Package ‘stevedata’

November 18, 2022

Type Package
Title Steve's Toy Data for Teaching About a Variety of Methodological, Social, and Political Topics
Depends R (>= 3.5.0)
Version 0.8.0
Maintainer Steve Miller <steven.v.miller@gmail.com>
Description This is a collection of various kinds of data with broad uses for teaching. My students, and academics like me who teach the same topics I teach, should find this useful if their teaching workflow is also built around the R programming language. The applications are multiple but mostly cluster on topics of statistical methodology, international relations, and political economy.
License GPL-2
Encoding UTF-8
LazyData true
LazyDataCompression xz
RoxygenNote 7.2.0
URL http://svmiller.com/stevedata/
BugReports https://github.com/svmiller/stevedata/issues/
Suggests knitr, rmarkdown, tibble, tools, testthat
NeedsCompilation no
Author Steve Miller [aut, cre] (<https://orcid.org/0000-0003-4072-6263>)
Repository CRAN
Date/Publication 2022-11-18 12:10:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>af_crime93</td>
<td>3</td>
</tr>
<tr>
<td>aluminum_premiums</td>
<td>4</td>
</tr>
<tr>
<td>anes_partytherms</td>
<td>5</td>
</tr>
</tbody>
</table>
R topics documented:

<table>
<thead>
<tr>
<th>Package</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>anes_prochoice</td>
<td>6</td>
</tr>
<tr>
<td>anes_vote84</td>
<td>7</td>
</tr>
<tr>
<td>Arca</td>
<td>8</td>
</tr>
<tr>
<td>arcticseaice</td>
<td>9</td>
</tr>
<tr>
<td>arg_tariff</td>
<td>9</td>
</tr>
<tr>
<td>asn_stats</td>
<td>10</td>
</tr>
<tr>
<td>CFT15</td>
<td>11</td>
</tr>
<tr>
<td>clemson_temps</td>
<td>12</td>
</tr>
<tr>
<td>co2emissions</td>
<td>12</td>
</tr>
<tr>
<td>coffee_imports</td>
<td>14</td>
</tr>
<tr>
<td>coffee_price</td>
<td>14</td>
</tr>
<tr>
<td>CP77</td>
<td>15</td>
</tr>
<tr>
<td>Datasaurus</td>
<td>16</td>
</tr>
<tr>
<td>Dee04</td>
<td>17</td>
</tr>
<tr>
<td>DJIA</td>
<td>18</td>
</tr>
<tr>
<td>DST</td>
<td>18</td>
</tr>
<tr>
<td>eight_schools</td>
<td>19</td>
</tr>
<tr>
<td>election_turnout</td>
<td>20</td>
</tr>
<tr>
<td>eq_passengercars</td>
<td>21</td>
</tr>
<tr>
<td>ESS9GB</td>
<td>22</td>
</tr>
<tr>
<td>ESSBE5</td>
<td>23</td>
</tr>
<tr>
<td>eustates</td>
<td>24</td>
</tr>
<tr>
<td>fakeAPI</td>
<td>24</td>
</tr>
<tr>
<td>fakeHappiness</td>
<td>25</td>
</tr>
<tr>
<td>fakeLogit</td>
<td>26</td>
</tr>
<tr>
<td>fakeTSCS</td>
<td>26</td>
</tr>
<tr>
<td>fakeTSD</td>
<td>27</td>
</tr>
<tr>
<td>ghp100k</td>
<td>28</td>
</tr>
<tr>
<td>gss_abortion</td>
<td>29</td>
</tr>
<tr>
<td>gss_spending</td>
<td>30</td>
</tr>
<tr>
<td>gss_wages</td>
<td>32</td>
</tr>
<tr>
<td>Guber99</td>
<td>33</td>
</tr>
<tr>
<td>illiteracy30</td>
<td>34</td>
</tr>
<tr>
<td>inglehart03</td>
<td>35</td>
</tr>
<tr>
<td>LOTI</td>
<td>35</td>
</tr>
<tr>
<td>LTPT</td>
<td>36</td>
</tr>
<tr>
<td>LTWT</td>
<td>37</td>
</tr>
<tr>
<td>min_wage</td>
<td>37</td>
</tr>
<tr>
<td>mm_mlda</td>
<td>38</td>
</tr>
<tr>
<td>mm_nhls</td>
<td>39</td>
</tr>
<tr>
<td>mm_randhie</td>
<td>40</td>
</tr>
<tr>
<td>mvprod</td>
<td>41</td>
</tr>
<tr>
<td>nesarc_drinkspd</td>
<td>42</td>
</tr>
<tr>
<td>Newhouse77</td>
<td>43</td>
</tr>
<tr>
<td>ODGI</td>
<td>43</td>
</tr>
<tr>
<td>Presidents</td>
<td>44</td>
</tr>
<tr>
<td>pwt_sample</td>
<td>45</td>
</tr>
<tr>
<td>quartets</td>
<td>46</td>
</tr>
</tbody>
</table>
af_crime93

Statewide Crime Data (1993)

Description

These data are in Table 9.1 of the 3rd edition of Agresti and Finlay’s *Statistical Methods for the Social Sciences*. The data are from *Statistical Abstract of the United States* and most variables were measured in 1993.

Usage

af_crime93
Format
A data frame with 51 observations on the following 8 variables.

state a character vector for the state
violent a numeric vector for the violent crime rate (per 100,000 people in population)
murder a numeric vector for the murder rate (per 100,000 people in population)
poverty a numeric vector for the percent with income below the poverty level
single a numeric vector for the percent of families headed by a single parent
metro a numeric vector for the percent of population in metropolitan areas
white a numeric vector for the percentage of the state that is white
highschool a numeric vector for the percent of state that graduated from high school

Details
The data are from Statistical Abstract of the United States and most variables were measured in 1993. These data should result in regressions that would flunk a Breusch-Pagan test for heteroskedasticity.

References

aluminum_premiums LME Aluminum Premiums Data

Description
A near daily data set on the price of aluminum premiums (USD/MT) for LME in the U.S., Western Europe, East Asia, and Southeast Asia. I like these data as illustrative of some of the shortsightedness of the aluminum tariffs that Donald Trump announced in March 2018. The tariffs had no discernible effect on manufacturing employment or earnings, but they created a supply shock that made aluminum more expensive.

Usage
aluminum_premiums

Format
A data frame with 2,812 observations on the following 3 variables.

date a date
group a factor with levels of East Asia, Southeast Asia, United States, and Western Europe
price a numeric vector for the price of the LME aluminum premium
Details

LME aluminum premiums (monthly contracts going out to 15 months) work alongside LME aluminum contracts to allow market participants to hedge the all-in price and physically deliver or receive premium aluminum warrants in non-queued LME premium warehouses.

Description

A data set on thermometer ratings for the Democratic party, Republican party, "both major parties", and a major party thermometer index from the American National Election Studies (1978-2012).

Usage

anes_partytherms

Format

A data frame with 33830 observations on the following 19 variables.

- **year**: the survey year
- **uid**: a unique identifier for each respondent, taken directly from the time-series files for potential merging
- **stateabb**: the two-character abbreviation for the state of residence for the respondent
- **therm_dem**: the respondent's thermometer rating of the Democratic party
- **therm_gop**: the respondent's thermometer rating of the Republican party
- **therm_bmp**: the respondent's thermometer rating of "both major parties"
- **mpti**: the "major party thermometer index" score for the respondent. See details for more.
- **age**: the age of the respondent
- **educat**: the education-level of the respondent. 1 = 8 grades or less. 2 = high school, no diploma. 3 = high school diploma. 4 = high school "plus non-academic training". 5 = Some college, no degree (includes AA holders). 6 = BA-level degree. 7 = advanced degree, including Bachelor of Laws degrees.
- **urbanism**: 1 = central cities. 2 = suburban areas. 3 = rural/small towns/outlying areas.
- **pid7**: 1 = Strong Democrat. 2 = Weak Democrat. 3 = Independent, lean Democrat. 4 = Independent. 5 = Independent, lean Republican. 6 = Weak Republican. 7 = Strong Republican
- **incomeperc**: respondent's household income percentile. 1 = 0-16 percentile. 2 = 17-33. 3 = 34-67. 4 = 68-95. 5 = 96-100.
- **race4**: respondent's race-ethnicity summary. 1 = White, non-hispanic. 2 = Black, non-hispanic. 3 = Hispanic. 4 = Other.
- **unemployed**: a binary numeric vector for if the respondent is temporarily unemployed.
polint the respondent’s self-reported interest in public affairs. 1 = Hardly at all. 2 = Only now and then. 3 = Some of the time. 4 = Most of the time.
distrust_govt the respondent’s self-reported (dis)trust in the federal government’s ability to do what’s right. 1 = Just about always (trust the government). 2 = Most of the time. 3 = Some of the time. 4 = None of the time/never.
govt_crooked the respondent’s assessment of how many government officials are crooked. 1 = Hardly any. 2 = Not many. 3 = Quite a few; quite a lot.
govt_waste the respondent’s assessment of how much the government wastes in tax money. 1 = Not very much. 2 = Some. 3 = A lot.
govt_biginterests the respondent’s assessment of whether the government is run by a few big interests. 0 = Run for the benefit of all people. 1 = Run by a few big interests.

Details
The major party thermometer index is calculated as the thermometer rating for the Democratic party minus the thermometer rating for the Republican party. 100 is then added to that difference, which is then divided by 2. Fractional results are rounded to the next highest integer. Also note the coding of the “government distrust” measures. These are reverse-coded from their original scales.

Source
Data come from ANES’s time series file.

anes_prochoice Abortion Attitudes (ANES, 2012)

Description
A simple data set for in-class illustration about how to estimate and interpret interactive relationships. The data here are deliberately minimal for that end.

Usage
anes_prochoice

Format
A data frame with 5914 observations on the following 14 variables.

version version identifier from ANES
caseid time-series case identifier from ANES
health oppose/"NFNO"/favor [0:2] abortion if pregnancy would hurt woman
fatal oppose/"NFNO"/favor [0:2] abortion if pregnancy would cause woman to die
incest oppose/"NFNO"/favor [0:2] abortion if pregnancy was caused by incest
rape oppose/"NFNO"/favor [0:2] abortion if pregnancy was caused by rape
anes_vote84

bd oppose/"NFNO"/favor [0:2] abortion if fetus would be born with serious birth defect
fin oppose/"NFNO"/favor [0:2] abortion if having child would impose financial hardship
sex oppose/"NFNO"/favor [0:2] abortion if the child will not be the sex the woman wants
choice oppose/"NFNO"/favor [0:2] abortion if woman chooses to have one
pid respondent’s partisanship [0:2] (Democrat, Independent, Republican)
knowspeaker was the respondent able to correctly identify the Speaker of the House (John Boehner)
addchoice an additive scale of the abortion scores [0:16]
1choice a continuous latent scale of pro-choice scores (from a simple graded response model)

Details

"NFNO" = "Neither Favor Nor Oppose"

Source

Data come from ANES’s (2012) time series.

<table>
<thead>
<tr>
<th>anes_vote84</th>
<th>Simple Data for a Simple Model of Individual Voter Turnout (ANES, 1984)</th>
</tr>
</thead>
</table>

Description

This is a simple data set for estimating a simple model on voter turnout from the 1984 American National Election Studies (ANES) 1984 time-series.

