Package ‘ssfa’

January 5, 2022

Type Package
Title Spatial Stochastic Frontier Analysis
Version 1.2
Date 2022-01-05
Author Elisa Fusco, Francesco Vidoli
Maintainer Elisa Fusco <fusco_elisa@libero.it>
Description Spatial Stochastic Frontier Analysis (SSFA) is an original method for controlling the spatial heterogeneity in Stochastic Frontier Analysis (SFA) models, for cross-sectional data, by splitting the inefficiency term into three terms: the first one related to spatial peculiarities of the territory in which each single unit operates, the second one related to the specific production features and the third one representing the error term.
Depends Matrix, maxLik, spdep (>= 1.1-1), sp, spatialreg (>= 1.1-1)
License GPL-3
Suggests R.rsp
VignetteBuilder R.rsp
NeedsCompilation no
Repository CRAN
Date/Publication 2022-01-05 17:30:02 UTC

R topics documented:

ssfa-package ... 2
eff.ssfa .. 2
fitted.ssfa ... 3
Italian_W .. 4
L_hNV .. 5
L_hNV_rho ... 5
plot_fitted ... 6
plot_moran .. 7
residuals.ssfa .. 8
ssfa .. 9
Description

The package implements the Spatial Stochastic Frontier model for cross-sectional data introduced by Fusco and Vidoli (2013). The method controls spatial heterogeneity in SFA models by splitting the inefficiency term into three parts: the first one related to spatial peculiarities of the territory in which each single unit operates, the second one related to the specific production features and the third one representing the error term.

Details

Package:	ssfa
Type:	Package
Version:	1.2
Date:	2022-01-05
License:	GPL-3

Author(s)

Elisa Fusco, Francesco Vidoli
Maintainer: Elisa Fusco <fusco_elisa@libero.it>

References

Description

This function returns the technical efficiency of each producer (without local spatial effects) calculated by the Battese and Coelli (1988) formulation modified by using an autoregressive specification in the inefficiency term u.

Referencing
Usage

eff.ssfa(object, ...)

Arguments

object an object of class ssfa.

... further arguments for methods.

Value

Technical efficiency of each producer (without local spatial effects).

References

See Also

u.ssfa

Examples

library(ssfa)
data(SSFA_example_data)
data(Italian_W)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data, data_w=Italian_W, form = "production", par_rho=TRUE)
eff <- eff.ssfa(ssfa)

fitted.ssfa

SSFA fitted values

Description

This function returns the fitted values of the original data used to estimate the SSFA model.

Usage

S3 method for class 'ssfa'
fitted(object, ...)

SSFA fitted values
Arguments

object an object of class ssfa.
... further arguments for methods.

Examples

library(ssfa)
data(SSFA_example_data)
data(Italian_W)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data, data_w=Italian_W,
 form = "production", par_rho=TRUE)
fitted.ssfa(ssfa)

Italian_W Italian provinces spatial weights matrix example

Description

This is an example dataset that contains the 107 Italian provinces contiguity matrix (year 2008).

Usage

data(Italian_W)

Format

A data frame with 107 x 107 row-standardized distances between observations (Italian provinces).

References

http://www.istat.it/it/archivio/104317#confini.

Examples

data(Italian_W)
L_hNV

Description

This function is used to estimate the parameters of the classical SFA model where half-normal distribution of inefficiency term is assumed.

Usage

```r
L_hNV(p, y = y, X = X, sc = sc)
```

Arguments

- `p` a vector with the parameters to be estimated.
- `y` the dependent variable.
- `X` the model matrix.
- `sc` specifies the form of the frontier model (-1 = cost, 1 = production).

Value

Value of the SFA log likelihood function.

L_hNV_rho

Description

This function is used to estimate the parameters of the SSFA model where half-normal distribution of inefficiency term is assumed.

