Package ‘stable’

October 14, 2022

Version 1.1.6

Title Probability Functions and Generalized Regression Models for Stable Distributions

Depends R (>= 1.4), rmutil

Description Density, distribution, quantile and hazard functions of a stable variate; generalized regression models for the parameters of a stable distribution. See the README for how to make equivalent calls to those of ‘stabledist’ (i.e., Nolan’s 0-parameterization and 1-parameterization as detailed in Nolan (2020)).

See github for Lambert and Lindsey 1999 JRSS-C journal article, which details the parameterization of the Buck (1995) stable. See the Details section of the ‘?dstable’ help file for context and references.

License GPL (>= 2)

URL https://www.commanster.eu/rcode.html

Encoding UTF-8

LazyLoad true

RoxygenNote 7.1.2

NeedsCompilation yes

Author Bruce Swihart [cre, aut],
Jim Lindsey [aut] (Jim created this package, Bruce is maintaining the CRAN version),
Philippe Lambert [aut]

Maintainer Bruce Swihart <bruce.swihart@gmail.com>

Repository CRAN

Date/Publication 2022-03-02 00:50:02 UTC
The functions provide information about the stable distribution with the location, the dispersion, the skewness and the tail thickness respectively modelled by the parameters `loc`, `disp`, `skew` and `tail`. These differ from those of 'stabledist' (i.e., Nolan’s 0-parameterization and 1-parameterization as detailed in Nolan (2020)). See the README for how to make equivalent calls to those of 'stabledist' (i.e., Nolan’s 0-parameterization and 1-parameterization as detailed in Nolan (2020)).

Usage

```r
dstable(x, loc = 0, disp = 1/sqrt(2), skew = 0, tail = 2, npt = 501, up = 10, eps = 1e-06, integration = "Romberg")
pstable(q, loc = 0, disp = 1/sqrt(2), skew = 0, tail = 2, eps = 1e-06)
qstable(p, loc = 0, disp = 1/sqrt(2), skew = 0, tail = 2, eps = 1e-06)
rstable(n = 1, loc = 0, disp = 1/sqrt(2), skew = 0, tail = 2, eps = 1e-06)
hstable(x, loc = 0, disp = 1/sqrt(2), skew = 0, tail = 2, eps = 1e-06)
```

Arguments

- `x, q`: vector of quantiles.
- `loc`: vector of (real) location parameters.
dstable

\(\text{disp} \) vector of (positive) dispersion parameters.
\(\text{skew} \) vector of skewness parameters (in \([-1,1]\)).
\(\text{tail} \) vector of parameters (in \([0,2]\)) related to the tail thickness.
\(\text{npt, up, integration} \)

As detailed herein – only available when using dstable.
\(\text{eps} \) scalar giving the required precision in computation.
\(\text{p} \) vector of probabilities.
\(\text{n} \) number of observations.

Details

dstable, pstable, qstable and hstable compute the density, the distribution, the quantile and the hazard functions of a stable variate. rstable generates random deviates with the prescribed stable distribution.
loc is a location parameter in the same way as the mean in the normal distribution: it can take any real value.
disp is a dispersion parameter in the same way as the standard deviation in the normal distribution: it can take any positive value.
skew is a skewness parameter: it can take any value in \((-1,1)\). The distribution is right-skewed, symmetric and left-skewed when skew is negative, null or positive respectively.
tail is a tail parameter (often named the characteristic exponent): it can take any value in \((0,2)\) (with \(\text{tail}=1\) and \(\text{tail}=2\) yielding the Cauchy and the normal distributions respectively when symmetry holds).

If loc, disp, skew, or tail are not specified they assume the default values of 0, \(1/\sqrt{2}\), 0 and 2 respectively. This corresponds to a normal variate with mean = 0 and variance = \(1/2\times\text{disp}^2\).

