Package ‘statmod’

May 10, 2021

Version 1.4.36
Date 2021-05-10
Title Statistical Modeling
Author Gordon Smyth [cre, aut], Yifang Hu [ctb], Peter Dunn [ctb], Belinda Phipson [ctb], Yunshun Chen [ctb]
Maintainer Gordon Smyth <smyth@wehi.edu.au>
Depends R (>= 3.0.0)
Imports stats, graphics
Suggests MASS, tweedie
Description A collection of algorithms and functions to aid statistical modeling. Includes limiting dilution analysis (aka ELDA), growth curve comparisons, mixed linear models, heteroscedastic regression, inverse-Gaussian probability calculations, Gauss quadrature and a secure convergence algorithm for nonlinear models. Also includes advanced generalized linear model functions including Tweedie and Digamma distributional families and a secure convergence algorithm.
License GPL-2 | GPL-3
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-05-10 11:20:05 UTC

R topics documented:

statmod-package .. 2
Digamma .. 3
elda ... 5
fitNBP .. 8
forward .. 9
gauss.quad ... 10
gauss.quad.prob 12
glm.scoretest ... 13
glmgam.fit .. 15
glmnb.fit ... 17
growthcurve .. 18
Introduction to the StatMod Package

Description

This package includes a variety of functions for numerical analysis and statistical modelling. The functions are briefly summarized by type of application below.

Generalized Linear Models

The function `tweedie` defines a large class of generalized linear model families with power variance functions. It used in conjunction with the glm function, and widens the class of families that can be fitted.

`qresiduals` implements randomized quantile residuals for generalized linear models.

The functions `canonic.digamma`, `unitdeviance.digamma`, `varfun.digamma`, `cumulant.digamma`, `d2cumulant.digamma`, `meanval.digamma` and `logmdigamma` are used to fit double-generalized models, in which a link-linear model is fitted to the dispersion as well as to the mean. Specifically they are used to fit the dispersion submodel associated with a gamma glm.

Growth Curves

`compareGrowthCurves`, `compareTwoGrowthCurves` and `meanT` are functions to test for differences between growth curves with repeated measurements on subjects.

Limiting Dilution Analysis

The `limdil` function is used in the analysis of stem cell frequencies. It implements limiting dilution analysis using complementary log-log binomial generalized linear model regression, with some improvements on previous programs.
Probability Distributions

The functions \texttt{qinvgauss}, \texttt{dinvgauss}, \texttt{pinvgauss} and \texttt{rinvgauss} provide probability calculations for the inverse Gaussian distribution.

\texttt{gauss.quad} and \texttt{gauss.quad.prob} compute Gaussian Quadrature with probability distributions.

Tests

\texttt{hommel.test} performs Hommel’s multiple comparison tests.
\texttt{power.fisher.test} computes the power of Fisher’s exact test for comparing proportions.
\texttt{sage.test} is a fast approximation to Fisher’s exact test for each tag for comparing two Serial Analysis of Gene Expression (SAGE) libraries.
\texttt{permp} computes p-values for permutation tests when the permutations are randomly drawn.

Variance Models

\texttt{mixedModel2}, \texttt{mixedModel2Fit} and \texttt{glmgam.fit} fit mixed linear models.
\texttt{remlscore} and \texttt{remlscoregamma} fit heteroscedastic and varying dispersion models by REML.
\texttt{welding} is an example data set.

Matrix Computations

\texttt{matvec} and \texttt{vecmat} facilitate multiplying matrices by vectors.

Author(s)

Gordon Smyth

\begin{Verbatim}

Digamma

Digamma generalized linear model family

Description

Produces a Digamma generalized linear model family object. The Digamma distribution is the distribution of the unit deviance for a gamma response.

Usage

\begin{Verbatim}

Digamma(link = "log")
unitdeviance.digamma(y, mu)
cumulant.digamma(theta)
meanval.digamma(theta)
d2cumulant.digamma(theta)
varfun.digamma(mu)
canonic.digamma(mu)
\end{Verbatim}

\end{Verbatim}
Arguments

- **link**: character string, number or expressing specifying the link function. See `quasi` for specification of this argument.
- **y**: numeric vector of (positive) response values
- **mu**: numeric vector of (positive) fitted values
- **theta**: numeric vector of values of the canonical variable, equal to $-1/\phi$ where ϕ is the dispersion parameter of the gamma distribution

Details

This family is useful for dispersion modelling with gamma generalized linear models. The Digamma distribution describes the distribution of the unit deviances for a gamma family, in the same way that the gamma distribution itself describes the distribution of the unit deviances for Gaussian or inverse Gaussian families. The Digamma distribution is so named because it is dual to the gamma distribution in the above sense, and because the digamma function appears in its mean function.

Suppose that y follows a gamma distribution with mean μ and dispersion parameter ϕ, so the variance of y is $\phi\mu^2$. Write $d(y, \mu)$ for the gamma distribution unit deviance. Then `meanval.digamma(-1/phi)` gives the mean of $d(y, \mu)$ and `2*d2cumulant.digamma(-1/phi)` gives the variance.

Value

Digamma produces a glm family object, which is a list of functions and expressions used by glm in its iteratively reweighted least-squares algorithm. See `family` for details.

The other functions take vector arguments and produce vector values of the same length and called by Digamma. `unitdeviance.digamma` gives the unit deviances of the family, equal to the squared deviance residuals. `cumulant.digamma` is the cumulant function. If the dispersion is unity, then successive derivatives of the cumulant function give successive cumulants of the Digamma distribution. `meanvalue.digamma` gives the first derivative, which is the expected value. `d2cumulant.digamma` gives the second derivative, which is the variance. `canonic.digamma` is the inverse of `meanvalue.digamma` and gives the canonical parameter as a function of the mean parameter. `varfun.digamma` is the variance function of the Digamma family, the variance as a function of the mean.

Author(s)

Gordon Smyth

References

See Also

`quasi`, `make.link`
Examples

Test for log-linear dispersion trend in gamma regression
y <- rchisq(20, df=1)
x <- 1:20
out.gam <- glm(y~x, family=Gamma(link="log"))
d <- residuals(out.gam)^2
out.dig <- glm(d~x, family=Digamma(link="log"))
summary(out.dig, dispersion=2)

elda

Extreme Limiting Dilution Analysis

Description

Fit single-hit model to a dilution series using complementary log-log binomial regression.

Usage

elda(response, dose, tested=rep(1,length(response)), group=rep(1,length(response)), observed=FALSE, confidence=0.95, test.unit.slope=FALSE)
limdil(response, dose, tested=rep(1,length(response)), group=rep(1,length(response)), observed=FALSE, confidence=0.95, test.unit.slope=FALSE)
eldaOneGroup(response, dose, tested, observed=FALSE, confidence=0.95, tol=1e-8, maxit=100, trace=FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>response</td>
<td>numeric vector giving number of positive cases out of tested trials. Should take non-negative integer values.</td>
</tr>
<tr>
<td>dose</td>
<td>numeric vector of expected number of cells in assay. Values must be positive.</td>
</tr>
<tr>
<td>tested</td>
<td>numeric vector giving number of trials at each dose. Should take integer values.</td>
</tr>
<tr>
<td>group</td>
<td>vector or factor giving group to which the response belongs.</td>
</tr>
<tr>
<td>observed</td>
<td>logical, is the actual number of cells observed?</td>
</tr>
<tr>
<td>confidence</td>
<td>numeric level for confidence interval. Should be strictly between 0 and 1.</td>
</tr>
<tr>
<td>test.unit.slope</td>
<td>logical, should the adequacy of the single-hit model be tested?</td>
</tr>
<tr>
<td>tol</td>
<td>convergence tolerance.</td>
</tr>
<tr>
<td>maxit</td>
<td>maximum number of Newton iterations to perform.</td>
</tr>
<tr>
<td>trace</td>
<td>logical, if TRUE then interim results are output at each iteration.</td>
</tr>
</tbody>
</table>
Details

elda and limdil are alternative names for the same function. (limdil was the older name before the 2009 paper by Hu and Smyth.) eldaOneGroup is a lower-level function that does the computations when there is just one group, using a globally convergent Newton iteration. It is called by the other functions.

