL)
```

Arguments

- **spsample**: Object of class SpatialDesign produced by either the grts or irs functions that contains survey design information and additional attribute (auxiliary) variables.
- **sbc.frame**: The object created by the sbcframe function. The default is NULL.
- **dx**: Grid cell x-coordinate increment value. The default is NULL.
- **dy**: Grid cell y-coordinate increment value. The default is NULL.
- **xc**: Vector of grid cell x-coordinates. The default is NULL.
- **yc**: Vector of grid cell y-coordinates. The default is NULL.
**Value**

List containing the following components:

- **extent** the sample extent for each grid cell
- **prop** the sample proportion for each grid cell

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>

---

| SC_estuaries | Estuaries in South Carolina |

**Description**

A dataset containing attributes for estuaries in South Carolina.

**Usage**

SC_estuaries

**Format**

A data frame with 135 rows and 10 attributes:

- **siteID** site ID value.
- **xcoord** Albers projection x-coordinate.
- **ycoord** Albers projection y-coordinate.
- **wgt** survey design weight.
- **Stratum** stratum code.
- **Status** site evaluation status code.
- **IBI_score** IBI (index of biotic integrity) score.
- **IBI_status** status category of the IBI score.
- **WQ_score** WQ (water quality) score.
- **WQ_status** status category of the WQ score.
selectFeatureID

Identify a Feature in an sf Object for Selecting a Sample Point

Description
This function determines the ID value of the feature in an sf object from which a sample point will be selected.

Usage
selectFeatureID(rdx, cellID, featureMeasure, featureID, mdm, id)

Arguments
- **rdx**: Value of the randomized hierarchical address identifying a grid cell that will get a sample point.
- **cellID**: Vector of grid cell IDs.
- **featureMeasure**: Vector of grid cell sf feature lengths for linestring objects or sf feature areas for polygon objects.
- **featureID**: Vector of grid cell sf feature IDs.
- **mdm**: Vector of multidensity multipliers for the shapefile features.
- **id**: Vector of sf feature IDs.

Value
The ID of an sf feature.

Author(s)
Tom Kincaid <Kincaid.Tom@epa.gov>

selectframe

Internal Function: Select All Points in Survey Frame

Description
Internal Function: Select All Points in Frame

Usage
selectframe(rord, xc, yc, dx, dy, pts)
Arguments

- `rdx`: Vector of the index value for all cells.
- `xc`: Vector of x-coordinates that define the cells.
- `yc`: Vector of y-coordinates that define the cells.
- `dx`: Width of the cells along the x-axis.
- `dy`: Width of the cells along the y-axis.
- `pts`: Data frame containing id values, x-coordinates, y-coordinates, and mdm values.

Value

The id value for all points in the frame.

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

Tony Olsen <olsen.tony@epa.gov>

selectpts

*Internal Function: Select Probability Sample from a Set of Cells*

Description

Selects a sample of size one or larger from a set of cells based on inclusion probabilities.

Usage

```r
selectpts(rdx, xc, yc, dx, dy, pts)
```

Arguments

- `rdx`: Vector of the index value for selected cells.
- `xc`: Vector of x-coordinates that define the cells.
- `yc`: Vector of y-coordinates that define the cells.
- `dx`: Width of the cells along the x-axis.
- `dy`: Width of the cells along the y-axis.
- `pts`: Data frame containing id values, x-coordinates, y-coordinates, and mdm values.

Value

The id value for the sample points.

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov> Tony Olsen <olsen.tony@epa.gov>
**Description**

This function executes the extrapolation step of the simulation extrapolation deconvolution method (Stefanski and Bay, 1996). The function can accommodate single-stage and two-stage samples.

**Usage**

```r
simex(z, val, sigma, var.sigma, cluster.ind, cluster)
```

**Arguments**

- `z`: Vector of the response value for each site.
- `val`: Vector of the set of values at which the CDF is estimated.
- `sigma`: Measurement error variance.
- `var.sigma`: Variance of the estimated measurement error variance.
- `cluster.ind`: Logical value that indicates whether the survey design utilizes two stages.
- `cluster`: Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.

**Value**

Output is a list containing the following matrices:

- `g`: values of the function g(.) evaluated at `val` for each value of `z`
- `dg`: values of the derivative of the function g(.)

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>

---

**Description**

This function determines whether the input set of values is a nondecreasing sequence.

**Usage**

```r
sorted(x)
```
Arguments

\[ x \]
Vector of values.

Value

Logical variable, where TRUE = sorted and FALSE = not sorted.

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

---

sp2shape \hspace{1cm} Create an ESRI shapefile from an sp package object

Description

This function creates an ESRI shapefile from an sp package object. The function can also accommodate an object created by the grts or irs functions in spsurvey. The type of shapefile, i.e., point, polyline, or polygon, is determined by the class of the sp object.

Usage

sp2shape(sp.obj, shpfilename)

Arguments

\[ \text{sp.obj} \]
the sp package object or object created by either the grts or irs functions.

\[ \text{shpfilename} \]
Character string containing the name of the shapefile. The shapefile name should include the "shp" extension. If the name does not include that extension, it will be added.

Value

An ESRI shapefile.

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>
Description

Create the definition for class SpatialDesign, a class for spatial survey designs.
Create the wrapper function for class SpatialDesign.
Define S3 and S4 methods for summary and plot for class SpatialDesign.

Usage

`SpatialDesign(design, sp_obj)`

