Package ‘staggered’

October 14, 2022

Title Efficient Estimation Under Staggered Treatment Timing
Version 1.1
Description Efficiently estimates treatment effects in settings with randomized staggered rollouts, using tools proposed by Roth and Sant'Anna (2021) <arXiv:2102.01291>.
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
Imports dplyr, reshape2, purrr, Rcpp, magrittr, MASS, stats, tidyr, coop
LinkingTo Rcpp, RcppEigen
Depends R (>= 3.5.0)
NeedsCompilation yes
Author Jonathan Roth [aut], Pedro H.C. Sant'Anna [aut, cre]
Maintainer Pedro H.C. Sant'Anna <pedrohcgs@gmail.com>
Repository CRAN
Date/Publication 2021-09-15 18:00:02 UTC

R topics documented:

compute_Betastar .. 2
compute_g_level_summaries 2
compute_Xhat ... 3
create_A0_list .. 4
pj_officer_level_balanced 4
staggered ... 5
staggered_cs ... 9
staggered_sa .. 11

Index 14
compute_Betastar
Plug-in efficient Beta hat

Description

compute_Betastar computes the plug-in efficient betahat

Usage

```r
compute_Betastar(
    Ybar_g_list,
    A_theta_list,
    A_0_list,
    S_g_list,
    N_g_list,
    Xvar_list = NULL
)
```

Arguments

- `Ybar_g_list`
- `A_theta_list`
- `A_0_list`
- `S_g_list`
- `N_g_list`
- `Xvar_list`

Value

`betastar` Vector of plug-in efficient betahat estimates.

compute_g_level_summaries
Calculate group level summary statistics

Description

This function computes the mean-vector and covariance matrix of the outcomes for each cohort, where a cohort g is a group of units first treated in period g

Usage

```r
compute_g_level_summaries(df, is_balanced = TRUE)
```
compute_Xhat

Arguments

- **df**: A data frame containing panel data with the variables y (an outcome), i (an individual identifier), t (the period in which the outcome is observe), g (the period in which i is first treated, with Inf denoting never treated)
- **is_balanced**: If true, the df has previously been balanced so this does not need to be done internally.

Value

- **Y_bar_list**: A list of the means of the outcomes for each cohort g
- **S_g_list**: A list of covariance matrices for the outcomes for each cohort g
- **N_g_list**: A list of the number of observations for each cohort g
- **g_list**: A list of when the cohorts were first treated
- **t_list**: A list of the the time periods for the outcome. The vector of outcomes corresponds with this order.

compute_Xhat

Compute Xhat of pre-treatment differences

Description

`compute_Xhat` computes the vector Xhat of pre-treatment differences given the list of cohort means Ybar_g_list and the list of matrices A_0_list

Usage

`compute_Xhat(Ybar_g_list, A_0_list)`

Arguments

- **Ybar_g_list**: Ybar_g_list
- **A_0_list**: A_0_list

Value

- **Xhat**: the vector Xhat of pre-treatment differences to be used as regressors
create_A0_list creates the list of A_0 matrices for Xhat corresponding with all possible comparisons of cohorts before they are treated.

Usage

create_A0_list(g_list, t_list)

Arguments

- g_list
- t_list

Value

A0_list list of A_0 matrices for Xhat corresponding with all possible comparisons of cohorts before they are treated

pj_officer_level_balanced

Procedural Justice Training Program in the Chicago Police Department

Description

Data from a large-scale procedural justice training program in the Chicago Police Department analyzed by Wood, Tyler, Papachristos, Roth and Sant’Anna (2020) and Roth and Sant’Anna (2021). The data contains a balanced panel of 7,785 police officers in Chicago who were randomly given a procedural justice training on different dates, and who remained in the police force throughout the study period (from January 2011 to December 2016).