These functions implement maximum likelihood analysis of limiting dilution data using methods proposed by Hu and Smyth (2009). The functions gracefully accommodate situations where 0% or 100% of the assays give positive results, which is why we call it "extreme" limiting dilution analysis. The functions provide the ability to test for differences in stem cell frequencies between groups, and to test goodness of fit in a number of ways. The methodology has been applied to the analysis of stem cell assays (Shackleton et al, 2006).

The statistical method is explained by Hu and Smyth (2009). A binomial generalized linear model is fitted for each group with cloglog link and offset log(dose). If observed=FALSE, a classic Poisson single-hit model is assumed, and the Poisson frequency of the stem cells is the exp of the intercept. If observed=TRUE, the values of dose are treated as actual cell numbers rather than expected values. This doesn’t change the generalized linear model fit, but it does change how the frequencies are extracted from the estimated model coefficient (Hu and Smyth, 2009).

The confidence interval is a Wald confidence interval, unless the responses are all negative or all positive, in which case Clopper-Pearson intervals are computed.

If group takes several values, then separate confidence intervals are computed for each group. In this case a likelihood ratio test is conducted for differences in active cell frequencies between the groups.

These functions compute a number of different tests of goodness of fit. One test is based on the coefficient for log(dose) in the generalized linear model. The nominal slope is 1. A slope greater than one suggests a multi-hit model in which two or more cells are synergistically required to produce a positive response. A slope less than 1 suggests some sort of cell interference. Slopes less than 1 can also be due to heterogeneity of the stem cell frequency between assays. elda conducts likelihood ratio and score tests that the slope is equal to one.

Another test is based on the coefficient for dose. This idea is motivated by a suggestion of Gart and Weiss (1967), who suggest that heterogeneity effects are more likely to be linear in dose than log(dose). These functions conducts score tests that the coefficient for dose is non-zero. Negative values for this test suggest heterogeneity.

These functions produce objects of class "limdil". There are print and plot methods for "limdil" objects.

Value

elda and limdil produce an object of class "limdil". This is a list with the following components:

CI numeric matrix giving estimated stem cell frequency and lower and upper limits of Wald confidence interval for each group

test.difference numeric vector giving chisquare likelihood ratio test statistic and p-value for testing the difference between groups

test.slope.wald numeric vector giving wald test statistics and p-value for testing the slope of the offset equal to one
elda

test.slope.lr numeric vector giving chisquare likelihood ratio test statistics and p-value for testing the slope of the offset equal to one

test.slope.score.logdose numeric vector giving score test statistics and p-value for testing multi-hit alternatives

test.slope.score.dose numeric vector giving score test statistics and p-value for testing heterogeneity

response numeric vector giving number of trials at each dose
dose numeric vector giving number of positive cases, out of tested trials
tested numeric vector of expected number of cells in assay
group vector or factor giving group to which the response belongs
num.group number of groups

Author(s)

Yifang Hu and Gordon Smyth

References

See Also

plot.limdil and print.limdil are methods for limdil class objects.

A web interface to this function is available at http://bioinf.wehi.edu.au/software/elda/.

Examples

When there is one group
Dose <- c(50,100,200,400,800)
Responses <- c(2,6,9,15,21)
Tested <- c(24,24,24,24,24)
out <- elda(Responses,Dose,Tested,test.unit.slope=TRUE)
out
plot(out)

When there are four groups
Dose <- c(30000,20000,4000,500,30000,20000,4000,500,30000,20000,4000,500,30000,20000,4000,500)
Responses <- c(2,3,2,1,6,5,6,1,2,3,4,2,6,6,6,6)
Tested <- c(6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6)
Group <- c(1,1,1,2,2,2,3,3,3,4,4,4,4,4,4,4)
elda(Responses,Dose,Tested,Group,test.unit.slope=TRUE)
Description

Fit a multi-group negative-binomial model to SAGE data, with Pearson estimation of the common overdispersion parameter.

Usage

```r
fitNBP(y, group=NULL, lib.size=colSums(y), tol=1e-5, maxit=40, verbose=FALSE)
```

Arguments

- `y`: numeric matrix giving counts. Rows correspond to tags (genes) and columns to SAGE libraries.
- `group`: factor indicating which library belongs to each group. If `NULL` then one group is assumed.
- `lib.size`: vector giving total number of tags in each library.
- `tol`: small positive numeric tolerance to judge convergence.
- `maxit`: maximum number of iterations permitted.
- `verbose`: logical, if `TRUE` then iteration progress information is output.

Details

The overdispersion parameter is estimated equating the Pearson goodness of fit to its expectation. The variance is assumed to be of the form $\text{Var}(y) = \mu(1 + \phi\mu)$ where $\text{E}(y) = \mu$ and ϕ is the dispersion parameter. All tags are assumed to share the same dispersion.

For given dispersion, the model for each tag is a negative-binomial generalized linear model with log-link and log(lib.size) as offset. The coefficient parametrization used is that corresponding to the formula $\sim 0 + \text{group} + \text{offset(log(lib.size))}$.

Except for the dispersion being common rather than genewise, the model fitted by this function is equivalent to that proposed by Lu et al (2005). The numeric algorithm used is that of alternating iterations (Smyth, 1996) using Newton’s method as the outer iteration for the dispersion parameter starting at $\phi=0$. This iteration is monotonically convergent for the dispersion.

Value

List with components

- `coefficients`: numeric matrix of rates for each tag (gene) and each group
- `fitted.values`: numeric matrix of fitted values
- `dispersion`: estimated dispersion parameter
Note

This function has been made obsolete by the edgeR package on Bioconductor.

Author(s)

Gordon Smyth

References

See Also

sage.test

The edgeR package on Bioconductor provides new and better functions to fit negative-binomial glms to SAGE or RNA-seq data. See particularly the glmFit and mglmOneWay functions.

Examples

```r
# True value for dispersion is 1/size=2/3
# Note the Pearson method tends to under-estimate the dispersion
y <- matrix(rnbinom(10*4,mu=4,size=1.5),10,4)
lib.size <- rep(50000,4)
group <- c(1,1,2,2)
fit <- fitNBP(y,group=group,lib.size=lib.size)
logratio <- fit$coef %*% c(-1,1)
```

Description

Fit a multi-group negative-binomial model to SAGE data, with Pearson estimation of the common overdispersion parameter.

Usage

```r
forward(y, x, xkept=NULL, intercept=TRUE, nvar=ncol(x))
```

Arguments

- **y**: numeric response vector.
- **x**: numeric matrix of covariates, candidates to be added to the regression.
- **xkept**: numeric matrix of covariates to be included in the starting regression.
- **intercept**: logical, should an intercept be added to xkept?
- **nvar**: integer, number of covariates from x to add to the regression.
This function has the advantage that \(x \) can have many more columns than the length of \(y \).

Value

Integer vector of length \(nvar \), giving the order in which columns of \(x \) are added to the regression.

Author(s)

Gordon Smyth

See Also

step

Examples

```r
y <- rnorm(10)
x <- matrix(rnorm(10*5),10,5)
forward(y,x)
```

Description

Calculate nodes and weights for Gaussian quadrature.

Usage

```r
gauss.quad(n, kind = "legendre", alpha = 0, beta = 0)
```

Arguments

- **n**: number of nodes and weights
- **kind**: kind of Gaussian quadrature, one of “legendre”, ”chebyshev1”, ”chebyshev2”, ”hermite”, ”jacobi” or ”laguerre”
- **alpha**: parameter for Jacobi or Laguerre quadrature, must be greater than -1
- **beta**: parameter for Jacobi quadrature, must be greater than -1
Details

The integral from \(a\) to \(b\) of \(w(x) \times f(x)\) is approximated by \(\sum (w \times f(x))\) where \(x\) is the vector of nodes and \(w\) is the vector of weights. The approximation is exact if \(f(x)\) is a polynomial of order no more than \(2n-1\). The possible choices for \(w(x)\), \(a\) and \(b\) are as follows:

- **Legendre quadrature:** \(w(x) = 1\) on \((-1, 1)\).
- **Chebyshev quadrature of the 1st kind:** \(w(x) = 1/sqrt(1-x^2)\) on \((-1, 1)\).
- **Chebyshev quadrature of the 2nd kind:** \(w(x) = sqrt(1-x^2)\) on \((-1, 1)\).
- **Hermite quadrature:** \(w(x) = exp(-x^2)\) on \((-\infty, \infty)\).
- **Jacobi quadrature:** \(w(x) = (1-x)^\alpha \times (1+x)^\beta\) on \((-1, 1)\). Note that Chebyshev quadrature is a special case of this.
- **Laguerre quadrature:** \(w(x) = x^\alpha \times exp(-x)\) on \((0, \infty)\).

