Package ‘stabiliser’

June 7, 2022

Title Stabilising Variable Selection

Version 1.0.2

Description

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Config/testthat/edition 3

Depends R (>= 3.0.0)

Suggests rmarkdown, testthat (>= 3.0.0), markdown

Imports glmnet, dplyr, bigstep, rsample, tibble, purrr, tidyR, stringr, ggplot2, broom, caret, ncvreg, knitr, Hmisc, expss, lme4, matrixStats, recipes, lmerTest

VignetteBuilder knitr

NeedsCompilation no

Author Robert Hyde [aut, cre] (<https://orcid.org/0000-0002-8705-9405>),
Martin Green [aut],
Eliana Lima [aut]

Maintainer Robert Hyde <robert.hyde4@nottingham.ac.uk>

Repository CRAN

Date/Publication 2022-06-07 12:00:04 UTC

R topics documented:

 simulate_data ... 2
 simulate_data_re ... 2
 simulate_selection_bias ... 3
Description

Simulate a dataset. This can optionally include variables with a given association with the outcome.

Usage

```r
simulate_data(nrows, ncols, n_true = 0, amplitude = 0)
```

Arguments

- `nrows` The number of rows to simulate.
- `ncols` The number of columns to simulate.
- `n_true` The number of variables truly associated with the outcome.
- `amplitude` The strength of association between true variables and the outcome.

Value

A simulated dataset

Description

Simulate a 500x500 dataset with 8 true fixed effects, 492 junk variables and a clustered outcome suitable for a 2 level random effects analysis. The strength of association between true variables and the outcome is governed by the error added at level 1 (defined by parameter `sd_level_1`) and level 2 (`sd_level_2`).

Arguments

- `sd_level_1` Standard deviation of level 1 variables
- `sd_level_2` Standard deviation of level 2 variables

Value

A simulated dataset with a clustered outcome suitable for random effects analysis
simulate_selection_bias

Description

A function to illustrate the risk of selection bias in conventional modelling approaches by simulating a dataset with no information and conducting conventional modelling with prefiltration.

Arguments

- `nrows`: A vector of the number of rows to simulate (i.e., \(c(100, 200) \)).
- `ncols`: A vector of the number of columns to simulate (i.e., \(c(100, 200) \)).
- `p_thresh`: A vector of the p-value threshold to use in univariate pre-filtration (i.e., \(c(0.1, 0.2) \)).

Value

A list including a dataframe of results, a dataframe of the median number of variables selected and a plot illustrating false positive selection.

stabilise

Description

Function to calculate stability of variables' association with an outcome for a given model over a number of bootstrap repeats.

Arguments

- `data`: A dataframe containing an outcome variable to be permuted.
- `outcome`: The outcome as a string (i.e. "y").
- `boot_reps`: The number of bootstrap samples. Default is "auto" which selects number based on dataframe size.
- `permutations`: The number of times to be permuted per repeat. Default is "auto" which selects number based on dataframe size.
- `perm_boot_reps`: The number of times to repeat each set of permutations. Default is 20.
- `models`: The models to select for stabilising. Default is elastic net (models = c("enet")), other available models include "lasso", "mbic", "mcp".
- `type`: The type of model, either "linear" or "logistic"
- `quantile`: The quantile of null stabilities to use as a threshold.
- `normalise`: Normalise numeric variables (TRUE/FALSE)
- `dummy`: Create dummy variables for factors/characters (TRUE/FALSE)
- `impute`: Impute missing data (TRUE/FALSE)
Value
A list for each model selected. Each list contains a dataframe of variable stabilities, a numeric permutation threshold, and a dataframe of coefficients for both bootstrap and permutation.

stabiliser_example

Description
A simulated dataset

Usage
stabiliser_example

Format
A data frame with 50 rows and 100 variables.
The stabiliser_example dataset is a simulated example with the following properties: 1 simulated outcome variable: y 4 variables simulated to be associated with y: causal1, causal2... 95 variables simulated to have no association with y: junk1, junk2...

stabilise_re

Description
Function to calculate stability of variables’ association with an outcome for a given model over a number of bootstrap repeats using clustered data.

Arguments

data
A dataframe containing an outcome variable to be permuted.

outcome
The outcome as a string (i.e. "y").

level_2_id
The variable name determining level 2 status as a string (i.e., "level_2_column_name").

n_top_filter
The number of variables to filter for final model (Default = 50).

boot_reps
The number of bootstrap samples. Default is "auto" which selects number based on dataframe size.

permutations
The number of times to be permuted per repeat. Default is "auto" which selects number based on dataframe size.

perm_boot_reps
The number of times to repeat each set of permutations. Default is 20.

normalise
Normalise numeric variables (TRUE/FALSE)

dummy
Create dummy variables for factors/characters (TRUE/FALSE)

impute
Impute missing data (TRUE/FALSE)
stab_plot

Value
A list containing a table of variable stabilities and a numeric permutation threshold.

Description
Plot from stability object

Arguments
- `stabiliser_outcome`
 Outcome from stabilise() or triangulate() function.

Value
A ggplot object.

triangulate

Description
Triangulate multiple models using a stability object

Arguments
- `object`
 An object generated through the stabilise() function.
- `quantile`
 The quantile of null stabilities to use as a threshold.

Value
A combined list of model results including a dataframe of stability results for variables and a numeric permutation threshold.
Index

* datasets
 stabiliser_example, 4

simulate_data, 2
simulate_data_re, 2
simulate_selection_bias, 3
stab_plot, 5
stabilise, 3
stabilise_re, 4
stabiliser_example, 4

triangulate, 5