Usage

anes_vote84

Format

A data frame with 2257 observations on the following 9 variables.

uid a unique identifier for the respondent
stateabb the state where the respondent lives (as an abbreviation)
vote whether the respondent voted (1 = yes; 0 = no)
age the age of the respondent
educ the education-level of the respondent. See details section for more.
female whether the respondent is a woman (1 = female; 0 = male)
south does the respondent live in the south (1 = yes; 0 = no)
polint the political interest of the respondent in the campaigns (-1 = not much interested; 0 = somewhat interested; 1 = very much interested)
govrace did the respondent’s state have a gubernatorial election that same November (1 = yes; 0 = no)
Details

The `vote` variable is deliberately coded where those with a value of 1 are respondents who said they voted and the ANES was able to confirm that with voter registration records. There are purportedly 85 responses in this raw variable where the respondent said they voted, but this could not be confirmed from registration records. Those cases are recorded as `NA`. The `educ` variable ranges from 1 (finished 8th grade or less than that) to 10 (respondent holds an advanced degree). The `uid` variable is a simple sequence variable ranging from 1 to 2257 and is calculated on the original 1984 time-series study (May 3, 1999 version) before other recoding was done. This should allow some reproducibility for an interested user.

Source

Data come from ANES’s (1984) time series.

<table>
<thead>
<tr>
<th>Arca</th>
<th>NYSE Arca Steel Index data, 2017–present</th>
</tr>
</thead>
</table>

Description

Daily data on the NYSE Arca Steel Index. These data are useful for me in teaching how Trump’s 2018 steel tariffs didn’t do much good for the steel industry.

Usage

Arca

Format

A data frame with 966 observations on the following 6 variables.

date the date
close the closing price
open the opening price
high the daily high in that day’s trading
low the daily low in that day’s trading

Details

These data are taken from investing.com. See: https://www.investing.com/indices/arca-steel-historical-data
Description

This data set from Connelly et al. (2017) measures the Arctic sea ice extent in 10^6 square kilometers. It includes lower bounds and upper bounds on annual averages.

Usage

`arcticseaice`

Format

A data frame with 115 observations on the following 4 variables.

- `year` the year
- `value` the annual Arctic sea ice extent (in 10^6 sq km)
- `ub` The upper bound of the value, provided by Connelly et al.
- `lb` The lower bound of the value, provided by Connelly et al.

Details

This is for illustration of climate change for my intro students. Connelly et al. (2017) are in part a methodological paper. The data I present here are from the "rescaled (unadjusted T)" data in the second sheet from their replication files.

References

arg_tariff

Simple Mean Tariff Rate for Argentina

Description

Simple mean tariff rate for Argentina, starting in 1980. The goal is to keep these data current.

Usage

`arg_tariff`
asn_stats

Format

A data frame with three variables:

- country: country name (Argentina)
- year: the year
- tariffrate: the simple mean tariff rate for Argentina on all products (as a percentage)

Details

asn_stats Aviation Safety Network Statistics, 1942-2019

Description

These are yearly counts on air accidents and fatalities, including measures for corporate jet accidents and hijackings. The hijackings are of particular interest to me, at least from a historical terrorism perspective.

Usage

asn_stats

Format

A data frame with 78 observations on the following 7 variables.

- year: numeric vector for the year
- airacc: a numeric vector for the number of airliner accidents
- airfatal: a numeric vector for the number of fatalities from airliner accidents
- corpjetacc: a numeric vector for the number of corporate jet accidents
- corpjetfatal: a numeric vector for the number of fatalities from corporate jet accidents
- hijack: a numeric vector for the number of hijackings/skyjackings
- hijackfatal: a numeric vector for the number of fatalities from hijackings/skyjackings

Details

All fatality estimates exclude ground fatalities. All accidents are hull-loss accidents. The airliner figures are for those flights with at least 14 passengers. Check https://aviation-safety.net/statistics/period/stats.php?cat=H2 for more.

Source

Aviation Safety Network, a service provided by the Flight Safety Foundation.
Description

This is the replication data for "Randomization Inference in the Regression Discontinuity Design: An Application to Party Advantages in the U.S. Senate", published in 2015 in Journal of Causal Inference. I use these data to teach about regression discontinuity designs.

Usage

CFT15

Format

A data frame with 1390 observations on the following 9 variables.

- **state**: a numeric vector for the state. This is ultimately a categorical variable.
- **year**: a numeric vector for the year of the election.
- **vote**: a numeric vector for the Democratic vote share in the next election (i.e. six years later).
- **margin**: a numeric vector for the Democratic party’s margin of victory in the statewide election. This is the running variable, in RDD parlance.
- **class**: a numeric vector for the class to which each Senate seat belongs.
- **terms_house**: a numeric vector for the Democratic candidate’s cumulative number of terms previously served in the U.S. House.
- **terms_senate**: a numeric vector for the Democratic candidate’s cumulative number of terms previously served in the U.S. Senate.
- **population**: a numeric vector for the population of the Senate seat’s state.
- **treatment**: a numeric vector that is 1 if margin > 0 and is 0 if margin < 0.

Source

References

clemson_temps

Daily Clemson Temperature Data

Description

This data set contains daily temperatures (highs and lows) for Clemson, South Carolina from Jan. 1, 1930 to the end of the most recent calendar year. The goal is to update this periodically with new data for as long as I live in this town.

Usage

clemson_temps

Format

A data frame with 33,148 observations on the following 3 variables.

- **date** the date
- **tmin** the daily low, adjusted to Fahrenheit
- **tmax** the daily high, adjusted to Fahrenheit

Details

Data obtained from NOAA, via the *rnoaa* package. The station identifier is GHCND:USC00381770 for added context. The call from *rnoaa* returns these values initially as Celsius*10. I don’t know why NOAA does it this way, but there you go.

co2emissions

Carbon Dioxide Emissions Data

Description

This is a sample data set, cobbled from various sources, about carbon dioxide emissions in the history of the planet from 800,000 BCE to the most recently concluded calendar year. I use this for a data visualization example for a lecture on climate change and international politics. Data communicate yearly averages/estimates.

Usage

c02emissions

Format

A data frame with 3,099 observations on the following 2 variables.

- **year** the year (negative values = BCE)
- **value** estimated carbon dioxide emissions (in ppm)
Details

References

coffee_imports

Coffee Imports for Select Importing Countries

Description

A simple time series on coffee imports for select importing countries (i.e. European Union + Japan + Russia + Tunisia + United States).

Usage

`coffee_imports`

Format

A data frame with 30 observations on the following 3 variables.

- `year` the year
- `imports` coffee imports for all select importing countries (in thousand 60-kg bags)
- `usaimports` coffee imports for just the United States (in thousand 60-kg bags)

Details

Data come from the International Coffee Organization, of which I feel I should be a member.

coffee_price

The Primary Commodity Price for Coffee (Arabica, Robustas)

Description

This is primary commodity price data for coffee (Arabica, Robustas) from 1980 to the present. I manually update these data since FRED’s coverage since 2017 has been spotty.

Usage

`coffee_price`

Format

A data frame with the following 3 variables.

- `date` the date (year-month)
- `arabica` the price (monthly average) of mild Arabica, via International Coffee Organization data, in nominal US cents per pound
- `robustas` the price (monthly average) of Robustas, via International Coffee Organization data, in nominal US cents per pound
Details

Data come from International Monetary Fund (Primary Commodity Prices) and International Coffee Organization. The IMF adds these prices are global and the New York cash price, ex-dock

| CP77 | Education Expenditure Data (Chatterjee and Price, 1977) |

Description

This is a simple data set provided by Chatterjee and Price (1977, p. 108) that serves as a known example of heteroscedasticity.

Usage

CP77

Format

A data frame with 50 observations on the following 6 variables.

- **state**: a character vector for the state
- **region**: a character vector for the Census region
- **urbanpop**: a numeric vector for the number of residents (per thousand) living in urban areas in 1970
- **incpc**: a numeric vector for income per capita in 1973
- **pop**: a numeric vector for residents (per thousand) under 18 years of age in 1974
- **edexppc**: a numeric vector for per capita public school expenditures in a state, projected for 1975.

Details

I copied these data from the robustbase package. I just didn’t want to make my students install it. Note: I’m pretty sure "NB" was suppose to be "NE" and that "DY" is supposed to be "KY". I made those changes.

References

Description

An illustrative exercise in never trusting the summary statistics without also visualizing them.

Usage

Datasaurus

Format

A data frame with 1,846 observations on the following 3 variables.

dataset the particular data set, one of 12
x a random variable
y another random variable

Details

Data were created by Alberto Cairo to illustrate you should always visualize your data beyond the summary statistics. These are 12 data sets, in long form, each with a mean of x about 54.26, a mean of y about 47.83. The standard deviation for x is about 16.76 and the standard deviation of y is about 26.93. x and y will correlate weakly, about -.06.

Author(s)

Alberto Cairo, Justin Matejka, George Fitzmaurice

References

Dee04

Are There Civics Returns to Education?

Description

This should be a data set for a (partial?) replication of Dee’s (2004) article on the purported civics returns to education. I use these data for in-class illustration about instrumental variable analyses.

Usage

Dee04

Format

A data frame with 9227 observations on the following 8 variables.

- **schoolid**: a numeric vector that should be understood as categorical
- **hispanic**: a numeric vector for if the person is Hispanic
- **college**: a numeric vector for if the person went to college
- **black**: a numeric vector for if the person is black
- **otherrace**: a numeric vector for if the person is another race
- **female**: a numeric vector for if the person is a woman
- **register**: a numeric vector for if the person is registered to vote
- **distance**: a numeric vector for the distance to college

Details

I should note I acquired this data set in Mexico City sitting on a two-week program at IPSA-FLACSO Mexico Summer School in 2019. The sample size here (9,227) is about two thousand short of what Dee reports in his article. It’ll do, though.

References

DJIA

Description
This data set contains the value of the Dow Jones Industrial Average on daily close for all available dates (to the best of my knowledge) from 1885 to the most recently concluded calendar year. Extensions shouldn’t be too difficult with existing packages.

Usage
DJIA

Format
A data frame with 36951 observations on the following 2 variables.

date the date
value the value of the the Dow Jones Industrial Average at daily close

Details
Observations before October 7, 1896 are from the single Dow Jones Average. Observations from October 7, 1896 to July 30, 1914 are from the first DJIA. Observations before the 1914 closure of the first DJIA in July 1914 come from MeasuringWorth. Observations from its reopening in Dec. 12, 1914 to January 28, 1985 come from Pinnacle Systems. Observations from January 29, 1985 to the most recent observation come from a quantmod call.