The algorithm used to generate the nodes and weights is explained in Golub and Welsch (1969).

Value

A list containing the components

- **nodes** vector of values at which to evaluate the function
- **weights** vector of weights to give the function values

Author(s)

Gordon Smyth, using Netlib Fortran code http://www.netlib.org/go/gaussq.f, and including a suggestion from Stephane Laurent

References

See Also

- [gauss.quad.prob](#)
- [integrate](#)
Examples

```r
# mean of gamma distribution with alpha=6
out <- gauss.quad(10, "laguerre", alpha=5)
sum(out$weights * out$nodes) / gamma(6)
```

Description

Calculate nodes and weights for Gaussian quadrature in terms of probability distributions.

Usage

```r
gauss.quad.prob(n, dist = "uniform", l = 0, u = 1,
  mu = 0, sigma = 1, alpha = 1, beta = 1)
```

Arguments

- `n`: number of nodes and weights
- `dist`: distribution that Gaussian quadrature is based on, one of "uniform", "normal", "beta" or "gamma"
- `l`: lower limit of uniform distribution
- `u`: upper limit of uniform distribution
- `mu`: mean of normal distribution
- `sigma`: standard deviation of normal distribution
- `alpha`: positive shape parameter for gamma distribution or first shape parameter for beta distribution
- `beta`: positive scale parameter for gamma distribution or second shape parameter for beta distribution

Details

This is a rewriting and simplification of gauss.quad in terms of probability distributions. The probability interpretation is explained by Smyth (1998). For details on the underlying quadrature rules, see `gauss.quad`.

The expected value of $f(X)$ is approximated by $\sum(w*f(x))$ where x is the vector of nodes and w is the vector of weights. The approximation is exact if $f(x)$ is a polynomial of order no more than $2n-1$. The possible choices for the distribution of X are as follows:

- Uniform on (l,u).
- Normal with mean μ and standard deviation σ.
- Beta with density $x^{\alpha-1}(1-x)^{\beta-1}/B(\alpha,\beta)$ on $(0,1)$.
- Gamma with density $x^{\alpha-1}\exp(-x/\beta)/\beta^\alpha/\Gamma(\alpha)$.
glm.scoretest

Value
A list containing the components

- nodes: vector of values at which to evaluate the function
- weights: vector of weights to give the function values

Author(s)
Gordon Smyth, using Netlib Fortran code http://www.netlib.org/go/gaussq.f, and including corrections suggested by Spencer Graves

References

See Also
gauss.quad, integrate

Examples
the 4th moment of the standard normal is 3
out <- gauss.quad.prob(10,"normal")
sum(out$weights * out$nodes^4)

the expected value of log(X) where X is gamma is digamma(alpha)
out <- gauss.quad.prob(32,"gamma",alpha=5)
sum(out$weights * log(out$nodes))

glm.scoretest Score Test for Adding a Covariate to a GLM

Description
Computes score test statistics (z-statistics) for adding covariates to a generalized linear model.

Usage
glm.scoretest(fit, x2, dispersion=NULL)

Arguments
fit: generalized linear model fit object, of class glm.
x2: vector or matrix with each column a covariate to be added.
dispersion: the dispersion for the generalized linear model family.
Details

Rao’s score test is a type of asymptotic test that is an alternative to Wald tests or likelihood ratio tests (LRTs) (Dunn and Smyth, 2018). Wald tests are computed by dividing parameter estimates by their standard errors. LRTs are computed from differences in the log-likelihoods between the null and alternative hypotheses. Score tests are computed from log-likelihood derivatives. All three types of tests (Wald, score and LRT) are asymptotically equivalent under ideal circumstances, but the score and LRT tests are invariant under-reparametrization whereas Wald tests are not.

One of the main differences between the tests is the need for estimation of parameters under the null and alternative hypotheses. Wald tests require maximum likelihood estimates (MLEs) to be computed only under the alternative hypothesis, LRT tests require both the null and alternative models to be fitted, while score tests require only the null hypothesis to be fitted.

When a generalized linear model (GLM) is fitted in R using the glm function, the summary() function presents Wald tests for all the coefficients in the linear model while anova() is able to compute likelihood ratio tests. GLM output in R has historically not included score tests, although score tests can be a very computationally coefficient choice when one wants to test for many potential additional covariates being added to a relatively simple null model.

A number of well known Pearson chi-square statistics, including goodness of fit statistics and the Pearson test for independence in a contingency table can be derived as score tests (Smyth, 2003; Dunn and Smyth, 2018).

This function computes score test statistics for adding a single numerical covariate to a GLM, given the glm output for the null model. It makes very efficient use of the quantities already stored in the GLM fit object. A computational formula for the score test statistics is given in Section 7.2.6 of Dunn and Smyth (2018).

The dispersion parameter is treated as for summary.glm. If NULL, the Pearson estimator is used, except for the binomial, Poisson and negative binomial families, for which the dispersion is one.

Note that the anova.glm function in the stats package has offered a Rao score test option since 2011, but it requires model fits under the alternative as well as the null hypothesis, which does not take advantage of the computational advantage of score test. The glm.scoretest is more efficient as it does not require a full model fit. On the other hand, anova.glm can compute score tests for factors and multiple covariates, which glm.scoretest does not currently do.

Value

numeric vector containing the z-statistics, one for each covariate. The z-statistics can be treated as standard normal under the null hypothesis.

Author(s)

Gordon Smyth

References

See Also

`glm`, `add1`, `anova.glm`

Examples

Pearson's chisquare test for independence
in a contingency table is a score test.

First the usual test

```r  
y <- c(20,40,40,30)  
chisq.test(matrix(y,2,2), correct=FALSE)  
```

Now same test using glm.scoretest

```r  
a <- gl(2,1,4)  
b <- gl(2,2,4)  
fit <- glm(y~a+b, family=poisson)  
x2 <- c(0,0,0,1)  
z <- glm.scoretest(fit, x2)  
z^2  
```

Description

Fit a generalized linear model with secure convergence.

Usage

```r  
glmgam.fit(X, y, coef.start = NULL, tol = 1e-6, maxit = 50, trace = FALSE)  
```

Arguments

- `X`
 design matrix, assumed to be of full column rank. Missing values not allowed.

- `y`
 numeric vector of responses. Negative or missing values not allowed.

- `coef.start`
 numeric vector of starting values for the regression coefficients
tol small positive numeric value giving convergence tolerance
maxit maximum number of iterations allowed
trace logical value. If TRUE then output diagnostic information at each iteration.

Details

This function implements a modified Fisher scoring algorithm for generalized linear models, similar to the Levenberg-Marquardt algorithm for nonlinear least squares. The Levenberg-Marquardt modification checks for a reduction in the deviance at each step, and avoids the possibility of divergence. The result is a very secure algorithm that converges for almost all datasets.

glmgam.fit is in principle equivalent to glm.fit(X, y, family=Gamma(link="identity")) but with much more secure convergence.

Value

List with the following components:

coefficients numeric vector of regression coefficients
fitted numeric vector of fitted values
deviance residual deviance
iter number of iterations used to convergence. If convergence was not achieved then iter is set to maxit+1.

Author(s)

Gordon Smyth and Yunshun Chen

References

See Also

glmgam.fit is called by mixedModel2Fit.
glm is the standard glm fitting function in the stats package.

