Package ‘sra’

February 28, 2020

Type Package
Title Selection Response Analysis
Version 0.1.3
Date 2020-02-28
Author Arnaud Le Rouzic
Maintainer Arnaud Le Rouzic <lerouzic@egce.cnrs-gif.fr>
Imports stats, stats4, graphics
Description Artificial selection through selective breeding is an efficient way to induce changes in traits of interest in experimental populations. This package (sra) provides a set of tools to analyse artificial-selection response datasets. The data typically feature for several generations the average value of a trait in a population, the variance of the trait, the population size and the average value of the parents that were chosen to breed. Sra implements two families of models aiming at describing the dynamics of the genetic architecture of the trait during the selection response. The first family relies on purely descriptive (phenomenological) models, based on an autoregressive framework. The second family provides different mechanistic models, accounting e.g. for inbreeding, mutations, genetic and environmental canalization, or epistasis. The parameters underlying the dynamics of the time series are estimated by maximum likelihood. The sra package thus provides (i) a wrapper for the R functions mle() and optim() aiming at fitting in a convenient way a predetermined set of models, and (ii) some functions to plot and analyze the output of the models.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2020-02-28 22:30:02 UTC

R topics documented:

1. sra package ... 2
2. Phenomenological models 4
3. Mechanistic models ... 7
4. Methods for srafit objects 10
Description

This package (sra) provides a set of tools to analyse artificial-selection response datasets. The data typically feature for several generations the average value of a trait in a population, the variance of the trait, the population size and the average value of the parents that were chosen to breed. sra implements two families of models aiming at describing the dynamics of the genetic architecture of the trait during the selection response. The first family relies on purely descriptive (phenomenological) models, based on an autoregressive framework. The second family provides different mechanistic models, accounting e.g. for inbreeding, mutations, genetic and environmental canalization, or epistasis. The parameters underlying the dynamics of the time series are estimated by maximum likelihood. The sra package thus provides (i) a wrapper for the R functions mle and optim aiming at fitting in a convenient way a predetermined set of models, and (ii) some functions to plot and analyze the output of the models.

Details

Package: sra
Type: Package
Version: 0.1
License: GPL-2

Data set The user must provide (i) a vector containing the mean phenotype for all generations, (ii) a vector containing the phenotypic variance, (iii) a vector for the population sizes, (iv) a vector for the mean phenotype of the breeders, (v) (if available) a vector of the phenotypic variances among breeders. Several time series (e.g., several lines submitted to similar or different selection pressures) can be analyzed.

Phenomenological models The function sraAutoreg fits an autoregressive model to the variance trends, and provides a description of the dynamics of the genetic architecture that is not based on a priori biological mechanisms. The complexity of the model can be adjusted by adding extra autoregressive parameters.

Scaling The relevant scale for genetic architecture models is not necessarily the original measurement scale. Autoregressive models can be run from data e.g., on a log scale, but the package also provides two additional 'scales' that are specific to genetic architecture properties. sraAutoregHerit fits the same models as sraAutoreg, but considering that the dynamics of environmental variance is constrained by the quantity known as "heritability" (ratio between additive and phenotypic variances). sraAutoregEvolv proposes that both genetic and environmental variances are constrained by the mean of the population ("mean-scaled evolvability").
Mechanistic models Classical quantitative-genetics models are also provided. `sraCstvar` implements a "constant-variance" model, `sraDrift` considers the effects of inbreeding on the additive genetic variance, `sraMutation` introduces some mutational variance, `sraCanalization` illustrates the impact of a simple model of genetic and environmental canalization, `sraDirepistasis` considers directional epistasis, and `sraSelection` models the effect of unavoidable natural (stabilizing) selection competing with directional artificial selection.

Plotting and analysis All the models provide an objet of class `srafit` that can be plotted directly (see e.g. `plot.srafit`).