Usage

```r
L_hNV_rho(p, y = y, X = X, sc = sc, w = w, sigmau2_sar = sigmau2_sar)
```

Arguments

- `p` a vector with the parameters to be estimated.
- `y` the dependent variable.
- `X` the model matrix.
- `sc` specifies the form of the frontier model (-1 = cost, 1 = production).
- `w` the spatial weight matrix.
- `sigmau2_sar` is the variance of the spatial correlated part of the inefficiency term estimated into ssfa.fit function.
Value

Value of the SSFA log likelihood function.

Note

Please note that sigmau2_sar is not a free parameter because it is estimated into the ssfa.fit function.

See Also

ssfa

Description

This function allows to plot the data and the fitted values obtained by SSFA model.

Usage

plot_fitted(x, y, object, xlab, ylab, main, ...)

Arguments

- **x**: the x coordinates of points in the plot.
- **y**: the y coordinates of points in the plot.
- **object**: an object of class ssfa.
- **xlab**: a title for the x axis.
- **ylab**: a title for the y axis.
- **main**: an overall title for the plot.
- **...**: arguments to be passed to methods, such as graphical parameters (see par).

See Also

plot
Examples

```r
library(ssfa)
data(SSFA_example_data)
data(Italian_W)

### SFA and SSFA comparison
sfa <- ssfa(log_y ~ log_x, data = SSFA_example_data, data_w=Italian_W,
            form = "production", par_rho=FALSE)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data, data_w=Italian_W,
            form = "production", par_rho=TRUE)

sfa_fitted <- fitted.ssfa(sfa)
plot_fitted(SSFA_example_data$log_x, SSFA_example_data$log_y, ssfa)
lines(sort(SSFA_example_data$log_x), sfa_fitted[order(SSFA_example_data$log_x)], col="red")
```

Description

This function allows to plot the residuals of the object against their spatially lagged values, augmented by reporting the summary of influence measures for the linear relationship between the data and the lag.

Usage

```r
plot_moran(x, main, xlab, ylab, labels, listw, ...)
```

Arguments

- `x` an object of class `ssfa`.
- `main` an overall title for the plot.
- `xlab` a label for the x axis.
- `ylab` a label for the y axis.
- `labels` character labels for points with high influence measures, if set to FALSE, no labels are plotted for points with large influence.
- `listw` a listw object from `nb2listw` (see `nb2listw`).
- `...` arguments to be passed to methods, such as graphical parameters (see `par`).

References

See Also

moran.plot

Examples

```r
library(ssfa)
data(SSFA_example_data)
data(Italian_W)

### SFA and SSFA comparison ###
sfa <- ssfa(log_y ~ log_x, data = SSFA_example_data, data_w=Italian_W,
           form = "production", par_rho=FALSE)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data, data_w=Italian_W,
           form = "production", par_rho=TRUE)
moran.test(residuals.ssfa(sfa), sfa$list_w)
moran.test(residuals.ssfa(ssfa), ssfa$list_w)
plot_moran(sfa, listw=sfa$list_w)
plot_moran(ssfa, listw=ssfa$list_w)
```

residuals.ssfa SSFA residuals

Description

This function returns the residuals of the fitted SSFA model.

Usage

```r
## S3 method for class 'ssfa'
residuals(object, ...)
```

Arguments

- `object` an object of class `ssfa`.
- `...` further arguments for methods.

Examples

```r
library(ssfa)
data(SSFA_example_data)
data(Italian_W)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data,
            data_w=Italian_W, form = "production", par_rho=TRUE)
residuals.ssfa(ssfa)
```
ssfa

Spatial stochastic frontier estimation

Description

This function estimates the Spatial Stochastic Frontier model introduced by Fusco and Vidoli (2013) in the following form:

\[
\log(y_i) = \log(f(x_i; \beta_i)) + v_i - u_i \\
u_i = \rho \sum_i w_i u_i + \tilde{u}_i
\]

where \(y_i\) are the outputs, \(x_i\) the inputs, \(v_i\) the stochastic noise, \(u_i\) the inefficiency term, \(\rho\) the spatial lag, \(w_i\) a standardized row of the spatial weights matrix and \(\tilde{u}_i\) the stochastic noise of the inefficiency term.

