Package ‘ssa’

July 24, 2016

Title Simultaneous Signal Analysis

Version 1.2.1

Description Procedures for analyzing simultaneous signals, e.g., features that are simultaneously significant in two different studies. Includes methods for detecting simultaneous signals, for identifying them under false discovery rate control, and for leveraging them to improve prediction.

Depends R (>= 3.2.2)

Imports stats, iterators, parallel

License GPL-3

LazyData true

RoxygenNote 5.0.1

NeedsCompilation yes

Author Dave Zhao [aut, cre]

Maintainer Dave Zhao <sdzhao@illinois.edu>

Repository CRAN

Date/Publication 2016-07-24 01:20:22

R topics documented:

 bi.npmle .. 2
 expit ... 3
 fsdr ... 4
 fsdr_all .. 5
 ldd ... 6
 logit ... 7
 maxtest .. 8
 neb.predict ... 8
 neb.train .. 9
 nebula.bin.predict 11
 nebula.bin.train 12
 nebula.chisq.bin.predict 13
 nebula.chisq.bin.train 14
 nebula.chisq.predict 16
bi.npmle

Bivariate NPMLE

Description

General nonparametric maximum likelihood estimation for a bivariate mixing distribution, implemented using EM. Assumes that the observed data are tuples \((X_1, X_2)\) with marginal likelihood

\[
\int f_1(X_1; u_1) f_2(X_2; u_2) dG(u_1, u_2),
\]

where \(G\) is the mixing distribution to be estimated. Suppose there are \(p\) observed tuples and \(G\) is to be estimated on a grid of \(d_1 \times d_2\) points.

Usage

\[
\text{bi.npmle}(D1, D2, \text{maxit} = 200, \text{tol} = 1e-04, \text{verbose} = \text{FALSE})
\]

Arguments

- \(D1\)
 - p x d1 matrix of conditional density values, where the \(ij\)th entry is \(f_1(X_1; u_1)\).
- \(D2\)
 - p x d2 matrix of conditional density values, where the \(ij\)th entry is \(f_2(X_2; u_2)\).
- \(\text{maxit}\)
 - maximum number of EM iterations
- \(\text{tol}\)
 - error tolerance
- \(\text{verbose}\)
 - TRUE to print the error attained by each EM iteration

Value

- \(g\)
 - d1 x d2 matrix of probability masses at each grid point
Examples

```r
## generate parameters from mixing distribution
p <- 1000;
set.seed(1); theta1 <- rnorm(p); theta2 <- -theta1+rnorm(p);
## generate observed variables
X1 <- rnorm(p,theta1,1); X2 <- rnorm(p,theta2,1);
## set grid points
d1 <- 25; d2 <- 30;
Theta1 <- seq(min(X1),max(X1),length=d1);
Theta2 <- seq(min(X2),max(X2),length=d2);
## calculate D matrices
D1 <- outer(X1,Theta1,function(x,y){
  dnorm(x,y,1);
});
D2 <- outer(X2,Theta2,function(x,y){
  dnorm(x,y,1);
});
## fit npmle
g <- bi.npmle(D1,D2);
contour(Theta1,Theta2,g);
points(theta1,theta2);
```

expit function

Description

Expit function

Usage

`expit(x)`

Arguments

- `x` value between -infinity and infinity

Value

`1/(1+exp(-x))`

Examples

```r
x <- 1;
expit(x);
```
fsdr

False simultaneous discovery rate control

Description

Given two sequences of paired test statistics, returns the optimal rectangular rejection that identifies the largest number of simultaneous signals while controlling the false discovery rate.

Usage

fsdr(T1, T2, alpha, m1 = 10000, m2 = 10000, p1 = TRUE, p2 = TRUE, jitter = NULL)

Arguments

T1, T2 paired vectors of test statistics, both must be the same length; can be p-values or otherwise; if not p-values, must be stochastically larger under the null; must contain only positive values
alpha desired false simultaneous discovery rate
m1, m2 search only up the m1th (m2th) most significant test statistic in T1 (T2); NULL to search through all statistics
p1, p2 TRUE if T1 (T2) is a vector of p-values
jitter NULL if no jittering is desired to resolve ties, otherwise a jitter of runif(0, jitter) will be added to all entries of T1 and T2

Value
two-component vector; the first component is the optimal threshold for T1 and the second is for T2

Examples

```r
## generate paired test statistics
p <- 1e6; ## total number of pairs
X <- c(rep(0, p - 30), rep(1, 10), rep(2, 10), rep(3, 10));
## X=0: no signal in either sequence of tests
## X=1: signal in sequence 1 only
## X=2: signal in sequence 2 only
## X=3: simultaneous signal
set.seed(1);
Z1 <- rnorm(p, 0, 1); Z1[X==1|X==3] <- rnorm(20, 3, 1);
Z2 <- rnorm(p, 0, 1); Z2[X==2|X==3] <- rnorm(20, 4, 1);
## convert to p-value
P1 <- 2*pnorm(abs(Z1));
P2 <- 2*pnorm(abs(Z2));
## run different version of fsdr()
out.pp <- fsdr(P1, P2, alpha=0.05);
```
fsdr_all

False simultaneous discovery rate control – report all thresholds

Description

Given two sequences of paired test statistics, returns all rectangular rejections that identify the largest number of simultaneous signals while also controlling the false discovery rate.