```r
S3 method for class 'SpatialDesign'
summary(object, ..., auxvar = NULL,
 sfframe = NULL, tess_ind = TRUE, sbc_ind = FALSE, nrows = 5,
 dxdy = TRUE)

S4 method for signature 'SpatialDesign'
summary(object, ..., auxvar = NULL,
 sfframe = NULL, tess_ind = TRUE, sbc_ind = FALSE, nrows = 5,
 dxdy = TRUE)

S3 method for class 'SpatialDesign'
plot(x, y, ..., sfframe = NULL, stratum = NULL,
 mdcaty = NULL, auxvar = NULL, pdffile = NULL, width = 8,
 height = 10)

S4 method for signature 'SpatialDesign,missing'
plot(x, y, ..., sfframe = NULL, stratum = NULL, mdcaty = NULL, auxvar = NULL,
 pdffile = NULL, width = 8, height = 10)
```

Arguments

- `design` Object of class list containing specifications for the survey design.
- `sp_obj` Object of class SpatialPointsDataFrame containing spatial attributes that have spatial point locations.
- `object` SpatialDesign object.
- `...` Arguments passed through.
- `auxvar` Vector containing the names of variables in the data slot of the SpatialDesign object that identify auxiliary variables to be used to summarize the survey design or create plots of the survey design. The default is NULL.
- `sfframe` Object of class sf that contains the survey design frame. The default is NULL.
SpatialDesign-class

tess_ind a logical variable indicating whether spatial balance metrics are calculated using proportions obtained from the intersection of Dirichlet tesselation polygons for the sample points with the frame object. TRUE means calculate the metrics. FALSE means do not calculate the metrics. The default is TRUE.

sbc_ind a logical variable indicating whether spatial balance metrics are calculated using proportions obtained from a rectangular grid superimposed on the sample points and the frame. TRUE means calculate the metrics. FALSE means do not calculate the metrics. The default is FALSE.

nrows number of rows (and columns) for the grid of cells. The default is 5.

dxdy indicator for equal x-coordinate and y-coordinate grid cell increments, where TRUE means the increments are equal and FALSE means the increments are not equal. The default is TRUE.

x SpatialDesign object.

y Missing - this argument is not used.

stratum name of the attribute from the sfframe object that identifies stratum membership for each feature in the frame. If stratum equals NULL, the design is unstratified, and an attribute named "stratum" (with all its elements equal to the stratum name specified in design) is added to the sfframe object. The default is NULL.

mdcaty name of the attribute from the sfframe object that identifies the unequal probability category for each feature in the survey frame. The default is NULL.

pdffile a character variable containing the name of the pdf file to which output is written. If a value is not provided, output is written to the graphics window. The default is NULL.

width width of the graphic region in inches. The default is 8.

height height of the graphic region in inches. The default is 10.

Value

Object of class SpatialDesign.

A summary or plot depending on the method called.

Slots

design Object of class list containing specifications for the survey design

data Object of class data.frame containing the attribute data

coords.nrs Numeric object that records the column positions in data from which the coordinates were obtained

coords Object of class matrix containing the coordinates matrix, where points are rows in the matrix

bbox Object of class matrix containing the bounding box

proj4string Object of class CRS containing the projection string
Extends
Class "SpatialPointsDataFrame", directly.
Class "SpatialPoints", by class "SpatialPointsDataFrame".
Class "Spatial", by class "SpatialPoints".

Author(s)
Tom Kincaid <Kincaid.Tom@epa.gov>

spbalance  

Calculate Spatial Balance Metrics for a Survey Design

Description
This function calculates spatial balance metrics for a survey design. Two options for calculation of spatial balance metrics are available: (1) use proportions obtained from the intersection of Dirichlet tesselation polygons for the sample points with the frame object and (2) use proportions obtained from a rectangular grid superimposed on the sample points and the frame object. In both cases the proportions are used to calculate the spatial balance metrics. Two metrics are calculated: (1) the Pielou evenness measure and (2) the chi-square statistic.

Usage
spbalance(spsample, sfframe, tess_ind = TRUE, sbc_ind = FALSE, nrows = 5, dxdy = TRUE)

Arguments
spsample  Object of class SpatialDesign produced by either the grts or irs functions that contains survey design information and additional attribute (auxiliary) variables.
sfframe  An object of class sf that contains the survey frame.
tess_ind  Logical variable indicating whether spatial balance metrics are calculated using proportions obtained from the intersection of Dirichlet tesselation polygons for the sample points with the frame object. TRUE means calculate the metrics. FALSE means do not calculate the metrics. The default is TRUE.
sbc_ind  Logical variable indicating whether spatial balance metrics are calculated using proportions obtained from a rectangular grid superimposed on the sample points and the frame. TRUE means calculate the metrics. FALSE means do not calculate the metrics. The default is FALSE.
nrows  Number of rows (and columns) for the grid of cells. The default is 5.
dxdy  Indicator for equal x-coordinate and y-coordinate grid cell increments, where TRUE means the increments are equal and FALSE means the increments are not equal. The default is TRUE.
Value

List containing the following components:

tess results for spatial balance metrics using tessellation polygons
sbc results for spatial balance metrics using a rectangular grid

If either the tess.ind or sbc.ind arguments are set to FALSE, the corresponding component in the list is set to NULL. Otherwise, each components of the list is a lists that contains the following components:

J_subp Pielou evenness measure
chi_sq Chi-square statistic
extent frame extent for each Dirichlet tessellation polygon or rectangular grid cell
prop frame proportion for each Dirichlet tessellation polygon or rectangular grid cell

Other Functions Required

deldir deldir package function that computes the Delaunay triangulation and Dirichlet tesselation of a set of points
tile.list deldir package function that extracts coordinates of the Dirichlet tesselation polygons from the object produced by the deldir function
gIntersection rgeos package function that determines the intersection between two sp package objects
LinesLength sp package function that determines length of the line segemnts in a class Lines object
sbcframe function to calculate spatial balance grid cell extent and proportions for a sample frame
sbcsamp function to calculate spatial balance grid cell extent and proportions for a survey design

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

Examples