Author(s)

Arnaud Le Rouzic
Maintainer: Arnaud Le Rouzic <a.p.s.lerouzic@bio.uio.no>

References

Examples

```
########### Generating a dummy dataset ###############

m <- c(12,11,12,14,17,19,22,20,19)
v <- c(53,47,97,155,150,102,65,144,179,126)
s <- c(15,14,14,17,21,20,22,25,24,NA)
n <- c(100,80,120,60,100,90,110,80,60,100)

########### Making a sra data set ########################
data <- sraData(phen.mean=m, phen.var=v, phen.sel=s, N=n)

########### Data Analysis ####################

# Autoregressive models
autor <- sraAutoreg(data)

# AIC of the model:
AIC(autor)

# Maximum-likelihood estimates
coef(autor)

autor.herit <- sraAutoregHerit(data)
autor.evolv <- sraAutoregEvolv(data)

# Mechanistic models

# Constant variance
cstvar <- sraCstvar(data)
# Inbreeding
drift <- sraDrift(data)
```
Plotting
plot(drift)
plot(drift, var=TRUE)

2. Phenomenological models

Descriptive models of artificial-selection responses: auto-regressive models

Description

The `sraAutoreg` functions are wrappers for the maximum-likelihood optimization function `mle`. They propose descriptive models for the dynamics of genetic architectures of different complexities based on an auto-regressive framework, additional parameters corresponding to different generation lags. The model can also be fit considering logarithmic, "heritability" and "evolvability" scales.

Usage

```r
sraAutoreg(sradata, active = c(FALSE, TRUE, FALSE, FALSE),
start = NULL, fixed = NULL, negative.k = FALSE,
rand = 0, rep = 1, ...)
sraAutoregLog(sradata, active = c(FALSE, TRUE, FALSE, FALSE),
start = NULL, fixed = NULL, negative.k = FALSE,
rand = 0, rep = 1, ...)
sraAutoregHerit(sradata, active = c(FALSE, TRUE, FALSE, FALSE),
start = NULL, fixed = NULL, negative.k = FALSE,
rand = 0, rep = 1, ...)
sraAutoregEvolv(sradata, active = c(FALSE, TRUE, FALSE, FALSE),
start = NULL, fixed = NULL, negative.k = FALSE,
rand = 0, rep = 1, ...)
```

Arguments

- `sradata`: A data object generated by `sraData`.
- `active`: A vector of four booleans, corresponding to the active lags for both genetic and environmental variances (see Details). By default, only lag 1 is active, corresponding to an exponential change of the variances.
- `start`: A named list of starting values for the convergence algorithm. NULL is allowed and lets the function `sraStartingvalues` calculating a (hopefully) educated guess on the starting values. See Details.
- `fixed`: A named list of the parameters that have to be kept constant. NULL is allowed.
- `negative.k`: Whether or not the k parameters can take negative values. Negative values for k lead to more complex likelihood functions, and the resulting dynamics may display cyclic patterns.
2. Phenomenological models

\text{rand} \quad \text{Amount of randomness for the starting values. Useful in case of convergence issues. Although this variable can take any positive value, reasonable figures should not exceed 0.2.}

\text{rep} \quad \text{Number of convergence attempts. When the likelihood function is complex, which is often the case when the number of parameters exceeds 6 to 8, convergence may often fail or end up on a local maximum. When rep > 1, several attempts are made from different starting values (the amount of randomness for the starting values being set by the rand parameter), and the best fit (highest likelihood) is returned. Setting high values of rep may slow down significantly the convergence process. In practice, 10 to 30 repetitions with rand = 0.1 are generally enough to ensure convergence.}

Additional parameters to be passed to \texttt{mle}, and thus to \texttt{optim}.

Details

Model

The following summarizes the models developed in Le Rouzic et al. 2010.

The mean of the population μ changes according to the Lande equation (Lande & Arnold 1983):

$$
\mu(t + 1) = \mu(t) + VarA(t) \ast \beta(t),
$$

where $\beta(t)$ is the selection gradient at generation t.

The genetic architecture models predict the dynamics of a parameter P as:

$$
P(t + 1) = k_0 + k_1 \ast P(t) + k_2 \ast P(t - 1) + k_3 \ast P(t - 2)
$$

Models with time lags > 3 could be easily implemented, but convergence issues increase with the number of parameters. The first time points are calculated as if $P(t < 1) = P(1)$, e.g. $P(3) = k_0 + k_1 \ast P(2) + k_2 \ast P(1) + k_3 \ast P(1)$.

Each model considers the dynamics of two independent parameters, one related to the additive genetic variance ($VarA$), one related to the residual (environmental) variance $VarE$ (which actually also accounts for all non-additive genetic variance).

