Package ‘ssmn’

August 9, 2016

Type Package

Title Skew Scale Mixtures of Normal Distributions

Version 1.1

Date 2016-08-08

Author Luis Benites Sanchez and Clecio da Silva Ferreira

Maintainer Luis Benites Sanchez <lbenitesanchez@gmail.com>

Imports mnormt, moments, truncdist, sn

Description Performs the EM algorithm for regression models using Skew Scale Mixtures of Normal Distributions.

License GPL (>= 2)

LazyData TRUE

NeedsCompilation no

Repository CRAN

Date/Publication 2016-08-09 02:42:17

R topics documented:

ssmn-package ... 2
ais .. 3
ssmn ... 4
ssmn.est .. 5

Index 6
Description

It provides the density, distribution function, quantile function, random number generator, likelihood function, direct and EM algorithm for Maximum Likelihood estimators for a given sample, all this for regression models using Skew Scale Mixtures of Normal Distributions.

Details

Package: ssmn
Type: Package
Version: 1.0
Date: 2016-08-08
License: GPL (>=2)

Author(s)

Clecio da Silva Ferreira <clecio.ferreira@ufjf.edu.br> and Luis Benites Sanchez <lbenitesanchez@gmail.com>

References

See Also

ssmn

Examples

#See examples linked above.
Description

Data on 102 male and 100 female athletes collected at the Australian Institute of Sport.

Format

This data frame contains the following columns:

- **sex** (0 = male or 1 = female)
- **Ht** height (cm)
- **Wt** weight (kg)
- **LBM** lean body mass
- **RCC** red cell count
- **WCC** white cell count
- **Hc** Hematocrit
- **Hg** Hemoglobin
- **Fe** input description
- **BMI** body mass index, weight/(height)**2
- **SSF** sum of skin folds
- **Bfat** Percent body fat
- **sport** Sport

References

Examples

```r
# Load the data
library(ssmn)
data(ais)
attach(ais)

# Set the response y and covariate x
x1 <- cbind(1,SSF,Ht)
y    <- Bfat

# Fits a Skew Scale Mixtures of Normal Distributions to the data
fit.ssmn <- ssmn(y, x1, family="sn", method="EM", error = 1e-6, maxit=1000, show.envelope=FALSE)
```
ssmn

Skew Scale Mixtures of Normal Distributions

Description

It provides the density, distribution function, quantile function and random number generator for the Skew Scale Mixtures of Normal Distributions.

Usage

```r
dssmn(x, location=0, scale=1, shape=0, nu= 1, gama=1, dp=NULL, family="sn")
pssmn(q, location=0, scale=1, shape=0, nu= 1, gama=1, dp=NULL, family="sn")
qssmn(p, location=0, scale=1, shape=0, nu= 1, gama=1, dp=NULL, family="sn")
rssmn(n, location=0, scale=1, shape=0, nu= 1, gama=1, dp=NULL, family="sn")
```

Arguments

- `x` the response vector of length `n` where `n` is the total of observations.
- `q` vector of quantiles.
- `p` vector of probabilities.
- `n` number of observations.
- `location` parameter of location.
- `scale` parameter of scale.
- `shape` parameter of shape.
- `nu` degrees of freedom for "stn", "ssl" and "sep". For "scn", `nu` parameter is considered as proportion of outliers.
- `gama` factor scale, but only used by family "scn".
- `dp` vector of parameters.
- `family` Distribution family to be used in fitting ("sn", "stn", "ssl", "scn", "sep")
ssmn.est

EM algorithm for Skew Scale Mixtures of Normal Distributions

Description

Performs the EM algorithm and envelope for regression models using Skew Scale Mixtures of Normal Distributions

Usage

```r
ssmn(y, X, family="sn", method="EM", error = 1e-6, maxit=1000, show.envelope=FALSE)
envel(y,X, theta, family="sn", alpha=0.05)
```

Arguments

- **y** the response vector of length \(n \) where \(n \) is the total of observations.
- **X** the matrix of explanatory variables of dimension \(n \times (p + 1) \) where \(n \) is the total of observations and \(p \) is the number of variables.
- **family** its defines the distribution to be used: sn, stn, ssl, scn or sep.
- **method** the method to calculate the maximum likelihood estimates: EM algorithm or direct maximum likelihood estimates via Newton-Raphson.
- **maxit** Maximum number of iterations.
- **error** accuracy the convergence maximum error.
- **show.envelope** TRUE or FALSE. Indicates if envelope graph should be built for the fitted model. Default is FALSE.
- **alpha** 1 - alpha is level of confidence.
- **theta** Estimated parameter vector

Value

The function returns a list with 8 elements detailed as

- **iter** number of iterations.
- **theta** estimated parameter vector.
- **SE** Standard Error estimates.
- **table** Table containing the inference for the estimated parameters.
- **loglik** Log-likelihood value.
- **AIC** Akaike information criterion.
- **BIC** Bayesian information criterion.
- **time** processing time.
Index

∗Topic datasets
 ais, 3
∗Topic package
 ssmn-package, 2

ais, 3

dssmn (ssmn), 4
envel (ssmn.est), 5
pssmn (ssmn), 4
qssmn (ssmn), 4
rssmn (ssmn), 4
ssmn, 2, 4
ssmn (ssmn.est), 5
ssmn-package, 2
ssmn.est, 5