```r
Not run:

design <- list(
 Stratum1=list(panel=c(PanelOne=50), seltype="Equal", over=10),
 Stratum2=list(panel=c(PanelOne=50, PanelTwo=50), seltype="Unequal",
 caty.n=c(CatyOne=25, CatyTwo=25, CatyThree=25, CatyFour=25), over=75))
samp <- grts(design=design, DesignID="Test.Site", type.frame="area",
 src.frame="shapefile", in.shape="shapefile.shp", stratum="stratum",
 mdcaty=mdcaty", shapefile=TRUE, out.shape="sampling.shp")
sframe <- read.shp("shapefile.shp")
spbalance(samp, sframe, sbc_ind = TRUE)

End(Not run)
```
Create an Object of Class `spsurvey.analysis`

**Description**

This function creates an object of class `spsurvey.analysis` that contains all of the information necessary to use the analysis functions in the `spsurvey` package.

**Usage**

```r
spsurvey.analysis(sites = NULL, subpop = NULL, design = NULL,
 data.cat = NULL, data.cont = NULL, siteID = NULL, wgt = NULL,
 sigma = NULL, var.sigma = NULL, xcoord = NULL, ycoord = NULL,
 stratum = NULL, cluster = NULL, wgt1 = NULL, xcoord1 = NULL,
 ycoord1 = NULL, popsize = NULL, popcorrect = FALSE,
 pcfsize = NULL, N.cluster = NULL, stage1size = NULL,
 support = NULL, sizeweight = FALSE, swgt = NULL, swgt1 = NULL,
 vartype = "Local", conf = 95, pctval = c(5, 10, 25, 50, 75, 90, 95))
```

**Arguments**

- **sites**
  Data frame consisting of two variables: the first variable is site IDs and the second variable is a logical vector indicating which sites to use in the analysis. If this data frame is not provided, then the data frame will be created, where (1) site IDs are obtained either from the design argument, the siteID argument, or both (when siteID is a formula); and (2) a variable named use.sites that contains the value TRUE for all sites is created. The default is NULL.

- **subpop**
  Data frame describing sets of populations and subpopulations for which estimates will be calculated. The first variable is siteIDs and each subsequent variable identifies a Type of population, where the variable name is used to identify Type. A Type variable identifies each site with one of the subpopulations of that Type. If this data frame is not provided, then the data frame will be created, where (1) site IDs are obtained either from the design argument, the siteID argument, or both (when siteID is a formula); and (2) a variable named use.sites that contains the value "All Sites" for all sites is created. The default is NULL.

- **design**
  Data frame consisting of design variables. If variable names are provided as formulas in the corresponding arguments, then the formulas are interpreted using this data frame. If this data frame is not provided, then the data frame will be created from inputs to the design variables in the argument list. The default is NULL. If variable names are not provided as formulas, then variables should be named as follows:

  - **siteID** Vector of site IDs
  - **wgt** Vector of weights, which are either the weights for a single-stage sample or the stage two weights for a two-stage sample
xcoord  Vector of x-coordinates for location, which are either the x-coordinates for a single-stage sample or the stage two x-coordinates for a two-stage sample

ycoord  Vector of y-coordinates for location, which are either the y-coordinates for a single-stage sample or the stage two y-coordinates for a two-stage sample

stratum  Vector of the stratum codes for each site

cluster  Vector of the stage one sampling unit (primary sampling unit or cluster) codes for each site

wgt1  Vector of stage one weights in a two-stage design

xcoord1  Vector of the stage one x-coordinates for location in a two-stage design

ycoord1  Vector of the stage one y-coordinates for location in a two-stage design

support  Vector of support values - for a finite resource, the value one (1) for a site. For an extensive resource, the measure of the sampling unit associated with a site. Required for calculation of finite and continuous population correction factors.

swgt  Vector of size-weights, which is the stage two size-weight for a two-stage design.

swgt1  Vector of stage one size-weights for a two-stage design.

data.cat  Data frame of categorical response variables. The first variable is site IDs. Subsequent variables are response variables. Missing data (NA) is allowed. If psurvey.obj is not provided, then this argument is required. The default is NULL.

data.cont  Data frame of continuous response variables. The first variable is site IDs. Subsequent variables are response variables. Missing data (NA) is allowed. The default is NULL.

siteID  site IDs. This variable can be input directly or as a formula and must be supplied either as this argument or in the design data frame. The default is NULL.

wgt  Vector of final adjusted weights, which are either the weights for a single-stage sample or the stage two weights for a two-stage sample. This variable can be input directly or as a formula and must be supplied either as this argument or in the design data frame. The default is NULL.

sigma  Measurement error variance. This variable must be a vector containing a value for each response variable and must have the names attribute set to identify the response variable names. Missing data (NA) is allowed. The default is NULL.

var.sigma  Variance of the measurement error variance. This variable must be a vector containing a value for each response variable and must have the names attribute set to identify the response variable names. Missing data (NA) is allowed. The default is NULL.

xcoord  Vector of x-coordinates for location, which are either the x-coordinates for a single-stage sample or the stage two x-coordinates for a two-stage sample. This variable can be input directly or as a formula and must be supplied either as this argument or in the design data frame when argument vartype is set to "Local". The default is NULL.

ycoord  Vector of y-coordinates for location, which are either the y-coordinates for a single-stage sample or the stage two y-coordinates for a two-stage sample. This
variable can be input directly or as a formula and must be supplied either as this argument or in the design data frame when argument vartype is set to "Local". The default is NULL.

`stratum` The stratum codes. This variable can be input directly or as a formula. The default is NULL.

`cluster` Vector of the stage one sampling unit (primary sampling unit or cluster) codes. This variable can be input directly or as a formula. The default is NULL.

`wgt1` Vector of final adjusted stage one weights. This variable can be input directly or as a formula. The default is NULL.

`xcoord1` Vector of the stage one x-coordinates for location. This variable can be input directly or as a formula. The default is NULL.

`ycoord1` Vector of the stage one y-coordinates for location. This variable can be input directly or as a formula. The default is NULL.

`popsize` Known size of the resource, which is used to perform ratio adjustment to estimators expressed using measurement units for the resource. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. The argument must be in the form of a list containing an element for each population Type in the subpop data frame, where NULL is a valid choice for a population Type. The list must be named using the column names for the population Types in subpop. If a population Type doesn’t contain subpopulations, then each element of the list is either a single value for an unstratified sample or a vector containing a value for each stratum for a stratified sample, where elements of the vector are named using the stratum codes. If a population Type contains subpopulations, then each element of the list is a list containing an element for each subpopulation, where the list is named using the subpopulation names. The element for each subpopulation will be either a single value for an unstratified sample or a named vector of values for a stratified sample. The default is NULL.

Example popsize for a stratified sample:

```r
popsize = list("Pop 1"=c("Stratum 1"=750, "Stratum 2"=500, "Stratum 3"=250),
"Pop 2"=list("SubPop 1"=c("Stratum 1"=350, "Stratum 2"=250, "Stratum 3"=150),
"SubPop 2"=c("Stratum 1"=250, "Stratum 2"=150, "Stratum 3"=100),
"SubPop 3"=c("Stratum 1"=150, "Stratum 2"=150, "Stratum 3"=75)),
"Pop 3"=NULL)
```

Example popsize for an unstratified sample:
popsize = list("Pop 1"=1500,
"Pop 2"=list("SubPop 1"=750,
"SubPop 2"=500,
"SubPop 3"=375),
"Pop 3"=NULL)

popcorrect Logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for argument pcfsize and for the support variable of the design argument. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster and stage1size, and for the support variable of the design argument.

pcfsize Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

N.cluster The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

stage1size Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1". The default is NULL.

support Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from an extensive resource, which is required for calculation of finite and continuous population correction factors. This variable can be input directly or as a formula. The default is NULL.

sizeweight Logical value that indicates whether size-weights should be used in the analysis, where TRUE = use the size-weights and FALSE = do not use the size-weights. The default is FALSE.

swgt Vector of the size-weight for each site, which is the stage two size-weight for a two-stage sample. This variable can be input directly or as a formula. The default is NULL.

swgt1 Vector of the stage one size-weight for each site. This variable can be input directly or as a formula. The default is NULL.

vartype The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator. The default is "Local".

conf Numeric value for the confidence level. The default is 95.
**pctval**

The set of values at which percentiles are estimated. The default set is: 5, 10, 25, 50, 75, 90, 95.

**Value**

List of class `spsurvey.analysis`. Only those sites indicated by the logical variable in the sites data frame are retained in the output. The sites, subpop, and design data frames will always exist in the output. At least one of the data.cat and data.cont data frames will exist. Depending upon values of the input variables, other elements in the output may be NULL. The output list is composed of the following elements:

- **sites** the sites data frame.
- **subpop** the subpop data frame.
- **design** the design data frame.
- **data.cat** the data.cat data frame.
- **data.cont** the data.cont data frame.
- **sigma** measurement error variance.
- **var.sigma** variance of the estimated measurement error variance.
- **stratum.ind** a logical value that indicates whether the sample is stratified, where TRUE = a stratified sample and FALSE = not a stratified sample.
- **cluster.ind** a logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.
- **popsize** the known size of the resource.
- **pcfactor.ind** a logical value that indicates whether the population correction factor is used during variance estimation, where TRUE = use the population correction factor and FALSE = do not use the factor.
- **pcfsize** size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample.
- **N.cluster** the number of stage one sampling units in the resource.
- **swgt.ind** a logical value that indicates whether the sample is a size-weighted sample, where TRUE = a size-weighted sample and FALSE = not a size-weighted sample.
- **vartype** the choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.
- **conf** the confidence level.
- **pctval** the set of values at which percentiles are estimated.

**Other Functions Required**

- `dframe.check` check site IDs, the sites data frame, the subpop data frame, and the data.cat data frame to assure valid contents and, as necessary, create the sites data frame and the subpop data frame.
- `vecprint` takes an input vector and outputs a character string with line breaks inserted.
- `uniqueID` creates unique site IDs by appending a unique number to each occurrence of a site ID.
- `input.check` check input values for errors, consistency, and compatibility with analytical functions.
Examples