Examples

```r
y <- rgamma(10, shape=5)
X <- cbind(1, 1:10)
fit <- glmgam.fit(X, y, trace=TRUE)
```
glmnb.fit

Fit Negative Binomial Generalized Linear Model with Log-Link

Description

Fit a generalized linear model with secure convergence.

Usage

```r
glmnb.fit(X, y, dispersion, weights = NULL, offset = 0, coef.start = NULL,
          start.method = "mean", tol = 1e-6, maxit = 50L, trace = FALSE)
```

Arguments

- `X` design matrix, assumed to be of full column rank. Missing values not allowed.
- `y` numeric vector of responses. Negative or missing values not allowed.
- `dispersion` numeric vector of dispersion parameters for the negative binomial distribution. If of length 1, then the same dispersion is assumed for all observations.
- `weights` numeric vector of positive weights, defaults to all one.
- `offset` offset vector for linear model
- `coef.start` numeric vector of starting values for the regression coefficients
- `start.method` method used to find starting values, possible values are "mean" or "log(y)"
- `tol` small positive numeric value giving convergence tolerance
- `maxit` maximum number of iterations allowed
- `trace` logical value. If TRUE then output diagnostic information at each iteration.

Details

This function implements a modified Fisher scoring algorithm for generalized linear models, analogous to the Levenberg-Marquardt algorithm for nonlinear least squares. The Levenberg-Marquardt modification checks for a reduction in the deviance at each step, and avoids the possibility of divergence. The result is a very secure algorithm that converges for almost all datasets.

`glmnb.fit` is in principle equivalent to `glm.fit(X, y, family=negative.binomial(link="log",theta=1/dispersion))` but with more secure convergence. Here `negative.binomial` is a function in the MASS package.

The dispersion parameter is the same as `1/theta` for the MASS::negative.binomial function or `1/size` for the stats::rbinom function. `dispersion=0` corresponds to the Poisson distribution.

Value

List with the following components:

- `coefficients` numeric vector of regression coefficients
- `fitted` numeric vector of fitted values
- `deviance` residual deviance
- `iter` number of iterations used to convergence. If convergence was not achieved then `iter` is set to `maxit+1`.
growthcurve

Author(s)
Gordon Smyth and Yunshun Chen

References

See Also
The glmFit function in the edgeR package on Bioconductor is a high-performance version of glmnb.fit for many y vectors at once.

glm is the standard glm fitting function in the stats package. negative.binomial in the MASS package defines a negative binomial family for use with glm.

Examples
y <- rnbinom(10, mu=1:10, size=5)
X <- cbind(1, 1:10)
fit <- glmnb.fit(X, y, dispersion=0.2, trace=TRUE)

growthcurve Compare Groups of Growth Curves

Description
Do all pairwise comparisons between groups of growth curves using a permutation test.

Usage

```r
compareGrowthCurves(group, y, levels=NULL, nsim=100, fun=meanT, times=NULL, verbose=TRUE, adjust="holm")
```  
```r
compareTwoGrowthCurves(group, y, nsim=100, fun=meanT)
```  
```r
plotGrowthCurves(group, y, levels=sort(unique(group)), times=NULL, col=NULL,...)
```  

Arguments

- `group` vector or factor indicating group membership. Missing values are allowed in compareGrowthCurves but not in compareTwoGrowthCurves.
- `y` matrix of response values with rows for individuals and columns for times. The number of rows must agree with the length of group. Missing values are allowed.
- `levels` a character vector containing the identifiers of the groups to be compared. By default all groups with two or more members will be compared.
- `nsim` number of permutations to estimated p-values.
fun a function defining the statistic used to measure the distance between two groups of growth curves. Defaults to meanT.

times a numeric vector containing the column numbers on which the groups should be compared. By default all the columns are used.

verbose should progress results be printed?

adjust method used to adjust for multiple testing, see p.adjust.

col vector of colors corresponding to distinct groups

... other arguments passed to plot()

Details

compareTwoGrowthCurves performs a permutation test of the difference between two groups of growth curves. compareGrowthCurves does all pairwise comparisons between two or more groups of growth curves. Accurate p-values can be obtained by setting nsim to some large value, nsim=10000 say.

Value

compareTwoGrowthCurves returns a list with two components, stat and p.value, containing the observed statistics and the estimated p-value. compareGrowthCurves returns a data frame with components

Group1 name of first group in a comparison
Group2 name of second group in a comparison
Stat observed value of the statistic
P.Value estimated p-value
adj.P.Value p-value adjusted for multiple testing

Author(s)

Gordon Smyth

References

See Also

meanT, compareGrowthCurves, compareTwoGrowthCurves
Examples

A example with only one time
data(PlantGrowth)
compareGrowthCurves(PlantGrowth$group, as.matrix(PlantGrowth$weight))
Can make p-values more accurate by nsim=10000

hommel.test(p, alpha=0.05)

Arguments

p numeric vector of p-values
alpha numeric value, desired significance level

Details

This function implements the multiple testing procedure of Hommel (1988). Hommel’s method is also implemented as an adjusted p-value method in the function p.adjust but the accept/reject approach used here is faster.

Value

logical vector indicating whether each hypothesis is accepted

Author(s)

Gordon Smyth

References

See Also

p.adjust
invgauss

Examples

```r
p <- sort(runif(100))[1:10]
cbind(p,p.adjust(p,"hommel"),hommel.test(p))
```

invgauss

Inverse Gaussian Distribution

Description

Density, cumulative probability, quantiles and random generation for the inverse Gaussian distribution.

Usage

```r
dinvgauss(x, mean=1, shape=NULL, dispersion=1, log=FALSE)
pinvgauss(q, mean=1, shape=NULL, dispersion=1, lower.tail=TRUE, log.p=FALSE)
qinvgauss(p, mean=1, shape=NULL, dispersion=1, lower.tail=TRUE, log.p=FALSE,
  maxit=200L, tol=1e-14, trace=FALSE)
rinvgauss(n, mean=1, shape=NULL, dispersion=1)
```

Arguments

- `x, q` vector of quantiles.
- `p` vector of probabilities.
- `n` sample size. If `length(n)` is larger than 1, then `length(n)` random values are returned.
- `mean` vector of (positive) means.
- `shape` vector of (positive) shape parameters.
- `dispersion` vector of (positive) dispersion parameters. Ignored if `shape` is not NULL, in which case `dispersion=1/shape`.
- `lower.tail` logical; if TRUE, probabilities are P(X<q) otherwise P(X>q).
- `log` logical; if TRUE, the log-density is returned.
- `log.p` logical; if TRUE, probabilities are on the log-scale.
- `maxit` maximum number of Newton iterations used to find q.
- `tol` small positive numeric value giving the convergence tolerance for the quantile.
- `trace` logical, if TRUE then the working estimate for q from each iteration will be output.
Details

The inverse Gaussian distribution takes values on the positive real line. It is somewhat more right skew than the gamma distribution, with variance given by \(\text{dispersion} \times \text{mean}^3\). The distribution has applications in reliability and survival analysis and is one of the response distributions used in generalized linear models.

Giner and Smyth (2016) show that the inverse Gaussian distribution converges to an inverse chi-squared distribution as the mean becomes large.

The functions provided here implement numeric algorithms developed by Giner and Smyth (2016) that achieve close to full machine accuracy for all possible parameter values. Giner and Smyth (2016) show that the probability calculations provided by these functions are considerably more accurate, and in most cases faster, than previous implementations of inverse Gaussian functions. The improvement in accuracy is most noticeable for extreme probability values and for large parameter values.

The shape and dispersion parameters are alternative parametrizations for the variability, with \(\text{dispersion} = 1/\text{shape}\). Only one of these two arguments needs to be specified. If both are set, then shape takes precedence.

Value

Output values give density \((\text{dinvgauss})\), probability \((\text{pinvgauss})\), quantile \((\text{qinvgauss})\) or random sample \((\text{rinvgauss})\) for the inverse Gaussian distribution with mean \(\text{mean}\) and dispersion \(\text{dispersion}\). Output is a vector of length equal to the maximum length of any of the arguments \(x\), \(q\), \(\text{mean}\), \(\text{shape}\) or \(\text{dispersion}\). If the first argument is the longest, then all the attributes of the input argument are preserved on output, for example, a matrix \(x\) will give a matrix on output. Elements of input vectors that are missing will cause the corresponding elements of the result to be missing, as will non-positive values for \(\text{mean}\) or \(\text{dispersion}\).

