Package ‘stats4teaching’

October 14, 2022

Type Package
Title Simulate Pedagogical Statistical Data
Version 0.1.0
Description Univariate and multivariate normal data simulation. They also supply a brief summary of the analysis for each experiment/design:
- Independent samples.
- One-way and two-way Anova.
- Paired samples (T-Test & Regression).
- Repeated measures (Anova & Multiple Regression).
- Clinical Assay.
License GPL-3
Encoding UTF-8
RoxygenNote 7.1.2
Imports asbio, car, clusterGeneration, knitr, MASS, MVN, nortest, psych, pwr, rstatix, stats
NeedsCompilation no
Author Cabello Esteban [aut, cre], Femia Pedro [aut]
Maintainer Cabello Esteban <estebancabellogarcia@gmail.com>
Repository CRAN
Date/Publication 2022-10-04 05:30:07 UTC

R topics documented:
anova1way ... 2
anova2way .. 3
cassay ... 4
generator ... 5
is.cormatrix ... 6
is.covmatrix .. 7
is.posDef .. 7
is.semiposDef .. 8
Description

`anova1way` is used to generate multivariate data in order to compute analysis of variance with 1 factor. It provides balanced and unbalanced ANOVA (as long as homogeneity of variances is satisfied. In other case it is provided Welch test).

Usage

```r
anova1way(k = 3, n, mean = 0, sigma = 1, 
        coefvar = NULL, method = c("Tukey", "LSD", "Dunnett", "Bonferroni", "Scheffe"),
        conf.level = 0.95, dec = 2)
```

Arguments

- `k` number of levels. By default `k = 3`.
- `n` size of samples.
- `mean` vector of means.
- `sigma` vector of standard deviations.
- `coefvar` an optional vector of coefficients of variation.
- `method` post-hoc method applied. There are five possible choices: "Tukey", "LSD", "Dunnett", "Bonferroni", "Scheffe". Can be specified just the initial letter.
- `conf.level` confidence level of the interval.
- `dec` number of decimals for observations.

Details

If `mean` or `sigma` are not specified it is assumed the default values of 0 and 1.

If `coefvar (= sigma/mean)` is specified, function omits `sigma`.

Number of samples is choosen by `k` (by default `k = 3`). Therefore, if the others parameters (`n, mean, sigma, coefvar`) have not same length, function `rep` will be used. Pay attention if vectors dont have same length.

Moreover, not only gives samples for each level, but also the ANOVA table and post-hoc test (in case of significance). By default `conf.level = 0.95` and Tukey method is used. If the homogeneity of variances is not verified (using Bartlett test), the Welch test is performed.
anova2way

Value
List containing the following components:

• Data: a data frame containing the samples created.
• Anova: anova fitted model.
• Significance: significance of the factor.
• Size.effect: size effect of the factor.
• Test Post-Hoc: test Post-Hoc.

Examples
anova1way(k=4,n=c(40,31,50),mean=c(55,52,48,59),coefvar=c(0.12,0.15,0.13),conf.level = 0.99)
anova1way(k=3,n=15,mean=c(10,15,20),sigma =c(1,1.25,1.1),method ="B")

anova2way

Two-Way ANOVA

Description
anova2way returns multivariate data in order to compute analysis of variance with 2 factors.

Usage
anova2way(k =2 , j = 2, n, mean = 0, sigma = 1, coefvar = NULL, method = c("Tukey", "LSD", "Dunnett", "Bonferroni", "Scheffe"), conf.level = 0.95, dec = 2)

Arguments

k number of levels Factor I. By default k=2.
j number of levels Factor II. By default j=2.
n number of elements in each group (k,j).
mean vector of means.
sigma vector of standard deviations.
coefvar an optional vector of coefficients of variation.
conf.level confidence level of the interval.
dec number of decimals for observations.
Value

A list containing the following components:

- **Data**: a data frame containing the samples created.
- **Size.effect**: size effect for each factor and interaction.
- **Significance/Test Post-Hoc**: significance for each factor and interaction and test Post-Hoc for each factor.

Examples

```r
anova2way(k=3, j=2, n=c(3,4,5,5,6,3), mean = c(1,4,2.5,5,6,3.75), sigma = c(1,1.5))
```

cassay

Clinical Assay

Description

Simulates a clinical Assay with 2 groups (control and treatment) before and after intervention.