The default model \texttt{sraAutoreg} considers directly the dynamics of $VarA$ (parameters: k_A0, k_A1, k_A2, and k_A3) and the dynamics of $VarE$ (parameters k_E0, k_E1, k_E2, and k_E3).

The log scale turns a multiplicative trait into an additive one, and is particularly relevant for ratio-scale traits (i.e. most quantitative traits such as size, fertility, etc). The original data is transformed assuming log-normality, and the likelihood is computed based on the log-normal density function.

The "heritability" model \texttt{sraAutoregHerit} focuses on the dynamics of $h^2 = VarA/(VarA + VarE)$, described by the parameters k_A0, k_A1, k_A2, and k_A3, and considers that k_E0, k_E1, k_E2, and k_E3 describe the dynamics of the phenotypic variance $VarP = VarA + VarE$. Therefore, $VarE$ is constrained both by the dynamics of $VarP$ and the independent dynamics of h^2.

The "evolvability" model considers that k_A0, k_A1, k_A2, and k_A3 describe the dynamics of $IA(t) = VarA(t)/(\mu(t)^2)$, and k_E0, k_E1, k_E2, and k_E3 the dynamics of $IE(t) = VarE(t)/(\mu(t)^2)$.

Shortcut for active and inactive parameters
The user will often have to fit models of different complexity. This can be achieved by manipulating the active vector. `c(FALSE,FALSE,FALSE,FALSE)` corresponds to a constant-variance model (no dynamic parameter), `c(TRUE,FALSE,FALSE,FALSE)` to a case in which only \(kA_0\) and \(kE_0\) are active, `c(TRUE,TRUE,FALSE,FALSE)` to active parameters for lags 0 and 1 only, etc. The total number of parameters in the model will be \(3 + 2 \times x\), where \(x\) is the number of TRUE in the vector active.

To bypass the constrains of this shortcut, it is possible to specify the active and inactive parameters through the list of starting values. A combination such as `active=c(TRUE,FALSE,TRUE,FALSE)` with `start=list(kA1=0,kE3=NA), fixed=list(kE2=1)` will lead to a model with 8 active parameters (\(\mu_0\), \(\log varA_0\), \(\log varE_0\), \(kA_0\), \(kE_0\), \(kA_1\) (which starting value will be 0), \(kA_2\), and \(kE_3\) (which starting value, specified as NA, will be determined via the function `sraStartingValues`). All other parameters are fixed.

Parameterization

The models thus involve up to 11 parameters: three initial values (\(\mu(1)\), \(VarA(1)\) and \(VarE(1)\)), four parameters to describe the dynamics of the additive variance (or relative variable such as \(IA\) or \(h^2\)) (\(kA_0\), \(kA_1\), \(kA_2\), and \(kA_3\)), and four parameters for the environmental variance (or \(IE\) or \(h^2\)): \(kE_0\), \(kE_1\), \(kE_2\), and \(kE_3\). To make numerical convergence more efficient, the following parameterization was implemented: parameters \(\mu_0\), \(\log varA_0\) and \(\log varE_0\) correspond to the estimates of the initial values of, respectively, the population mean, the logarithm of the additive variance, and the logarithm of the environmental variance. The parameters \(kA_0\) and \(kE_0\) are calculated as relative to the initial values of the dynamic variable, e.g. \(\text{relative}kA_0 = k0A/VarA(1)\) (so that \(\text{relative}kA_0\) has the same unit and the same order of magnitude as \(kA_1\), \(kA_2\) and \(kA_3\)).

Value

The functions return objects of class `srafit`, a list containing information about the model, the data, and the parameter estimates. Some standard R functions can be applied to the object, including `AIC` (`AIC.srafit`), `logLik` (`logLik.srafit`), `vcov` (`vcov.srafit`), `coef` (`coef.srafit`) `confint` (`confint.srafit`), and `plot` (`plot.srafit`).