Usage

pj_officer_level_balanced
Format

A data frame with 560520 observations (7,785 police officers and 72 months) and 12 variables:

- **uid**: identifier for the police officer
- **month**: month and year of the observation
- **assigned**: month-year of first training assignment
- **appointed**: appointment date
- **resigned**: Date the police officer resigned. NA if he/she did not resigned by the time data was collected
- **birth_year**: Officer’s year of birth
- **assigned_exact**: Exact date of first training assignment
- **complaints**: Number of complaints (settled and sustained)
- **sustained**: Number of sustained complaints
- **force**: Number of times force was used
- **period**: Time period: 1 - 72
- **first_trained**: Time period first exposed to treatment (Treatment cohort/group)

Source

Wood, Tyler, Papachristos, Roth and Sant’Anna (2020) and Roth and Sant’Anna (2021).

References

```
staggered
Calculate the efficient adjusted estimator in staggered rollout designs
```

Description

This functions calculates the efficient estimator for staggered rollout designs proposed by Roth and Sant’Anna.
Usage

staggered(
 df,
 i = "i",
 t = "t",
 g = "g",
 y = "y",
 estimand = NULL,
 A_theta_list = NULL,
 A_0_list = NULL,
 eventTime = 0,
 beta = NULL,
 use_DiD_A0 = ifelse(is.null(A_0_list), TRUE, FALSE),
 return_full_vcv = FALSE,
 return_matrix_list = FALSE,
 use_last_treated_only = FALSE,
 compute_fisher = FALSE,
 num_fisher_permutations = 500,
 skip_data_check = FALSE
)

Arguments

df A data frame containing panel data with the variables y (an outcome), i (an individual identifier), t (the period in which the outcome is observed), g (the period in which i is first treated, with Inf denoting never treated)
i The name of column containing the individual (cross-sectional unit) identifier. Default is "i".
t The name of the column containing the time periods. Default is "t".
g The name of the column containing the first period when a particular observation is treated, with Inf denoting never treated. Default is "g".
y The name of the column containing the outcome variable. Default is "y".
estimand The estimand to be calculated: "simple" averages all treated (t,g) combinations with weights proportional to N_g; "cohort" averages the ATEs for each cohort g, and then takes an N_g-weighted average across g; "calendar" averages ATEs for each time period, weighted by N_g for treated units, and then averages across time. "eventstudy" returns the average effect at the "event-time" given in the parameter EventTime. The parameter can be left blank if a custom parameter is provided in A_theta_list. The argument is not case-sensitive.
A_theta_list This parameter allows for specifying a custom estimand, and should be left as NULL if estimand is specified. It is a list of matrices A_theta_g so that the parameter of interest is \sum_g A_theta_g \bar{Y}_g, where \bar{Y}_g = \frac{1}{N} \sum_i Y_{i(g)}
A_0_list This parameter allow for specifying the matrices used to construct the Xhat vector of pre-treatment differences. If left NULL, the default is to use the scalar set of controls used in Callaway and Sant'Anna. If use_DiD_A0 = FALSE, then it uses the full vector possible comparisons of (g,g') in periods t<g,g'.
eventTime
If using estimand = "eventstudy", specify what eventTime you want the event-study parameter for. The default is 0, the period in which treatment occurs. If a vector is provided, estimates are returned for all the event-times in the vector.

beta
A coefficient to use for covariate adjustment. If not specified, the plug-in optimal coefficient is used. beta = 0 corresponds with the simple difference-in-means. beta = 1 corresponds with the Callaway and Sant’Anna estimator when using the default value of use_DiD_A0 = TRUE.

use_DiD_A0
If this parameter is true, then Xhat corresponds with the scalar used by Callaway and Sant’Anna, so the Callaway and Sant’Anna estimator corresponds with beta=1. If it is false, the Xhat is a vector with all possible comparisons of pairs of cohorts before either is treated. The latter option should only be used when the number of possible comparisons is small relative to sample size.

return_full_vcv
If this is true and estimand = "eventstudy", then the function returns a list containing the full variance-covariance matrix for the event-plot estimates in addition to the usual dataframe with the estimates.

return_matrix_list
If true, the function returns a list of the A_0_list and A_theta_list matrices along with betastar. This is used for internal recursive calls to calculate the variance-covariance matrix, and will generally not be needed by the end-user. Default is False.

use_last_treated_only
If true, then A_0_list and A_theta_list are created to only make comparisons with the last treated cohorts (as suggested by Sun and Abraham), rather than using not-yet-treated units as comparisons. If set to TRUE (and use_DiD_A0 = TRUE), then beta=1 corresponds with the Sun and Abraham estimator.

compute_fisher
If true, computes a Fisher Randomization Test using the studentized estimator.

num_fisher_permutations
The number of permutations to use in the Fisher Randomization Test (if compute_fisher = TRUE). Default is 500.

skip_data_check
If true, skips checks that the data is balanced and contains the columns i,t,g,y. Used in internal recursive calls to increase speed, but not recommended for end-user.