```r
Categorical variable example:
mysiteID <- paste("Site", 1:100, sep="")
mysites <- data.frame(
 siteID=mysiteID,
 Active=rep(TRUE, 100))
mysubpop <- data.frame(
 siteID=mysiteID,
 All.Sites=rep("All Sites", 100),
 Resource.Class=rep(c("Good", "Poor"), c(55,45)))
mydesign <- data.frame(
 siteID=mysiteID,
 wgt=runif(100, 10, 100),
 xcoord=runif(100),
 ycoord=runif(100),
 stratum=rep(c("Stratum1", "Stratum2"), 50))
mydata.cat <- data.frame(
 siteID=mysiteID,
 CatVar=rep(c("north", "south", "east", "west"), 25))
mypopsize <- list(
 All.Sites=c(Stratum1=3500, Stratum2=2000),
 Resource.Class=list(Good=c(Stratum1=2500, Stratum2=1500),
 Poor=c(Stratum1=1000, Stratum2=500)))

Continuous variable example - including deconvolution estimates:
mydesign <- data.frame(
 ID=mysiteID,
 wgt=runif(100, 10, 100),
 xcoord=runif(100),
 ycoord=runif(100),
 stratum=rep(c("Stratum1", "Stratum2"), 50))
ContVar <- rnorm(100, 10, 1)
mydata.cont <- data.frame(
 siteID=mysiteID,
 ContVar=ContVar,
 ContVar.1=ContVar + rnorm(100, 0, sqrt(0.25)),
 ContVar.2=ContVar + rnorm(100, 0, sqrt(0.50)))
mysigma <- c(ContVar=NA, ContVar.1=0.25, ContVar.2=0.50)
spsurvey.analysis(sites=mysites, subpop=mysubpop[,1:2], design=mydesign,
 data.cont=mydata.cont, siteID=~ID, sigma=mysigma, popsize=mypopsize[1])
```

---

Estimators for Population Total, Mean, Variance, and Standard Deviation
Description

This function calculates estimates of the population total, mean, variance, and standard deviation of a response variable, where the response variable may be defined for either a finite or an extensive resource. In addition the standard error of the population estimates and confidence bounds are calculated. The Horvitz-Thompson estimator is used to calculate the total, variance, and standard deviation estimates. The Horvitz-Thompson ratio estimator, i.e., the ratio of two Horvitz-Thompson estimators, is used to calculate the mean estimate. Variance estimates are calculated using either the local mean variance estimator or the simple random sampling (SRS) variance estimator. The choice of variance estimator is subject to user control. The local mean variance estimator requires the x-coordinate and the y-coordinate of each site. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. Confidence bounds are calculated using a Normal distribution multiplier. The function can accommodate a stratified sample. For a stratified sample, separate estimates and standard errors are calculated for each stratum, which are used to produce estimates and standard errors for all strata combined. Strata that contain a single value are removed. For a stratified sample, when either the size of the resource or the sum of the size-weights of the resource is provided for each stratum, those values are used as stratum weights for calculating the estimates and standard errors for all strata combined. For a stratified sample when neither the size of the resource nor the sum of the size-weights of the resource is provided for each stratum, estimated values are used as stratum weights for calculating the estimates and standard errors for all strata combined. The function can accommodate single-stage and two-stage samples for both stratified and unstratified sampling designs. Finite population and continuous population correction factors can be utilized in variance estimation. The function checks for compatibility of input values and removes missing values.

Usage

total.est(z, wgt, x = NULL, y = NULL, stratum = NULL, 
cluster = NULL, wgt1 = NULL, x1 = NULL, y1 = NULL, 
popsize = NULL, popcorrect = FALSE, pcfsize = NULL, 
N.cluster = NULL, stage1size = NULL, support = NULL, 
sizeweight = FALSE, swgt = NULL, swgt1 = NULL, vartype = "Local", 
conf = 95, check.ind = TRUE, warn.ind = NULL, warn.df = NULL, 
warn.vec = NULL)

Arguments

z Vector of the response value for each site.
wgt Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.x Vector of x-coordinate for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample. The default is NULL.
y Vector of y-coordinate for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample. The default is NULL.
stratum Vector of the stratum for each site. The default is NULL.
cluster  Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site. The default is NULL.

wgt1  Vector of the final adjusted stage one weight for each site. The default is NULL.

x1  Vector of the stage one x-coordinate for location for each site. The default is NULL.

y1  Vector of the stage one y-coordinate for location for each site. The default is NULL.

popsize  Known size of the resource, which is used to calculate strata proportions for calculating estimates for a stratified sample. For a finite resource, this argument is either the total number of sampling units or the known sum of size-weights. For an extensive resource, this argument is the measure of the resource, i.e., either known total length for a linear resource or known total area for an areal resource. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

popcorrect  Logical value that indicates whether finite or continuous population correction factors should be employed during variance estimation, where TRUE = use the correction factor and FALSE = do not use the correction factor. The default is FALSE. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.

pcfsize  Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

N.cluster  The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes. The default is NULL.

stage1size  Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1". The default is NULL.

support  Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from an extensive resource, which is required for calculation of finite and continuous population correction factors. The default is NULL.

sizeiweight  Logical value that indicates whether size-weights should be used in the analysis, where TRUE = use the size-weights and FALSE = do not use the size-weights. The default is FALSE.
total.est

swgt  Vector of the size-weight for each site, which is the stage two size-weight for a two-stage sample. The default is NULL.
swgt1 Vector of the stage one size-weight for each site. The default is NULL.
vartype The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator. The default is "Local".
conf  Numeric value for the confidence level. The default is 95.
check.ind Logical value that indicates whether compatibility checking of the input values is conducted, where TRUE = conduct compatibility checking and FALSE = do not conduct compatibility checking. The default is TRUE.
warn.ind Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated. The default is NULL.
warn.df Data frame for storing warning messages. The default is NULL.
warn.vec Vector that contains names of the population type, the subpopulation, and an indicator. The default is NULL.

Value

If the function was called by the cont.analysis function, then output is an object in list format composed of the Results data frame, which contains estimates and confidence bounds, and the warn.df data frame, which contains warning messages. If the function was called directly, then output is the Results data frame.

Other Functions Required

input.check check input values for errors, consistency, and compatibility with analytical functions
wnas remove missing values
vecprint takes an input vector and outputs a character string with line breaks inserted
total.var calculate variance of the total, mean, variance, and standard deviation estimates

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

Examples

z <- rnorm(100, 10, 1)
wgt <- runif(100, 10, 100)
total.est(z, wgt, vartype="SRS")

x <- runif(100)
y <- runif(100)
total.est(z, wgt, x, y)
total.var

Variance Estimate for Population Total, Mean, Variance, and Standard Deviation

Description

This function calculates variance estimates of the estimated population total, mean, variance, and standard deviation of a response variable. Either the simple random sampling (SRS) variance estimator or the local mean variance estimator is calculated, which is subject to user control. The SRS variance estimator uses the independent random sample approximation to calculate joint inclusion probabilities. The function can accommodate single-stage and two-stage samples.

Usage