Author(s)

Arnaud Le Rouzic

References

See Also

`sraCstvar`, `sraDrift` and all other mechanistic models, `sraAutoregTsMinuslogL` and `sraAutoregTimeseries` for some details about the internal functions, `AIC.srafit`, `logLik.srafit`, `vcov.srafit`, `coef.srafit`, `confint.srafit`, `plot.srafit` for the analysis of the results.
Examples

Making the example reproducible

########### Generating a dummy dataset ##############

m <- c(12, 11, 12, 14, 18, 17, 19, 22, 20, 19)

v <- c(53, 47, 97, 155, 150, 102, 65, 144, 179, 126)

s <- c(15, 14, 17, 21, 22, 25, 24, NA)

n <- c(100, 80, 120, 60, 100, 90, 110, 80, 60, 100)

########## Making a sra data set ###################

data <- sraData(phen.mean=m, phen.var=v, phen.sel=s, N=n)

################################ Data Analysis ###################

Autoregressive models

autor <- sraAutoreg(data)

Details of the model:

AIC(autor)

coeff(autor)

plot(autor)

plot(autor, var=TRUE)

Alternative scales

autor.log <- sraAutoregLog(data)

autor.herit <- sraAutoregHerit(data)

autor.evolv <- sraAutoregEvolv(data)

Changes in the complexity of the model:

autor0 <- sraAutoreg(data, active=c(TRUE, TRUE, FALSE, FALSE))

In case of convergence issues

autor1 <- sraAutoreg(data, active=c(TRUE, TRUE, TRUE, TRUE), rep=2, rand=0.1)

3. Mechanistic models

Description

The sra functions for mechanistic model are wrappers for the maximum-likelihood optimization routine mle. They implement classical quantitative genetics models, fit them to artificial-selection time series, and provide estimates of e.g. the effective population size, the mutational variance, the strength of genetic / environmental canalization, the directionality and strength of epistasis, etc., given some assumptions about the properties of the genetic architecture.
3. Mechanistic models

Usage

- `sraCstvar(sradata, start=NULL, fixed=NULL, macroE=FALSE, Bulmer=TRUE, ...)`
- `sraDrift(sradata, start=NULL, fixed=NULL, macroE=FALSE, Bulmer=TRUE, ...)`
- `sraMutation(sradata, start=NULL, fixed=NULL, macroE=FALSE, Bulmer=TRUE, ...)`
- `sraCanalization(sradata, start=NULL, fixed=NULL, macroE=FALSE, Bulmer=TRUE, ...)`
- `sraCanalizationOpt(sradata, start=NULL, fixed=NULL, macroE=FALSE, Bulmer=TRUE, ...)`
- `sraSelection(sradata, start=NULL, fixed=NULL, macroE=FALSE, Bulmer=TRUE, ...)`
- `sraDirepistasis(sradata, start=NULL, fixed=NULL, macroE=FALSE, ...)`

Arguments

- **sradata**: A data object generated by `sraData`.
- **start**: A named list of starting values for the convergence algorithm. NA is allowed and lets the function `sraStartingvalues` calculating a (hopefully) educated guess on the starting values. Parameters are described below.
- **fixed**: A named list of the parameters that have to be kept constant. NA is not allowed.
- **macroE**: Whether or not macro-environmental effects (random deviation of the phenotypic mean each generation) should be included. This might have some side effects.
- **Bulmer**: Whether or not the impact of linkage disequilibrium (Bulmer effect) due to selection on variance should be accounted for.
- **...**: Additional parameters to be passed to `mle`, and thus to `optim`.

Details

All functions (except `sraDirepistasis`) rely on the same underlying model, and thus simply provide convenient shortcuts for different sets of parameters to fit.

- **mu0**: the initial phenotype of the population.
- **logvarA0**: the logarithm of the initial additive variance in the population.
- **logvarE0**: the logarithm of the initial environmental variance in the population.
- **logNe**: the logarithm of the effective population size.
- **logn**: the logarithm of the effective number of loci.
- **logvarM**: the logarithm of the mutational variance.
- **kc** and **kg**: the strength of environmental and genetic canalization, respectively.
- **o**: corresponds to the 'optimum' phenotype. When fixed and set to NA, o is identical to mu0. For convenience, the same optimum is used for environmental canalization, genetic canalization and natural stabilizing selection.
- **s**: corresponds to the strength of natural selection.
- **logvarepsilon**: the logarithm of the variance of the epistatic coefficient (e). This parameter is fixed by default, since it is unlikely that realistic data sets contain enough information to estimate it properly.