Usage

fsdr_all(T1, T2, alpha, m1 = 5000, m2 = 5000)

Arguments

T1, T2

paired vectors of test statistics, both must be the same length; must be stochastically larger under the alternative than under the null; must contain only positive values

alpha

desired false simultaneous discovery rate

m1, m2

search only up the m1th (m2th) most significant test statistic in T1 (T2)

Value

k x 2 matrix, where k is the number of rectangular regions found; the first column is the threshold for T1 and the second column is for T2

Examples

generate paired test statistics
p <- 10^6; ## total number of pairs
X <- c(rep(0,p-30),rep(1,10),rep(2,10),rep(3,10));
X=0: no signal in either sequence of tests
X=1: signal in sequence 1 only
X=2: signal in sequence 2 only
X=3: simultaneous signal
set.seed(1);
Z1 <- rnorm(p,0,1); Z1[X==1|X==3] <- rnorm(20,3,1);
Z2 <- rnorm(p,0,1); Z2[X==2|X==3] <- rnorm(20,4,1);
ldd

Latent dependency detection

Description

Given two sequences of paired test statistics, tests whether the latent indicators of significance are positively dependent.

Usage

```r
ldd(t1L, tR, m1 = 1000, m2 = 1000, perm = 0, p1 = TRUE, p2 = TRUE, jitter = NULL)
```

Arguments

- **T1, T2**
 - paired vectors of test statistics, both must be the same length; can be p-values or otherwise; if not p-values, must be stochastically larger under the null
- **m1, m2**
 - search only up the m1th (m2th) most significant test statistic in T1 (T2); NULL to search through all statistics
- **perm**
 - the indices of T1 will be randomly permuted perm times; the permutation p-value will be calculated as a fraction of perm+1
- **p1, p2**
 - TRUE if T1 (T2) is a vector of p-values
- **jitter**
 - NULL if no jittering is desired to resolve ties, otherwise a jitter of runif(0, jitter) will be added to all entries of T1 and T2

Value

- **D**
 - value of the test statistic
- **p.perm**
 - permutation p-value
- **p.asymp**
 - asymptotic approximate p-value
Examples

```r
## generate paired test statistics
p <- 10^6; ## total number of pairs
X <- c(rep(0,p-30),rep(1,10),rep(2,10),rep(3,10));
## X=0: no signal in either sequence of tests
## X=1: signal in sequence 1 only
## X=2: signal in sequence 2 only
## X=3: simultaneous signal
set.seed(1);
Z1 <- rnorm(p,0,1); Z1[X==1|X==3] <- rnorm(20,3,1);
Z2 <- rnorm(p,0,1); Z2[X==2|X==3] <- rnorm(20,4,1);
## convert to p-value
P1 <- 2*pnorm(-abs(Z1));
P2 <- 2*pnorm(-abs(Z2));
## run different version of ldd()
out.pp <- ldd(P1,P2,perm=100);
out.zp <- ldd(abs(Z1),P2,p1=FALSE,perm=100);
out.pz <- ldd(P1,abs(Z2),p2=FALSE,perm=100);
out.zz <- ldd(abs(Z1),abs(Z2),p1=FALSE,p2=FALSE,perm=100);
```

logit

Logit function

Description

Logit function

Usage

`logit(x)`

Arguments

- `x` value between 0 and 1

Value

`log(x/(1-x))`

Examples

```r
x <- 0.3;
logit(x);
```
maxtest

Max test for detecting simultaneous signals

Description

Given two sequences of paired test statistics, tests whether any simultaneous signals exist

Usage

maxtest(T1, T2)

Arguments

T1, T2 paired vectors of test statistics, both must be the same length; must be stochastically larger under the alternative than under the null; must contain only positive values

Value

p p-value
M value of max statistic

Examples

generate paired test statistics
p <- 10^6; ## total number of pairs
X <- c(rep(0, p/3), rep(1, 10), rep(2, 10), rep(3, 10));
X=0: no signal in either sequence of tests
X=1: signal in sequence 1 only
X=2: signal in sequence 2 only
X=3: simultaneous signal
set.seed(1);
Z1 <- rnorm(p, 0, 1); Z1[X==1 | X==3] <- rnorm(20, 3, 1);
Z2 <- rnorm(p, 0, 1); Z2[X==2 | X==3] <- rnorm(20, 4, 1);
maxtest(abs(Z1), abs(Z2));

neb.predict

Nonparametric empirical Bayes classifier without annotations; prediction

Description

Nonparametric empirical Bayes classifier without annotations; prediction
Usage

```
neb.predict(newX, neb, P = NULL, cores = 1)
```

Arguments

- `newX`: n x p matrix of additively coded genotypes to be predicted; IMPORTANT: must be coded relative to the same allele as in the cases and controls
- `neb`: output of `neb.train()`
- `P`: prevalence of cases in the testing set; if NULL, P is taken from the train object
- `cores`: number of cores to use

Value

- `ll`: 2 x p matrix of log-likelihoods, first row is from controls
- `score`: risk score
- `class`: predicted class, 0=control, 1=case

Examples

```
p <- 1000; ## number of snps
I <- rep(0,p); I[1:10] <- 1; ## which snps are causal
set.seed(1); pi0 <- runif(p,0,1.5); ## control minor allele frequencies
set.seed(1); ors <- runif(sum(I),-1,1); ## odds ratios
pi1 <- pi0;
pi1[I==1] <- expit(ors+logit(pi0[I==1]));
## training data
n0 <- 100; ## number of controls
X0 <- t(replicate(n0,rbinom(p,2,pi0))); ## controls
n1 <- 50; ## number of cases
X1 <- t(replicate(n1,rbinom(p,2,pi1))); ## cases
neb <- neb.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1,d=c(20,25));
## testing data
newX <- rbind(t(replicate(n0,rbinom(p,2,pi0))),
              t(replicate(n1,rbinom(p,2,pi1))));
newY <- c(rep(0,n0),rep(1,n1));
yhat <- neb.predict(newX,neb);
mean(abs(newY-yhat)$class);
```

neb.train

Nonparametric empirical Bayes classifier without annotations; training

Description

Treats the control and case minor allele frequencies as random tuples from a bivariate prior distribution G and then estimates the optimal Bayesian classifier given G. Nonparametric maximum likelihood is used as a plug-in estimator for G.
Usage

neb.train(pi0, pi1, n0, n1, d = 25, maxit = 200, tol = 1e-04,
verbose = FALSE)