Value

resultsDF A data.frame containing: estimate (the point estimate), se (the standard error), and se_neyman (the Neyman standard error). If a vector-valued eventTime is provided, the data.frame contains multiple rows for each eventTime and an eventTime column. If return_full_vcv = TRUE and estimand = "eventstudy", the function returns a list containing resultsDF and the full variance covariance for the event-study estimates (vcv) as well as the Neyman version of the covariance matrix (vcv_neyman). (If return_matrix_list = TRUE, it likewise returns a list containing lists of matrices used in the vcv calculation.)
References

Examples

Load some libraries
library(dplyr)
library(purrr)
library(MASS)
set.seed(1234)
load the officer data and subset it
df <- pj_officer_level_balanced
group_random <- sample(unique(df$assigned), 3)
df <- df[df$assigned %in% group_random,
Calculate efficient estimator for the simple weighted average
staggered(df = df,
i = "uid",
t = "period",
g = "first_trained",
y = "complaints",
estimand = "simple")
Calculate efficient estimator for the cohort weighted average
staggered(df = df,
i = "uid",
t = "period",
g = "first_trained",
y = "complaints",
estimand = "cohort")
Calculate efficient estimator for the calendar weighted average
staggered(df = df,
i = "uid",
t = "period",
g = "first_trained",
y = "complaints",
estimand = "calendar")
Calculate event-study coefficients for the first 24 months
(month 0 is instantaneous effect)
eventPlotResults <- staggered(df = df,
i = "uid",
t = "period",
g = "first_trained",
y = "complaints",
estimand = "eventstudy",
 eventTime = 0:23)
eventPlotResults %>% head()
staggered_cs

Calculate the Callaway & Sant'Anna (2020) estimator for staggered rollouts

Description

This function calculates the Callaway & Sant'Anna (2020) estimator for staggered rollout designs using not-yet-treated units (including never-treated, if available) as controls.

Usage

staggered_cs(
 df,
 i = "i",
 t = "t",
 g = "g",
 y = "y",
 estimand = NULL,
 A_theta_list = NULL,
 A_0_list = NULL,
 eventTime = 0,
 return_full_vcv = FALSE,
 return_matrix_list = FALSE,
 compute_fisher = FALSE,
 num_fisher_permutations = 500,
 skip_data_check = FALSE
)

Arguments

df A data frame containing panel data with the variables y (an outcome), i (an individual identifier), t (the period in which the outcome is observed), g (the period in which i is first treated, with Inf denoting never treated)
i The name of column containing the individual (cross-sectional unit) identifier. Default is "i".
t The name of the column containing the time periods. Default is "t".
g The name of the column containing the first period when a particular observation is treated, with Inf denoting never treated. Default is "g".
y The name of the column containing the outcome variable. Default is "y".
estimand The estimand to be calculated: "simple" averages all treated (t,g) combinations with weights proportional to N_g; "cohort" averages the ATEs for each cohort g, and then takes an N_g-weighted average across g; "calendar" averages ATEs for each time period, weighted by N_g for treated units, and then averages across time. "eventstudy" returns the average effect at the "event-time" given in the parameter EventTime. The parameter can be left blank if a custom parameter is provided in A_theta_list. The argument is not case-sensitive.
A_theta_list This parameter allows for specifying a custom estimand, and should be left as NULL if estimand is specified. It is a list of matrices A_{θ_g} so that the parameter of interest is $\sum_g A_{\theta_g} Y_{g_i},$ where $Y_{g_i} = \frac{1}{N} \sum_i Y_{i(g)}$