The dynamic model that is fitted (except of the directional epistasis, detailed in the next paragraph) is:
3. Mechanistic models

\[\mu(t+1) = \mu(t) + VarA(t) \ast (\beta(t) + s\delta(t)) \]

\[VarA(t+1) = VarM + VarA(t) \ast (1 - 1/(2 \ast N_e)) \ast e^{kg \ast (|\delta(t+1)| - |\delta(t)|)} \]

\[VarE(t+1) = VarE(t) \ast e^{kc \ast |\delta(t)|} \]

\[\mu(1), VarA(1) \text{ and } varE(1) \text{ are parameters of the model, } \beta(t) \text{ is the selection gradient, calculated for each generation from the data set, and } \delta(t) = \mu(t) - o. \]

The directional epistasis model has its own setting:

\[\mu(t+1) = \mu(t) + varA(t) \ast \beta(t) \]

\[VarA(t+1) = VarA(t) + 2 \ast \beta(t) \ast \varepsilon \ast VarA(t)^2 \]

\[VarE(t+1) = VarE(1) + (\varepsilon^2 + Var\varepsilon) \ast VarA(t)^2 \]

Where epsilon is a key parameter, representing the directionality of epistasis (Hansen & Wagner 2001, Carter et al. 2005). The properties of the likelihood function when epsilon varies makes numerical convergence tricky, and the function SRAdirepistasis actually performs two model fits: one for positive epsilons (the estimated parameter being logepsilon) and one for negative epsilons (estimating logminusepsilon). The likelihood of both models is then compared, and the best model is returned, providing either logepsilon or logminusepsilon. Although part of the model, the parameter logvarepsilon appeared to affect environmental variance only weakly, and its estimation is problematic in most cases.

These models are extensively described in le Rouzic et al 2010.

Value

The functions return objects of class srafit, a list containing information about the model, the data, and the parameter estimates. Some standard R functions can be applied to the object, including \(\text{AIC}(\text{AIC.srafit}) \), \(\text{logLik}(\text{logLik.srafit}) \), \(\text{vcov}(\text{vcov.srafit}) \), \(\text{coef}(\text{coef.srafit}) \) \(\text{confint}(\text{confint.srafit}) \), and \(\text{plot}(\text{plot.srafit}) \).

Author(s)

Arnaud Le Rouzic

References

4. Methods for srafit objects

See Also

`sraAutoreg`, `sraAutoregHerit` and `sraAutoregEvolv` for phenomenological models, `sraAutoregTsMinuslogL` and `sraAutoregTimeseries` for some details about the internal functions, `AIC.srafit`, `logLik.srafit`, `vcov.srafit`, `coef.srafit`, `confint.srafit`, `plot.srafit` for the analysis of the results.

Examples

```
# Generating a dummy dataset
m <- c(12,11,12,14,18,19,22,20,19)
v <- c(53,47,97,155,150,102,65,144,179,126)
s <- c(15,14,17,21,20,22,25,24,NA)
n <- c(100,80,120,60,100,90,110,80,60,100)

# Making a sra data set
data <- sraData(phen.mean=m, phen.var=v, phen.sel=s, N=n)

# Data Analysis

cstvar <- sraCstvar(data)
drift <- sraDrift(data)
direpi <- sraDirepistasis(data)

# In case of convergence problems, better starting values can be provided:
direpi <- sraDirepistasis(data, start=list(mu0=10, logvarA0=log(20), logvarE0=NA), fixed=list(logNe=log(50)))

plot(cstvar)
AIC(direpi)
```

4. Methods for srafit objects

Overloaded functions for "srafit" objects

Description

The functions return the output expected from the corresponding R functions, applied to an object of class `srafit`.

Usage

```
## S3 method for class 'srafit'
logLik(object, ...)

## S3 method for class 'srafit'
AIC(object, ...)

## S3 method for class 'srafit'
coef(object, ...)
```
S3 method for class 'srafit'
confint(object, ...)

S3 method for class 'srafit'
vcov(object, ...)

Arguments

- **object**: An object of class `srafit`.
- **...**: Any additional parameters to the corresponding functions.

Details

The confidence intervals are calculated from the estimate standard errors, and are thus different (less precise) from what would be calculated from the profile likelihood.