Arguments

pi0, pi1 p x 1 vectors of control and case minor allele frequencies, respectively; IMPORTANT: must be relative to the same allele in both cases and controls
n0, n1 number of controls and number of cases, respectively
d if a single number, G is estimated on a d x d grid; if a two-component vector (d0,d1), G is estimated on a d0 x d1 grid
maxit maximum number of EM iterations
tol error tolerance
verbose TRUE to print the error attained by each EM iteration

Value

Pi0 grid points for estimating the distribution of the control minor allele frequencies
Pi1 grid points for estimating the distribution of the case minor allele frequencies
D0 conditional density matrix for controls
D1 conditional density matrix for cases
g estimated mixing probability mass function
P proportion of cases

Examples

p <- 1000; ## number of snps
I <- rep(0,p); I[1:10] <- 1; ## which snps are causal
set.seed(1); pi0 <- runif(p,0.1,0.5); ## control minor allele frequencies
set.seed(1); ors <- runif(sum(I),-1,1); ## odds ratios
pi1 <- pi0;
pi1[I==1] <- expit(ors*logit(pi0[I==1]));
training data
n0 <- 100; ## number of controls
X0 <- t(replicate(n0,rbinom(p,2,pi0))); ## controls
n1 <- 50; ## number of cases
X1 <- t(replicate(n1,rbinom(p,2,pi1))); ## cases
neb <- neb.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1,d=c(20,25));
contour(neb$Pi0,neb$Pi1,neb$g);
points(pi0,pi1);
Description
Nonparametric empirical Bayes classifier using latent annotations: binary indicators; prediction

Usage
nebula.bin.predict(newX, nebula, P = NULL, cores = 1)

Arguments
- **newX**: n x p matrix of additively coded genotypes to be predicted; IMPORTANT: must be coded relative to the same allele as in the cases and controls
- **nebula**: output of nebula.chisq.train()
- **P**: prevalence of cases in the testing set; if NULL, P is taken from the train object
- **cores**: number of cores to use

Value
- **ll**: 2 x p matrix of log-likelihoods, first row is from controls
- **score**: risk score
- **class**: predicted class, 0=control, 1=case

Examples
```r
p <- 1000; ## number of snps
I <- rep(0, p); I[1:10] <- 1; ## which snps are causal
set.seed(1); pi0 <- runif(p, 0.1, 0.5); ## control minor allele frequencies
set.seed(1); ors <- runif(sum(I), -1, 1); ## odds ratios
pi1 <- pi0;
pi1[I==1] <- expit(ors*logit(pi0[I==1]));
set.seed(1); lam <- rep(0, p); lam[I==1] <- rchisq(sum(I==1), 1, 25); ## ncps

## training data
n0 <- 100; ## number of controls
X0 <- t(replicate(n0, rbinom(p, 2, pi0))); ## controls
n1 <- 50; ## number of cases
X1 <- t(replicate(n1, rbinom(p, 2, pi1))); ## cases
T <- rchisq(p, 1, lam); ## chi-square statistics
nebula <- nebula.bin.train(colMeans(X0)/2, colMeans(X1)/2, n0, n1, I, d=c(20, 25));

## testing data
newX <- rbind(t(replicate(n0, rbinom(p, 2, pi0))),
              t(replicate(n1, rbinom(p, 2, pi1))));
newY <- c(rep(0, n0), rep(1, n1));
yhat <- nebula.bin.predict(newX, nebula);
mean(abs(newY-yhat$class));
```
Description

Assumes that binary indicators for each SNP are available; e.g., indicate whether the SNP is an eQTL. Treats the true control and case minor allele frequencies for SNPs with indicators equal to 0 and 1 as random triples from bivariate prior distributions \(G_0 \) and \(G_1 \), and estimates the optimal Bayesian classifier given \(G_0 \) and \(G_1 \). Nonparametric maximum likelihood is used as a plug-in estimator for \(G_0 \) and \(G_1 \).

Usage

\[
\text{nebula.bin.train}(\pi_0, \pi_1, n_0, n_1, I, d = 25, \text{maxit} = 200, \text{tol} = 1e^{-04}, \text{verbose} = \text{FALSE})
\]

Arguments

- \(\pi_0, \pi_1 \): p x 1 vectors of control and case minor allele frequencies, respectively; IMPORTANT: must be relative to the same allele in both cases and controls
- \(n_0, n_1 \): number of controls and number of cases, respectively
- \(I \): p x 1 vector of binary indicators
- \(d \): if a single number, \(G_0 \) and \(G_1 \) are estimated on \(d \times d \) grids; if a two-component vector \((d_0,d_1) \), \(G_0 \) and \(G_1 \) are estimated on \(d_0 \times d_1 \) grids
- \(\text{maxit} \): maximum number of EM iterations
- \(\text{tol} \): error tolerance
- \(\text{verbose} \): TRUE to print the error attained by each EM iteration

Value

- \(\text{neb0} \): output of \text{neb.train} using only SNPs with \(I==0 \)
- \(\text{neb1} \): output of \text{neb.train} using only SNPs with \(I==1 \)
- \(I \): binary indicator