Usage

```r
cassay(n, mean = 0, sigma = 1, coefvar = NULL, 
       d.cohen = NULL, dec = 2)
```

Arguments

- `n`: size of samples.
- `mean`: sample mean. Same for both groups before intervention (Pre-test).
- `sigma`: sample standard error.
- `coefvar`: sample coefficient of variation.
- `d.cohen`: size effect (d-Cohen). If not given, randomly generated.
- `dec`: number of decimals for observations.

Value

List containing the following components:

- **Data**: a data frame containing the samples created (Columns: Group, PreTest & PostTest).
- **Model**: linear regression model.

Examples

```r
cassay(c(10,12), mean = 115, sigma = 7.5, d.cohen= 1.5)
cassay(24, mean = 100, sigma = 5.1)
```
generator

Generation of multivariate normal data.

Description

This function generates univariate and multivariate normal data. It allows simulating correlated and independent samples. Moreover, normality tests and numeric informations are provided.

Usage

```r
generator(n, mean = 0, sigma = 1, coefvar = NULL, sigmaSup = NULL, dec = 2)
```

Arguments

- `n` vector size of samples.
- `mean` vector of means.
- `sigma` vector of standard deviations or covariance/correlation matrix.
- `coefvar` an optional vector of coefficients of variation.
- `sigmaSup` an optional vector of standard deviations if sigma is a correlation matrix.
- `dec` number of decimals for observations.

Details

If `mean` or `sigma` are not specified it’s assumed the default values of 0 and 1.

If `coefvar` (= `sigma`/`mean`) is specified, function omits `sigma` and `sigmaSup`. It’s assumed that independent samples are desired.

Number of samples are choosen by taken the longest parameter (`n`, `mean`, `sigma`, `coefvar`). Therefore, function `rep` is used. Pay attention if vectors don’t have same length!

If `sigma` is a vector, samples are independent. In other case (`sigma` is a matrix), samples are dependent (following information meanst be taken into account: if `sigma` is a correlation matrix, `sigmaSup` is required).

Value

List containing the following components for independent (with the same length) and dependent samples:

- **Samples**: a data frame containing the samples created.
- **Test normality test for the data** (`shapiro.test()` for `n <= 50` and `lillie.test()` in other case).

List containing the following components for independent samples with different lengths:

- **X_i** sample number i.
Examples

generator(4,0,2)

sigma <- matrix(c(1,0.8,0.8,1),nrow = 2, byrow = 2)
d <- generator(4,mean = c(1,2),sigma, sigmaSup = 1)
generator(10,1,coefvar = c(0.3,0.5))
generator(c(10,11,10),c(1,2),coefvar = c(0.3,0.5))

is.corrmatrix
Correlation matrix

Description

Checks if a given matrix is a correlation matrix for non-degenerate distributions.

Usage

is.corrmatrix(matrix)

Arguments

matrix a (non-empty) numeric matrix of data values.

Value

A logical value: True/False.

Examples

m1<-matrix(c(1,2,2,1),nrow = 2,byrow = TRUE)
is.corrmatrix(m1)

m2<-matrix(c(1,0.8,0.8,1),nrow = 2,byrow = TRUE)
is.corrmatrix(m2)

m3<-matrix(c(1,0.7,0.8,1),nrow = 2,byrow = TRUE)
is.corrmatrix(m3)
is.covmatrix

Covariance matrix

Description
Checks if a given matrix is a covariance matrix for non-degenerate distributions.

Usage

is.covmatrix(matrix)

Arguments

matrix a (non-empty) numeric matrix of data values.

Value
A logical value: True/False.

Examples

m1 <- matrix(c(2,1.5,1.5,1), nrow = 2, byrow = TRUE)
is.covmatrix(m1)

m2 <- matrix(c(1,0.8,0.8,1), nrow = 2, byrow = TRUE)
is.covmatrix(m2)

m3 <- matrix(c(1,0.7,0.8,1), nrow = 2, byrow = TRUE)
is.covmatrix(m3)

is.posDef

Positive defined matrices

Description
Checks if a given matrix is positive defined.

Usage

is.posDef(matrix)

Arguments

matrix a (non-empty) numeric matrix of data values.
Value

A logical value: True/False.

Examples

A <- matrix(c(1,2,2,1), nrow = 2, byrow = TRUE)
is.posDef(A)

B <- matrix(c(1,2,3,3,1,2,1,2,1), nrow = 3, byrow = TRUE)
is.posDef(B)

is.semiposDef Semi-Positive defined matrices

Description

Checks if a given matrix is semi-positive defined.