Author(s)

Gordon Smyth.

Very early S-Plus versions of these functions, using simpler algorithms, were published 1998 at http://www.statsci.org/s/invgauss.html. Paul Bagshaw (Centre National d’Etudes des Telecommunications, France) contributed the original version of \(\text{qinvgauss}\) in December 1998. Trevor Park (Department of Statistics, University of Florida) suggested improvements to a version of \(\text{rinvgauss}\) in 2005.

References

Examples

```r
q <- rinvgauss(10, mean=1, disp=0.5) # generate vector of 10 random numbers
p <- pinvgauss(q, mean=1, disp=0.5) # p should be uniformly distributed

# Quantile for small right tail probability:
qinvgauss(1e-20, mean=1.5, disp=0.7, lower.tail=FALSE)
```
logmdigamma

Same quantile, but represented in terms of left tail probability on log-scale
qinvgauss(-1e-20, mean=1.5, disp=0.7, lower.tail=TRUE, log.p=TRUE)

logmdigamma

Log Minus Digamma Function

Description

The difference between the log and digamma functions.

Usage

logmdigamma(x)

Arguments

- **x**: numeric vector or array of positive values. Negative or zero values will return NA.

Details

digamma(x) is asymptotically equivalent to log(x). logmdigamma(x) computes log(x) - digamma(x) without subtractive cancellation for large x.

Author(s)

Gordon Smyth

References

See Also

digamma

Examples

log(10^15) - digamma(10^15) # returns 0
logmdigamma(10^15) # returns value correct to 15 figures
Multiply a Matrix by a Vector

Description
Multiply the rows or columns of a matrix by the elements of a vector.

Usage
\[
\text{matvec}(M, v) \\
\text{vecmat}(v, M)
\]

Arguments
- \(M\): numeric matrix, or object which can be coerced to a matrix.
- \(v\): numeric vector, or object which can be coerced to a vector. Length should match the number of columns of \(M\) (for matvec) or the number of rows of \(M\) (for vecmat).

Details
\[\text{matvec}(M,v)\] is equivalent to \(M \times \text{diag}(v)\) but is faster to execute. Similarly \(\text{vecmat}(v,M)\) is equivalent to \(\text{diag}(v) \times M\) but is faster to execute.

Value
A matrix of the same dimensions as \(M\).

Author(s)
Gordon Smyth

Examples
\[
A <- \text{matrix}(1:12,3,4) \\
A \\
\text{matvec}(A,c(1,2,3,4)) \\
\text{vecmat}(c(1,2,3),A)
\]
meanT

Mean t-Statistic Between Two Groups of Growth Curves

Description

The mean-t statistic of the distance between two groups of growth curves.

Usage

meanT(y1, y2)

Arguments

y1 matrix of response values for the first group, with a row for each individual and a column for each time. Missing values are allowed.

y2 matrix of response values for the second group. Must have the same number of columns as y1. Missing values are allowed.

Details

This function computes the pooled two-sample t-statistic between the response values at each time, and returns the mean of these values weighted by the degrees of freedom. This function is used by compareGrowthCurves.

Value

numeric vector of length one containing the mean t-statistic.

Author(s)

Gordon Smyth

See Also

compareGrowthCurves, compareTwoGrowthCurves

Examples

y1 <- matrix(rnorm(4*3),4,3)
y2 <- matrix(rnorm(4*3),4,3)
meanT(y1,y2)

data(PlantGrowth)
compareGrowthCurves(PlantGrowth$group,as.matrix(PlantGrowth$weight))
Can make p-values more accurate by nsim=10000
mixedModel2

Fit Mixed Linear Model with 2 Error Components

Description

Fits a mixed linear model by REML. The linear model contains one random factor apart from the unit errors.

Usage

mixedModel2(formula, random, weights=NULL, only.varcomp=FALSE, data=list(), subset=NULL, contrasts=NULL, tol=1e-6, maxit=50, trace=FALSE)
mixedModel2Fit(y, X, Z, w=NULL, only.varcomp=FALSE, tol=1e-6, maxit=50, trace=FALSE)
randomizedBlock(formula, random, weights=NULL, only.varcomp=FALSE, data=list(), subset=NULL, contrasts=NULL, tol=1e-6, maxit=50, trace=FALSE)
randomizedBlockFit(y, X, Z, w=NULL, only.varcomp=FALSE, tol=1e-6, maxit=50, trace=FALSE)

Arguments

The arguments formula, weights, data, subset and contrasts have the same meaning as in lm. The arguments y, X and w have the same meaning as in lm.wfit.

- **formula**: vector or factor specifying the blocks corresponding to random effects.
- **weights**: optional vector of prior weights.
- **only.varcomp**: logical value, if TRUE computation of standard errors and fixed effect coefficients will be skipped.
- **data**: an optional data frame containing the variables in the model.
- **subset**: an optional vector specifying a subset of observations to be used in the fitting process.
- **contrasts**: an optional list. See the contrasts.arg argument of model.matrix.default.
- **tol**: small positive numeric tolerance, passed to glmgam.fit
- **maxit**: maximum number of iterations permitted, passed to glmgam.fit
- **trace**: logical value, passed to glmgam.fit. If TRUE then working estimates will be printed at each iteration.
- **y**: numeric response vector
- **X**: numeric design matrix for fixed model
- **Z**: numeric design matrix for random effects
- **w**: optional vector of prior weights
Details

Note that \texttt{ran_mixed} and \texttt{mixedModel2} are alternative names for the same function.

This function fits the model \(y = Xb + Zu + e \) where \(b \) is a vector of fixed coefficients and \(u \) is a vector of random effects. Write \(n \) for the length of \(y \) and \(q \) for the length of \(u \). The random effect vector \(u \) is assumed to be normal, mean zero, with covariance matrix \(\sigma_u^2 I_q \) while \(e \) is normal, mean zero, with covariance matrix \(\sigma_e^2 I_n \). If \(Z \) is an indicator matrix, then this model corresponds to a randomized block experiment. The model is fitted using an eigenvalue decomposition that transforms the problem into a Gamma generalized linear model. To the knowledge of the author, this is an original and unpublished approach to the problem of fitting mixed models.

Note that the block variance component \(\text{varcomp}[2] \) is not constrained to be non-negative. It may take negative values corresponding to negative intra-block correlations. However the correlation \(\text{varcomp}[2]/\text{sum(varcomp)} \) must lie between \(-1\) and \(1\).

Missing values in the data are not allowed.

This function is in principle equivalent to \texttt{lme(fixed=formula,random=~1|random)} except that the block variance component is not constrained to be non-negative. If the block variance component is non-negative, then this function is faster and more accurate than \texttt{lme} for small to moderate size data sets but slower than \texttt{lme} when the number of observations is large.

This function tends to be fast and reliable, compared to competitor functions that fit randomized block models, when the number of observations is small, say no more than 200. However it becomes quadratically slow as the number of observations increases because of the need to compute two singular value decompositions of order nearly equal to the number of observations, although this can be limited to only one decomposition if \texttt{only.varcomp=TRUE}. For these reasons, this function is a good choice when fitting large numbers of mixed models to small datasets but is not optimal as currently implemented for fitting mixed models to very large data sets.

Value

A list with the components:

\begin{itemize}
 \item \texttt{varcomp} numeric vector of length two containing the residual and block components of variance.
 \item \texttt{se.varcomp} standard errors for the variance components (if \texttt{only.varcomp=FALSE}).
 \item \texttt{coefficients} numeric vector of fixed coefficients (if \texttt{only.varcomp=FALSE}).
 \item \texttt{se.coefficients} standard errors for the fixed coefficients (if \texttt{only.varcomp=FALSE}).
\end{itemize}

Author(s)

Gordon Smyth

References

See Also

\texttt{glmgam.fit, lme, lm, lm.fit}
Examples

Compare with first data example from Venable and Ripley (2002),
Chapter 10, "Linear Models"
library(MASS)
data(petrol)
out <- mixedModel2(Y~SG+VP+V10+EP, random=No, data=petrol)
cbind(varcomp=out$varcomp,se=out$se.varcomp)

mscale M Scale Estimation

Description

Robust estimation of a scale parameter using Hampel’s re-descending psi function.