Usage

\[\text{ssfa(formula, data = NULL, data_w = NULL, intercept = TRUE, pars = NULL, par_rho = TRUE, form = "cost")}\]

Arguments

- **formula**: an object of class `formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- **data**: an optional data frame containing the variables in the model.
- **data_w**: a data frame containing the spatial weight matrix.
- **intercept**: logical. If true the model includes intercept.
- **pars**: initial values for the parameters to be estimated.
- **par_rho**: logical. If true the function estimates the Spatial Stochastic Frontier (SSFA) otherwise the classical Stochastic Frontier (SFA).
- **form**: specifies the form of the frontier model as "cost" or "production".

Value

ssfa returns the following objects of class `ssfa`:

- **y**: the dependent variable.
- **x**: the covariates.
- **X**: the model matrix.
- **coef**: the estimated coefficients.
- **sc**: the form of the frontier model estimated (-1 = cost, 1 = production).
- **hess**: a symmetric matrix giving an estimate of the Hessian at the solution found.
- **logLik**: the value of the log likelihood function.
ols

the linear model for the LR-test.

sigmau2

the estimation of sigmau2 (only if par_rho=FALSE): value of inefficiency variance.

sigmau2_dmu

the estimation of sigmau2_dmu (only if par_rho=TRUE): value of the part of the inefficiency variance due to DMU’s specificities.

sigmau2_sar

the estimation of sigmau2_sar: value of the part of the inefficiency variance due to the spatial correlation.

sigmav2

the estimation of sigmav2: value of the stochastic error variance.

sigma2

the estimation of sigma2: value of the total variance.

rho

the estimation of the spatial lag parameter rho.

fun

the distribution of the inefficiency term u.

list_w

a listw object from nb2listw (See nb2listw).

Note

NOTE 1: In this version the distribution of the inefficiency term u is only "half-normal".

NOTE 2: The method used to maximize the log likelihood function is the Newton-Raphson. Please see the R function maxNR of the maxLik package for details (Henningsen and Toomet (2011)).

NOTE 3: Please note that the classical SFA inefficiency variance sigmau2, in the SSFA, is decomposed into sigmau2_dmu and sigmau2_sar, respectively the part of inefficiency variance due to DMU’s specificities and to the spatial dependence, i.e. sigmau2 = sigmau2_dmu + sigmau2_sar and consequently the total variance is given by sigma2 = sigmau2_dmu + sigmau2_sar + sigmav2.

Author(s)

Fusco E. and Vidoli F.