References

DST

Description
These are fatalities (and, in the case of terrorism, casualties as well) for drunk-driving, suicide, and acts of terrorism in the U.S. spanning 1970 to 2018. Only one of these is sufficiently important to command public attention despite being the least severe public bad. Do you want to guess which one?
Usage

DST

Format

A data frame with 49 observations on the following 5 variables.

year the year
nkill a numeric vector for the number killed in acts of terrorism
termtotal a numeric vector for the number killed or wounded in acts of terrorism
suicides a numeric vector for the number of suicides
ddfat a numeric vector for the number of drunk-driving fatalities

Details

Following my own work in Political Research Quarterly, terror incidents with unknown fatalities or number wounded were imputed to be 1. In those cases, the GTD has reason to believe at least one person died or was wounded, but doesn’t know how many. GTD is weird about 1993, so perhaps treat those observations with some care (though it does well to capture the WTC bombing that year). Suicides include only those who passed, not those who survived a suicide attempt. Drunk-driving fatalities seem to include those who were killed in a drunk-driving accident despite not being drunk themselves.

Source

Global Terrorism Database (Sept. 2019 update), Centers for Disease Control, U.S. Department of Transportation

Description

You’ve all seen these before. These are the "eight schools" that everyone gets when being introduced to Bayesian programming. Here are the full data for your consideration, which you can use instead of awkwardly searching where the data are and copy-pasting them as a list. Every damn time, Steve.

Usage

eight_schools
Format
A data frame with 8 observations on the following 6 variables.

- school: a letter denoting the school
- num_treat: the number of students in the school receiving the treatment
- num_control: the number of students in the school in the control group
- est: the estimated treatment effect
- se: the standard error of the effect estimate
- rvar: the residual variance

Details
Data copy-pasted from Table 1 in Rubin (1981).

References

election_turnout

State-Level Education and Voter Turnout in 2016

Description
A simple data set on education and state-level (+ DC) turnout in the 2016 presidential election. This is inspired by what Pollock (2012) does in his book.

Usage
election_turnout

Format
A data frame with 51 observations on the following 13 variables.

- year: the year of the presidential election (2016)
- state: the state abbreviation
- region: the state’s Census region
- division: the state’s Census division
- turnoutho: voter turnout for the highest office as percent of voting-eligible population (VEP)
- perhsed: the percentage of the state that completed high school
- percoled: the percentage of the state that completed college
- gdppercap: an estimate of the state’s GDP per capita
- ss: is it a “swing state?”
trumpw did Trump win the state?
trumpshare the share of the vote Trump received
sunempr the state-level unemployment rate entering Nov. 2016
sunempr12nd the state-level unemployment rate (12-month difference) entering Nov. 2016
gdp an estimate of the state’s GDP

Details
Data were created in early 2017 for an upper-division course on quantitative methods. Educational attainment and division/region data come from the Census. Voter turnout/share data come from the Elections Project at George Mason University. GDP per capita estimates come from Bureau of Economic Analysis. Unemployment data come from the Bureau of Labor Statistics and code to generate it was derived from a forthcoming publication of mine.

eq_passengercars

Export Quality Data for Passenger Cars, 1963-2014

Description
Data from the International Monetary Fund for the export quality and unit/trade value of passenger cars for all available countries and years from 1963 to 2014.

Usage

eq_passengercars

Format
A data frame with 60424 observations on the following 6 variables.
country a character vector for the country/area.
code a numeric vector for the Correlates of War country code.
category a factor with levels Export Quality Index, Export quality 95 percent interval - lower bound, Export quality 95 percent interval - upper bound, Unit value of exports, Unit value 95 percent interval - lower bound, Unit value 95 percent interval - upper bound, Trade value of exports
type a factor with levels 51. Transport equipment, Passenger cars. This is a constant. I just felt like making it a factor.
year a numeric vector for the year
value a numeric vector for the value of the particular category.
Description

This is a replication data originally set to accompany a blog post and presentation to students at the University of Nottingham in March 2020. However, COVID-19 led to the cancellation of the talk.

Usage

ESS9GB

Format

A data frame with 1,905 observations on the following 19 variables.

- name: a character for the name of the survey
- essround: a numeric for the ESS round
- edition: a character for the particular edition of the ESS round
- idno: a numeric/unique identifier
- cntry: a character vector for the country (i.e. the UK)
- region: a character vector for the region of the UK the respondent lives
- brncntr: a numeric vector for if the respondent was born in the UK
-stintrvw: a Date for the interview start date
- endintrvw: a Date for the interview end date
- imbgeco: a numeric vector for if respondent thinks immigrants are generally good or bad for UK’s economy. Higher values = good
- imueclt: a numeric vector for if respondent thinks immigrants enrich or undermine UK’s culture. Higher values = enrich more than undermine
- imwbcnt: a numeric vector for if respondent thinks immigrants make UK a better place to live. Higher values = better place to live
- immigsent: a numeric vector for immigration sentiment (i.e. imbgeco + imueclt + imwbcnt). Higher values = more pro-immigration sentiment
- agea: a numeric vector for the respondent’s age in years
- female: a numeric vector for whether the respondent is a woman
- eduyrs: a numeric vector for total years of education for the respondent
- uempla: a numeric vector for whether the respondent is currently unemployed but seeking work
- hinctnta: a numeric vector for household income in deciles
- lrscale: a numeric vector for the ideology of the respondent on an 11-point [0:10] scale

Details

Source
European Social Survey, Round 9

Trust in the Police in Belgium (European Social Survey, Round 5)

Description
This is a sample data set cobbled from the fifth round of European Social Survey data for Belgium. It offers a means to do a basic replication of some of Chapter 5 of The SAGE Handbook of Regression Analysis and Causal Inference.

Usage
ESSBE5

Format
A data frame with 1704 observations on the following 10 variables.

- essround: a numeric for the ESS round
- edition: a character for the edition number of the fifth round
- idno: a numeric id number
- cntry: a character vector for the country (i.e. Belgium, or BE)
- trstplc: a numeric vector for trust in the police on an 11-point scale. Higher values indicate more trust. 0 = "no trust at all", 10 = "complete trust"
- agea: a numeric vector for the respondent’s age
- female: a numeric vector for whether the respondent is a woman or not.
- eduys: a numeric vector for years of education.
- hincfel: a numeric vector for the respondent’s feeling about their household income. 1 = "living comfortably", 2 = "coping on present income", 3 = "difficult on present income", 4 = "very difficult on present income"
- plcpcvr: a numeric vector for how successful police are at preventing crimes in a country on an 11-point scale. 0 = "extremely unsuccessful", 10 = "extremely successful."

Details
See Chapter 5 of The SAGE Handbook of Regression Analysis and Causal Inference for more information.

Source
European Social Survey (Round 5)
Description

eustates: EU Member States (Current as of 2019)

Usage

eustates

Format

A data frame with 28 observations on the following 3 variables.

- *date*: a date indicating accession
- *country*: a character vector for the country
- *iso2c*: a character vector for iso2c

Details

Data come from the European Union’s website.

Description

fakeAPI: Hypothetical (Fake) Data on Academic Performance

Usage

fakeAPI

Format

A data frame with 10000 observations on the following 8 variables.

- *uid*: a numeric vector as a unique identifier for schools
- *schooltype*: a character vector for school type. E = elementary school. M = middle school. H = high school
- *county*: a character vector for the county, named after an Ohio State All-American. “County” incidence is weighted by how many All-American honors the Ohio State player had. It’s my fake data. You make your own if you have a problem with it.
fakeHappiness

community a character vector for the school’s community, either rural, suburban, or urban.
api a numeric vector vector an academic performance index for the school
meals a numeric vector for the percentage of school students eligible for subsidized meals
colgrad a numeric vector for the percentage of school parents with college degrees
fullqual a numeric vector for the percentage of the school with teachers that are fully qualified
sbase a numeric vector for some base differences between schools, patterned off the school type
means for api00 in the apipop data.
cbase a numeric vector for some base differences between counties, randomly drawn from a uniform distribution
e a numeric vector for random errors

details

These data were generated for a blog post on my website.

References

fakeHappiness

Fake Data on Happiness

Description

This is a toy ("fake") data set I might use to illustrate the so-called curvilinear effect of age on happiness.

Usage

fakeHappiness

Format

A data frame with 1000 observations on the following 8 variables.
age a numeric vector for age.
female a numeric that equals 1 if the respondent is a woman
collegeed a numeric vector that equals 1 if the respondent says s/he has a college degree
faminr a numeric vector for the respondent’s household income. Ranges from 1 to 12.
bornagain a numeric vector for whether the respondent self-identifies as a born-again Christian.
e random noise, generated from a normal distribution with a mean of 0 and a standard deviation of 3
happy an arbitrary happiness variable. See details for its construction
z_happy the same arbitrary happiness variable, scaled to have a mean of 0 and a standard deviation of 1. This makes it seem more "latent".
Details

Data are randomly sampled from the TV16 data set in the same package for the age, female, college education, family income, and born-again variables. Thereafter, I created an arbitrary "happiness" variable that is equal to $100 - .95*age + .01*(age^2) + .25*female + .05*famincr + .1*bornagain + e$. The data are not supposed to be realistic, per se. They’re supposed to be functional for this purpose.

fakeLogit
Fake Data for a Logistic Regression

Description

This is a simple fake data set to illustrate a logistic regression.

Usage

fakeLogit

Format

A data frame with 10000 observations on the following 2 variables.

x a five-item functionally ordered categorical variable
y a binary variable that is either 0 or 1

Details

The data are generated such that the outcome y is a logistic function of the x variable and come from a rbinom() call. The estimated natural logged odds of y when x is 0 is -2.8. Each unit increase in x is simulated to increase the natural logged odds of y by 1.4. This example is very much patterned off a similar fake data set that Pollock (2012) uses to teach about logistic regression. In his case, x is a stand-in for hypothetical education categories and y is whether this fake person voted or not.

fakeTSCS
Fake Data for a Time-Series Cross-Section

Description

This is a toy (i.e. "fake") data set created by the fabricatr package. There are 100 observations for 25 hypothetical countries. The outcome y is a linear function of a baseline for each hypothetical country, plus a yearly growth trend as well as varying growth errors for each country. x1 is supposed to have a linear effect of .5 on y, all things considered. x2 is supposed to have a linear effect of 1 on y for each unit change in x2, all things considered.
Usage

fakeTSCS

Format

A data frame with 2500 observations on the following 8 variables.

- year: a numeric vector for the year
- country: a character vector for the country
- y: a numeric vector for the outcome.
- x1: a continuous variable
- x2: a binary variable
- base: a numeric vector for the baseline starting point for each country
- growth_units: a numeric vector for the growth units for each country
- growth_error: a numeric vector for the growth errors for each country

Details

x1 is generated by a normal distribution with a mean of 5 and a standard deviation of 2. x2 is drawn from a Bernoulli distribution with a probability of .5 of observing a 1.

fakeTSD
Fake Data for a Time-Series

Description

This is a toy (i.e. "fake") data set created by the fabricatr package. There are 100 observations. The outcome y is a linear function of \(20 + (.25 \times \text{year}) + (.25 \times x1) + (1 \times x2) + e\). This clearly implies some autocorrelation in the data. I.e. it’s a time-series.

Usage

fakeTSD

Format

A data frame with 100 observations on the following 5 variables.

- year: the year
- y: an outcome
- x1: a continuous variable
- x2: a binary variable
- e: randomly generated errors
Details

Errors are random-normal with a mean of 0 and a standard deviation of 1. \(x_1\) is generated by a normal distribution with a mean of 5 and a standard deviation of 2. \(x_2\) is drawn from a Bernoulli distribution with a probability of .5 of observing a 1.

ghp100k

Gun Homicide Rate per 100,000 People, by Country

Description

This is the yearly rate of gun homicides per 100,000 people in the population, selecting on "Western" countries of interest.