The stable characteristic function is given by

\[greekphi(t) = i\text{loc} - \text{disp}|t|^\text{tail}[1 + iskew\text{sign}(t)greekomega(t,\text{tail})] \]

where

\[greekomega(t,\text{tail}) = \frac{2}{\pi} \text{LOG}(|t|) \]

when \(\text{tail}=1\), and

\[greekomega(t,\text{tail}) = \tan\left(\frac{\pi\text{tail}}{2}\right) \]

otherwise.

The characteristic function is inverted using Fourier’s transform to obtain the corresponding stable density. This inversion requires the numerical evaluation of an integral from 0 to \(\infty\). Two algorithms are proposed for this. The default is Romberg’s method (integration="Romberg") which is used to evaluate the integral with an error bounded by eps. The alternative method is Simpson’s integration (integration="Simpson"): it approximates the integral from 0 to \(\infty\) by an integral from 0 to up with npt points subdividing \((0, up)\). These three extra arguments – integration, up and npt – are only available when using dstable. The other functions are all based on Romberg’s algorithm.

[Swihart 2022 update:]
See the README for how to make equivalent calls to those of 'stabledist' (i.e., Nolan’s 0-parameterization and 1-parameterization as detailed in Nolan (2020)). See github for Lambert and Lindsey 1999 JRSS-C journal article, which details the parameterization of the Buck (1995) stable distribution which allowed a Fourier inversion to arrive at a form similar to but not exactly the g_d function as detailed in Nolan (2020), Abdul-Hamid and Nolan (1998) and Nolan (1997). The Nolan (2020) reference is a textbook that provides an accessible and comprehensive summary of stable distributions in the 25 years or so since the core of this R package was made and put on CRAN. The Buck (1995) parameterization most closely resembles the Zolotarev B parameterization outlined in Definition 3.6 on page 93 of Nolan (2020) – except that Buck (1995) did not allow the scale parameter to multiply with the location parameter. This explains why the ‘Zolotarev B’ entry in Table 3.1 on page 97 of Nolan (2020) has the location parameter being multiplied by the scale parameter whereas in converting the Lindsey and Lambert (1999) to Nolan 1-parameterization the location parameter stays the same.

To be clear, stable::dstable and stable::pstable are evaluated by numerically integrating the inverse Fourier transform. The code works reasonably for small and moderate values of x, but will have numerical issues in some cases (such as values from stable::pstable being greater than 1 or not being monotonic). The arguments npt, up, integration, and eps can be adjusted to improve accuracy at the cost of speed, but will still have limitations. Functions that better handle these problems are available in other packages (such as stabledist and stable) that use an alternative method (as detailed in Nolan 1997) distinct from directly numerically integrating the Fourier inverse transform. See last example in the README.

Functions

- dstable: density
- pstable: cdf
- qstable: quantiles
- rstable: random deviates
- hstable: hazard

Author(s)

Philippe Lambert (Catholic University of Louvain, Belgium, <phlambert@stat.ucl.ac.be>)
Jim Lindsey

References

See Also

`stablereg` to fit generalized nonlinear regression models for the stable distribution parameters. R packages stabledist and libstableR provide [dpqr] functions.