Usage

is.semiposDef(matrix)

Arguments

matrix a (non-empty) numeric matrix of data values.

Value

A logical value: True/False.

Examples

A<-matrix(c(2,2,1,1,3), nrow = 2, byrow = TRUE)
is.semiposDef(A)

B<-matrix(c(1,2,3,3,1,2,1,2,1), nrow = 3, byrow = TRUE)
is.semiposDef(B)
mCorrCov

Correlation & Covariance matrices.

Description

Given a correlation matrix and vector of standard deviations (or vector of means and vector of variation coefficients) returns a covariance matrix.

Usage

`mCorrCov(mcorr, sigma = 1, mu = NULL, coefvar = NULL)`

Arguments

- `mcorr`: a (non-empty) numeric correlation matrix.
- `sigma`: an optional vector of standard deviations.
- `mu`: an optional vector of means.
- `coefvar`: an optional vector of coefficients of variation.

Details

`coefvar = sigma/mu`.

If `sigma`, `mu` or `coefvar` are not specified, it’s assumed that default values for standard error’s are 1. Length of standard error’s is created using number of rows of correlation matrix. It’s necessary to provide `sigma` or `mu` and `coefvar` (both) in order to obtain a desired covariance matrix.

Length of vectors is taken using `rep`. Pay attention if vectors don’t have same length!

Value

`mCorrCov` gives the covariance matrix for a specified correlation matrix.

Examples

```r
A <- matrix(c(1,2,2), nrow = 2, byrow = TRUE)
mCorrCov(A)

B <- matrix(c(1,0.8,0.7,0.8,1,0.55,0.7,0.55,1), nrow = 3, byrow = TRUE)
mCorrCov(B,mu = c(2,3.5,1), coefvar = c(0.3,0.5,0.7))
```
Paired measures (T-Test & Regression)

Description
Generates two paired measures. It provides T-test and a simple linear regression model for generated data.

Usage
```r
pairedm(n, mean = 0, sigma = 1, coefvar = NULL,
        rho = NULL, alternative = c("two.sided", "less", "greater"),
        delta = 0, conf.level = 0.95, dec = 2,
        random = FALSE)
```

Arguments
- `n`: size of each sample.
- `mean`: vector of means.
- `sigma`: vector of standard deviations.
- `coefvar`: an optional vector of coefficients of variation.
- `rho`: Pearson correlation coefficient (optional). If `rho = NULL` a random covariance matrix is generated by `genPositiveDefMat()`.
- `alternative`: a character string specifying the alternative hypothesis for T-Test. Must be one of “two.sided” (default), “greater” or “less”. Can be specified just the initial letter.
- `delta`: true value of the difference in means.
- `conf.level`: confidence level for interval in T-Test.
- `dec`: number of decimals for observations.
- `random`: a logical indicating whether you want a random covariance/variance matrix.

Details
If `random = TRUE`, `rho` is omitted and `sigma` is taken as range for variances of the covariance matrix.

Value
List containing the following components:
- Data: a data frame containing the samples created.
- Model: linear regression model.
- T.Test: a t-test for the samples.
See Also

[clusterGeneration::genpositiveDefMat()]

Examples

```r
pairedm(10, mean = c(10,2), sigma = c(1.2,0.7), rho = 0.5, alternative = "g")
pairedm(15, mean = c(1,2), coefvar = 0.1, random = TRUE)
```

Description

Repeated Measures (ANOVA & Multiple Regression)

Usage

```r
repeatedm(k, n, mean = 0, sigma = 1, coefvar = NULL,
           sigmaSup = NULL, conf.level = 0.95,
           random = FALSE, dec = 2)
```

Arguments

- `k` number of variables.
- `n` number of observations.
- `mean` vector of means.
- `sigma` vector of standard deviations/covariance-correlation matrix.
- `coefvar` vector (optional) of coefficients of variation.
- `sigmaSup` vector (optional) of standard deviations if `sigma` is a correlation matrix.
- `conf.level` confidence level for interval in T-Test.
- `random` a logical indicating whether you want a random covariance/variance matrix.
- `dec` number of decimals for observations.

Details

Number of variables must be greater than 3, in order to ensure an ANOVA of repeated measures or a multiple Linear Regression.

`sigma` can represent a vector or a covariance/correlation matrix. In case `sigma` is a vector, independent samples are created. By other hand, if it's a correlation matrix parameter `sigmaSup` is required. For covariance matrices, the function does not require any other parameter or special treatment.