Examples

```r
p <- 1000; ## number of snps
I <- rep(0,p); I[1:10] <- 1; ## which snps are causal
set.seed(1); pi0 <- runif(p,.0.1,.5); ## control minor allele frequencies
set.seed(1); ors <- runif(sum(I),-1,1); ## odds ratios
pi1 <- pi0;
pi1[I==1] <- expit(ors+logit(pi0[I==1]));
set.seed(1); lam <- rep(0,p); lam[I==1] <- rchisq(sum(I==1),1,25); ## ncps
## training data
n0 <- 100; ## number of controls
```
nebula.chisq.bin.predict

Nonparametric empirical Bayes classifier using latent annotations: chi-square test statistics and binary indicators; prediction

Description

Nonparametric empirical Bayes classifier using latent annotations: chi-square test statistics and binary indicators; prediction

Usage

```r
nebula.chisq.bin.predict(newX, nebula, P = NULL, cores = 1)
```

Arguments

- `newX` n x p matrix of additively coded genotypes to be predicted; IMPORTANT: must be coded relative to the same allele as in the cases and controls
- `nebula` output of `nebula.chisq.train()`
- `P` prevalence of cases in the testing set; if NULL, P is taken from the train object
- `cores` number of cores to use

Value

- `ll` 2 x p matrix of log-likelihoods, first row is from controls
- `score` risk score
- `class` predicted class, 0=control, 1=case
- `ll` 2 x p matrix of log-likelihoods, first row is from controls
- `score` risk score
- `class` predicted class, 0=control, 1=case

```r
X0 <- t(replicate(n0,rbinom(n,pi0))); ## controls
n1 <- 50; ## number of cases
X1 <- t(replicate(n1,rbinom(n,pi1))); ## cases
T <- rchisq(p,lam); ## chi-square statistics
nebula <- nebula.bin.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1,l,d=20,25);
par(mfrow=c(1,2);
contour(nebula$neb0$pi0,nebula$neb0$pi1,apply(nebula$neb0$g,c(1,2),sum));
points(pi0[1==1],pi1[1==1]);
contour(nebula$neb1$pi0,nebula$neb1$pi1,apply(nebula$neb1$g,c(1,2),sum));
points(pi0[1==1],pi1[1==1]);
```
Examples

```r
p <- 1000; ## number of snps
I <- rep(0,p); I[1:10] <- 1; ## which snps are causal
set.seed(1); pi0 <- runif(p,0.1,0.5); ## control minor allele frequencies
set.seed(1); ors <- runif(sum(I),-1,1); ## odds ratios
pi1 <- pi0;
pi1[I==1] <- expit(ors*logit(pi0[I==1]));
set.seed(1); lam[I==1] <- rchisq(sum(I==1),1,25); ## ncps
## training data
n0 <- 100; ## number of controls
X0 <- t(replicate(n0,rbinom(p,2,pi0))); ## controls
n1 <- 50; ## number of cases
X1 <- t(replicate(n1,rbinom(p,2,pi1))); ## cases
T <- rchisq(p,1,1lam); ## chi-square statistics
nebula <- nebula.chisq.bin.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1,T,I,d=c(18,12,14));
## testing data
newX <- rbind(t(replicate(n0,rbinom(p,2,pi0))),
              t(replicate(n1,rbinom(p,2,pi1)));
newY <- c(rep(0,n0),rep(1,n1));
yhat <- nebula.chisq.bin.predict(newX,nebula);
mean(abs(newY-yhat$class));
```

nabula.chisq.bin.train

Nonparametric empirical Bayes classifier using latent annotations: chi-square test statistics and binary indicators; training

Description

Assumes that chi-square test statistics for each SNP are available from another study, and binary indicators for each SNP are available as well. Treats the true control and case minor allele frequencies and the chi-square non-centrality parameters as random triples from a bivariate prior distribution G_0 for SNPs with indicators 0, and from G_1 for SNPs with indicators equal to 1. Estimates the optimal Bayesian classifier given G. Nonparametric maximum likelihood is used as a plug-in estimator for G.

Usage

```r
nebula.chisq.bin.train(pi0, pi1, n0, n1, T, I, d = 25, maxit = 200,
                       tol = 1e-04, verbose = FALSE)
```

Arguments

- `pi0`, `pi1` p x 1 vectors of control and case minor allele frequencies, respectively; IMPORTANT: must be relative to the same allele in both cases and controls
- `n0`, `n1` number of controls and number of cases, respectively
- `T` p x 1 vector of chi-square test statistics
nebula.chisq.bin.train

I p x 1 vector of binary indicators

d if a single number, G0 and G1 are estimated on d x d x d grids; if a three-
component vector (d0,d1,dt), G0 and G1 are estimated on d0 x d1 x dt grids