```r
total.var(z, wgt, x, y, mean.est, var.est, sd.est, stratum.ind, stratum.level, cluster.ind, cluster, wgt1, x1, y1, pcfactor.ind, pcfsize, N.cluster, stage1size, support, vartype, warn.ind, warn.df, warn.vec)
```

Arguments

- `z`: Vector of the response value for each site.
- `wgt`: Vector of the final adjusted weight (inverse of the sample inclusion probability) for each site, which is either the weight for a single-stage sample or the stage two weight for a two-stage sample.
- `x`: Vector of x-coordinate for location for each site, which is either the x-coordinate for a single-stage sample or the stage two x-coordinate for a two-stage sample.
- `y`: Vector of y-coordinate for location for each site, which is either the y-coordinate for a single-stage sample or the stage two y-coordinate for a two-stage sample.
- `mean.est`: The mean estimate.
- `var.est`: The variance estimate.
- `sd.est`: The standard deviation estimate.
- `stratum.ind`: Logical value that indicates whether the sample is stratified, where TRUE = a stratified sample and FALSE = not a stratified sample.
- `stratum.level`: The stratum level.
- `cluster.ind`: Logical value that indicates whether the sample is a two-stage sample, where TRUE = a two-stage sample and FALSE = not a two-stage sample.
- `cluster`: Vector of the stage one sampling unit (primary sampling unit or cluster) code for each site.
- `wgt1`: Vector of the final adjusted stage one weight for each site.
- `x1`: Vector of the stage one x-coordinate for location for each site.
- `y1`: Vector of the stage one y-coordinate for location for each site.
**pcfactor.ind**  
Logical value that indicates whether the population correction factor is used during variance estimation, where TRUE = use the population correction factor and FALSE = do not use the factor. To employ the correction factor for a single-stage sample, values must be supplied for arguments pcfsize and support. To employ the correction factor for a two-stage sample, values must be supplied for arguments N.cluster, stage1size, and support.

**pcfsize**  
Size of the resource, which is required for calculation of finite and continuous population correction factors for a single-stage sample. For a stratified sample this argument must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

**N.cluster**  
The number of stage one sampling units in the resource, which is required for calculation of finite and continuous population correction factors for a two-stage sample. For a stratified sample this variable must be a vector containing a value for each stratum and must have the names attribute set to identify the stratum codes.

**stage1size**  
Size of the stage one sampling units of a two-stage sample, which is required for calculation of finite and continuous population correction factors for a two-stage sample and must have the names attribute set to identify the stage one sampling unit codes. For a stratified sample, the names attribute must be set to identify both stratum codes and stage one sampling unit codes using a convention where the two codes are separated by the & symbol, e.g., "Stratum 1&Cluster 1".

**support**  
Vector of the support value for each site - the value one (1) for a site from a finite resource or the measure of the sampling unit associated with a site from a continuous resource, which is required for calculation of finite and continuous population correction factors.

**vartype**  
The choice of variance estimator, where "Local" = local mean estimator and "SRS" = SRS estimator.

**warn.ind**  
Logical value that indicates whether warning messages were generated, where TRUE = warning messages were generated and FALSE = warning messages were not generated.

**warn.df**  
Data frame for storing warning messages.

**warn.vec**  
Vector that contains names of the population type, the subpopulation, and an indicator.

**Value**  
Object in list format composed of a vector named varest, which contains variance estimates, a logical variable named warn.ind, which is the indicator for warning messages, and a data frame named warn.df, which contains warning messages.

**Other Functions Required**

- **localmean.weight** calculate the weighting matrix for the local mean variance estimator
- **localmean.var** calculate the local mean variance estimator
### uniqueID

*Internal Function: Create Unique IDs for a Survey Design*

#### Description

This function creates unique site IDs by appending a unique number to each occurrence of a site ID. It is intended for survey designs that have repeat visits to sites.

#### Usage

`uniqueID(siteID)`

#### Arguments

- `siteID` Vector of site IDs.

#### Value

Vector of unique site IDs.

#### Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

---

### UT_ecoregions

*Ecoregions in Utah*

#### Description

A dataset containing attributes for ecoregions in Utah.

#### Usage

`UT_ecoregions`

#### Format

An object of class sf (simple features) containing 10 features and 3 attributes:

- **Level3** Level 3 ecoregion code for the polygon.
- **Level3_Nam** Level 3 ecoregion name for the polygon.
- **Area_ha** area of the polygon in hectares.
**vecprint**

*Internal Function: Create Vector to Print*

### Description

This function takes an input vector and outputs a character string with line breaks inserted so that, whenever possible, no line in the string exceeds the input value `n.char`, which is set to 78 characters by default. The input vector is coerced to mode character. When an element of the input vector is greater than `n.char` characters in length, then that element is inserted in the output character string as an individual line.

### Usage