See Also

- `sraAutoreg`, `sraCstvar` and other mechanistic models, `AIC`, `coef`, `logLik`, `confint`, `vcov`.

Examples

```
########### Generating a dummy dataset ################
m <- c(12, 11, 12, 14, 18, 17, 19, 22, 20, 19)
v <- c(53, 47, 97, 155, 150, 102, 65, 144, 179, 126)
s <- c(15, 14, 14, 17, 21, 20, 22, 25, 24, NA)
n <- c(100, 80, 120, 60, 100, 90, 110, 80, 60, 100)

########## Making a sra data set #######################
data <- sraData(phen.mean=m, phen.var=v, phen.sel=s, N=n)

#################### Data Analysis ####################
cstvar <- sraCstvar(data)
AIC(cstvar)
logLik(cstvar)
coef(cstvar)
confint(cstvar)
vcov(cstvar)
```

Description

These functions plot in a nice way the content of objects of class `srafit`, the result of sra model fitting.
Usage

S3 method for class 'srafit'
plot(x, series = levels(x$data$rep), resid = FALSE,
 variance = FALSE, ...)

sraPlotMean(srafit, series=levels(srafit$data$rep), legend=TRUE,
 xlim=NULL, ylim=NULL, xlab=NULL, ylab=NULL, pch=1, ...)
sraPlotMeanResid(srafit, series=levels(srafit$data$rep))
sraPlotVar (srafit, series=levels(srafit$data$rep), legend=TRUE,
 xlim=NULL, ylim=NULL, xlab=NULL, ylab=NULL, pch=1, ...)
sraPlotVarResid (srafit, series=levels(srafit$data$rep))
sraPlotlegend(labels, estimates, AIC=NULL, confint=NULL,
 location="topleft")
sraFormatlegend(names, values, AIC=NULL, ...)

Arguments

- **x**
 - An object of class `srafit`
- **srafit**
 - An object of class `srafit`
- **series**
 - The identifier (rep) of the time series that should be plotted. By default, all series are displayed.
- **resid**
 - Whether or not the residuals (data - model expectation) should be displayed.
- **variance**
 - If TRUE, the phenotypic variance is displayed. If FALSE (default), the phenotypic mean is displayed.
- **legend**
 - If TRUE, a legend with the parameter estimates is displayed.
- **xlim**
 - Same meaning as in `plot`. If NULL, a (hopefully) nice range is calculated.
- **ylim**
 - Same meaning as in `plot`. If NULL, a (hopefully) nice range is calculated.
- **xlab**
 - Same meaning as in `plot`. If NULL, a default label is provided.
- **ylab**
 - Same meaning as in `plot`. If NULL, a default label is provided.
- **pch**
 - Same meaning as in `par`.
- **labels**
 - Formatted labels of the names of the estimates in the legend.
- **estimates**
 - Values of the parameter estimates.
- **AIC**
 - Value of the AIC. If NULL, the AIC is not added to the legend.
- **confint**
 - Confidence intervals of the parameters. If NULL (default), they are not displayed in the legend.
- **location**
 - Location of the legend, corresponding to x in `legend`.
- **names**
 - Names of the parameters (as defined in the models).
- **values**
 - Values of the parameter estimates (as defined in the models).
- **...**
 - For `plot.srafit`, `sraPlotMean`, `sraPlotVar`: Additional parameters for the function `plot`. For `sraPlotlegend`: Additional parameters to `format`.

Details

The only function that should be used by the end user is `plot.srafit`.
6. sraData

Generates an object of class "sradata", necessary to run the models provided by the sra package.

Description

The data necessary to analyse selection response time series are, for each generation, (i) the mean phenotype of the population, (ii) the phenotypic variance, (iii) the mean of the breeders, and (iv) the population size. These data have to be grouped into an object of class "sradata", which can be provided to the sra analysis functions such as sraAutoreg or sraCstvar.

Usage

sraData(phen.mean, phen.var, phen.sel, var.sel=NULL, N=NULL, gen=NULL, rep=NULL)

Arguments

phen.mean The vector of phenotypic means.
phen.var The vector of phenotypic variances.
phen.sel The vector of the mean phenotype of breeders. Can be NA for the last generations.

var.sel The vector of the phenotypic variances if breeders. If not provided (NULL), the vector is estimated assuming truncation selection and normal distribution of phenotypes.