maxit maximum number of EM iterations

tol error tolerance

verbose TRUE to print the error attained by each EM iteration

Value

nebula0 output of nebula.chisq.train using only SNPs with I==0

nebula1 output of nebula.chisq.train using only SNPs with I==1

I binary indicator

Examples

p <- 1000; ## number of snps
I <- rep(0,p); I[1:10] <- 1; ## which snps are causal
set.seed(1); pi0 <- runif(p,0.1,0.5); ## control minor allele frequencies
set.seed(1); ors <- runif(sum(I),1,1); ## odds ratios
pi1 <- pi0;
pi1[I==1] <- expit(ors*logit(pi0[I==1]));
set.seed(1); lam <- rep(1,p); lam[I==1] <- rchisq(sum(I),1,25); ## ncps
training data
n0 <- 100; ## number of controls
X0 <- t(replicate(n0,rbinom(p,2,pi0))); ## controls
n1 <- 50; ## number of cases
X1 <- t(replicate(n1,rbinom(p,2,pi1))); ## cases
T <- rchisq(p,1,lam); ## chi-square statistics
nebula <- nebula.chisq.bin.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1,T,I,d=c(10,15,20));
par(mfrow=c(2,3));
contour(nebula$nebula0$Pi0,nebula$nebula0$g,c(1,2),sum);
points(pi0[I==0],pi1[I==0]);
contour(nebula$nebula0$Pi0,nebula$nebula0$Lam,apply(nebula$nebula0$g,c(1,3),sum);
points(pi0[I==0],lam[I==0]);
contour(nebula$nebula0$Pi1,nebula$nebula0$Lam,apply(nebula$nebula0$g,c(2,3),sum);
points(pi1[I==1],lam[I==1]);
contour(nebula$nebula1$Pi0,nebula$nebula1$Pi1,apply(nebula$nebula1$g,c(1,2),sum);
points(pi0[I==1],pi1[I==1]);
contour(nebula$nebula1$Pi0,nebula$nebula1$Lam,apply(nebula$nebula1$g,c(1,3),sum);
points(pi0[I==1],lam[I==1]);
contour(nebula$nebula1$Pi1,nebula$nebula1$Lam,apply(nebula$nebula1$g,c(2,3),sum);
points(pi1[I==1],lam[I==1]);
Description
Nonparametric empirical Bayes classifier using latent annotations: chi-square test statistics; prediction

Usage
nebula.chisq.predict(newX, nebula, P = NULL, cores = 1)

Arguments
newX
n x p matrix of additively coded genotypes to be predicted; IMPORTANT: must be coded relative to the same allele as in the cases and controls
nebula
output of nebula.chisq.train()
P
prevalence of cases in the testing set; if NULL, P is taken from the train object
cores
number of cores to use

Value
ll
2 x p matrix of log-likelihoods, first row is from controls
score
risk score
class
predicted class, 0=control, 1=case

Examples
p <- 1000; ## number of snps
I <- rep(0,p); I[1:10] <- 1; ## which snps are causal
set.seed(1); pi0 <- runif(p,0.1,0.5); ## control minor allele frequencies
set.seed(1); ors <- runif(sum(I),-1,1); ## odds ratios
pi1 <- pi0;
pi1[I==1] <- expit(ors+logit(pi0[I==1]));
set.seed(1); lam0 <- rep(0,p); lam[I==1] <- rchisq(sum(I==1),1,50); ## ncps
training data
n0 <- 100; ## number of controls
X0 <- t(replicate(n0,rbinom(p,2,pi0))); ## controls
n1 <- 50; ## number of cases
X1 <- t(replicate(n1,rbinom(p,2,pi1))); ## cases
T <- rchisq(p,1,lam0); ## chi-square statistics
nebula <- nebula.chisq.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1,T,d=c(10,12,14)); ## testing data
newX <- rbind(t(replicate(n0,rbinom(p,2,pi0))),
 t(replicate(n1,rbinom(p,2,pi1))));
newY <- c(rep(0,n0),rep(1,n1));
nebula.chisq.train

\[
\hat{y} \leftarrow \text{nebula.chisq.predict}(\text{newX}, \text{nebula}); \\
\text{mean}(\text{abs}(\text{newY}-\hat{y}\text{class}));
\]

nebula.chisq.train
Nonparametric empirical Bayes classifier using latent annotations: chi-square test statistics; training

Description

Assumes that chi-square test statistics for each SNP are available from another study. Treats the true control and case minor allele frequencies and the chi-square non-centrality parameters as random triples from a bivariate prior distribution \(G\), and estimates the optimal Bayesian classifier given \(G\). Nonparametric maximum likelihood is used as a plug-in estimator for \(G\).

Usage

\[
\text{nebula.chisq.train}(\pi_0, \pi_1, n_0, n_1, T, d = 25, \text{maxit} = 200, \text{tol} = 1e-04, \\
\text{verbose} = \text{FALSE})
\]

Arguments

- `\pi_0, \pi_1` - \(p \times 1\) vectors of control and case minor allele frequencies, respectively; IMPORTANT: must be relative to the same allele in both cases and controls
- `n_0, n_1` - number of controls and number of cases, respectively
- `T` - \(p \times 1\) vector of chi-square test statistics
- `d` - if a single number, \(G\) is estimated on a \(d \times d \times d\) grid; if a three-component vector \((d_0,d_1,d_t)\), \(G\) is estimated on a \(d_0 \times d_1 \times d_t\) grid
- `maxit` - maximum number of EM iterations
- `tol` - error tolerance
- `verbose` - TRUE to print the error attained by each EM iteration