```r
vecprint(x, n.char = 78)
```

### Arguments

- **x**: Character vector.
- **n.char**: The maximum number of characters per line. The default is 78.

### Value

Character string that is suitable for printing by the functions: `stop`, `warning`, or `cat`.

### Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

### Examples

```r
sites <- paste("Site Number", 1:50)
sites.str <- vecprint(sites)
cat(sites.str)

temp <- c(1, 5, 21:25, 33:37)
sites.str <- vecprint(sites[temp])
warning(paste("The following site ID values were removed from the analysis:
 ", sites.str, sep=""))
```
**warnprnt**  
*Internal Function: Print the Warnings Data Frame*

**Description**

This function prints the warnings data frame.

**Usage**

```r
warnprnt(warn.df = get("warn.df", envir = .GlobalEnv),
 m = 1:nrow(warn.df))
```

**Arguments**

- `warn.df`  
  Data frame that contains warning messages. The default is "warn.df", which is the name given to the warnings data frame created by functions in the spsurvey package.

- `m`  
  Vector of indices for warning messages that are to be printed. The default is a vector containing the integers from 1 through the number of rows in `warn.df`, which will print all warning messages in the data frame.

**Value**

Invisible return. Prints warnings.

**Author(s)**

Tom Kincaid <Kincaid.Tom@epa.gov>

---

**wnas**  
*Internal Function: Remove NAs from Data*

**Description**

This function removes missing values from data for which the mode is one of the following: numeric, logical, or character. Data that is not one of those modes will cause the function to terminate with an error message. For numeric data this function removes values that are not finite, i.e., missing value (NA), not a number (NaN), infinity (Inf), and minus infinity (-Inf). For logical data this function removes missing values (NA). For character data the following values are removed: "", "NA", NA (R only), "NaN", "Inf", and "-Inf". For a factor this function removes the following values: NA, NaN, Inf, and -Inf. For a vector this function returns the vector with the indicated values removed. For a data frame this function returns the data frame with rows removed that contain at least one indicated value. For a list with components that are the same length, the list is converted to a data frame. For a list with components that are not the same length, the function prints an error message and terminates. When the process of removing missing values produces an object that no longer contains any elements (vector) or rows (data frame or list), then a NULL object is returned.
write.object

Usage

wnas(data)

Arguments

data Object of type numeric, logical, or character.

Value

Object with NAs removed.

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

write.object Write an Object to a Plot

Description

This function writes the contents of an object to a plot. The object may be either a data frame or a matrix. Values in the input data frame or matrix must be of class numeric, character, or factor.

Usage

write.object(obj, n.digits = 2, r.names = TRUE, c.names = TRUE,
             r.cex = 1, c.cex = 1, miss = "NA")

Arguments

obj The object (either a data frame or a matrix).
n.digits Number of digits after the decimal point for numeric values. The default is 2.
r.names Logical value that indicates whether to print the row names, where TRUE = print the row names and FALSE = do not print the row names. The default is TRUE.
c.names Logical value that indicates whether to print the column names, where TRUE = print the column names and FALSE = do not print the column names. The default is TRUE.
r.cex Character expansion parameter for the row labels. The default is 1.
c.cex Character expansion parameter for the column labels. The default is 1.
miss The missing value code expressed as a character string. The default is "NA".

Value

The function returns NULL. Side effect of the function is to write contents of the input object to a plot.
Other Functions Required

input.format format an input value

Author(s)

Tom Kincaid <Kincaid.Tom@epa.gov>

Examples