Examples

```r
par(mfrow=c(2,2))
x <- seq(-5,5,by=0.1)

# Influence of loc (location)
plot(x,dstable(x,loc=-2,disp=1/sqrt(2),skew=-0.8,tail=1.5),
     type="l",ylab="",main="Varying LOCation")
lines(x,dstable(x,loc=0,disp=1/sqrt(2),skew=-0.8,tail=1.5))
lines(x,dstable(x,loc=2,disp=1/sqrt(2),skew=-0.8,tail=1.5))

# Influence of disp (dispersion)
plot(x,dstable(x,loc=0,disp=0.5,skew=0,tail=1.5),
     type="l",ylab="",main="Varying DISPersion")
lines(x,dstable(x,loc=0,disp=1/sqrt(2),skew=0,tail=1.5))
lines(x,dstable(x,loc=0,disp=0.9,skew=0,tail=1.5))

# Influence of skew (skewness)
plot(x,dstable(x,loc=0,disp=1/sqrt(2),skew=-0.8,tail=1.5),
     type="l",ylab="",main="Varying SKEWness")
lines(x,dstable(x,loc=0,disp=1/sqrt(2),skew=0,tail=1.5))
lines(x,dstable(x,loc=0,disp=1/sqrt(2),skew=0.8,tail=1.5))

# Influence of tail (tail)
plot(x,dstable(x,loc=0,disp=1/sqrt(2),skew=0,tail=0.8),
     type="l",ylab="",main="Varying TAIL thickness")
lines(x,dstable(x,loc=0,disp=1/sqrt(2),skew=0,tail=1.5))
lines(x,dstable(x,loc=0,disp=1/sqrt(2),skew=0,tail=2))
```

Description

Link and inverse functions for use in stablereg

Usage

- `loc_g(x)`
- `loc_h(x)`
- `disp_g(x)`
Parameter Conversion

\[
\begin{align*}
\text{disp}_h(x) \\
\text{skew}_g(x) \\
\text{skew}_h(x) \\
\text{tail}_g(x) \\
\text{tail}_h(x)
\end{align*}
\]

Arguments

\[
x \quad \text{the function argument}
\]

Description

Parameter Conversion is an easy conversion of parameters between stabledist (Nolan 1-parameterization) and stable (Lambert and Lindsey 1999) distributions.

\textit{sd2s} has stabledist parameter (Nolan 1-parameterization) inputs and returns stable parameters as put forth in Lambert and Lindsey (1999) and used in this package. \textit{s2sd} has stable parameter (Lambert and Lindsey (1999)) inputs and returns stabledist parameters (Nolan 1-parameterization). See examples and the readme. There’s also more context and references in ‘?stable::dstable’.

Usage

\[
\begin{align*}
\text{sd2s}(\text{alpha}, \text{beta}, \text{gamma}, \text{delta}, \text{pm} = 1) \\
\text{s2sd}(\text{tail}, \text{skew}, \text{disp}, \text{loc}, \text{pm} = 1)
\end{align*}
\]

Arguments

\[
\begin{align*}
\text{alpha} & \quad \text{the stabledist 'alpha'} \\
\text{beta} & \quad \text{the stabledist 'beta'} \\
\text{gamma} & \quad \text{the stabledist 'gamma'} \\
\text{delta} & \quad \text{the stabledist 'delta'} \\
\text{pm} & \quad \text{default 1; currently only value supported. the stabledist parameterization 'pm'} \\
\text{tail} & \quad \text{the stable 'tail' analogous to 'alpha'} \\
\text{skew} & \quad \text{the stable 'skew' analogous to 'beta'} \\
\text{disp} & \quad \text{the stable 'disp' analogous to 'gamma'} \\
\text{loc} & \quad \text{the stable 'loc' analogous to 'delta'}
\end{align*}
\]
Parameter_Conversion_Nolan_pm1_pm0

Details

[Swihart 2022 update:] See the examples and README for how to make equivalent calls to those of 'stabledist' (i.e., Nolan’s 1-parameterization as detailed in Nolan (2020)) using these functions and this package. See github for Lamb and Lindsey 1999 JRSS-C journal article, which details the parameterization of the Buck (1995) stable distribution which allowed a Fourier inversion to arrive at a form of the g_d function as detailed in Nolan (2020). The Buck (1995) parameterization most closely resembles the Zolotarev B parameterization outlined in Definition 3.6 on page 93 of Nolan (2020) – except that Buck (1995) did not allow the scale parameter to multiply with the location parameter. This explains why the ‘Zolotarev B’ entry in Table 3.1 on page 97 of Nolan (2020) has the location parameter being multiplied by the scale parameter whereas in converting the Lindsey and Lambert (1999) to Nolan 1-parameterization the location parameter stays the same.