Usage

mscale(u, na.rm=FALSE)

Arguments

u numeric vector of residuals.
na.rm logical. Should missing values be removed?

Details

Estimates a scale parameter or standard deviation using an M-estimator with 50% breakdown. This
means the estimator is highly robust to outliers. If the input residuals u are a normal sample, then
mscale(u) should be equal to the standard deviation.

Value

numeric constant giving the estimated scale.

Author(s)

Gordon Smyth

References

Examples

```r
u <- rnorm(100)
sd(u)
mscale(u)
```

permp

Exact permutation p-values

Description

Calculates exact p-values for permutation tests when permutations are randomly drawn with replacement.

Usage

```r
permp(x, nperm, n1, n2, total.nperm=NULL, method="auto", twosided=TRUE)
```

Arguments

- `x`: number of permutations that yielded test statistics at least as extreme as the observed data. May be a vector or an array of values.
- `nperm`: total number of permutations performed.
- `n1`: sample size of group 1. Not required if `total.nperm` is supplied.
- `n2`: sample size of group 2. Not required if `total.nperm` is supplied.
- `total.nperm`: total number of permutations allowable from the design of the experiment.
- `method`: character string indicating computation method. Possible values are "exact", "approximate" or "auto".
- `twosided`: logical, is the test two-sided and symmetric between the two groups?

Details

This function can be used for calculating exact p-values for permutation tests where permutations are sampled with replacement, using theory and methods developed by Phipson and Smyth (2010). The input values are the total number of permutations done (`nperm`) and the number of these that were considered at least as extreme as the observed data (`x`).

`total.nperm` is the total number of distinct values of the test statistic that are possible. This is generally equal to the number of possible permutations, unless a two-sided test is conducted with equal sample sizes, in which case `total.nperm` is half the number of permutations, because the test statistic must then be symmetric in the two groups. Usually `total.nperm` is computed automatically from `n1` and `n2`, but can also be supplied directly by the user.

When `method`="exact", the p-values are computed to full machine precision by summing a series terms. When `method`="approximate", an approximation is used that is faster and uses less memory. If `method`="auto", the exact calculation is used when `total.nperm` is less than or equal to 10,000 and the approximation is used otherwise.
plot.limdil

Value
vector or array of p-values, of same dimensions as x

Author(s)
Belinda Phipson and Gordon Smyth

References

Examples
x <- 0:5
Both calls give same results
permp(x=x, nperm=99, n1=6, n2=6)
permp(x=x, nperm=99, total.nperm=462)

plot.limdil Plot or print an object of class limdil

Description
Plot or print the results of a limiting dilution analysis.

Usage
S3 method for class 'limdil'
print(x, ...)
S3 method for class 'limdil'
plot(x, col.group=NULL, cex=1, lwd=1, legend.pos="bottomleft", ...)

Arguments
 x object of class limdil.
 col.group vector of colors for the groups of the same length as levels(x$group).
 cex relative symbol size
 lwd relative line width
 legend.pos positioning on plot of legend when there are multiple groups
 ... other arguments to be passed to plot or print. Note that pch and lty are reserved arguments for the plot method.
Details

The print method formats results similarly to a regression or anova summary in R.

The plot method produces a plot of a limiting dilution experiment similar to that in Bonnefoix et al (2001). The basic design of the plot was made popular by Lefkovits and Waldmann (1979).

The plot shows frequencies and confidence intervals for the multiple groups. A novel feature is that assays with 100% successes are included in the plot and are represented by down-pointing triangles.

Author(s)

Yifang Hu and Gordon Smyth

References

See Also

`limdil` describes the `limdil` class.

power.fisher.test
Power of Fisher’s Exact Test for Comparing Proportions

Description

Calculate by simulation the power of Fisher’s exact test for comparing two proportions given two margin counts.

Usage

`power.fisher.test(p1, p2, n1, n2, alpha=0.05, nsim=100, alternative="two.sided")`

Arguments

- `p1`: first proportion to be compared.
- `p2`: second proportion to be compared.
- `n1`: first sample size.
- `n2`: second sample size.
- `alpha`: significance level.
- `nsim`: number of data sets to simulate.
- `alternative`: indicates the alternative hypothesis and must be one of "two.sided", "greater" or "less".
Details

Computes the power of Fisher’s exact test for testing the null hypothesis that \(p_1 \) equals \(p_2 \) against the alternative that they are not equal.

Value

Estimated power of the test.

Author(s)

Gordon Smyth

See Also

`fisher.test`, `power.t.test`

Examples

```r
power.fisher.test(0.5, 0.9, 20, 20) # 70% chance of detecting difference
```

qresiduals

Randomized Quantile Residuals

Description

Compute randomized quantile residuals for generalized linear models.

Usage

```r
qresiduals(glm.obj, dispersion=NULL)
qresid(glm.obj, dispersion=NULL)
qres.binom(glm.obj)
qres.pois(glm.obj)
qres.nbinom(glm.obj)
qres.gamma(glm.obj, dispersion=NULL)
qres.invgauss(glm.obj, dispersion=NULL)
qres.tweedie(glm.obj, dispersion=NULL)
qres.default(glm.obj, dispersion=NULL)
```

Arguments

- `glm.obj` Object of class `glm`. The generalized linear model family is assumed to be binomial for `qres.binom`, poisson for `qres.pois`, negative binomial for `qres.nbinom`, Gamma for `qres.gamma`, inverse Gaussian for `qres.invgauss` or tweedie for `qres.tweedie`.
- `dispersion` a positive real number. Specifies the value of the dispersion parameter for a Gamma or inverse Gaussian generalized linear model if known. If NULL, the dispersion will be estimated by its Pearson estimator.
Details

Quantile residuals are based on the idea of inverting the estimated distribution function for each observation to obtain exactly standard normal residuals. In the case of discrete distributions, such as the binomial and Poisson, some randomization is introduced to produce continuous normal residuals. Quantile residuals are the residuals of choice for generalized linear models in large dispersion situations when the deviance and Pearson residuals can be grossly non-normal. Quantile residuals are the only useful residuals for binomial or Poisson data when the response takes on only a small number of distinct values.

Value

Numeric vector of standard normal quantile residuals.

Author(s)

Gordon Smyth

References

See Also

`residuals.glm`

Examples

```r
# Poisson example: quantile residuals show no granularity
y <- rpois(20, lambda=4)
x <- 1:20
fit <- glm(y~x, family=poisson)
qr <- qresiduals(fit)
qqnorm(qr)
abline(0,1)

# Gamma example:
# Quantile residuals are nearly normal while usual resids are not
y <- rchisq(20, df=1)
fit <- glm(y~1, family=Gamma)
qr <- qresiduals(fit, dispersion=2)
qqnorm(qr)
abline(0,1)

# Negative binomial example:
if(require("MASS")) {
  fit <- glm(Days~Age, family=negative.binomial(2), data=quine)
summary(qresiduals(fit))
```

```r
fit <- glm.nb(Days~Age, link=log, data = quine)
summary(qresiduals(fit))
}
```

remlscore

REML for Heteroscedastic Regression

Description

Fits a heteroscedastic regression model using residual maximum likelihood (REML).

Usage

```r
remlscore(y, X, Z, trace=FALSE, tol=1e-5, maxit=40)
```

Arguments

- `y`: numeric vector of responses
- `X`: design matrix for predicting the mean
- `Z`: design matrix for predicting the variance
- `trace`: Logical variable. If true then output diagnostic information at each iteration.
- `tol`: Convergence tolerance
- `maxit`: Maximum number of iterations allowed

Details

Write $\mu_i = E(y_i)$ for the expectation of the ith response and $s_i = (y_i)$. We assume the heteroscedastic regression model

$$
\mu_i = x_i^T \beta \\
\log(\sigma_i^2) = z_i^T \gamma,
$$

where x_i and z_i are vectors of covariates, and β and γ are vectors of regression coefficients affecting the mean and variance respectively.

