Package ‘sptm’

November 26, 2019

LazyLoad yes
LazyData yes
Version 2019.11-25
Title SemiParametric Transformation Model Methods
Depends R (>= 3.1.3), survival, survey, kyotil
Suggests RUnit, mvtnorm, Matrix, MASS
Imports methods
License GPL (>= 2)
NeedsCompilation yes
Author Youyi Fong [cre], Krisztian Sebestyen [aut], Martin Maechler [ctb]
Maintainer Youyi Fong <youyifong@gmail.com>
Repository CRAN
Date/Publication 2019-11-26 06:30:03 UTC

R topics documented:

enhanced.ipw.coxph .. 2
rstm ... 2
sim.fong .. 3
sim.kong ... 5
stm ... 5

Index 7
enhanced.ipw.coxph
Enhanced Inverse Probability Weighted coxph

Description

enhanced.ipw.coxph is a wrapper function for calling svycoxph of survey package.

Usage

```r
enhanced.ipw.coxph (formula, dat, strata.formula, subset, imputation.formulae, 
verbose=FALSE)
```

Arguments

- `formula`: a formula that gives the model we are interested to fit
- `dat`: a data frame
- `strata.formula`: a formula that gives how two phase sampling is done
- `subset`: a vector of logicals that give which observations are induced in phase 2
- `imputation.formulae`: a list of formulae or a single formula that give models to impute missing data
- `verbose`: Boolean

Value

An object of class svycoxph.

Author(s)

Youyi Fong <yfong@fhcrc.org>

rstm
Simulate failure time from a semiparametric transformation model

Description

Simulate failure time from a semiparametric transformation model

Usage

```r
rstm(n, family = c("PH", "PO", "P2"), linear.predictors, baseline.hazard = 1)
```
Arguments

n integer. Sample size
family string.
linear.predictors vector. It can also be a matrix of 1 column, the dimension will be dropped
baseline.hazard numeric.

Details

Called by sim.fong

Examples

n=100
beta= c(log(.5), log(.7), log(1.2))
t0=2.9999
init = c(log(0.0373*t0),beta)
ft=rstm (n, family="PH", runif(n,1,2), baseline.hazard=0.032)

Description

Simulate data as in Fong and Gilbert (2014).

Usage

sim.fong (n, family=c("PH","PO","P2"), beta,
random.censoring=c("0%","20%","60%"), prevalence=0.1, non.adherence.ratio=0,
design=c("FULL","CC"), auxiliary=c("weak","good","excellent","none"),
seed=NULL, var.S=1, var.W=1)

Arguments

n integer. Sample size
family string. Link functions in the semiparametric transformation model
beta numerical vector. Coefficients of the linear model
random.censoring string. Random censoring in addition to administrative censoring
prevalence numerical. Proportion of cases among z==0 when there is no random censoring and non-adherence ratio is 0
design string. Full cohort or case-cohort (finite population sampling)
auxiliary string.
seed integer. Random generator seed
var.S numeric. Variance of the phase II covariate s
var.W numeric. Variance of the baseline covariate w
non.adherence.ratio ratio of non-adherent

Details

The number of rows is the size of the full cohort. Adherence ratio works as a Bernoulli variable. Prevalence is used to compute baseline hazard function based on some empirical evidence.

Value

If design is FULL, returns a data frame of:

<table>
<thead>
<tr>
<th>ft</th>
<th>failure time</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>censoring time</td>
</tr>
<tr>
<td>X</td>
<td>smaller of the ft and C</td>
</tr>
<tr>
<td>d</td>
<td>event indicator</td>
</tr>
<tr>
<td>z</td>
<td>baseline covariate z</td>
</tr>
<tr>
<td>s</td>
<td>phase II covariate s</td>
</tr>
</tbody>
</table>

If design is CC, returns a data frame of:

<table>
<thead>
<tr>
<th>ft</th>
<th>failure time</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>censoring time</td>
</tr>
<tr>
<td>X</td>
<td>smaller of the ft and C</td>
</tr>
<tr>
<td>d</td>
<td>event indicator</td>
</tr>
<tr>
<td>z</td>
<td>baseline covariate z</td>
</tr>
<tr>
<td>s</td>
<td>phase II covariate s</td>
</tr>
<tr>
<td>w</td>
<td>baseline auxiliary covariate w</td>
</tr>
</tbody>
</table>

Examples

dat = sim.fong(n=10000, family="PH", beta=c(log(.5), log(.7), log(1.2)), design="CC", auxiliary="weak", seed=1, prevalence=0.1, non.adherence.ratio=0, random.censoring="0")
mean(dat$d[dat$z==0])

dat = sim.fong(n=10000, family="PH", beta=c(log(.5), log(.7), log(1.2)), design="CC", auxiliary="weak", seed=1, prevalence=0.1, non.adherence.ratio=0.15, random.censoring="0")
sum(dat$d & !is.na(dat$s))
sum(!dat$d & !is.na(dat$s)) / sum(dat$d & !is.na(dat$s))
dat = sim.fong(n=10000, family="PH", beta=c(log(.5), log(.7), log(1.2)), design="CC", auxiliary="weak", seed=1, prevalence=0.1, non.adherence.ratio=0.15, random.censoring="20")
sum(dat$d & !is.na(dat$s))
sum(!dat$d & !is.na(dat$s)) / sum(dat$d & !is.na(dat$s))

sim.kong

Data Simulation as in Kong et al. (2004)

Description

Simulate data as in Kong et al. (2004).

Usage

```r
sim.kong(gamma, beta, design = "FULL", rho = 0.9, seed = 1, impute = FALSE, ppi)
```

Arguments

- `gamma`
- `beta`
- `design`
- `rho`
- `seed`
- `impute`
- `ppi`

stm

Fit a semiparametric transformation model

Description

Fit a semiparametric transformation model

Usage

```r
stm (formula, dat, strata.formula, phase2.ind=NULL, imputation.formula=NULL,
      family=c("PH","PO","P2"), ee=c("fine2","fine1","kong"), var.est.type=c("1","2"),
      t0, init=NULL, maxit=1000,
      intermediate=FALSE, verbose=FALSE, show.time.elapsed=TRUE)
```

```r
## S3 method for class 'stm'
getFixedEf(object, ...)
```
Arguments

- **formula**: formula. Regression model of interest
- **dat**: data frame.
- **strata.formula**: formula.
- **phase2.ind**: Boolean vector. If TRUE, phase II samples; if FALSE, phase I samples. If NULL, will try to infer from which subjects have phase II variables. Should not be 0/1
- **imputation.formula**: formula. If not NULL, calibration weighting is done
- **family**: string.
- **ee**: string. Type of design matrix used in estimating equation
- **var.est.type**: string. 1: one-stage estimator, 2: two-stage estimator
- **t0**: numeric. Should be close to the end of study time
- **init**: numerical vector.
- **maxit**: integer. Maximum number of iterations in the optimization process
- **intermediate**: Boolean.
- **verbose**: Boolean.
- **show.time.elapsed**: Boolean.
- **object**: an object of type stm
- **...**: additional arguments

Details

Fit stm both with and without calibration. Calls stm.internal.

Value

An object of type stm

Examples

```r
n=100
beta= c(log(.5), log(.7), log(1.2))
t0=2.9999
init = c(log(0.0373*t0), beta)
dat = sim.fong(n, family="PH", beta, random.censoring="0", design="CC", auxiliary="weak", seed=1)

est = stm(formula=Surv(X,d) ~ z + s + z:s, dat, strata.formula=~d, family="PH", t0=t0, init=init, var.est.type="1", verbose=3)
```
Index

enhanced.ipw.coxph, 2
getFixedEf.stm(stm), 5
rstm, 2
sim.fong, 3
sim.kong, 5
stm, 5