Value

sd2s returns stable parameters as put forth in Lambert and Lindsey (1999) and used in this package.
s2sd returns stabledist parameters (Nolan 1-parameterization).

References

Examples

Not run:
q <- -1
nolan pm=1 parameters:
a <- 1.3
b <- -0.4
c <- 2
d <- 0.75
s <- sd2s(alpha=a, beta=b, gamma=c, delta=d)
stable::pstable(q, tail = s$tail, skew=s$skew, disp = s$disp, loc = s$loc)
stabledist::pstable(q, alpha=a, beta=b , gamma=c , delta=d, pm=1)
sd <- s2sd(tail = s$tail, skew=s$skew, disp = s$disp, loc = s$loc)
stabledist::pstable(q, alpha=sd$alpha, beta=sd$beta , gamma=sd$gamma , delta=sd$delta, pm=1)
End(Not run)

Parameter_Conversion_Nolan_pm1_pm0

Easy conversion of parameters between stabledist Nolan 1-parameterization and 0-parameterization

Description

pm0_to_pm1 has stabledist parameter inputs for pm=0 and returns pm=1 equivalent parameterization. pm1_to_pm0 has stabledist parameter inputs for pm=1 and returns pm=0 equivalent parameterization.
Usage

\texttt{pm0_to_pm1(a0, b0, c0, d0)}

\texttt{pm1_to_pm0(a1, b1, c1, d1)}

Arguments

\begin{itemize}
 \item {\texttt{a0}} the stabledist 'alpha' for pm=0 in 'stabledist'
 \item {\texttt{b0}} the stabledist 'beta' for pm=0 in 'stabledist'
 \item {\texttt{c0}} the stabledist 'gamma' for pm=0 in 'stabledist'
 \item {\texttt{d0}} the stabledist 'delta' for pm=0 in 'stabledist'
 \item {\texttt{a1}} the stabledist 'alpha' for pm=1 in 'stabledist'
 \item {\texttt{b1}} the stabledist 'beta' for pm=1 in 'stabledist'
 \item {\texttt{c1}} the stabledist 'gamma' for pm=1 in 'stabledist'
 \item {\texttt{d1}} the stabledist 'delta' for pm=1 in 'stabledist'
\end{itemize}

Details

See table Table 3.1 on page 97 of Nolan (2020).

Value

\texttt{pm0_to_pm1} has stabledist parameter inputs for pm=0 and returns pm=1 equivalent parameterization. \texttt{pm1_to_pm0} has stabledist parameter inputs for pm=1 and returns pm=0 equivalent parameterization.

References

Examples

```
## Not run: q <- -1
# nolan pm=1 parameters:
a1 <- 1.3
b1 <- -0.4
c1 <- 2
d1 <- 0.75
# Convert to nolan pm=0 parameters:
pm0 <- pm1_to_pm0(a1,b1,c1,d1)
a0 <- pm0$a0
b0 <- pm0$b0
c0 <- pm0$c0
d0 <- pm0$d0
# check:
stabledist::pstable(q, alpha=a1, beta=b1, gamma=c1, delta=d1, pm=1)
#> [1] 0.1965513
# only change delta=d0 for pm=0
```
stable.mode

Mode of a Stable Distribution

Description

This function gives a reliable approximation to the mode of a stable distribution with location, dispersion, skewness and tail thickness specified by the parameters loc, disp, skew and tail. tail must be in (1,2).

Usage

stable.mode(loc, disp, skew, tail)

Arguments

loc vector of (real) location parameters.
disp vector of (positive) dispersion parameters.
skew vector of skewness parameters (in [-1,1]).
tail vector of parameters (in [1,2]) related to the tail thickness.