A_0_list This parameter allows for specifying the matrices used to construct the Xhat vector of pre-treatment differences. If left NULL, the default is to use the scalar set of controls used in Callaway and Sant’Anna. If use_DiD_A0 = FALSE, then it uses the full vector possible comparisons of (g,g') in periods $t < g, g'$.

eventTime If using estimand = "eventstudy", specify what eventTime you want the event-study parameter for. The default is 0, the period in which treatment occurs. If a vector is provided, estimates are returned for all the event-times in the vector.

return_full_vcv If this is true and estimand = "eventstudy", then the function returns a list containing the full variance-covariance matrix for the event-plot estimates in addition to the usual dataframe with the estimates.

return_matrix_list If true, the function returns a list of the A_0_list and A_theta_list matrices along with betastar. This is used for internal recursive calls to calculate the variance-covariance matrix, and will generally not be needed by the end-user. Default is False.

compute_fisher If true, computes a Fisher Randomization Test using the studentized estimator.

num_fisher_permutations The number of permutations to use in the Fisher Randomization Test (if compute_fisher = TRUE). Default is 500.

skip_data_check If true, skips checks that the data is balanced and contains the columns i,t,g,y. Used in internal recursive calls to increase speed, but not recommended for end-user.

Value

resultsDF A data.frame containing: estimate (the point estimate), se (the standard error), and se_neyman (the Neyman standard error). If a vector-valued eventTime is provided, the data.frame contains multiple rows for each eventTime and an eventTime column. If return_full_vcv = TRUE and estimand = "eventstudy", the function returns a list containing resultsDF and the full variance covariance for the event-study estimates (vcv) as well as the Neyman version of the covariance matrix (vcv_neyman). (If return_matrix_list = TRUE, it likewise returns a list containing lists of matrices used in the vcv calculation.)

References

Examples

Load some libraries
library(dplyr)
library(purrr)
library(MASS)
set.seed(1234)
load the officer data and subset it
df <- pj_officer_level_balanced
group_random <- sample(unique(df$assigned), 3)
df <- df[df$assigned %in% group_random,]
We modify the data so that the time dimension is named t,
the period of treatment is named g,
the outcome is named y,
and the individual identifiers are named i
(this allow us to use default arguments on \code{staggered_cs}).
df <- df %>% rename(t = period, y = complaints, g = first_trained, i = uid)
Calculate Callaway and Sant'Anna estimator for the simple weighted average
staggered_cs(df = df, estimand = "simple")
Calculate Callaway and Sant'Anna estimator for the cohort weighted average
staggered_cs(df = df, estimand = "cohort")
Calculate Callaway and Sant'Anna estimator for the calendar weighted average
staggered_cs(df = df, estimand = "calendar")
Calculate Callaway and Sant'Anna event-study coefficients for the first 24 months
(month 0 is instantaneous effect)
eventPlotResults <- staggered_cs(df = df, estimand = "eventstudy", eventTime = 0:23)
eventPlotResults %>% head()

staggered_sa

Calculate the Sun & Abraham (2020) estimator for staggered rollouts

Description

This function calculates the Sun & Abraham (2020) estimator for staggered rollout designs using last-treated-treated units (never-treated, if available) as controls.

Usage

```r
staggered_sa(
  df,
  i = "i",
  t = "t",
  g = "g",
  y = "y",
  estimand = NULL,
  A_theta_list = NULL,
  A_0_list = NULL,
  eventTime = 0,
  return_full_vcv = FALSE,
  return_matrix_list = FALSE,
  compute_fisher = FALSE,
  num_fisher_permutations = 500,
)```

