Package ‘sssc’

October 14, 2022

Title Same Species Sample Contamination Detection

Version 1.0.0

Description Imports Variant Calling Format file into R. It can detect whether a sample contains contaminant from the same species. In the first stage of the approach, a change-point detection method is used to identify copy number variations for filtering. Next, features are extracted from the data for a support vector machine model. For log-likelihood calculation, the deviation parameter is estimated by maximum likelihood method. Using a radial basis function kernel support vector machine, the contamination of a sample can be detected.

Depends R (>= 3.4.0)

Imports changepoint, e1071, ggplot2, stats, VGAM

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

NeedsCompilation no

Author Tao Jiang [aut, cre]

Maintainer Tao Jiang <tjiang8@ncsu.edu>

Repository CRAN

Date/Publication 2018-06-15 11:22:54 UTC

R topics documented:

 config_df ... 2
 generate_feature ... 3
 getAlt2 .. 4
 getAnnoRate .. 4
 getAvgLL .. 5
 getLowDepth .. 5
Description

A dataframe containing default parameters.

Usage

`config_df`

Format

A data frame with 12 variables:

- `threshold` Threshold for allele frequency
- `skew` Skewness for allele frequency
- `lower` Lower bound for allele frequency region
- `upper` Upper bound for allele frequency region
- `ldpthred` Threshold to determine low depth
- `hom_mle` Hom MLE of p in Beta-Binomial model
- `het_mle` Het MLE of p in Beta-Binomial model
generate_feature

Hom_thred Threshold between hom and high
High_thred Threshold between high and het
Het_thred Threshold between het and low
hom_rho Hom MLE of rho in Beta-Binomial model
het_rho Het MLE of rho in Beta-Binomial model

Source

Created by Tao Jiang

generate_feature

Feature Generation for Contamination Detection Model

Description

Generates features from each pair of input VCF objects for training contamination detection model.

Usage

\[
generate_feature(file, \text{hom}_p = 0.999, \text{het}_p = 0.5, \text{hom}_rho = 0.005, \\
\text{het}_rho = 0.1, \text{mixture}, \text{homcut} = 0.99, \text{highcut} = 0.7, \text{hetcut} = 0.3)\]

Arguments

- **file** VCF input object
- **hom_p** The initial value for p in Homozygous Beta-Binomial model, default is 0.999
- **het_p** The initial value for p in Heterozygous Beta-Binomial model, default is 0.5
- **hom_rho** The initial value for rho in Homozygous Beta-Binomial model, default is 0.005
- **het_rho** The initial value for rho in Heterozygous Beta-Binomial model, default is 0.1
- **mixture** A vector of whether the sample is contaminated: 0 for pure; 1 for contaminated
- **homcut** Cutoff allele frequency value between hom and high, default is 0.99
- **highcut** Cutoff allele frequency value between high and het, default is 0.7
- **hetcut** Cutoff allele frequency value between het and low, default is 0.3

Value

A data frame with all features for training model of contamination detection
getAlt2
Second alternative allele percentage

Description
Second alternative allele percentage

Usage
getAlt2(f)

Arguments
- **f**
 Input raw file

Value
Percent of the second alternative allele

getAnnoRate
Annotation rate

Description
Annotation rate

Usage
getAnnoRate(f)

Arguments
- **f**
 Input raw file

Value
Percentage of annotation locus
getAvgLL

Description

Calculate average log-likelihood

Usage

getAvgLL(df, hom_mle, het_mle, hom_rho, het_rho)

Arguments

- `df`: Input modified file
- `hom_mle`: Hom MLE of p in Beta-Binomial model, default is 0.9981416 from NA12878_1_L5
- `het_mle`: Het MLE of p in Beta-Binomial model, default is 0.4737897 from NA12878_1_L5
- `hom_rho`: Hom MLE of rho in Beta-Binomial model, default is 0.04570275 from NA12878_1_L5
- `het_rho`: Het MLE of rho in Beta-Binomial model, default is 0.02224098 from NA12878_1_L5

Value

meanLL

getLowDepth

Description

Low depth percentage

Usage

getLowDepth(f, ldpthred)