Details

loc is a location parameter in the same way as the mean in the normal distribution: it can take any real value.

disp is a dispersion parameter in the same way as the standard deviation in the normal distribution: it can take any positive value.

skew is a skewness parameter: it can take any value in (-1,1). The distribution is right-skewed, symmetric and left-skewed when skew is negative, null or positive respectively.

tail is a tail parameter (often named the characteristic exponent): it can take any value in (0, 2) (with tail = 1 and tail = 2 yielding the Cauchy and the normal distributions respectively when symmetry holds).

The simplest empirical formula found to give a satisfactory approximation to the mode for values of tail in (1, 2) is

\[\text{loc} + \text{disp} \times a \times \text{skew} \times \exp(-b \times \text{abs}(ext{skew})) \]
with
\[a = 1.7665114 + 1.8417675 \times tail - 2.2954390 \times tail^2 + 0.4666749 \times tail^3 \]
and
\[b = -0.003142967 + 632.4715 \times tail \times \exp(-7.106035 \times tail) \]

Value
A list of size 3 giving the mode, \(a \) and \(b \).

Author(s)
Philippe Lambert (Catholic University of Louvain, Belgium, <phlambert@stat.ucl.ac.be>) and Jim Lindsey.

References

See Also
stable for more details on the stable distribution.

stablereg to fit generalized linear models for the stable distribution parameters.

Examples
```r
x <- seq(-5,5,by=0.1)
plot(x,dstable(x,loc=0,disp=1,skew=-1,tail=1.5),type="l",ylab="f(x)"

xhat <- stable.mode(loc=0,disp=1,skew=-1,tail=1.5)$ytilde
fxhat <- dstable(xhat,loc=0,disp=1,skew=-1,tail=1.5)
lines(c(xhat,xhat),c(0,fxhat),lty="dotted")
```

Description
`stablereg` fits user specified generalized linear and nonlinear regression models based on the stable distribution to (uncensored, right and/or left censored) data. This allows the location, the dispersion, the skewness and the tails of the fitted stable distribution to vary with explanatory variables.
Usage

```
stablereg(
y = NULL,
loc = 0,
disp = 1,
skew = 0,
tail = 1.5,
oloc = TRUE,
odisp = TRUE,
oskew = TRUE,
otail = TRUE,
noopt = FALSE,
iloc = NULL,
idisp = NULL,
iskew = NULL,
itail = NULL,
loc_h = NULL,
disp_h = NULL,
skew_h = NULL,
tail_h = NULL,
weights = 1,
extact = FALSE,
delta = 1,
envir = parent.frame(),
integration = "Romberg",
eps = 1e-06,
up = 10,
npoint = 501,
hessian = TRUE,
llik.output = FALSE,
print.level = 0,
ndigit = 10,
steptol = 1e-05,
gradtol = 1e-05,
f-scale = 1,
typsize = abs(p0),
stepmax = sqrt(p0 %*% p0),
iterlim = 100
)
```

Arguments

- **y**: The response vector or a repeated data object. If the repeated data object contains more than one response variable, give that object in `envir` and give the name of the response variable to be used here.

 For censored data, two columns with the second being the censoring indicator (1: uncensored, 0: right censored, -1: left censored.)
Describe the regression model fitted for the location parameter of the stable distribution, perhaps after transformation by the link function \(loc_g \) (set to the identity by default. The inverse link function is denoted by \(loc_h \). Note that these functions cannot contain unknown parameters).

Two specifications are possible:

1. \(loc \) is a linear or nonlinear language expression beginning with ~ or an R function, describing the regression function for the location parameter (after transformation by \(loc_g \), the link function).
 - \(iloc \) is a vector of initial conditions for the parameters in the regression for this parameter.
 - \(oloc \) is a boolean indicating if an optimization of the likelihood has to be carried out on these parameters. If \(oloc \) is set to TRUE, a default zero value is considered for the starting values \(iloc \). But if no optimization is desired on the location parameters, i.e. when the likelihood has to be evaluated or optimized at a fixed location, then \(iloc \) has to be explicitly specified.