```r
```
skip_data_check = FALSE
)

Arguments

**df**
A data frame containing panel data with the variables y (an outcome), i (an individual identifier), t (the period in which the outcome is observe), g (the period in which i is first treated, with Inf denoting never treated)

**i**
The name of column containing the individual (cross-sectional unit) identifier. Default is "i".

**t**
The name of the column containing the time periods. Default is "t".

**g**
The name of the column containing the first period when a particular observation is treated, with Inf denoting never treated. Default is "g".

**y**
The name of the column containing the outcome variable. Default is "y".

**estimand**
The estimand to be calculated: "simple" averages all treated (t,g) combinations with weights proportional to N_g; "cohort" averages the ATEs for each cohort g, and then takes an N_g-weighted average across g; "calendar" averages ATEs for each time period, weighted by N_g for treated units, and then averages across time. "eventstudy" returns the average effect at the "event-time" given in the parameter EventTime. The parameter can be left blank if a custom parameter is provided in A_theta_list. The argument is not case-sensitive.

**A_theta_list**
This parameter allows for specifying a custom estimand, and should be left as NULL if estimand is specified. It is a list of matrices A_theta_g so that the parameter of interest is sum_g A_theta_g Ybar_g, where Ybar_g = 1/N sum_i Y_i(g)

**A_0_list**
This parameter allow for specifying the matrices used to construct the Xhat vector of pre-treatment differences. If left NULL, the default is to use the scalar set of controls used in Callaway and Sant'Anna. If use_DiD_A0 = FALSE, then it uses the full vector possible comparisons of (g,g') in periods t<g,g'.

**eventTime**
If using estimand = "eventstudy", specify what eventTime you want the event-study parameter for. The default is 0, the period in which treatment occurs. If a vector is provided, estimates are returned for all the event-times in the vector.

**return_full_vcv**
If this is true and estimand = "eventstudy", then the function returns a list containing the full variance-covariance matrix for the event-plot estimates in addition to the usual dataframe with the estimates

**return_matrix_list**
If true, the function returns a list of the A_0_list and A_theta_list matrices along with betastar. This is used for internal recursive calls to calculate the variance-covariance matrix, and will generally not be needed by the end-user. Default is False.

**compute_fisher**
If true, computes a Fisher Randomization Test using the studentized estimator.

**num_fisher_permutations**
The number of permutations to use in the Fisher Randomization Test (if compute_fisher = TRUE). Default is 500.
If true, skips checks that the data is balanced and contains the columns i.t.g.y. Used in internal recursive calls to increase speed, but not recommended for end-user.

Value

resultsDF A data.frame containing: estimate (the point estimate), se (the standard error), and se_neyman (the Neyman standard error). If a vector-valued eventTime is provided, the data.frame contains multiple rows for each eventTime and an eventTime column. If return_full_vcv = TRUE and estimand = "eventstudy", the function returns a list containing resultsDF and the full variance covariance for the event-study estimates (vcv) as well as the Neyman version of the covariance matrix (vcv_neyman). (If return_matrix_list = TRUE, it likewise returns a list containing lists of matrices used in the vcv calculation.)

References


Examples

# Load some libraries
library(dplyr)
library(purrr)
library(MASS)
set.seed(1234)
# load the officer data and subset it
df <- pj_officer_level_balanced
group_random <- sample(unique(df$assigned), 3)
df <- df[df$assigned %in% group_random,]
# We modify the data so that the time dimension is named t,
# the period of treatment is named g,
# the outcome is named y,
# and the individual identifiers are named i
# (this allow us to use default arguments on \code{staggered_cs}).
df <- df %>% rename(t = period, y = complaints, g = first_trained, i = uid)
# Calculate Sun and Abraham estimator for the simple weighted average
staggered_sa(df = df, estimand = "simple")
# Calculate Sun and Abraham estimator for the cohort weighted average
staggered_sa(df = df, estimand = "cohort")
# Calculate Sun and Abraham estimator for the calendar weighted average
staggered_sa(df = df, estimand = "calendar")
# Calculate Sun and Abraham event-study coefficients for the first 24 months
# (month 0 is instantaneous effect)
# eventPlotResults <- staggered_sa(df = df, estimand = "eventstudy", eventTime = 0:23)
# eventPlotResults %>% head()
Index

* datasets
  pj_officer_level_balanced, 4
compute_Betastar, 2
compute_g_level_summaries, 2
compute_Xhat, 3
create_A0_list, 4
pj_officer_level_balanced, 4
staggered, 5
staggered_cs, 9
staggered_sa, 11