N The vector of population size for each generation (before selection).

gen The generation numbers. Useful when several times series are provided.

rep The repetition identification. Useful when several times series are provided.

Details

If not provided, the default value for N is 100. Incorrect values for N will affect the likelihood value and the maximum-likelihood estimates.

gen will be assumed to vary from 1 to the maximum number of generations by default.

If more than one time series are provided, it is dangerous not to specify gen or rep. rep can be any unique identifier. For instance, for two times series of 3 generations each, gen can be c(1,2,3,1,2,3) and rep can be c("up","up","up","down","down","down").

Value

An object of class sadata.

See Also

sraAutoreg, sraCstvar, and other mechanistic models, sraAutoregTimeseries.

Examples

Generating a dummy dataset

m <- c(12,11,12,14,17,19,22,20,19)
m <- c(53,47,97,155,150,102,65,144,179,126)
s <- c(15,14,17,21,20,22,25,24,NA)
n <- c(100,80,120,60,100,90,110,80,60,100)

data <- sraData(phen.mean=m, phen.var=v, phen.sel=s, N=n)
Index

+Topic **datagen**
 6. sraData, 13
+Topic **hplot**
 5. plot.srafit, 11
+Topic **methods**
 4. Methods for srafit objects, 10
+Topic **models**
 2. Phenomenological models, 4
 3. Mechanistic models, 7
 5. plot.srafit, 11
+Topic **nonlinear**
 2. Phenomenological models, 4
 3. Mechanistic models, 7
+Topic **package**
 1. sra package, 2
+Topic **ts**
 2. Phenomenological models, 4
 3. Mechanistic models, 7
 1. sra package, 2
 2. Phenomenological models, 4
 3. Mechanistic models, 7
 4. Methods for srafit objects, 10
 5. plot.srafit, 11
 6. sraData, 13

AIC, 11
AIC.srafit, 6, 9, 10
AIC.srafit (4. Methods for srafit objects), 10

coef, 11
coef.srafit, 6, 9, 10
coef.srafit (4. Methods for srafit objects), 10

confint, 11
confint.srafit, 6, 9, 10
confint.srafit (4. Methods for srafit objects), 10

format, 12

legend, 12
logLik, 11
logLik.srafit, 6, 9, 10
logLik.srafit (4. Methods for srafit objects), 10

mle, 2, 4, 5, 7, 8

optim, 2, 5, 8

par, 12
plot, 12
plot.srafit, 3, 6, 9, 10
plot.srafit (5. plot.srafit), 11

sra (1. sra package), 2
sra-package (1. sra package), 2
sraAutoreg, 2, 10, 11, 13, 14
sraAutoreg (2. Phenomenological models), 4
sraAutoregEvolv, 2, 10
sraAutoregEvolv (2. Phenomenological models), 4
sraAutoregHerit, 2, 10
sraAutoregHerit (2. Phenomenological models), 4
sraAutoregLog (2. Phenomenological models), 4
sraAutoregTimeseries, 6, 10, 14
sraAutoregTsMinuslogL, 6, 10
sraCanalization, 3
sraCanalization (3. Mechanistic models), 7
sraCanalizationOpt (3. Mechanistic models), 7
sraCstvar, 3, 6, 11, 13, 14
sraCstvar (3. Mechanistic models), 7
sraData, 4, 8
sraData (6. sraData), 13
sraDirepistasis, 3
sraDirepistasis (3. Mechanistic models), 7
sraDrift, 3, 6
sraDrift (3. Mechanistic models), 7
sraFormatlegend (5. plot.srafit), 11
sraMutation, 3
sraMutation (3. Mechanistic models), 7
sraPlotlegend (5. plot.srafit), 11
sraPlotMean (5. plot.srafit), 11
sraPlotMeanResid (5. plot.srafit), 11
sraPlotVar (5. plot.srafit), 11
sraPlotVarResid (5. plot.srafit), 11
sraSelection, 3
sraSelection (3. Mechanistic models), 7
sraStartingvalues, 4, 6, 8
vcov, 11
vcov.srafit, 6, 9, 10
vcov.srafit (4. Methods for srafit objects), 10