References

Examples

library(ssfa)
data(SSFA_example_data)
data(Italian_W)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data,
SSFA_example_data

```r
data_w=Italian_W, form = "production", par_rho=TRUE)

### SSFA total variance decomposition
sigma2 = ssfa$sigma2_dmu + ssfa$sigma2_sar + ssfa$sigmav2
sigma2
ssfa$sigma2

SSFA_example_data  Example dataset

Description

The dataset contains the simulated data used by Fusco and Vidoli (2013) to test the model. Data Generating Process (DGP) follows the construction criteria proposed by Banker and Natarajan (2008), also used by Johnson and Kuosmanen (2011), with the addition of a strong spatial correlation in the inefficiency term through a spatial lag parameter and a contiguity matrix (107 Italian provinces contiguity matrix, year 2008).

Usage

data(SSFA_example_data)

Format

A data frame with 107 observations (Italian provinces) and 2 variables:

- **DMU** the Decision Making Unit name.
- **log_x** the input vector (already in logarithmic form).
- **log_y** the output vector (already in logarithmic form).

References


Examples

data(SSFA_example_data)
**Description**

The function `print.ssfa` is used to display the values of SFA and SSFA estimated coefficients. In particular:
- for SFA the function displays the Intercept, the regressors beta coefficients, the inefficiency variance $\sigma^2_{u}$, the stochastic error variance $\sigma^2_{v}$ and the total variance $\sigma^2$;
- for SSFA the function displays, in addition, the decomposition of the inefficiency variance into $\sigma^2_{u,dmu}$ and $\sigma^2_{u,sar}$, respectively the part of inefficiency variance due to DMU’s specificities and to the spatial dependence, and finally, the spatial lag parameter $\rho$.

The function `summary.ssfa` is used to display the summary results of SFA and SSFA. In particular:
- for SFA the summary shows the estimation of SFA coefficients (Intercept, beta coefficients, $\sigma^2_{u}$ and $\sigma^2_{v}$) and others useful information as the total variance $\sigma^2$, the inefficiency parameter $\Lambda$ ($\sigma^2_u/\sigma^2_v$), the Moran $I$ statistic, the mean of efficiency, the LR-test and the AIC values;
- for SSFA the summary shows, in addition, the decomposition of the inefficiency variance into $\sigma^2_{u,dmu}$ and $\sigma^2_{u,sar}$ and the spatial lag parameter $\rho$.

**Usage**

```r
S3 method for class 'ssfa'
print(x, ...)
S3 method for class 'ssfa'
summary(object, ...)
```

**Arguments**

- `x`: an object of class `ssfa`.
- `object`: an object of class `ssfa`.
- `...`: further arguments for methods.

**Note**

Please note that the classical SFA inefficiency variance $\sigma^2_u$, in the SSFA, is decomposed into $\sigma^2_{u,dmu}$ and $\sigma^2_{u,sar}$, respectively the part of inefficiency variance due to DMU’s specificities and to the spatial dependence, i.e. $\sigma^2_u = \sigma^2_{u,dmu} + \sigma^2_{u,sar}$ and consequently the total variance is given by $\sigma^2 = \sigma^2_{u,dmu} + \sigma^2_{u,sar} + \sigma^2_v$.

**References**

Examples

```r
library(ssfa)
data(SSFA_example_data)
data(Italian_W)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data,
 data_w=Italian_W, form = "production", par_rho=TRUE)

print(ssfa)
summary(ssfa)
```

<table>
<thead>
<tr>
<th>u.ssfa</th>
<th>SSFA inefficiency</th>
</tr>
</thead>
</table>

Description

This function returns the specific inefficiency of each producer (without local spatial effects) calculated by the Jondrow et al. (JLMS) (1982) formulation modified by using an autoregressive specification in the inefficiency term.

Usage

```r
u.ssfa(object, ...)
```

Arguments

- **object**: an object of class `ssfa`.
- **...**: further arguments for methods.

Value

Inefficiency of each producer (without local spatial effects).

References


See Also

`eff.ssfa`
Examples

```r
library(ssfa)
data(SSFA_example_data)
data(Italian_W)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data,
 data_w=Italian_W, form = "production", par_rho=TRUE)
ineff <- u.ssfa(ssfa)
```
Index

* datasets
  Italian_W, 4
  SSFA_example_data, 11
* package
  ssfa-package, 2
  eff.ssfa, 2, 13
  fitted.ssfa, 3
  Italian_W, 4
  L_hNV, 5
  L_hNV_rho, 5
  maxNR, 10
  moran.plot, 8
  nb2listw, 7, 10
  par, 6, 7
  plot, 6
  plot_fitted, 6
  plot_moran, 7
  print.ssfa(summary), 12
  print.summary.ssfa(summary), 12
  residuals.ssfa, 8
  ssfa, 6, 9
  ssfa-package, 2
  SSFA_example_data, 11
  summary, 12
  summary.ssfa(summary), 12
  u.ssfa, 3, 13