Value

- `\pi_0` - grid points for estimating the distribution of the control minor allele frequencies
- `\pi_1` - grid points for estimating the distribution of the case minor allele frequencies
- `\lambda` - grid points for estimating the distribution of the non-centrality parameter
- `D_0` - conditional density matrix for controls
- `D_1` - conditional density matrix for cases
- `D_T` - conditional density matrix for test statistics
- `g` - estimated mixing probability mass function
- `\rho` - proportion of cases
Examples

```r
p <- 1000; ## number of snps
I <- rep(0,p); I[1:10] <- 1; ## which snps are causal
set.seed(1); pi0 <- runif(p,0,1); ## control minor allele frequencies
set.seed(1); ors <- runif(sum(I),-1,1); ## odds ratios
pi1 <- pi0;
pi1[I==1] <- expit(ors*logit(pi0[I==1]));
set.seed(1); lam[I==1] <- rchisq(sum(I==1),1,25); ## ncps

## training data
n0 <- 100; ## number of controls
X0 <- t(replicate(n0,rbinom(p,2,pi0))); ## controls
n1 <- 50; ## number of cases
X1 <- t(replicate(n1,rbinom(p,2,pi1))); ## cases
T <- rchisq(p,1,lam); ## chi-square statistics
nebula <- nebula.chisq.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1,T,d=c(20,25,30));
par(mfrow=c(1,3));
contour(nebula$Pi0,nebula$Pi1,apply(nebula$g,c(1,2),sum));
points(pi0,pi1);
contour(nebula$Pi0,nebula$Lam,apply(nebula$g,c(1,3),sum));
points(pi0,lam);
contour(nebula$Pi1,nebula$Lam,apply(nebula$g,c(2,3),sum));
points(pi1,lam);
```

nebula.predict

Nonparametric empirical Bayes classifier using latent annotations: wrapper function; predict

Description

Nonparametric empirical Bayes classifier using latent annotations: wrapper function; predict

Usage

```r
nebula.predict(newX, nebula, P = NULL, cores = 1)
```

Arguments

- `newX` n x p matrix of additively coded genotypes to be predicted; IMPORTANT: must be coded relative to the same allele as in the cases and controls
- `nebula` output of `nebula.chisq.train()`
- `P` prevalence of cases in the testing set; if NULL, P is taken from the train object
- `cores` number of cores to use

Value

- `ll` 2 x p matrix of log-likelihoods, first row is from controls
- `score` risk score
- `class` predicted class, 0=control, 1=case
Examples

```r
p <- 1000; ## number of snps
I <- rep(0,p); I[1:10] <- 1; ## which snps are causal
set.seed(1); pi0 <- runif(p,0,1,0.5); ## control minor allele frequencies
set.seed(1); ors <- runif(sum(I),-1,1); ## odds ratios
pi1 <- pi0;
pil[I==1] <- expit(ors*logit(pi0[I==1]));
set.seed(1); lam <- rep(0,p); lam[I==1] <- rchisq(sum(I==1),1,25); ## ncps
## training data
n0 <- 100; ## number of controls
X0 <- t(replicate(n0,rbinom(p,2,pi0))); ## controls
n1 <- 50; ## number of cases
X1 <- t(replicate(n1,rbinom(p,2,pi1))); ## cases
T <- rchisq(p,1,1); ## chi-square statistics
nebula1 <- nebula.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1,d=c(5,7));
nebula2 <- nebula.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1,T=T,d=c(5,7,9));
nebula3 <- nebula.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1,I=I,d=c(5,7));
nebula4 <- nebula.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1,T=TRUE,I=I,d=c(5,7,9));
## testing data
newx <- rbind(t(replicate(n0,rbinom(p,2,pi0))),
              t(replicate(n1,rbinom(p,2,pi1)));
newy <- c(rep(0,n0),rep(1,n1));
Yhat1 <- nebula.predict(newx,nebula1);
Yhat2 <- nebula.predict(newx,nebula2);
Yhat3 <- nebula.predict(newx,nebula3);
Yhat4 <- nebula.predict(newx,nebula4);
mean(abs(newy-Yhat1$class));
mean(abs(newy-Yhat2$class));
mean(abs(newy-Yhat3$class));
mean(abs(newy-Yhat4$class));
```

nebula.train

Nonparametric empirical Bayes classifier using latent annotations: wrapper function; training

Description

Nonparametric empirical Bayes classifier using latent annotations: wrapper function; training

Usage

```r
nebula.train(pi0, pi1, n0, n1, T = NULL, I = NULL, d = 25, maxit = 200,
tol = 1e-04, verbose = FALSE)
```

Arguments

- `pi0, pi1`: p x 1 vectors of control and case minor allele frequencies, respectively; IMPORTANT: must be relative to the same allele in both cases and controls
n0, n1 number of controls and number of cases, respectively
T p x 1 vector of chi-square test statistics
I p x 1 vector of binary indicators
d if a single number, G0 and G1 are estimated on d x d x d grids; if a three-component vector (d0,d1,dt), G0 and G1 are estimated on d0 x d1 x dt grids
maxit maximum number of EM iterations
tol error tolerance
verbose TRUE to print the error attained by each EM iteration

Value

type 1=given neither T nor I; 2=given T but not I; 3=not given T but given I; 4=given both T and I
nebula trained classifier

Examples

p <- 1000; ## number of snps
I <- rep(0,p); I[1:10] <- 1; ## which snps are causal
set.seed(1); pi0 <- runif(p,0.1,0.5); ## control minor allele frequencies
set.seed(1); ors <- runif(sum(I),-1,1); ## odds ratios
pi1 <- pi0;
p11[I==1] <- expit(ors*logit(pi0[I==1]));
set.seed(1); lam <- rep(0,p); lam[I==1] <- rchisq(sum(I==1),1,50); ## ncps
training data
n0 <- 100; ## number of controls
X0 <- t(replicate(n0,rbinom(p,2,pi0))); ## controls
n1 <- 50; ## number of cases
X1 <- t(replicate(n1,rbinom(p,2,pi1))); ## cases
T <- rchisq(p,1,lam); ## chi-square statistics
nebula1 <- nebula.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1,d=c(10,15));
nebula2 <- nebula.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1,T=T,d=c(10,15,20));
nebula3 <- nebula.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1,I=I,d=c(10,15));
nebula4 <- nebula.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1,T=I,I=I,d=c(10,15,20));
Arguments