Arguments

- `f`: Input raw file
- `ldpthred`: Threshold to determine low depth, default is 20

Value

Percentage of low depth
getRatio

Get the ratio of allele frequencies with a region

Description

Get the ratio of allele frequencies with a region

Usage

```r
getRatio(subdf, lower, upper)
```

Arguments

- `subdf`: Dataframe with calculated statistics
- `lower`: Lower bound for allele frequency region
- `upper`: Upper bound for allele frequency region

Value

Ratio of allele frequencies with a region

getSkewness

Get absolute value of skewness

Description

Get absolute value of skewness

Usage

```r
geskewness(subdf)
```

Arguments

- `subdf`: Input dataframe

Value

Absolute value of skewness
getSNVRate

<table>
<thead>
<tr>
<th>getSNVRate</th>
<th>SNV percentage</th>
</tr>
</thead>
</table>

Description

SNV percentage

Usage

getSNVRate(df)

Arguments

- **df**: Input raw file

Value

Percentage of SNV

getVar

<table>
<thead>
<tr>
<th>getVar</th>
<th>Calculate zygosity variable</th>
</tr>
</thead>
</table>

Description

Calculate zygosity variable

Usage

getVar(df, state, hom_mle, het_mle)

Arguments

- **df**: Input modified file
- **state**: Zygosity state
- **hom_mle**: MLE in hom model
- **het_mle**: MLE in het model

Value

Zygosity variable
locateFile

Check input filename

Description

Check input filename

Usage

`locateFile(fn, extension)`

Arguments

- `fn` - Exact full file name of input file, including directory
- `extension` - Expected input file extension: vcf & txt

Value

Valid directory

negll

Negative Log Likelihood

Description

Calculates negative log likelihood for beta binomial distribution.

Usage

`negll(x, size, prob, rho)`

Arguments

- `x` - Depth of alternative allele
- `size` - Total depth
- `prob` - Theoretical probability for heterozygous is 0.5, for homozygous is 0.999
- `rho` - Rho parameter of Beta-Binomial distribution of alternative allele
readGATK

Read in input vcf data in GATK format for Contamination detection

Description

Read in input vcf data in GATK format for Contamination detection

Usage

`readGATK(dr, dbOnly, depCut, thred, content, extnum, keepall)`

Arguments

- **dr**: A valid input object
- **dbOnly**: Use dbSNP as filter, default is FALSE, passed from read_vcf
- **depCut**: Use a threshold for min depth, default is False
- **thred**: Threshold for min depth, default is 20
- **content**: Column names in VCF files
- **extnum**: The column number or numbers to be extracted from vcf, default is 10; 0 for not extracting any columns
- **keepall**: Keep unextracted column in output, default is TRUE, passed from read_vcf

Value

Dataframe from VCF file

readStrelka

Read in input vcf data in strelka2 format for Contamination detection

Description

Read in input vcf data in strelka2 format for Contamination detection

Usage

`readStrelka(dr, dbOnly, depCut, thred, content, extnum, keepall)`

Arguments

- **dr**: A valid input object
- **dbOnly**: Use dbSNP as filter, default is FALSE, passed from read_vcf
- **depCut**: Use a threshold for min depth, default is False
- **thred**: Threshold for min depth, default is 20
- **content**: Column names in VCF files
- **extnum**: The column number or numbers to be extracted from vcf, default is 10; 0 for not extracting any columns
- **keepall**: Keep unextracted column in output, default is TRUE, passed from read_vcf

Value

Dataframe from VCF file
Arguments

`dr` A valid input object
`dbOnly` Use dbSNP as filter, default is FALSE, passed from read_vcf
`depCut` Use a threshold for min depth, default is False
`thred` Threshold for min depth, default is 20
`content` Column names in VCF files
`extnum` The column number or numbers to be extracted from vcf, default is 10; 0 for not extracting any columns
`keepall` Keep unextracted column in output, default is TRUE, passed from read_vcf