Usage

ghp100k

Format

A data frame with 561 observations on the following 3 variables.

- country: the country
- year: the year
- value: a numeric vector for the estimated rate of gun homicide per 100,000 people

Details

The reported, or calculated annual crude rate of completed, intentional homicide committed with a firearm, per 100,000 population, in years descending.

Where a jurisdiction’s published count of 'annual homicide' includes cases of attempted (uncompleted) homicide, these figures have been disaggregated wherever possible.

In the United States, this category is confused by inaccurate and conflicting data published, suppressed or labeled as unreliable by the Centers for Disease Control and Prevention (CDC) and the Federal Bureau of Investigation (FBI). Suppression can result in zero values where in fact homicides did occur.

Incomplete classification by local agencies can also result in a significant proportion of events being categorized as 'unknown cause' or similar.

Before quoting these datasets, please follow the citation links for a description of the considerable differences between them and the reasons for data suppression.

Where a rate is calculated by GunPolicy.org, a matched population estimate is also cited.

Source

https://www.gunpolicy.org
gss_abortion Abortion Opinions in the General Social Survey

Description

This is a toy data set derived from the General Social Survey that I intend to use for several purposes. First, the battery of abortion items can serve as toy data to illustrate mixed effects modeling as equivalent to a one-parameter (Rasch) model. Second, I include some covariates to also do some basic regressions. I think abortion opinions are useful learning tools for statistical inference for college students. Third, there's a time-series component as well for understanding how abortion attitudes have changed over time.

Usage

gss_abortion

Format

A data frame with 64,814 observations on the following 18 variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>a unique respondent identifier</td>
</tr>
<tr>
<td>year</td>
<td>the survey year</td>
</tr>
<tr>
<td>age</td>
<td>the respondent’s age in years</td>
</tr>
<tr>
<td>race</td>
<td>the respondent’s race, as character variable</td>
</tr>
<tr>
<td>sex</td>
<td>the respondent’s gender, as character variable</td>
</tr>
<tr>
<td>hispaniccat</td>
<td>the respondent's Hispanic ethnicity, as character variable</td>
</tr>
<tr>
<td>educ</td>
<td>how many years the respondent spent in school</td>
</tr>
<tr>
<td>partyid</td>
<td>the respondent’s party identification, as character variable</td>
</tr>
<tr>
<td>relactiv</td>
<td>the self-reported religious activity of the respondent on a 1:11 scale</td>
</tr>
<tr>
<td>abany</td>
<td>a binary variable that equals 1 if the respondent thinks abortion should be legal for any reason. 0 indicates no support for abortion for any reason.</td>
</tr>
<tr>
<td>abdefect</td>
<td>a numeric vector that equals 1 if the respondent thinks abortion should be legal if there is a serious defect in the fetus. 0 indicates no support for abortion in this circumstance.</td>
</tr>
<tr>
<td>abnomore</td>
<td>a numeric vector that equals 1 if the respondent thinks abortion should be legal if a woman is pregnant but wants no more children. 0 indicates no support for abortion in this circumstance.</td>
</tr>
<tr>
<td>abhlth</td>
<td>a numeric vector that equals 1 if the respondent thinks abortion should be legal if a pregnant woman’s health is in danger. 0 indicates no support for abortion in this circumstance.</td>
</tr>
<tr>
<td>abpoor</td>
<td>a numeric vector that equals 1 if the respondent thinks abortion should be legal if a pregnant woman is poor and cannot afford more children. 0 indicates no support for abortion in this circumstance.</td>
</tr>
<tr>
<td>abrape</td>
<td>a numeric vector that equals 1 if the respondent thinks abortion should be legal if the woman became pregnant because of a rape. 0 indicates no support for abortion in this circumstance.</td>
</tr>
</tbody>
</table>
absingle a numeric vector that equals 1 if the respondent thinks abortion should be legal if a pregnant woman is single and does not want to marry the man who impregnated her. 0 indicates no support for abortion in this circumstance.

pid partyid recoded so that 7 = NA

hispanic a dummy variable that equals 1 if the respondent is any way Hispanic

Details

Data include all General Social Survey observations from 1972 to 2018 for these variables. Be mindful of missing data.

Description

This is a toy data set that collects attitudes on toward national spending for various things in the General Social Survey for 2018. I use these data for in-class illustration about ordinal variables and ordinal models.

Usage

gss_spending

Format

A data frame with 2348 observations on the following 33 variables.

year a numeric constant for the GSS survey year (2018)
id a unique identifier for the survey respondent
age a numeric vector for the age of the respondent (min: 18, max: 89)
sex a numeric vector for the respondent’s sex (1 = female, 0 = male)
educ a numeric vector for the highest year of school completed (min: 0, max: 20)
degree a numeric vector for the respondent’s highest degree (0 = did not graduate high school, 1 = high school, 2 = junior college, 3 = bachelor degree, 4 = graduate degree)
race a numeric vector for the respondent’s race (1 = white, 2 = black, 3 = other)
rincom16 a numeric vector for the respondent’s yearly income (min: 1 (under $1,000), max: 26 ($170,000 or over))
partyid a numeric vector for the respondent’s party identification on the familiar seven-point scale.
 NOTE: D to R partisanship in this variable goes from 0 to 6. 7 = supporters of other parties. You may want to recode this if you want an interval-level measure of partisanship.
polviews a numeric vector for the respondent’s ideology (min: 1 (extremely liberal), max: 7 (extremely conservative))
xnorcsiz a numeric vector for the NORC size code. This is a measure of what kind of area in which the respondent took the survey (i.e. lives). 1 = city, greater than 250k residents. 2 = city, between 50k-250k residents. 3 = suburbs of a large city. 4 = suburbs of a medium-sized city. 5 = unincorporated area of a large city. 6 = unincorporated area of a medium city. 7 = city, between 10-50k residents. 8 = town, greater than 2,500 residents. 9 = smaller areas. 10 = open country.

news a numeric vector for how often the respondent reads the newspapers. 1 = everyday. 2 = a few times a week. 3 = once a week. 4 = less than once a week. 5 = never.

wrkstat a numeric vector for the respondent’s work status. 1 = working full-time. 2 = working part-time. 3 = temporarily not working. 4 = unemployed/laid off. 5 = retired. 6 = in school. 7 = house-keeping work. 8 = other.

natspac a numeric vector for attitudes toward spending on the space program. See details below for this variable and all other variables beginning with nat.

natenvir a numeric vector for attitudes toward spending on improving/protecting the environment.

natheal a numeric vector for attitudes toward spending on improving/protecting the nation’s health.

natcity a numeric vector for attitudes toward spending on solving the big city’s problems.

natcrime a numeric vector for attitudes toward spending on halting the ”rising crime rate.” This question is subtly hilarious.

natdrug a numeric vector for attitudes toward spending on dealing with drug addiction.

nateduc a numeric vector for attitudes toward spending on improving the nation’s education system.

natrace a numeric vector for attitudes toward spending on improving the condition of black people.

natarms a numeric vector for attitudes toward spending on the military/armaments/defense.

nataid a numeric vector for attitudes toward spending on foreign aid.

natfare a numeric vector for attitudes toward spending on welfare.

natroad a numeric vector for attitudes toward spending on highways and bridges.

natsoc a numeric vector for attitudes toward spending on social security.

natmass a numeric vector for attitudes toward spending on mass transportation.

natpark a numeric vector for attitudes toward spending on parks and recreation.

natchld a numeric vector for attitudes toward spending on assistance for child care.

natsci a numeric vector for attitudes toward spending on scientific research.

natenrgy a numeric vector for attitudes toward spending on alternative sources of energy.

sumnat a numeric vector for the sum total of responses to all the aforementioned spending variables (i.e. those that begin with nat). This creates an interval-ish measure with a nice and mostly normal distribution.

sumnatsoc a numeric vector for the sum of all responses toward various ”social” prompts (i.e. natenvir, natheal, natdrug, nateduc, natrace, natfare, natroad, natmass, natpark, natsoc, natchld). This creates an interval-ish measure with a mostly normal (but small left skew) distribution.
Details

For all the variables beginning with nat, note that I rescaled the original data so that -1 = respondent thinks country is spending too much on this topic, 0 = respondent thinks country is spending "about (the) right" amount, and 1 = respondent thinks country is spending too little on this topic. I do this to facilitate reading each nat prompt as increasing support for more spending (the extent to which increasing values means the respondent thinks the country spends too little on a given prompt). I think this is more intuitive.

Also, the natspac, natenvir, natheal, natcity, natcrime, natdrug, nateduc, natrace, natarms, nataid, and natfare have "alternate" prompts in later GSS waves in which a subset of respondents get a slightly different prompt. For example, one set of respondents for natcity gets a prompt of "Solving the problems of the big cities" (the legacy prompt) whereas another set of respondents gets a prompt of "Assistance to big cities" (typically noted as "version y" in the GSS). I, perhaps problematically if I were interested in publishing analyses on these data, combine both prompts into a single variable. I don’t think it’s a huge problem for what I want the data to do, but FYI.

Source

General Social Survey, 2018

| gss_wages | The Gender Pay Gap in the General Social Survey |

Description

Wage data from the General Social Survey (1974-2018) to illustrate wage discrepancies by gender (while also considering respondent occupation, age, and education).

Usage

gss_wages

Format

A data frame with 11 variables:

table

- **year** the survey year
- **realrinc** the respondent’s base income (in constant 1986 USD)
- **age** the respondent’s age in years
- **occ10** respondent’s occupation code (2010)
- **occrecode** recode of the occupation code into one of 11 main categories
- **prestg10** respondent’s occupational prestige score (2010)
- **childs** number of children (0-8)
- **wrkstat** the work status of the respondent (full-time, part-time, temporarily not working, unemployed (laid off), retired, school, housekeeper, other)
gender respondent's gender (male or female)
educat respondent's degree level (Less Than High School, High School, Junior College, Bachelor, or Graduate)
maritalcat respondent's marital status (Married, Widowed, Divorced, Separated, Never Married)

Details

For further details, see https://gssdataexplorer.norc.org. Consult https://census.gov for more information about occupation codes.

Description

A data set for a canonical case of a Simpson’s paradox, useful for in-class instruction on the topic.

Usage

Guber99

Format

A data frame with 50 observations on the following 8 variables.

state a character vector for the state
expendpp a numeric vector for the current expenditure per pupil in average daily attendance in public elementary and secondary schools, 1994-95 (in thousands of dollars)
ptratio a numeric vector for the average pupil/teacher ratio in public elementary and secondary schools, Fall 1994
tsalary a numeric vector for the estimated average annual salary of teachers in public elementary and secondary schools, 1994-95 (in thousands of dollars)
perctakers a numeric vector for the percentage of all eligible students taking the SAT, 1994-95
verbal a numeric vector for the average verbal SAT score, 1994-95
math a numeric vector for the average math SAT score, 1994-95
total a numeric vector for the average total SAT score, 1994-95

References

Illiteracy in the Population 10 Years Old and Over, 1930

Description

This is perhaps the canonical data set for illustrating the ecological fallacy.