- **newX**: n x p matrix of additively coded genotypes to be predicted; IMPORTANT: must be coded relative to the same allele as in the cases and controls
- **prs**: output of prs.train()
- **P**: prevalence of cases in the testing set; if NULL, P is taken from the train object

Value

- **score**: risk score
- **class**: predicted class, 0=control, 1=case

Examples

```r
p <- 1000; ## number of snps
I <- rep(0, p); I[1:10] <- 1; ## which snps are causal
set.seed(1); pi0 <- runif(p, 0.1, 0.5); ## control minor allele frequencies
set.seed(1); ors <- runif(sum(I), -1, 1); ## odds ratios
pi1 <- pi0;
pi1[I==1] <- expit(ors+logit(pi0[I==1]));
## training data
n0 <- 100; ## number of controls
X0 <- t(replicate(n0, rbinom(p, 2, pi0))); ## controls
n1 <- 50; ## number of cases
X1 <- t(replicate(n1, rbinom(p, 2, pi1))); ## cases
prs <- prs.train(colMeans(X0)/2, colMeans(X1)/2, n0, n1);
## testing data
newX <- rbind(t(replicate(n0, rbinom(p, 2, pi0)),
              t(replicate(n1, rbinom(p, 2, pi1))));
newY <- c(rep(0, n0), rep(1, n1));
Yhat <- prs.predict(newX, prs);
mean(abs(newY-Yhat$class));
```

prs.predict.cv
Polygenic risk score; prediction for classifier trained with CV

Description

Polygenic risk score; prediction for classifier trained with CV

Usage

```r
prs.predict.cv(newX, prs, P = NULL)
```
Arguments

newX n x p matrix of additively coded genotypes to be predicted; IMPORTANT: must be coded relative to the same allele as in the cases and controls

prs output of prs.train.cv()

P prevalence of cases in the testing set; if NULL, P is taken from the train object

Value

score risk score

class predicted class, 0=control, 1=case

Examples

p <- 1000; ## number of snps
I <- rep(0,p); I[1:10] <- 1; ## which snps are causal
set.seed(1); pi0 <- runif(p,0.1,0.5); ## control minor allele frequencies
set.seed(1); ors <- runif(sum(I),-1,1); ## odds ratios
pi1 <- pi0;
pi1[I==1] <- expit(ors*logit(pi0[I==1]));
training data
n0 <- 100; ## number of controls
X0 <- t(replicate(n0,rbinom(p,2,pi0))); ## controls
n1 <- 50; ## number of cases
X1 <- t(replicate(n1,rbinom(p,2,pi1))); ## cases
prs <- prs.train.cv(X0,X1,K=3,w=1,lambda=100,verbose=TRUE);
testing data
newX <- rbind(t(replicate(n0,rbinom(p,2,pi0))),
t(replicate(n1,rbinom(p,2,pi1)));
newY <- c(rep(0,n0),rep(1,n1));
Yhat <- prs.predict.cv(newX,prs);
mean(abs(newY-Yhat$class));

prs.train

Polygenic risk score (given only allele frequencies); training

Description

Equivalent to maximum likelihood naive Bayes classifier. The discriminant function is

$$\sum_j \hat{\beta}_j X_j,$$

where X_j is the additively coded genotype of SNP j.

Usage

prs.train(pi0, pi1, n0, n1)
Arguments

- \(\pi_0, \pi_1 \): \(p \times 1 \) vectors of control and case minor allele frequencies, respectively; IMPORTANT: must be relative to the same allele in both cases and controls
- \(n_0, n_1 \): number of controls and number of cases, respectively

Value

- \(\pi_0 \): minor allele frequencies in controls
- \(\pi_1 \): minor allele frequencies in cases
- \(p \): proportion of cases

Examples

```r
p <- 1000; ## number of snps
I <- rep(0,p); I[1:10] <- 1; ## which snps are causal
set.seed(1); pi0 <- runif(p,0.1,0.5); ## control minor allele frequencies
set.seed(1); ors <- runif(sum(I),-1,1); ## odds ratios
pi1 <- pi0;
pi1[I==1] <- expit(ors*logit(pi0[I==1]));
n0 <- 100; ## number of controls
X0 <- t(replicate(n0,rbinom(p,2,pi0))); ## controls
n1 <- 50; ## number of cases
X1 <- t(replicate(n1,rbinom(p,2,pi1))); ## cases
prs.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1);
```

Description

Uses CV to select how many SNPs to include. SNPs are ordered by the magnitude of their estimated (ang possibly weighted) allelic log-odds ratio. The discriminant function is

\[
\sum_j \beta_j I \left(\frac{\beta_j}{w_j} > \lambda \right) X_j,
\]

where \(X_j \) is the additively coded genotype of SNP \(j \).

Usage

```r
prs.train.cv(X0, X1, K = 3, w = 1, nlambda = 100, verbose = FALSE)
```
Arguments

\(x_0, x_1 \)
\(n \times p \) vectors of control and case genotypes, additively coded; **IMPORTANT:** coding must be relative to the same allele in both cases and controls