Parameters are estimated by maximizing the REML likelihood using REML scoring as described in Smyth (2002).

Value

List with the following components:

- `beta`: vector of regression coefficients for predicting the mean
- `se.beta`: vector of standard errors for beta
- `gamma`: vector of regression coefficients for predicting the variance
- `se.gam`: vector of standard errors for gamma
- `mu`: estimated means
remlscoregamma

phi estimated variances
deviance minus twice the REML log-likelihood
h numeric vector of leverages
cov.beta estimated covariance matrix for beta
cov.gam estimated covariate matrix for gamma
iter number of iterations used

Author(s)
Gordon Smyth

References

Examples

```r
data(welding)
attach(welding)
y <- Strength
# Reproduce results from Table 1 of Smyth (2002)
X <- cbind(1,(Drying+1)/2,(Material+1)/2)
colnames(X) <- c("1","B","C")
Z <- cbind(1,(Material+1)/2,(Method+1)/2,(Preheating+1)/2)
colnames(Z) <- c("1","C","H","I")
out <- remlscore(y,X,Z)
cbind(Estimate=out$gamma,SE=out$se.gam)
```

remlscoregamma

Approximate REML for Gamma Regression with Structured Dispersion

Description

Estimates structured dispersion effects using approximate REML with gamma responses.

Usage

```r
remlscoregamma(y, X, Z, mlink="log", dlink="log", trace=FALSE, tol=1e-5, maxit=40)
```
Arguments

- **y**: numeric vector of responses.
- **X**: design matrix for predicting the mean.
- **Z**: design matrix for predicting the variance.
- **mlink**: character string or numeric value specifying link for mean model.
- **dlink**: character string or numeric value specifying link for dispersion model.
- **trace**: logical value. If TRUE then diagnostic information is output at each iteration.
- **tol**: convergence tolerance.
- **maxit**: maximum number of iterations allowed.

Details

This function fits a double generalized linear model (glm) with gamma responses. As for ordinary gamma glms, a link-linear model is assumed for the expected values. The double glm assumes a separate link-linear model for the dispersions as well. The responses \(y\) are assumed to follow a gamma generalized linear model with link \(mlink\) and design matrix \(X\). The dispersions follow a link-linear model with link \(dlink\) and design matrix \(Z\).

Write \(y_i\) for the \(i\)th response. The \(y_i\) are assumed to be independent and gamma distributed with \(E(y_i) = \mu_i\) and \(\text{var}(y_i) = \phi_i\mu_i^2\). The link-linear model for the means can be written as

\[
 g(\mu) = X\beta
\]

where \(g\) is the mean-link function defined by \(mlink\) and \(\mu\) is the vector of means. The dispersion link-linear model can be written as

\[
 h(\phi) = Z\gamma
\]

where \(h\) is the dispersion-link function defined by \(dlink\) and \(\phi\) is the vector of dispersions.

The parameters \(\gamma\) are estimated by approximate REML likelihood using an adaption of the algorithm described by Smyth (2002). See also Smyth and Verbyla (1999a,b) and Smyth and Verbyla (2009). Having estimated \(\gamma\) and \(\phi\), the \(\beta\) are estimated as usual for a gamma glm.

The estimated values for \(\beta\), \(\mu\), \(\gamma\) and \(\phi\) are return as beta, mu, gamma and phi respectively.

Value

List with the following components:

- **beta**: numeric vector of regression coefficients for predicting the mean.
- **se.beta**: numeric vector of standard errors for beta.
- **gamma**: numeric vector of regression coefficients for predicting the variance.
- **se.gam**: numeric vector of standard errors for gamma.
- **mu**: numeric vector of estimated means.
- **phi**: numeric vector of estimated dispersions.
- **deviance**: minus twice the REML log-likelihood.
- **h**: numeric vector of leverages.
References

Examples

data(welding)
attach(welding)
y <- Strength
X <- cbind(1,(Drying+1)/2,(Material+1)/2)
colnames(X) <- c("1","B","C")
Z <- cbind(1,(Material+1)/2,(Method+1)/2,(Preheating+1)/2)
colnames(Z) <- c("1","C","H","I")
out <- remlscoregamma(y,X,Z)

sage.test

Exact Binomial Tests For Comparing Two SAGE Libraries (Obsolete)

Description

Computes p-values for differential abundance for each tag between two digital libraries, conditioning on the total count for each tag. The counts in each group as a proportion of the whole are assumed to follow a binomial distribution.

Usage

sage.test(x, y, n1=sum(x), n2=sum(y))

Arguments

- **x**: integer vector giving counts in first library. Non-integer values are rounded to the nearest integer.
- **y**: integer vector giving counts in second library. Non-integer values are rounded to the nearest integer.
- **n1**: total number of tags in first library. Non-integer values are rounded to the nearest integer.
- **n2**: total number of tags in second library. Non-integer values are rounded to the nearest integer.
Details

This function was originally written for comparing SAGE libraries (a method for counting the frequency of sequence tags in samples of RNA). It can however be used for comparing any two digital libraries from RNA-Seq, ChIP-Seq or other technologies with respect to technical variation.

An exact two-sided binomial test is computed for each tag. This test is closely related to Fisher’s exact test for 2x2 contingency tables but, unlike Fisher’s test, it conditions on the total number of counts for each tag. The null hypothesis is that the expected counts are in the same proportions as the library sizes, i.e., that the binomial probability for the first library is \(\frac{n1}{n1+n2} \).

The two-sided rejection region is chosen analogously to Fisher’s test. Specifically, the rejection region consists of those values with smallest probabilities under the null hypothesis.

When the counts are reasonably large, the binomial test, Fisher’s test and Pearson’s chisquare all give the same results. When the counts are smaller, the binomial test is usually to be preferred in this context.

This function is a later version of the earlier sage.test function in the sagenhaft Bioconductor package. This function has been made obsolete by binomTest in the edgeR package.

Value

Numeric vector of p-values.

Note

This function is kept in the statmod package so as not to break code that depends on it but it has been replaced by binomTest in the edgeR Bioconductor package and is no longer updated. It may be removed in a later release of this package.

Author(s)

Gordon Smyth

References

https://en.wikipedia.org/wiki/Binomial_test
https://en.wikipedia.org/wiki/Fisher's_exact_test
https://en.wikipedia.org/wiki/RNA-Seq

See Also

The binomTest function in the edgeR package on Bioconductor is a newer and better version of this function.

binom.test in the stats package performs univariate binomial tests.
Examples

```r
sage.test(c(0,5,10),c(0,30,50),n1=10000,n2=15000)
# Univariate equivalents:
binom.test(5,5+30,p=10000/(10000+15000))$p.value
binom.test(10,10+50,p=10000/(10000+15000))$p.value
```

Description

Produces a generalized linear model family object with any power variance function and any power link. Includes the Gaussian, Poisson, gamma and inverse-Gaussian families as special cases.

Usage

```r
tweedie(var.power = 0, link.power = 1 - var.power)
```

Arguments

- `var.power`: index of power variance function
- `link.power`: index of power link function. `link.power=0` produces a log-link. Defaults to the canonical link, which is `1-var.power`.

Details

This function provides access to a range of generalized linear model (GLM) response distributions that are not otherwise provided by R. It is also useful for accessing distribution/link combinations that are disallowed by the R `glm` function. The variance function for the GLM is assumed to be $V(\mu) = \mu^{\text{var.power}}$, where μ is the expected value of the distribution. The link function of the GLM is assumed to be $\mu^{\text{link.power}}$ for non-zero values of `link.power` or log(μ) for `var.power=0`. For example, `tweedie(var.power = 1,link.power = 0)` is exactly equivalent to `poisson(link = "log")`.

The most interesting Tweedie families occur for `var.power` between 1 and 2. For these GLMs, the response distribution has mass at zero (i.e., it has exact zeros) but is otherwise continuous on the positive real numbers (Smyth, 1996; Hasan et al, 2012). These GLMs have been used to model rainfall for example. Many days there is no rain at all (exact zero) but, if there is any rain, then the actual amount of rain is continuous and positive.