Usage

illiteracy30

Format

A data frame with 40 observations on the following 11 variables.

- state: a character for the state
- pop: a numeric vector for the total population
- pop_il: a numeric vector for the total population that is illiterate
- nwhite: a numeric vector for the total native white population
- nwhite_il: a numeric vector for the total native white population that is illiterate
- fpwhite: a numeric vector for the total white population with "foreign or mixed parentage"
- fpwhite_il: a numeric vector for the total white population with "foreign or mixed parentage" that is illiterate
- fbwhite: a numeric vector for the total foreign-born white population
- fbwhite_il: a numeric vector for the total foreign-born white population that is illiterate
- black: a numeric vector for the total black population
- black_il: a numeric vector for the total black population that is illiterate

Details

All population totals reflect those 10 years or older. The 1930 Census (along with Robinson (1950)) uses "negro" in lieu of black, but the variable names here eschew that older label. Note that some states are not yet states in the 1930 Census.

Source

References

inglehart03

"How Solid is Mass Support for Democracy—And How Can We Measure It?"

Description

A data set based on summary information provided in Inglehart’s (2003) article in *PS: Political Science & Politics*. These data would be from the article itself and only indirectly from the raw World or European Values Survey.

Usage

inglehart03

Format

A data frame with 77 observations on the following 4 variables.

- **state_year** the state year and survey year, as provided in the article
- **havedem** the percentage of respondents saying having a democratic political system is "very good" or "good"
- **strongleader** the percentage of respondents saying having a strong leader unencumbered by elections or parliaments is "very good" or "good"
- **muslim** a dummy variable that equals 1 if Inglehart codes the state as being a "predominently Islamic society"

Details

Data manually entered based on Table 1 and Table 2 in Inglehart’s (2003) article.

References

LOTI

陆-海表面温度指数，1880-2020

Description

These data contain monthly mean temperature anomalies expressed as deviations from the corresponding 1951-1980 means. They are useful for showing how we can measure climate change.

Usage

LOTI
Format
A data frame with 1,692 observations on the following 2 variables.

date a date, mostly to contain information for the year and month
value the mean temperature anomaly as deviation from corresponding 1951-1980 mean

Details
Data are updated through most recent month, at least for last time I updated it. Data represent combined land-surface air and sea-surface water temperature anomalies. Of note: the day value in the date column has no real value. It was just a way of combining data that are aggregated by year and month.

Source
National Aeronautics and Space Administration’s Goddard Institute for Space Studies.

LTPT

Long-Term Price Trends for Computers, TVs, and Related Items

Description
These data are a monthly time-series of changes in the consumer price index relative to a Dec. 1997 starting date for televisions, computers, and related items. I use this as in-class illustration that globalization has made consumer electronics cheaper across the board for Americans.

Usage
LTPT

Format
A data frame with 1,704 observations on the following 3 variables.

date a date
category the particular category (e.g. all items, televisions, etc.)
value the consumer price index (Dec. 1997 = 100)

Details
This is a web-scraping job from the U.S. Bureau of Labor Statistics. Post is titled "Long-term price trends for computers, TVs, and related items" and was published on Oct. 13, 2015.

Source
"Let Them Watch TV": These data contain price indices for various items for the general urban consumer. Categories include medical services, college tuition, college textbooks, child care, housing, food and beverages, all items (i.e. general CPI), new vehicles, apparel, and televisions. The base period in value was originally the 1982-4 average, but I converted the base period to January 2000. I use these data for in-class discussion about how liberalized trade has made consumer electronics (like TVs) fractions of their past prices. Yet, young adults face mounting costs for college, child-raising, and health care that government policy has failed to address.

Usage

LTWT

Format

A data frame with 2377 observations on the following 3 variables.

date a date
category a factor for the particular category
value the price index. Base: January 2000

Details

Inspiration comes from a blog post titled "Chart of the day (century?): Price changes 1997 to 2017", which was published by the American Enterprise Institute on Feb. 2, 2018.

Source

Description

A data set on the various federal minimum wage rates.

Usage

min_wage
Format

A data frame with 23 observations on the following 5 variables.

- `date` a date for when a new minimum wage was introduced
- `wage` the (nominal) value of the wage

Details

Data come from the Department of Labor. Wages are taken from wage adjustments from the 1938 act.

Source

Department of Labor

mm_mlda

Minimum Legal Drinking Age Fatalities Data

Description

These are data you can use to replicate the regression discontinuity design analyses throughout Chapter 4 of *Mastering ’Metrics*. Original analyses come from Carpenter and Dobkin (2009, 2011).

Usage

`mm_mlda`

Format

A data frame with 50 observations on the following 19 variables.

- `agecell` a numeric
- `all` a numeric
- `allfitted` a numeric
- `internal` a numeric
- `internalfitted` a numeric
- `external` a numeric
- `externalfitted` a numeric
- `alcohol` a numeric
- `alcoholfitted` a numeric
- `homicide` a numeric
- `homicidefitted` a numeric
- `suicide` a numeric
- `suicidefitted` a numeric
These data are not well-documented. You guys are on your own here. Good luck.

References

Description

These are data from the 2009 NHIS survey. People who have read Mastering 'Metrics should recognize these data. They’re featured prominently in that book and the authors’ discussion of random assignment and experiments.

Usage

mm_nhis

Format

A data frame with 18790 observations on the following 10 variables.

- fml: is the respondent a woman?
- hi: a numeric vector for whether respondent has at least some health insurance
- hlth: a numeric vector for a health index, broadly understood
- nwhite: is the respondent not white?
- age: the respondent’s age in years
- yedu: the respondent’s total years of education
- famsize: the size of the respondent’s family
- empl: is the respondent employed
- inc: the respondent’s household/family income
- perweight: a numeric vector for weight
Details

Data are already cleaned in a way that facilitates an easy replication of Table 1.1 in *Mastering 'Metrics*. Check http://www.masteringmetrics.com for more information.

Source

National Health Interview Survey (2009).

mm_randhie
Data from the RAND Health Insurance Experiment (HIE)

Description

These are data from the RAND Health Insurance Experiment (HIE). People who have read *Mastering 'Metrics* should recognize these data. They’re featured prominently in that book and the authors’ discussion of random assignment and experiments.

Usage

mm_randhie

Format

The data are a list of two data frames (or “tibbles”). The first is the baseline data.

- `plantype` the plan coverage of the respondent, as a factor
- `age` the age of the respondent
- `blackhisp` whether the respondent is not white
- `cholest` the cholesterol level of the respondent (in mg/dl)
- `educper` the education-level of the respondent
- `female` whether the respondent is a woman
- `ghindx` a general health index
- `hosp` was the respondent hospitalized last year?
- `income1cpi` the family/household income of the respondent, adjusted for inflation
- `mhi` a mental health index
- `systol` the systolic blood pressure level of the respondent (in mm HG)

The second is the outcome data.

- `plantype` the plan coverage of the respondent, as a factor
- `ftf` the number of face-to-face visits for the respondent
- `out_inf` the total of out-patient expenses for the respondent
- `totadm` the number of hospital admissions for the respondent
- `tot_inf` the total health expenses for the respondent
mvprod

Details

Data are already cleaned in a way that facilitates an easy replication of Table 1.3 and a partial replication of Table 1.4 in *Mastering 'Metrics*. Check http://www.masteringmetrics.com for more information. I want to note that my treatment of the data leans heavily on Jeff Arnold's treatment of it. Check https://jrnold.github.io/masteringmetrics/ for more information. Future updates to the data may pursue a more exhaustive replication. I will only note these data are a mess and the authors of *Mastering 'Metrics* do not do a great job annotating code.

Source

RAND Health Insurance Experiment.

mvprod *Motor Vehicle Production by Country, 1950-2019*

Description

Data, largely from Organisation Internationale des Constructeurs d’Automobiles (OICA), on motor vehicle production in various countries (and the world totals) from 1950 to 2019 at various intervals. Tallies include production of passenger cars, light commercial vehicles, minibuses, trucks, buses and coaches.

Usage

mvprod

Format

A data frame with three variables

country the country’s name
year the year
value the total motor vehicles produced that year

Details

This is a Wikipedia web-scraping job. See: https://en.wikipedia.org/wiki/List_of_countries_by_motor_vehicle_production

Source

Organisation Internationale des Constructeurs d’Automobiles (OICA)
Description

This toy data set is loosely modified from Wave I of the NESARC data set. Here, my main interest is the number of drinks consumed on a usual day drinking alcohol in the past 12 months, according to respondents in the nationally representative survey of 43,093 Americans.

Usage

nesarc_drinkspd

Format

A data frame with 43093 observations on the following 8 variables.

- `idnum` a numeric vector and sequence from 1 to the number of rows in the data
- `ethrace2a` a numeric vector for the ethnicity/race. 1 = White, not Hispanic. 2 = Black, not Hispanic. 3 = AI/AN. 4 = Asian, Native Hawaiian, Pacific Islander. 5 = Hispanic or Latino.
- `region` a numeric vector for the Census region. 1 = Northeast. 2 = Midwest. 3 = South. 4 = West
- `age` a numeric vector for age in years
- `sex` a numeric vector for sex. 1 = female. 0 = male
- `marital` a numeric vector for marital status. 1 = married. 2 = living with someone as married. 3 = widowed. 4 = divorced. 5 = separated. 6 = never married
- `educ` a numeric vector for education level, recoded from s1q6a in the original data. 1 = did not make it to/finish high school. 2 = high school graduate or equivalency. 3 = some college, but no four-year degree. 4 = four-year college degree or more.
- `s2aq8b` a numeric vector for the number of drinks of any alcohol consumed on days drinking alcohol in the past 12 months. This variable is “as-is” from the original data set.

Details

You will not want to use the `s2aq8b` variable without recoding it first. Those who cannot recall how much they typically drink (i.e. true “don’t knows” or missing info) are coded as 99. Non-drinkers are coded as NA in the `s2aq8b` variable and should be recoded as 0. Any value between 1 and 98 in the variable represents the, for lack of better term, “true” number of alcoholic drinks a respondent says s/he typically consumes on a day drinking alcohol in the past 12 months, though this is evidently preposterous as a count variable. A person drinking 42 alcoholic drinks a day would not be alive to tell you they did this. The researcher may want to employ some sensible right censoring here.

Source

National Epidemiologic Survey on Alcohol and Related Conditions (NESARC)—Wave 1 (2001–2002)
Newhouse77
Medical-Care Expenditure: A Cross-National Survey (Newhouse, 1977)

Description

These are the data in Newhouse’s (1977) simple OLS model from 1977. In his case, he’s trying to explain medical care expenditures as a function of GDP per capita for these countries. It’s probably the easiest OLS model I can find in print because Newhouse helpfully provides all the data in one simple table.

Usage

Newhouse77

Format

A data frame with 13 observations on the following 5 variables.

- `country` a character vector for the country
- `year` a numeric vector for the year
- `gdppc` a numeric vector for the per capita GDP in USD
- `medsharegdp` a numeric vector for the medical care share as percentage of GDP
- `medexppc` a numeric vector for per capita medical care expenditure (in USD)

Details

Table 1 in Newhouse (1977) is well-annotated with background information.