```r
z <- rnorm(100)
z.mean <- c(tapply(z, rep(1:4, rep(25,4)), mean), mean(z))
z.sd <- sqrt(c(tapply(z, rep(1:4, rep(25,4)), var), var(z)))
z.upper <- z.mean+1.96*z.sd
z.lower <- z.mean-1.96*z.sd
obj <- data.frame(rbind(z.mean, z.sd, z.upper, z.lower))
dimnames(obj) <- list(c("Mean Estimate", "Standard Deviation", "Lower 95\%
Conf. Bound", "Upper 95\% Conf. Bound"),
(paste("Stratum", 1:4, sep=""),
"AllStrata"))
write.object(obj, n.digits=3, r.cex=0.75)

obj <- data.frame(matrix(round(5 + runif(30), 1), nrow=6))
colnames(obj) <- c("United States", "Russia", "Germany", "Japan", "France")
write.object(obj, n.digits=1, r.names=FALSE)
```
# Index

*Topic **datasets**
  - NE_lakes, 137

*Topic **misc**
  - adjwgt, 6
  - ash1.wgt, 8

*Topic **plot**
  - cont.cdfplot, 85

*Topic **survey**
  - adjwgt, 6
  - albersgeod, 7
  - ash1.wgt, 8
  - attrisk.analysis, 9
  - attrisk.est, 12
  - attrisk.var, 15
  - cat.analysis, 18
  - category.est, 22
  - catvar.prop, 25
  - catvar.size, 27
  - cdf.decon, 29
  - cdf.est, 33
  - cdf.plot, 38
  - cdf.prop, 40
  - cdf.size.prop, 41
  - cdf.size.total, 42
  - cdf.test, 43
  - cdf.test.prop, 48
  - cdf.test.size.prop, 49
  - cdf.total, 50
  - cdfvar.prop, 51
  - cdfvar.size.prop, 53
  - cdfvar.size.total, 55
  - cdfvar.test, 57
  - cdfvar.total, 60
  - cell.wt, 62
  - cellWeight, 63
  - change.analysis, 63
  - change.est, 68
  - changevar.mean, 73
  - changevar.prop, 75
  - changevar.size, 77
  - constructAddr, 80
  - cont.analysis, 80
  - cont.cdfplot, 85
  - cont.cdftest, 87
  - cov.panel.dsgn, 91
  - dcdf.prop, 93
  - dcdf.size.prop, 94
  - dcdf.size.total, 95
  - dcdf.total, 96
  - dcdfvar.prop, 97
  - dcdfvar.size.prop, 99
  - dcdfvar.size.total, 101
  - dcdfvar.total, 104
  - dsgnsum, 108
  - examine, 109
  - framesum, 111
  - grts, 113
  - grtsarea, 116
  - grtslin, 117
  - grtspts, 118
  - insideAreaGridCell, 122
  - insideLinearGridCell, 122
  - irs, 125
  - irsarea, 128
  - irsclin, 128
  - irspts, 129
  - localmean.cov, 130
  - localmean.var, 131
  - make_grid, 134
  - numLevels, 139
  - panel_summary, 140
  - pickFiniteSamplePoints, 142
  - pickGridCells, 142
  - pickSamplePoints, 143
  - plot_powerpaneldesign, 144
  - power.dsgn, 146
  - ranho, 149
  - relrisk.analysis, 151
INDEX

localmean.df, 131
localmean.var, 27, 29, 52, 55, 57, 59, 62, 99, 101, 103, 106, 131, 187
localmean.weight2, 132, 133
Luck_Ash_streams, 133

make_grid, 134
marinus, 135
mdmarea, 127, 135
mdmlin, 127, 136
mdmpts, 127, 137

NE_lakes, 137
NLA_2007, 138
NRSA_2009, 139
numLevels, 139

panel_summary, 93, 140, 146, 148, 161, 164, 166
pickFiniteSamplePoints, 119, 142
pickGridCells, 142
pickSamplePoints, 143
plot, (SpatialDesign-class), 173
plot, SpatialDesign, missing-method (SpatialDesign-class), 173
plot.SpatialDesign (SpatialDesign-class), 173
plot_powerpaneldesign, 93, 141, 144, 148, 161, 164, 166
power.dsgn, 93, 141, 146, 146, 161, 164, 166

ranho, 149
read.dbf, 149
read.sas, 150
read.shape, 151
read.ssd, 150
read.xport, 150
relrisk.analysis, 151
relrisk.est, 154, 155
relrisk.var, 158, 158
revisit_bibd, 93, 141, 146, 148, 160, 164, 166
revisit_dsgn, 93, 141, 146, 148, 161, 162, 166
revisit_rand, 93, 141, 146, 148, 161, 164, 165

sbcframe, 166, 176
sbcstram, 167, 176
SC_estuaries, 168
selectFeatureID, 117, 118, 169
selectframe, 169
selectpts, 170
simex, 32, 171
sorted, 130, 171
sp2shape, 172
SpatialDesign (SpatialDesign-class), 173
SpatialDesign-class, 173
SpatialDesign-method (SpatialDesign-class), 173
SpatialPoints, 116
SpatialPointsDataFrame, 116
spbalance, 175
spsurvey (spsurvey-package), 5
spsurvey-package, 5
spsurvey.analysis, 177
summary, (SpatialDesign-class), 173
summary.SpatialDesign-method (SpatialDesign-class), 173
summary.SpatialDesign (SpatialDesign-class), 173
tile.list, 176
total.est, 72, 84, 182
total.var, 185, 186
uniqueID, 11, 21, 67, 84, 90, 154, 181, 188
UT_ecoregions, 188
vecprint, 21, 25, 32, 36, 47, 67, 72, 84, 90, 107, 108, 112, 121, 154, 158, 181, 185, 189
warnprnt, 190
wnas, 25, 32, 36, 47, 72, 158, 185, 190
write.object, 191