2. \(loc \) is a numeric expression (i.e. a scalar or a vector of the same size as the data vector \(y \), or \(y[,1] \) when censoring is considered).
 - If \(oloc \) is set to TRUE, i.e. when an optimization of the likelihood has to be carried out on the location parameter, then the location parameter (after transformation by the link function \(loc_g \)) is set to an unknown parameter with initial value equal to \(iloc[1] \) or \(loc[1] \) when \(iloc \) is not specified.
 - But when \(oloc \) is set to FALSE, i.e. when the likelihood has to be evaluated or optimized at a fixed location, then the transformed location is assumed to be equal to \(loc \) when it is of the same length as the data vector \(y \) (or \(y[,1] \) when censoring is considered), and to \(loc[1] \) otherwise.

Specification (1) is especially useful in ANOVA-like situations where the location is assumed to change with the levels of some factor variable.

disp, disp_h, odisp, idisp

describe the regression model for the dispersion parameter of the fitted stable distribution, after transformation by the link function \(disp_g \) (set to the log function by default). The inverse link function is denoted by \(disp_h \). Again these functions cannot contain unknown parameters. The same rules as above apply when specifying the generalized regression model for the dispersion parameter.

skew, skew_h, oskew, iskew

describe the regression model for the skewness parameter of the fitted stable distribution, after transformation by the link function \(skew_g \) (set to \(\log((1 + [.])/(1 - [.])) \) by default). The inverse link function is denoted by \(skew_h \). Again these functions cannot contain unknown parameters. The same rules as above apply when specifying the generalized regression model for the skewness parameter.

tail, tail_h, otail, itail

describe the regression model considered for the tail parameter of the fitted stable distribution, after transformation by the link function \(tail_g \) (set to \(\log(([.] -1)/(2 - [.])) \) by default. The inverse link function is denoted by \(tail_h \). Again these functions cannot contain unknown parameters. The same rules as
above apply when specifying the generalized regression model for the tail parameter.

noopt
When set to TRUE, it forces oloc, odisp, oskew and otail to FALSE, whatever the user choice for these last three arguments. It is especially useful when looking for appropriate initial values for the regression model parameters, before undertaking the optimization of the likelihood.

weights
Weight vector.

exact
If TRUE, fits the exact likelihood function for continuous data by integration over intervals of observation, i.e. interval censoring.

delta
Scalar or vector giving the unit of measurement for each response value, set to unity by default. For example, if a response is measured to two decimals, delta=0.01. If the response is transformed, this must be multiplied by the Jacobian. For example, with a log transformation, delta=1/y. (The delta values for the censored response are ignored.) The transformation cannot contain unknown parameters.

envir
Environment in which model formulae are to be interpreted or a data object of class, repeated, tccov, or tvcov; the name of the response variable should be given in y. If y has class repeated, it is used as the environment.

integration, eps, up, npoint
integration indicates which algorithm must be used to evaluate the stable density when the likelihood is computed with exact set to FALSE. See the man page on stable for extra information.

hessian
Arguments controlling the optimization procedure nlm.

llik.output
is TRUE when the likelihood has to be displayed at each iteration of the optimization.

print.level
Arguments controlling the optimization procedure nlm.

ndigit
Arguments controlling the optimization procedure nlm.

steptol
Arguments controlling the optimization procedure nlm.

gradtol
Arguments controlling the optimization procedure nlm.

fscale
Arguments controlling the optimization procedure nlm.

typsize
Arguments controlling the optimization procedure nlm.

stepmax
Arguments controlling the optimization procedure nlm.

iterlim
Arguments controlling the optimization procedure nlm.

Value
A list of class stable is returned. The printed output includes the -log-likelihood, the corresponding AIC, the maximum likelihood estimates, standard errors, and correlations. It also include all the relevant information calculated, including error codes.