References

ODGI
Ozone Depleting Gas Index Data, 1992-2019

Description

The NOAA Earth System Research Laboratory has an "ozone depleting gas index" (ODGI) data set from 1992 to 2018. This dataset summarizes Table 1 and Table 2 from its website. The primary interest here (for my purposes) is the ODGI indices (including the new 2012 measure). The data set includes constituent greenhouse gases/chlorines as well in parts per trillion. The primary use here is for in-class illustration.
Usage

ODGI

Format

A data frame with 56 observations on the following 16 variables.

- **year**: the year
- **cat**: categorical variable for the Antarctic or Mid-Latitudes measurements
- **cfc12**: CFC-12 concentration in parts per trillion
- **cfc11**: CFC-11 concentration in parts per trillion
- **ch3cl**: chloromethane concentration in parts per trillion
- **ch3br**: bromomethane concentration in parts per trillion
- **ccl4**: carbon tetrachloride concentration in parts per trillion
- **ch3ccl3**: methyl chloroform concentration in parts per trillion
- **halons**: aggregate concentration in parts per trillion of H-1211, H-1301 and H-2402
- **cfc113**: trichlorotrifluoroethane concentration in parts per trillion
- **hcfcs**: aggregate concentration in parts per trillion of HCFC-22, HCFC-141b, and HCFC-142b
- **wmo_minor**: aggregate concentration in parts per trillion of CFC-114, CFC-115, halon 2402 and halon 1201
- **sum**: the sum of all greenhouse gas concentration measurements
- **eesc**: includes consideration of lag times for transport and mixing associated with transport. New as of 2012
- **odgi_old**: old greenhouse gas index, no longer supported as of 2012
- **odgi_new**: new greenhouse gas index, as of 2012

Source

https://gml.noaa.gov/odgi/

Presidents

President: U.S. Presidents and Their Terms in Office

Description

This should be self-evident. Here are all U.S. presidents who have completed their terms in office (i.e. excluding the current one).

Usage

Presidents
Format

A data frame with 45 observations on the following 3 variables.

- `president` the president
- `start` the start date of the term, as a date
- `end` the end date of the term, as a date

Details

I scraped this from https://www.presidentsusa.net/presvplist.html. Data frame is capital-P "Presidents" to avoid a conflict with the `presidents` data frame from the datasets package.

Description

These are some macroeconomic data for 21 select (rich) countries. I've used these data before to discuss issues of grouping and skew in cross-sectional data.

Usage

```
pwt_sample
```

Format

A data frame with 1470 observations on the following 11 variables.

- `country` the country name
- `isocode` The country’s ISO code
- `year` a numeric vector for the year
- `pop` Population in millions
- `hc` Index of human capital per person, based on years of schooling and returns to education
- `rgdpna` Real GDP at constant 2011 national prices (in million 2017 USD)
- `rgdpo` Output-side real GDP at chained PPPs (in million 2017 USD)
- `rgdpe` Expenditure-side real GDP at chained PPPs (in million 2017 USD)
- `labsh` Share of labor compensation in GDP at current national prices
- `avh` Average annual hours worked by persons engaged.
- `emp` Number of persons engaged (in millions)
- `rnna` Capital stock at constant 2017 national prices (in million 2017 USD)

Source

Taken from the pwt10 package. See: https://www.rug.nl/ggdc/
Description

These are four x-y data sets, combined into a long format, which have the same traditional statistical properties (mean, variance, correlation, regression line, etc.). However, they look quite different.

Usage

quartets

Format

A data frame with 44 observations on the following 3 variables.

group a categorical identifier for the quartet
x a continuous variable
y a continuous variable

Details

Data come default in R, but I elected to change the format to be a bit more accessible.

References

Description

Data on U.S. recessions, past to present. Data include information on contraction, expansion, and cycle.

Usage

recessions
Format

A data frame with 35 observations on the following 8 variables.

- **peak**: the year-month of the peak, as a date
- **trough**: the year-month of the trough, as a date
- **peakq**: the peak quarter
- **troughq**: the trough quarter
- **p2t**: peak to trough (in months)
- **prev_t2p**: previous trough to this peak (in months)
- **tfpt**: trough from previous trough (in months)
- **pfpp**: peak from previous peak (in months)

Details

Data come from via scraping job of https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions

Source

National Bureau of Economic Research (NBER)

Description

A data set on banking, currency, debt, and debt-restructuring crises from 1970 to 2017.

Usage

SBCD

Format

A data frame with 574 observations on the following 4 variables.

- **country**: the country, as it appears in the data
- **type**: the type of crisis, entered here as "banking", "currency", "debt", or "debrestructuring"
- **year**: the year of the crisis
- **month**: the month the crisis started, if known

Details

Data are cobbled from the second and third sheets of the spreadsheet the authors provide. Country names are as entered in their spreadsheet. Liberia has an "NA" in the raw data for sovereign debt restructuring and I don’t know why. I elect to keep it.
SCP16

South Carolina County GOP/Democratic Primary Data, 2016

Description

County-level data on vote share and various background/demographic information for the 2016 South Carolina GOP/Democratic primaries.

Usage

SCP16

Format

A data frame with 46 observations on the following 15 variables.

county the county
clinton Hillary Clinton’s county-level vote share in the 2016 party primary
sanders Bernie Sanders’ county-level vote share in the 2016 party primary
trump Donald Trump’s county-level vote share in the 2016 party primary
cruz Ted Cruz’ county-level vote share in the 2016 party primary
rubio Marco Rubio’s county-level vote share in the 2016 party primary
percapinc A county-level estimate for per capita income
medhouseinc A county-level estimate for the median household income
medfaminc A county-level estimate for the median family income
illiteracy An estimate of the percent of the county lacking "basic" prose literacy skills
perblack Percentage of the county that is black
population An estimate of the county-level population
romneyshare2012 Mitt Romney’s vote share at the county-level from the 2012 general election
perhsgrad Percentage of the county whose residents 25 years and older have at least a high school education
unemployment Unemployment rate for the county for January 2016

Details

References

sealevels

Global Average Absolute Sea Level Change, 1880–2015

Description

These data describe how sea level has changed over time, in both relative and absolute terms. Absolute sea level change refers to the height of the ocean surface regardless of whether nearby land is rising or falling.

Usage

sealevels

Format

A data frame with 136 observations on the following 5 variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>the year</td>
</tr>
<tr>
<td>adjlev</td>
<td>adjusted sea level (in inches)</td>
</tr>
<tr>
<td>lb</td>
<td>the lower bound of the estimate (in inches)</td>
</tr>
<tr>
<td>ub</td>
<td>the upper bound of the estimate (in inches)</td>
</tr>
<tr>
<td>adjlev_noaa</td>
<td>NOAA’s adjusted sea level (in inches)</td>
</tr>
</tbody>
</table>

Source

https://www.epa.gov/climate-indicators/climate-change-indicators-sea-level

References

so2concentrations
Sulfur Dioxide Emissions, 1980-2020

Description

This data set contains yearly observations by the Environmental Protection Agency on the concentration of sulfur dioxide in parts per billion, based on 32 sites. I use this for in-class illustration. Note that the national standard is 75 parts per billion. Data are the national trend.

Usage

so2concentrations

Format

A data frame with the following 4 variables.

- **year** the year
- **value** the mean concentration of sulfur dioxide in the air based on 32 trend sites, in parts per billion
- **ub** the lower bound of the value (10th percentile)
- **lb** the upper bound of the value (90th percentile)

Source

steves_clothes
Steve’s (Professional) Clothes, as of March 20, 2022

Description

I cobbled together this data set of the professional clothes (polos, long-sleeve dress shirts, pants) in my closet, largely for illustration on the origins of apparel in the U.S. for an intro lecture on trade.

Usage

steves_clothes

Format

A data frame with 86 observations on the following 4 variables.

- **type** Type of clothing
- **brand** The brand of clothing (e.g. Apt. 9, Saddlebred)
- **color** the color (and/or pattern) of the article of clothing
- **origin** The country that produced the garment.
Details

If you must know, I do most of my clothes shopping at major retailers in the U.S. This is mostly Belk, J.C. Penney, and Kohl’s. If that’s you as well, the odds are good the distribution of my clothes will closely resemble yours. A recent move I made resulted in me donating a fair bit of my short-sleeved polo shirts. I did not buy any new shirts, though. Thus, I copied that information from a previous version of the data.

Source

Steve’s closet. Hey, that’s me!

sugar_price

IMF Primary Commodity Price Data for Sugar

Description

This is primary commodity price data for sugar globally, in the United States, and in Europe for every month from 1980 to (roughly) the present. Prices are nominal U.S. cents per pound and are not seasonally adjusted (“NSA”).

Usage

sugar_price

Format

A data frame with 1,316 observations on the following 3 variables.

<table>
<thead>
<tr>
<th>date</th>
<th>a date</th>
</tr>
</thead>
<tbody>
<tr>
<td>category</td>
<td>the category (either the U.S., global, or Europe)</td>
</tr>
<tr>
<td>value</td>
<td>the price of sugar in U.S. cents per pound (NSA, nominal)</td>
</tr>
</tbody>
</table>

Details

The price data for Europe do not appear to be updated as regularly as the global and U.S. prices. Thus, the last month in the data for Europe are June 2017. For that reason, I elected to make a data set of these data for posterity’s sake.

Source

International Monetary Fund

sweden_counties

Description

A simple data set on Sweden’s counties.

Usage

```r
sweden_counties
```

Format

A data frame with 21 observations on the following 6 variables.

- `iso` the ISO 3166-2 code for the county
- `nuts` the Nomenclature of Territorial Units for Statistics (NUTS) code for the county
- `county` the name of the county, in Swedish
- `centre` the administrative centre, or centres, of the county
- `area` the size of the county in square kilometers
- `pop2019` the size of the county in 2019

Details

This is a simple Wikipedia scrape job from 7 November 2022.

thatcher_approval

Description

A data set on satisfaction/dissatisfaction ratings during Margaret Thatcher’s tenure as prime minister.

Usage

```r
thatcher_approval
```
Format

A data frame with 125 observations on the following 9 variables.

- **year**: the year of the poll
- **poll_date**: the effective "date" of the public opinion poll
- **date**: a date for the poll, to make for easier plotting
- **govt_sat**: the percentage of respondents saying they were satisfied with the government
- **govt_dis**: the percentage of respondents saying they were dissatisfied with the government
- **thatcher_sat**: the percentage of respondents saying they were satisfied with Margaret Thatcher
- **thatcher_dis**: the percentage of respondents saying they were dissatisfied with Margaret Thatcher
- **opp_sat**: the percentage of respondents saying they were satisfied with the leader of the opposition
- **opp_dis**: the percentage of respondents saying they were dissatisfied with the leader of the opposition

Details

Data come from Ipsos. "Leader of the opposition" was typically named in the exact poll. In the lifetime of this series, the leader of the opposition was James Callaghan until Nov. 10 1980. Thereafter, it was Michael Foot until Oct. 2 1983. Neil Kinnock replaces him for the duration of this series. Interpret "leader of the opposition" with that in mind.