Value

Dataframe from VCF file

Description

Read in input vcf data in VarDict format for Contamination detection

Usage

`readVarDict(dr, dbOnly, depCut, thred, content, extnum, keepall)`

Arguments

`dr` A valid input object
`dbOnly` Use dbSNP as filter, default is FALSE, passed from read_vcf
`depCut` Use a threshold for min depth, default is False
`thred` Threshold for min depth, default is 20
`content` Column names in VCF files
`extnum` The column number to be extracted from vcf, default is 10; 0 for not extracting any column
`keepall` Keep unextracted column in output, default is TRUE, passed from read_vcf

Value

Dataframe from VCF file
readVarPROWL

Read in input vcf data in VarPROWL format

Description
Read in input vcf data in VarPROWL format

Usage
readVarPROWL(dr, dbOnly, depCut, thred, content, extnum, keepall)

Arguments

\begin{itemize}
 \item \texttt{dr} \hspace{1cm} A valid input object
 \item \texttt{dbOnly} \hspace{1cm} Use dbSNP as filter, default is FALSE, passed from \texttt{read_vcf}
 \item \texttt{depCut} \hspace{1cm} Use a threshold for min depth, default is False
 \item \texttt{thred} \hspace{1cm} Threshold for min depth, default is 20
 \item \texttt{content} \hspace{1cm} Column names in VCF files
 \item \texttt{extnum} \hspace{1cm} The column number or numbers to be extracted from vcf, default is 10; 0 for not extracting any columns
 \item \texttt{keepall} \hspace{1cm} Keep unextracted column in output, default is TRUE, passed from \texttt{read_vcf}
\end{itemize}

Value
vcf Dataframe from VCF file

read_vcf

VCF Data Input

Description
Reads a file in vcf or vcf.gz file and creates a list containing Content, Meta, VCF and file_sample_name

Usage
read_vcf(fn, vcffor, dbOnly = FALSE, depCut = FALSE, thred = 20, metaline = 200, extnum = 10, keepall = T)
Arguments

fn
Input vcf file name

vcffor
Input vcf data format: 1) GATK; 2) VarPROWL; 3) VarDict; 4) strelka2

dbOnly
Use dbSNP as filter, default is FALSE

depCut
Use a threshold for min depth, default is False

thred
Threshold for min depth, default is 20

metaline
Number of head lines to read in (better to be large enough), the lines will be checked if they contain meta information, default is 200

extnum
The column number to be extracted from vcf, default is 10; 0 for not extracting any column; extnum should be between 10 and total column number

keepall
Keep unextracted column in output, default is TRUE

Value

A list containing (1) Content: a vector showing what is contained; (2) Meta: a data frame containing meta-information of the file; (3) VCF: a data frame, the main part of VCF file; (4) file_sample_name: the file name and sample name, in case when multiple samples exist in one file, file and sample names might be different

Examples

file.name <- system.file("extdata", "example.vcf.gz", package = "sssc")
example <- read_vcf(fn=file.name, vcffor="VarPROWL")

rho_est
Estimate Rho for Alternative Allele Frequency

Description

Estimates Rho parameter in beta binomial distribution for alternative allele frequency

Usage

rho_est(vl)

Arguments

vl
A list of vcf objects from read_vcf function.

Value

A list containing (1) het_rho: Rho parameter of heterozygous location; (2) hom_rho: Rho parameter homozygous location;
Examples

data("vcf_example")
vcf_list <- list()
vcf_list[[1]] <- vcf_example$VCF
res <- rho_est(vl = vcf_list)
res$hetero[[1]]$par
res$hom_rhoo[[1]]$par

rmChangePoint

Remove CNV regions within VCF files by changepoint method

Description

Remove CNV regions within VCF files by changepoint method

Usage

rmChangePoint(vcf, threshold, skew, lower, upper)

Arguments

vcf Input VCF files
threshold Threshold for allele frequency
skew Skewness for allele frequency
lower Lower bound for allele frequency region
upper Upper bound for allele frequency region

Value

VCF object without changepoint region

rmCNVinVCF

Remove CNV regions within VCF files given cnv file

Description

Remove CNV regions within VCF files given cnv file

Usage

rmCNVinVCF(vcf, cnvobj)

Arguments

vcf Input VCF files
cnvobj cnv object
sssc

Same Species Sample Contamination

Value

VCF object without changepoint region

Description

Detects whether a sample is contaminated another sample of its same species. The input file should be in vcf format.