If `random = TRUE`, a random covariance matrix is generated by using `genpositiveDefMat()`.
Value

A data frame.

See Also

[clusterGeneration::genpositiveDefMat()]

Examples

```r
randm <- clusterGeneration::genPositiveDefMat(8, covMethod = "unifcorrmat")
mcov <- randm$Sigma
Sigma <- cov2cor(mcov)
is.corrmatrix(Sigma)
repeatedm(k = 8, n = 8, mean = c(20, 5, 30, 15), sigma = Sigma, sigmaSup = 2, dec = 2)
repeatedm(k = 5, n = 5, mean = c(8, 10, 5, 14, 22.5), random = TRUE)
repeatedm(k = 3, n = 8, mean = c(10, 5, 22.5), sigma = c(3.3, 1.5, 5), dec = 2)
```

Description

Generates two normal independent samples. It also provides Cohen’s effect and T-Test.

Usage

```r
sample2indp(n , mean = 0, sigma = 1, coefvar = NULL, alternative = c("two.sided", "less", "greater"), delta = 0, conf.level = 0.95, dec = 2)
```

Arguments

- `n`: vector of size of samples.
- `mean`: vector of means.
- `sigma`: vector of standard deviations.
- `coefvar`: an optional vector of coefficients of variation.
- `alternative`: a character string specifying the alternative hypothesis for T-Test. meanst be one of “two.sided” (default), “greater” or “less”. Can be specified just the initial letter.
- `delta`: true value of the difference in means.
- `conf.level`: confidence level of the interval. It determines level of significance for comparing variances.
- `dec`: number of decimals for observations.
sample2indp.pow

Details
If mean or sigma are not specified it’s assumed the default values of 0 and 1.
n is a vector, so it’s possible to generate samples with same or different sizes.
If coefvar is given, sigma is omitted. Vector of means cannot have any 0.

Value
A list containing the following components:

• Data: a data frame containing the samples created.
• T.Test: a t-test of the samples.
• Power: power of the test.

Examples

sample2indp(c(10,12), mean = c(2,3), coefvar = c(0.3,0.5), alternative = "less", delta = -1)
sample2indp(8, sigma = c(1,1.5), dec = 3)

Description
Generates two normal independent samples with desired power and cohen’s effect.

Usage

sample2indp.pow(n1, mean = 0, s1 = 1, d.cohen, power,
alternative = c("two.sided", "less", "greater"), delta = 1,
conf.level = 0.95, dec = 2)

Arguments

n1 first sample size.
mean vector of sample means.
s1 standard deviation for first sample.
d.cohen Cohen’s effect.
power power of the test.
alternative a character string specifying the alternative hypothesis for T-Test. Must be one of "two.sided" (default), "greater" or "less". Can be specified just the initial letter.
delta true value of the difference in means.
conf.level confidence level of the interval.
dec number of decimals for observations.
Details

Pooled standard deviation: \(sp = \sqrt{\frac{(n1 - 1) \sigma_1^2 + (n2 - 1) \sigma_2^2}{n1 + n2 - 2}} \)

\(d.\text{cohen} = \frac{|\text{mean1} - \text{mean2}|}{\sqrt{sp}} \)

Value

A list containing the following components:

- **Data**: a data frame containing the samples created.
- **Size**: size of each sample.
- **T.test**: a t-test of the samples.

Examples

```r
sample2indp.pow(n1 = 30, mean = c(2,3), s1= 0.5, d.cohen = 0.8, power = 0.85, delta = 1)
sample2indp.pow(n1 = 50, mean = c(15.5,16), s1=2 , d.cohen = 0.3, power = 0.33, delta = 0.5)
```

stats4teaching

Teaching Statistics Data Simulation

Description

Univariate and multivariate normal data simulation. They also supply a brief summary of the analysis for each experiment/design.

- Independent samples.
- One-way and two-way ANOVA.
- Paired samples (T-Test & Regression).
- Repeated measures (ANOVA & Multiple Regression).
- Clinical Assay.

Author(s)

Esteban Cabello García and Pedro Jesús Femia Marzo.
Index

anova1way, 2
anova2way, 3
cassay, 4
generator, 5
is.corrmatrix, 6
is.covmatrix, 7
is.posDef, 7
is.semiposDef, 8
mCorrCov, 9
pairedm, 10
repeatedm, 11
sample2indp, 12
sample2indp.pow, 13
stats4teaching, 14