The date variable is, again, for simple convenience to make for easier plotting. In the absence of a specific day provided by Ipsos, the poll benchmarks to the first of the month. In the case of a known period of days, it benchmarks to the first day provided.

therms

Thermometer Ratings for Donald Trump and Barack Obama

Description

A data set on thermometer ratings for Donald Trump and Barack Obama in 2020. I use these data for in-class illustration of central limit theorem. Basically: the sampling distribution of a population is normal, even if the underlying population is decidedly not.

Usage

therms

Format

A data frame with 3080 observations on the following 2 variables.

- **fttrump1**: a thermometer rating for Donald Trump [0:100]
- **ftobama1**: a thermometer rating for Barack Obama [0:100]
Details

The survey period was April 10-18, 2020 and was done entirely online.

Source

American National Election Studies (ANES) Exploratory Testing Survey (ETS)

<table>
<thead>
<tr>
<th>turnips</th>
<th>Turnip prices in Animal Crossing (New Horizons)</th>
</tr>
</thead>
</table>

Description

A data set on turnip prices from my experience with Animal Crossing (New Horizons)

Usage

turnips

Format

A data frame with the following 3 variables.

date a date

time a character vector referring to the particular time period of observation

price a numeric vector for the price of turnips, in bells

Details

Sunday prices are set for purchase and do not fluctuate. Timmy and Tommy do not accept turnips on Sunday either. Daily prices fluctuate both at opening on Nook’s Cranny and at noon. This amounts to three time periods in the data. "5:00 a.m." is reserved only for Sunday purchases (i.e. when Daisy Mae arrives on the island). 8:00 a.m. is the morning price because that is when Nook’s Cranny opens. 12:00 p.m. is when the price changes for the day.

Explanations for missing dates: Timmy and Tommy were renovating the shop on May 6, 2021. My wife was diagnosed with cancer and my mother in law went to the hospital on the afternoon of Dec. 27, 2021. I did not get to play the game on Jan. 9, 2022 because of errands I was running for my wife. I plain forgot to check on Feb. 7, 2022.
The Individual Correlates of the Trump Vote in 2016

Description
These data come from the 2016 CCES and allow interested students to model the individual correlates of the Trump vote in 2016. Code/analysis heavily indebted to a 2017 analysis I did on my blog (see references).

Usage
TV16

Format
A data frame with 64600 observations on the following 21 variables.

- **uid**: a numeric vector, a unique identifier for the respondent as they first appear in the CCES data.
- **state**: a character vector for the state in which the respondent resides.
- **votetrump**: a numeric that equals 1 if the respondent voted says s/he voted for Trump in 2016.
- **age**: a numeric vector for age that is roughly calculated as 2016 - birthyr, as it's coded in the CCES data.
- **female**: a numeric that equals 1 if the respondent is a woman.
- **collegeed**: a numeric vector that equals 1 if the respondent says s/he has a college degree.
- **racef**: a character vector for the race of the respondent.
- **famincr**: a numeric vector for the respondent’s household income. Ranges from 1 (Less than $10,000) to 12 ($150,000 or more).
- **ideo**: a numeric vector for the respondent’s ideology on a liberal-conservative discrete scale. 1 = very liberal. 5 = very conservative.
- **pid7na**: a numeric vector for the respondent’s partisanship on the familiar 1-7 scale. 1 = Strong Democrat. 7 = Strong Republican. Other party supporters (e.g. libertarians) are coded as NA.
- **bornagain**: a numeric vector for whether the respondent self-identifies as a born-again Christian.
- **religimp**: a numeric vector for the importance of religion to the respondent. 1 = not at all important. 4 = very important.
- **churchatd**: a numeric vector for the extent of church attendance for the respondent. 1 = never. 6 = more than once a week.
- **prayerfreq**: a numeric vector for the frequency of prayer for the respondent. 1 = never. 7 = several times a day.
- **angryracism**: a numeric vector for how angry the respondent is that racism exists. 1 = strongly agree (i.e. is angry racism exists). 5 = strongly disagree.
- **whiteadv**: a numeric vector for agreement with statement that white people have advantages over others in the U.S. 1 = strongly agree. 5 = strongly disagree.
fearraces a numeric vector for agreement with statement that the respondent fears other races. 1 = strongly disagree. 5 = strongly agree.
racerare a numeric vector for agreement with statement that racism is rare in the U.S. 1 = strongly disagree. 5 = strongly agree.
lrelin a numeric vector that serves as a latent estimate for religiosity from the bornagain, religimp, churchatd, and prayerfreq variables. Higher values = more religiosity.
1cograc a numeric vector that serves as a latent estimate for cognitive racism. This is derived from the racerare and whiteadv variables.
1emprac a numeric vector that serves as a latent estimate for empathetic racism. This is derived from the fearraces and angryracism variables.

Details

The latent estimates for religiosity, cognitive racism, and empathetic racism come from a graded response model estimated in mirt. The concepts of "cognitive racism" and "empathetic racism" come from DeSante and Smith.

Source

Cooperative Congressional Election Study, 2016

References

Description

This is a (near) daily data set on the effective exchange rate index for the United Kingdom’s pound sterling from 1990 to 2018. The data are indexed, such that 100 equals the monthly average in January 2005. This is useful for illustrating devaluations of the pound after Black Wednesday, the financial crisis, and, more recently, the UK’s efforts to leave the European Union.

Usage

ukg_eeri

Format

A data frame with 7583 observations on the following 2 variables.

date a date
value a numeric vector for the effective exchange rate index (Jan. 2005 = 100)
uniondensity

Details

Credit to the Bank of England for making these data readily available and accessible. The Bank of England’s website (https://www.bankofengland.co.uk/) has these data with a code of XUDLBK67.

Source

Bank of England

uniondensity Cross-National Rates of Trade Union Density

Description

Cross-national data on relative size of the trade unions and predictors in 20 countries. This is a data set of interest to replicating Western and Jackman (1994), who themselves were addressing a debate between Wallerstein and Stephens on which of two highly correlated predictors explains trade union density.

Usage

uniondensity

Format

A data frame with 20 observations on the following 5 variables.

country a character vector for the country
union a numeric vector for the percentage of the total number of wage and salary earners plus the unemployed who are union members, measured between 1975 and 1980, with most of the data drawn from 1979.
left a numeric vector tapping the extent to which parties of the left have controlled governments since 1919, due to Wilensky (1981).
size a numeric vector measuring the log of labor force size, defined as the number of wage and salary earners, plus the unemployed.
concen a numeric vector measuring the percentage of employment, shipments, or production accounted for by the four largest enterprises in a particular industry, averaged over industries (with weights proportional to the size of the industry) and the resulting measure is normalized such that the United States scores a 1.0, and is due to Pryor (1973). Some of the scores on this variable are imputed using procedures described in Stephens and Wallerstein (1991, 945).

Details

Data documentation are derived from Simon Jackman’s pscl package. I just tidied up the presentation a bit.
Source

References

usa_chn_gdp_forecasts United States-China GDP and GDP Forecasts, 1960-2050

Description

This is a toy data set to examine the time in which we should expect China to overtake the United States in total gross domestic product (GDP), given current trends. It includes an OECD long-term GDP forecast from 2014, and forecasts from the forecast and prophet packages in R.

Usage

usa_chn_gdp_forecasts

Format

A data frame with 182 observations on the following 12 variables.

country a character vector (United States, China)
year a numeric vector for the year
p_gdp y-hats (forecasted GDP) from a prophet forecast
p_lo80 lower bound (80%) of y-hats (forecasted GDP) from a prophet forecast
p_hi80 upper bound (80%) of y-hats (forecasted GDP) from a prophet forecast
f_gdp forecasted GDP from 2020 to 2050, from the forecast package
f_lo80 lower bound (80%) forecasted GDP from 2018 to 2050, from the forecast package
f_hi80 upper bound (80%) forecasted GDP from 2018 to 2050, from the forecast package
f_lo95 lower bound (95%) forecasted GDP from 2018 to 2050, from the forecast package
f_hi95 upper bound (95%) forecasted GDP from 2018 to 2050, from the forecast package
oecd_ltgdpf long-term GDP forecast from the OECD via the OECD Outlook No 95 - May 2014
Details

Forecasts from the forecast package and prophet package are rudimentary and bare minimum forecasts based on previous values to that point. Notice the forecast forecasts have a prefix of f_ and the prophet forecasts have a prefix of p_. Forecasts are not meant to be exhaustive (clearly), only illustrative for in-class discussion about the "Rise of China." Forecasts made in R on Nov. 20, 2020.

Source

OECD Outlook No 95 - May 2014 - Long-term baseline projections provided by Organisation for Economic Co-operation and Development (OECD)

usa_computers

Percentage of U.S. Households with Computer Access, by Year

<table>
<thead>
<tr>
<th>usa_computers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
</tr>
<tr>
<td>1950</td>
</tr>
<tr>
<td>1960</td>
</tr>
<tr>
<td>1970</td>
</tr>
<tr>
<td>1980</td>
</tr>
<tr>
<td>1990</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>2010</td>
</tr>
<tr>
<td>2020</td>
</tr>
</tbody>
</table>

Description

This is a simple and regrettably incomplete time-series on the percentage of U.S. households with access to a computer, by year.

Usage

usa_computers

Format

A data frame with 19 observations on the following 2 variables.

- **year** the year
- **value** the estimated percentage of households with access to a computer

Details

Data are spotty and regrettably this is not a perfect time-series. However, it is useful for an in-class exercise to show that the proliferation of household computers (over time) in the United States comes in part because of globalization. Use it for that purpose. The data are reasonably faithful, but don’t treat it as gospel. Exact sourcing available upon request.

Source

Various: U.S. Census Bureau, Current Population Survey, and American Community Survey
USA Migration Data, 1990-2017

Description

This data set contains counts/estimates for the number of inbound migrants in the U.S as well as outbound migrants of American origin to other countries from 1990 to 2017.

Usage

`usa_migration`

Format

- **country**: a character vector/constant for the United States
- **category**: a character vector for whether the count is inbound to the U.S. from the area vector (i.e. American expats) or outbound (i.e. American expats) to the area vector in a given year.
- **area**: a character vector for the area of origin (if category == "Inbound") or destination for American migrants (if category == "Outbound")
- **count**: a numeric vector for the count of inbound/outbound migrants

Details

"Cote d'Ivoire", "Curacao", and "Reunion" originally had UTF-8 characters, which were removed for maximal compliance with CRAN. CRAN raises a note for every non-ASCII character it sees.

Source

United Nations Population Division (DESA)

USA States

State Abbreviations, Names, and Regions/Divisions

Description

A simple data set from `state.abb`, `state.name`, `state.region`, and `state.division` (+ District of Columbia). I’d rather just have all these in one place.

Usage

`usa_states`
usa_tradegdp

Format

A data frame with 51 observations on the following 4 variables.

- stateabb the state abbreviation
- statename the state’s name
- region the state’s Census region
- division the state’s Census division

Description

A yearly data set on U.S. trade and GDP from 1790 to 2018. Data also include a population variable to facilitate per capita adjustments, if the user sees it useful.

Usage

usa_tradegdp

Format

A data frame with 229 observations on the following 5 variables.