Generally speaking, `var.power` should be chosen so that the theoretical response distribution matches the type of response data being modeled. Hence `var.power` should be chosen between 1 and 2 only
if the response observations are continuous and positive except for exact zeros and \(\text{var.power} \) should be chosen greater than or equal to 2 only if the response observations are continuous and strictly positive.

There are no theoretical Tweedie GLMs with \(\text{var.power} \) between 0 and 1 (Jorgensen 1987). The \texttt{tweedie} function will work for those values but the family should be interpreted in a quasi-likelihood sense.

Theoretical Tweedie GLMs do exist for negative values of \(\text{var.power} \), but they are of little practical application. These distributions assume The \texttt{tweedie} function will work for those values but the family should be interpreted in a quasi-likelihood sense.

The name Tweedie has been associated with this family by Joergensen (1987) in honour of M. C. K. Tweedie. Joergensen (1987) gives a mathematical derivation of the Tweedie distributions proving that no distributions exist for \(\text{var.power} \) between 0 and 1.

Mathematically, a Tweedie GLM assumes the following. Let \(\mu_i = E(y_i) \) be the expectation of the \(i \)th response. We assume that

\[
\mu_i^q = x_i^T b, \quad \text{var}(y_i) = \phi \mu_i^p
\]

where \(x_i \) is a vector of covariates and \(b \) is a vector of regression coefficients, for some \(\phi \), \(p \) and \(q \). This family is specified by \(\text{var.power} = p \) and \(\text{link.power} = q \). A value of zero for \(q \) is interpreted as \(\log(\mu_i) = x_i^T b \).

The following table summarizes the possible Tweedie response distributions:

<table>
<thead>
<tr>
<th>(\text{var.power})</th>
<th>Response distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
</tr>
<tr>
<td>1</td>
<td>Poisson</td>
</tr>
<tr>
<td>(1, 2)</td>
<td>Compound Poisson, non-negative with mass at zero</td>
</tr>
<tr>
<td>2</td>
<td>Gamma</td>
</tr>
<tr>
<td>3</td>
<td>Inverse-Gaussian</td>
</tr>
<tr>
<td>> 2</td>
<td>Stable, with support on the positive reals</td>
</tr>
</tbody>
</table>

Value

A family object, which is a list of functions and expressions used by \texttt{glm} and \texttt{gam} in their iteratively reweighted least-squares algorithms. See \texttt{family} and \texttt{glm} in the R base help for details.

Author(s)

Gordon Smyth

References

Hasan, M.M. and Dunn, P.K. (2012). Understanding the effect of climatology on monthly rainfall amounts in Australia using Tweedie GLMs. \textit{International Journal of Climatology}, 32(7) 1006-1017. (An example with \texttt{var.power} between 1 and 2)

See Also

glm, family, dtweedie

Examples

```r
y <- rgamma(20,shape=5)
x <- 1:20
# Fit a poisson generalized linear model with identity link
glm(y~x,family=tweedie(var.power=1,link.power=1))

# Fit an inverse-Gaussion glm with log-link
glm(y~x,family=tweedie(var.power=3,link.power=0))
```

welding

Data: Tensile Strength of Welds

Description

This is a highly fractionated two-level factorial design employed as a screening design in an off-line welding experiment performed by the National Railway Corporation of Japan. There were 16 runs and 9 experimental factors. The response variable is the observed tensile strength of the weld, one of several quality characteristics measured. All other variables are at plus and minus levels.

Usage

```r
data(welding)
```

Format

A data frame containing the following variables. All the explanatory variables are numeric with two levels, -1 and 1.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rods</td>
<td>Kind of welding rods</td>
</tr>
<tr>
<td>Drying</td>
<td>Period of drying</td>
</tr>
<tr>
<td>Material</td>
<td>Welded material</td>
</tr>
<tr>
<td>Thickness</td>
<td>Thickness</td>
</tr>
<tr>
<td>Angle</td>
<td>Angle</td>
</tr>
<tr>
<td>Opening</td>
<td>Opening</td>
</tr>
<tr>
<td>Current</td>
<td>Current</td>
</tr>
<tr>
<td>Method</td>
<td>Welding method</td>
</tr>
<tr>
<td>Preheating</td>
<td>Preheating</td>
</tr>
<tr>
<td>Strength</td>
<td>Tensile strength of the weld in kg/mm. The response variable.</td>
</tr>
</tbody>
</table>

Source

http://www.statsci.org/data/general/welding.html

References

Index

* algebra
 matvec, 24
* array
 matvec, 24
* datasets
 welding, 41
* distribution
 invgauss, 21
* documentation
 statmod-package, 2
* htest
 hommel.test, 20
 permp, 29
 power.fisher.test, 31
 sage.test, 37
* math
 gauss.quad, 10
 gauss.quad.prob, 12
 logmdigamma, 23
* models
 Digamma, 3
* regression
 elda, 5
 fitNBP, 8
 forward, 9
 glm.scoretest, 13
 glmgam.fit, 15
 glmnb.fit, 17
 growthcurve, 18
 meanT, 25
 mixedModel2, 26
 plot.limdil, 30
 qresiduals, 32
 remlscore, 34
 remlscoregamma, 35
 tweedie, 39

 add1, 15
 anova.glm, 15

 binom.test, 38
 canonic.digamma (Digamma), 3
 compareGrowthCurves, 2, 19, 25
 compareGrowthCurves (growthcurve), 18
 compareTwoGrowthCurves, 19, 25
 compareTwoGrowthCurves (growthcurve), 18
 cumulant.digamma (Digamma), 3
 d2cumulant.digamma (Digamma), 3
 Digamma, 3
 digamma, 23
 dinvgauss, 3
 dinvgauss (invgauss), 21
 dtweedie, 41

 elda, 5
 eldaOneGroup (elda), 5

 family, 40, 41
 fisher.test, 32
 fitNBP, 8
 forward, 9

 gauss.quad, 3, 10, 12, 13
 gauss.quad.prob, 11, 12
 glm, 13, 15, 16, 18, 40, 41
 glm.scoretest, 13
 glmgam.fit, 3, 15, 27
 glmnb.fit, 17
 growthcurve, 18

 hommel.test, 3, 20

 integrate, 11, 13
 InverseGaussian (invgauss), 21
 invgauss, 21

 limdil, 2, 31
 limdil (elda), 5
 limdil-class (elda), 5
limdil.class (elda), 5
lm, 27
lm.fit, 27
lme, 27
logmdigamma, 23
make.link, 4
matvec, 3, 24
meanT, 19, 25
meanval.digamma (Digamma), 3
mixedModel2, 3, 26
mixedModel2Fit, 3, 16
mixedModel2Fit (mixedModel2), 26
mscale, 28
p.adjust, 20
permp, 3, 29
pinvgauss, 3
pinvgauss (invgauss), 21
plot, 6
plot.limdil, 7, 30
plotGrowthCurves (growthcurve), 18
power.fisher.test, 3, 31
power.t.test, 32
print, 6
print.limdil, 7
print.limdil (plot.limdil), 30
qinvgauss, 3
qinvgauss (invgauss), 21
qres.binom (qresiduals), 32
qres.default (qresiduals), 32
qres.gamma (qresiduals), 32
qres.invgauss (qresiduals), 32
qres.nbinom (qresiduals), 32
qres.pois (qresiduals), 32
qres.tweedie (qresiduals), 32
qresid (qresiduals), 32
qresiduals, 2, 32
quasi, 4
randomizedBlock (mixedModel2), 26
randomizedBlockFit (mixedModel2), 26
remlscore, 3, 34
remlscoregamma, 3, 35
residuals.glm, 33
rinvgauss, 3
rinvgauss (invgauss), 21
sage.test, 3, 9, 37
statmod (statmod-package), 2
statmod-package, 2
step, 10
summary.glm, 14
tweedie, 2, 39
unitdeviance.digamma (Digamma), 3
varfun.digamma (Digamma), 3
vecmat, 3
vecmat (matvec), 24
welding, 3, 41