Usage

```r
sssc(file, rmCNV = FALSE, cnvobj = NULL, config = NULL,
class_model = NULL, regression_model = NULL)
```

Arguments

- `file` VCF input object
- `rmCNV` Remove CNV regions, default is FALSE
- `cnvobj` cnv object, default is NULL
- `config` config information of parameters. A default set is generated as part of the model and is included in a model object, which contains
- `class_model` An SVM classification model
- `regression_model` An SVM regression model

Value

A list containing (1) stat: a data frame with all statistics for contamination estimation; (2) result: contamination estimation (Class = 0, pure; Class = 1, contaminated)

Examples

```r
data(vcf_example)
result <- sssc(file = vcf_example)
```
summary_vcf

VCF Data Summary

Description
Summarizes allele frequency information in scatter and density plots

Usage

```r
summary_vcf(vcf, ZG = NULL, CHR = NULL)
```

Arguments

- `vcf` VCF object from read_vcf function
- `ZG` zygosity: (1) null, for both het and hom, default; (2) het; (3) hom
- `CHR` chromosome number: (1) null, all chromosome, default; (2) any specific number

Value
A list containing (1) scatter: allele frequency scatter plot; (2) density: allele frequency density plot

Examples

```r
data("vcf_example")
 tmp <- summary_vcf(vcf = vcf_example, ZG = 'het', CHR = c(1,2))
plot(tmp$scatter)
plot(tmp$density)
```

svm_class_model

Default svm classification model.

Description
An svm object containing default svm classification model.

Usage

```r
svm_class_model
```

Format
An svm object:

Source
Created by Tao Jiang
svm_regression_model
Default svm regression model.

Description
An svm object containing default svm regression model.

Usage

```r
svm_regression_model
```

Format
An svm object:

Source
Created by Tao Jiang

train_ct
Train Contamination Detection Model

Description
Trains two SVM models (classification and regression) to detects whether a sample is contaminated another sample of its same species.

Usage

```r
train_ct(feature)
```

Arguments

- `feature`
Feature list objects from generate_feature()

Value
A list contains two trained svm models: regression & classification
update_vcf

Remove CNV regions within VCF files

Description

Remove CNV regions within VCF files

Usage

```r
update_vcf(rmCNV = FALSE, vcf, cnvobj = NULL, threshold = 0.1, skew = 0.5, lower = 0.45, upper = 0.55)
```

Arguments

- **rmCNV**: Remove CNV regions, default is `FALSE`
- **vcf**: Input VCF files
- **cnvobj**: cnv object, default is `NULL`
- **threshold**: Threshold for allele frequency, default is `0.1`
- **skew**: Skewness for allele frequency, default is `0.5`
- **lower**: Lower bound for allele frequency region, default is `0.45`
- **upper**: Upper bound for allele frequency region, default is `0.55`

Value

VCF file without CNV region

vcf_example
VCF example file.

Description

An example containing a list of 4 data frames.

Usage

```r
vcf_example
```

Format

A list of 4 data frames:

Source

Created by Tao Jiang
Index

* datasets
 - config_df, 2
 - svm_class_model, 15
 - svm_regression_model, 16
 - vcf_example, 17

config_df, 2

generate_feature, 3
getAlt2, 4
getAnnoRate, 4
getAvgLL, 5
getLowDepth, 5
getRatio, 6
getSkewness, 6
getSNVRate, 7
getVar, 7

locateFile, 8

negll, 8

read_vcf, 11
readGATK, 9
readStrelka, 9
readVarDict, 10
readVarPROWL, 11
rho_est, 12
rmChangePoint, 13
rmCNVinVCF, 13

sssc, 14
summary_vcf, 15
svm_class_model, 15
svm_regression_model, 16

train_ct, 16

update_vcf, 17

vcf_example, 17