Warning
Because of the numerical integrations involved, convergence can be very sensitive to the initial parameter values supplied and to the settings of the arguments controlling nlm. If nlm feeds extreme parameter values in the tails of the distribution to the likelihood function, the integration may hang for a long time.
Author(s)

Philippe Lambert (Catholic University of Louvain, Belgium, <phlambert@stat.ucl.ac.be>) and Jim Lindsey.

References

See Also

`lm`, `glm`, `stable` and `stable.mode`.

Examples

```
## Share return over a 50 day period (see reference above)

# shares

# returns
ret <- (y[2:50]-y[1:49])/y[1:49]

# hist(ret, breaks=seq(-0.035,0.045,0.01))

day <- seq(0, 0.48, by=0.01) # time measured in days/100
x <- seq(1, length(ret))-1

# Classic stationary normal model tail=2
print(z1 <- stablereg(y = ret, delta = 1/y[1:49],
loc = ~1, disp= ~1, skew = ~1, tail = tail_g(1.9999999),
iloc = 0, idisp = -3, iskew = 0, oskew = FALSE, otail = FALSE))

# Normal model (tail=2) with dispersion=disp_h(b0+b1*day)
print(z2 <- stablereg(y = ret, delta = 1/y[1:49], loc = ~day,
disp = ~1, skew = ~1, tail = tail_g(1.9999999), iloc = c(0.003,0),
idisp = -4.5, iskew = 0, oskew = FALSE, otail = FALSE))

# Stable model with loc(ation)=loc_h(b0+b1*day)
print(z3 <- stablereg(y = ret, delta = 1/y[1:49],
loc = ~day, disp = ~1, skew = ~1, tail = ~1,
iloc = c(0.001,-0.004), idisp = -4.8, iskew = 0, itail = 0.6))

# Stable model with disp(ersion)=disp_h(b0+b1*day)
print(z4 <- stablereg(y = ret, delta = 1/y[1:49],
loc = ~1, disp = ~day, skew = ~1, tail = ~1,
iloc = c(0.003, -0.003, iskew = 0.03, itail = 1.6))

# Stable model with skew(ness)=skew_h(b0+b1*day)
# Evaluation at fixed parameter values (because noopt is set to TRUE)
print(z5 <- stablereg(y = ret, delta = 1/y[1:49],
loc = ~1, disp = ~1, skew = ~1, tail = ~1,
iloc = c(0.003, -0.003, iskew = 0.03, itail = 1.6))
```
loc = ~1, disp = ~1, skew = ~day, tail = ~1,
iloc = 5.557e-04, idisp = -4.957, iskew = c(2.811,-2.158),
itail = 1.57, noopt=TRUE))

Stable model with tail=tail_h(b0+b1*day)
print(z6 <- stablereg(y = ret, delta = 1/y[1:49], loc = ret ~ 1,
disp = ~1, skew = ~1, tail = ~day, iloc = 0.002,
idisp = -4.8, iskew = -2, itail = c(2.4,-4), hessian=FALSE))
Index

* distribution
 stable.mode, 9

* models
 stablereg, 10
 aic.stable (stablereg), 10
 deviance.stable (stablereg), 10
 df.residual.stable (stablereg), 10
 disp_g (Links), 5
 disp_h (Links), 5
 dstable, 2

 fitted.stable (stablereg), 10
 glm, 14

 hstable (dstable), 2

 Links, 5
 lm, 14
 loc_g (Links), 5
 loc_h (Links), 5

 nlm, 13

 Parameter_Conversion, 6
 Parameter_Conversion_Nolan_pm1_pm0, 7
 pm0_to_pm1
 (Parameter_Conversion_Nolan_pm1_pm0),
 7
 pm1_to_pm0
 (Parameter_Conversion_Nolan_pm1_pm0),
 7

 pstable (dstable), 2
 qstable (dstable), 2
 rstable (dstable), 2

 s2sd (Parameter_Conversion), 6
 sd2s (Parameter_Conversion), 6