\(K \)
number of folds for CV

\(w \)
\(p \times 1 \) weight vector

\(n \lambda \)
number of thresholds to tune over

\(\text{verbose} \)
if TRUE, report current fold of CV

Value

\(\pi_0 \)
minor allele frequencies in controls of kept SNPs

\(\pi_1 \)
minor allele frequencies in cases of kept SNPs

\(w \)
weight vector for kept SNPs

\(\lambda \)
lambda cutoff

\(p \)
proportion of cases

Examples

\[
p \leftarrow 1000; \# \text{ number of snps}
I \leftarrow \text{rep}(0,p); I[1:10] \leftarrow 1; \# \text{ which snps are causal}
\text{set.seed(1)}; \pi_0 \leftarrow \text{runif(p,0,1,0.5)}; \# \text{ control minor allele frequencies}
\text{set.seed(1)}; \text{ors} \leftarrow \text{runif(sum(I),-1,1)}; \# \text{ odds ratios}
\pi_1 \leftarrow \pi_0;
\pi_1[I==1] \leftarrow \text{expit(ors+logit(pi_0[I==1]))};
n_0 \leftarrow 100; \# \text{ number of controls}
X_0 \leftarrow \text{t(replicate(n_0,rbinom(p,2,pi_0)))}; \# \text{ controls}
n_1 \leftarrow 50; \# \text{ number of cases}
X_1 \leftarrow \text{t(replicate(n_1,rbinom(p,2,pi_1)))}; \# \text{ cases}
\text{prs.train.cv}(X_0,X_1,K=3,w=1,n\lambda=100,\text{verbose}=\text{TRUE});
\]

description

Tri-variate NPMLE

Description

General nonparametric maximum likelihood estimation for a trivariate mixing distribution, implemented using EM. Assumes that the observed data are triples \((X_{1i}, X_{2i}, X_{3i})\) with marginal likelihood

\[
\int f_1(X_{1i}; u_1)f_2(X_{2i}; u_2)f_3(X_{3i}; u_3)dG(u_1, u_2, u_3),
\]

where \(G \) is the mixing distribution to be estimated. Suppose there are \(p \) observed tuples and \(G \) is to be estimated on a grid of \(d_1 \times d_2 \times d_3 \) points.
Usage

tri.npmle(D1, D2, D3, maxit = 200, tol = 1e-04, verbose = FALSE)

Arguments

- **D1**: p \times d1 matrix of conditional density values, where the \(ij \)th entry is \(f_1(X_{1i}; u_{1j}) \).
- **D2**: p \times d2 matrix of conditional density values, where the \(ij \)th entry is \(f_2(X_{2i}; u_{2j}) \).
- **D3**: p \times d3 matrix of conditional density values, where the \(ij \)th entry is \(f_3(X_{3i}; u_{3j}) \).
- **maxit**: maximum number of EM iterations
- **tol**: error tolerance
- **verbose**: TRUE to print the error attained by each EM iteration

Value

g: d1 \times d2 \times d3 array of probability masses at each grid point

Examples

```r
## generate parameters from mixing distribution
p <- 1000;
set.seed(1);
theta1 <- rnorm(p);
theta2 <- -theta1 + rnorm(p);
theta3 <- 0.5*theta1 + theta2 + rnorm(p);
## generate observed variables
X1 <- rnorm(p,theta1,1);
X2 <- rnorm(p,theta2,1);
X3 <- rnorm(p,theta3,1);
## set grid points
d1 <- 15; d2 <- 20; d3 <- 25;
Theta1 <- seq(min(X1),max(X1),length=d1);
Theta2 <- seq(min(X2),max(X2),length=d2);
Theta3 <- seq(min(X3),max(X3),length=d3);
## calculate D matrices
D1 <- outer(X1,Theta1,function(x,y){
    dnorm(x,y,1);
});
D2 <- outer(X2,Theta2,function(x,y){
    dnorm(x,y,1);
});
D3 <- outer(X3,Theta3,function(x,y){
    dnorm(x,y,1);
});
## fit npmle
g <- tri.npmle(D1,D2,D3);
par(mfrow=c(1,3));
contour(Theta1,Theta2,apply(g,c(1,2),sum));
points(theta1,theta2);
contour(Theta1,Theta3,apply(g,c(1,3),sum));
points(theta1,theta3);
```
uni.npmle

Description

General nonparametric maximum likelihood estimation for a univariate mixing distribution, implemented using EM. Assumes that the observed data are X_i with marginal likelihood

$$\int f(X_i; u) dG(u),$$

where G is the mixing distribution to be estimated. Suppose there are p observations and G is to be estimated on a grid of d points.

Usage

`uni.npmle(D, maxit = 200, tol = 1e-04, verbose = FALSE)`

Arguments

- `D` p x d matrix of conditional density values, where the ijth entry is $f(X_i; u_j)$
- `maxit` maximum number of EM iterations
- `tol` error tolerance
- `verbose` TRUE to print the error attained by each EM iteration

Value

g d x 1 vector of probability masses at each grid point

Examples

```r
## generate parameters from mixing distribution
p <- 1000;
set.seed(1); theta <- rnorm(p);
## generate observed variables
X <- rnorm(p,theta,1);
## set grid points
d <- 25;
Theta <- seq(min(X),max(X),length=d);
## calculate D matrix
D <- outer(X,Theta,function(x,y){
    dnorm(x,y,1);
});
## fit npmle
g <- uni.npmle(D);
```
plot(Theta, g/sum(g*(Theta[2] - Theta[1])), type="l");
lines(Theta, dnorm(Theta), col="red");
Index

bi.npmle, 2
expit, 3
fsdr, 4
fsdr_all, 5
ldd, 6
logit, 7
maxtest, 8
neb.predict, 8
neb.train, 9
nebula.bin.predict, 11
nebula.bin.train, 12
nebula.chisq.bin.predict, 13
nebula.chisq.bin.train, 14
nebula.chisq.predict, 16
nebula.chisq.train, 17
nebula.predict, 18
nebula.train, 19
prs.predict, 20
prs.predict.cv, 21
prs.train, 22
prs.train.cv, 23
tri.npmle, 24
uni.npmle, 26