- year the year
- gdpb U.S. GDP (nominal, in billions)
- pop Population of the U.S. (in thousands)
- impo The value of U.S. imports (in billions)
- expo The value of U.S. exports (in billions)

Details

Data come from various sources (see, especially: http://econdataus.com/tradeall.html). Post-1989 data come from the U.S. Census Bureau. 2018 GDP comes from the IMF. 2018 population estimate comes from the U.S. Census Bureau.
Description

A data set on turnout and demographic data from the 2000 Current Population Survey. This is a basic port of the voteincome data from the Zelig package.

Usage

voteincome

Format

A data frame with 1500 observations on the following 7 variables.

- state: a character variable for the state, either Arkansas (AK) or South Carolina (SC)
- year: a numeric constant for the year (2000)
- vote: a dummy variable for whether the person voted (1) or did not vote
- income: a numeric variable for income ranging from 4 (less than $5000) to 17 (greater than $75000)
- education: a numeric variable for educational attainment ranging from 1 (less than high school education) to 4 (more than college education)
- age: a numeric variable for the respondent’s age in years, ranging from 18 to 85
- female: a dummy variable for whether the respondent is a woman (1) or a man (0)

Details

Data come from the 2000 Current Population Survey by way of the Zelig package. Data should not be used for inferential applications, only for pedagogical purposes. See the appropriate CPS codebook for more information on variable coding (especially for income and education). In all likelihood, age is right-censored as well.

Description

A simple data set that syncs World Values Survey country codes (s003) with corresponding country codes from the Correlates of War state system membership data.

Usage

wvs_ccodes
Format

A data frame with 112 observations on the following 3 variables.

s003 the World Values Survey country code
country a character vector for the corresponding country name
ccode the equivalent country code from the Correlates of War state system membership data

Details

http://svmiller.com/blog/2015/06/syncing-word-values-survey-country-codes-with-cow-codes/

Description

A data set on attitudes about immigration for all observations in the third to sixth wave of the World Values Survey. I use these data for in-class illustration.

Usage

wvs_immig

Format

A data frame with 310,388 observations on the following 6 variables.

s002 the World Values Survey wave
s003 the World Values Survey country code
country the country name
s020 the survey year
uid a unique identifier for the survey respondent
e143 an attitude about immigration policy in the World Values Survey

Details

1 = "let anyone come". 2 = "as long as jobs are available". 3 = "strict limits". 4 = "Prohibit people from coming" for the e143 variable. See ?wvs_ccodes for more information about naming/identifying countries.
Description

A data set on attitudes about the justifiability of bribe-taking for all observations in the third to sixth wave of the World Values Survey. I use these data for in-class illustration about seemingly interval-level, but information-poor measurements.

Usage

wvs_justifbribe

Format

A data frame with 348532 observations on the following 6 variables.

- s002 the World Values Survey wave
- s003 the World Values Survey country code
- country the country name
- s020 the survey year
- uid a unique identifier for the survey respondent
- f117 an attitude about the justifiability of bribe-taking in the World Values Survey

Details

1 = "never justifiable". 10 = "always justifiable". Increasing values on this 1-10 scale imply increasing permissiveness for the respondent toward this particular/blatant form of corruption.

Description

A data set on attitudes about the justifiability of abortion in the United States based on World Values Survey responses recorded across six waves (from 1982 to 2011). I assembled this data frame probably around 2014 and routinely use it for in-class illustration about regression, post-estimation simulation, quantities of interest, and how to think about modeling a dependent variable that is on a 1-10 scale, but has curious heaping patterns.

Usage

wvs_usa_abortion
Format

A data frame with 10387 observations on the following 16 variables.

wvscocode the country code for the United States (a numeric constant)
wave the survey wave
year the survey year corresponding to the survey wave
aj the justifiability of abortion on a 1-10 scale (1 = never justifiable; 10 = always justifiable)
age the age of the respondent in years
collegeed a dummy variable that equals 1 if the respondent graduated from college
female a dummy variable that equals 1 if the respondent is a woman
unemployed a dummy variable that equals 1 if the respondent is unemployed
ideology the ideological self-placement of the respondent on a 1-10 scale (1 = furthest to the left; 10 = furthest to the right)
satisfinancial the respondent’s financial satisfaction with his/her life (1 = most dissatisfied; 10 = most satisfied)
postma4 the post-materialist index for the respondent (-1 = materialist; 0 = mixed, 1 = post-materialist)
cai the child autonomy index, which ranges from -2 to 2
trustmostpeople can most people be trusted (1) or "(you) never can be too careful" (0)
godimportant the importance of God to the respondent on a 1-10 scale (1 = God is not at all important; 10 = God is most important)
respectauthority would more respect for authority be a welcome change to the United States?
nationalpride a dummy that equals 1 if the respondent is very proud to be an American.

Details

Data come from the World Values Survey. Note that the college education variable is curiously NA until the third survey wave. The child autonomy index ranges from -2 to 2 where increasing values indicate that children should learn determination and independence over obedience and religious faith. The respectauthority variable is coded where -1 means the respondent believes greater respect for authority in the United States as a future change to the country would be a bad thing. 0 means the respondent doesn’t mind such a change. 1 = the respondent believes it would be a good thing.

Description

This is a simple data set that summarizes what the education codes are in the World Values Survey for the United States.
Usage

wvs_usa_educat

Format

A data frame with 42 observations the following 6 variables.

- x025: the numeric code for supposedly the highest educational level attained
- x025cswvs: the numeric code for supposedly the education-level attained by the respondent, with country-specific categories
- n: the number of observations in the World Values Survey with that unique x025cswvs code
- x025cswvsmeaning: the meaning behind the unique x025cswvs code
- x025meaning: the meaning behind the unique x025 code
- educat: a standardized categorical variable corresponding with that unique x025cswvs code

Details

Observations taken from the combined seven waves of survey data made available by the World Values Survey, but isolated to just the United States. The World Values Survey unfortunately did not collect information about the education-level of the respondent in the 1981 and 1990 waves. These education categories feature in the Miller and Davis (2020) article in *Journal of Ethnicity, and Politics*, albeit before the release of the seventh wave.

References

<table>
<thead>
<tr>
<th>wvs_usa_regions</th>
<th>Region Categories for the United States in the World Values Survey</th>
</tr>
</thead>
</table>

Description

This is a simple data set that summarizes what the region codes are in the World Values Survey for the United States.

Usage

wvs_usa_regions
Format
A data frame with 63 observations the following 6 variables.

x048wvs the numeric code for supposedly the region in which the interview was conducted
x048wvs meaning the meaning behind the unique x048wvs code
stateabb the corresponding state abbreviation (if available) for the unique x048wvs code
statename the corresponding state abbreviation (if available) for the unique x048wvs code
division the corresponding division for the unique x048wvs code
region the corresponding region for the unique x048wvs code

Details
The region codes are a mess. Some of these are informed guesses. For example, I assume "Northwest" means "Pacific" and that Idaho was not included in that category. I make a similar assumption that "Rocky Mountain state" means "Mountain".

| yugo_sales | Yugo Sales in the United States, 1985-1992 |

Description

Usage
yugo_sales

Format
A data frame with 24 observations on the following 3 variables.

year the year
car the car type, either the Hyundai Excel, Yugo, or Toyota Tercel
sales the number of units sold in the United States

Details
Data come from https://carsalesbase.com. I’m aware the inclusion of the Tercel is questionable since the third generation of Tercels were quite different from the first and second generations. However, I use these data to illustrate how poorly the Yugo fared against competing models, including the first and second generation Tercels. I think the inclusion is fair for that purpose.
Index

* datasets
 af_crime93, 3
 aluminum_premiums, 4
 anes_partytherms, 5
 anes_prochoice, 6
 anes_vote84, 7
 Arca, 8
 arcticseaice, 9
 arg_tariff, 9
 asn_stats, 10
 CFT15, 11
 clemson_temps, 12
 co2emissions, 12
 coffee_imports, 14
 coffee_price, 14
 CP77, 15
 Datasaurus, 16
 Dee04, 17
 DJIA, 18
 DST, 18
 eight_schools, 19
 election_turnout, 20
 eq_passengercars, 21
 ESS9GB, 22
 ESSBE5, 23
 eustates, 24
 fakeAPI, 24
 fakeHappiness, 25
 fakeLogit, 26
 fakeTSCS, 26
 fakeTSD, 27
 ghp100k, 28
 gss_abortion, 29
 gss_spending, 30
 gss_wages, 32
 Guber99, 33
 illiteracy30, 34
 inglehart03, 35
 LOTI, 35
 LTPT, 36
 LTWT, 37
 min_wage, 37
 mm_mlda, 38
 mm_nhis, 39
 mm_randhie, 40
 mvprod, 41
 nesarc_drinkspd, 42
 Newhouse77, 43
 ODGI, 43
 Presidents, 44
 pwt_sample, 45
 quartets, 46
 recessions, 46
 SBCD, 47
 SCP16, 48
 sealevels, 49
 so2concentrations, 50
 steves_clothes, 50
 sugar_price, 51
 sweden_counties, 52
 thatcher_approval, 52
 therms, 53
 turnips, 54
 TV16, 55
 ukg_eeri, 56
 uniondensity, 57
 usa_chn_gdp_forecasts, 58
 usa_computers, 59
 usa_migration, 60
 usa_states, 60
 usa_tradegdp, 61
 voteincome, 62
 wvs_ccodes, 62
 wvs_immig, 63
 wvs_justifbribe, 64
 wvs_usa_abortion, 64
 wvs_usa_educat, 65
 wvs_usa_regions, 66
INDEX

yugo_sales, 67
af_crime93, 3
aluminum_premiums, 4
anes_partytherms, 5
anes_prochoice, 6
anes_vote84, 7
Arca, 8
arcticseaice, 9
arg_tariff, 9
asn_stats, 10
CFT15, 11
clemson_temps, 12
c02emissions, 12
coffee_imports, 14
coffee_price, 14
CP77, 15
Datasaurus, 16
Dee04, 17
DJIA, 18
DST, 18
eight_schools, 19
election_turnout, 20
eq_passengercars, 21
ESS9GB, 22
ESSBE5, 23
eustates, 24
fakeAPI, 24
fakeHappiness, 25
fakeLogit, 26
faketSCS, 26
faketSD, 27
ghp100k, 28
gss_abortion, 29
gss_spending, 30
gss_wages, 32
Guber99, 33
illiteracy30, 34
inglehart03, 35
LOTI, 35
LTPT, 36
LTWT, 37
min_wage, 37
mm_mlda, 38
mm_nhis, 39
mm_randhie, 40
mvprod, 41
nesarc_drinkspd, 42
Newhouse77, 43
ODGI, 43
Presidents, 44
pwt_sample, 45
quartets, 46
recessions, 46
SBCD, 47
SCP16, 48
sealevels, 49
so2concentrations, 50
steves_clothes, 50
sugar_price, 51
sweden_counties, 52
thatcher_approval, 52
therms, 53
turnips, 54
TV16, 55
ukg_eeri, 56
uniondensity, 57
usa_chn_gdp_forecasts, 58
usa_computers, 59
usa_migration, 60
usa_states, 60
usa_tradegdp, 61
voteincome, 62
wvs_ccodes, 62
wvs_immig, 63
wvs_justifbribe, 64
wvs_usa_abortion, 64
wvs_usa_educat, 65
wvs_usa_regions, 66
yugo_sales, 67