Package ‘stfit’

October 18, 2022

Type Package
Title Spatio-Temporal Functional Imputation Tool
Version 0.99.9
Date 2022-10-17
Description A general spatiotemporal satellite image imputation method based on sparse functional data analytic techniques. The imputation method applies and extends the Functional Principal Analysis by Conditional Estimation (PACE). The underlying idea for the proposed procedure is to impute a missing pixel by borrowing information from temporally and spatially contiguous pixels based on the best linear unbiased prediction.

BugReports https://github.com/mingsnu/stfit/issues
License GPL-3
LazyData true
Depends R (>= 3.5.0)
Imports Rcpp, Matrix, doParallel, foreach, abind, fda, raster, rasterVis, RColorBrewer
LinkingTo Rcpp
Suggests testthat, dplyr
RoxygenNote 7.1.0
Encoding UTF-8
NeedsCompilation yes
Author Weicheng Zhu [aut, cre]
Maintainer Weicheng Zhu <ningsnu@gmail.com>
Repository CRAN
Date/Publication 2022-10-18 12:20:04 UTC

R topics documented:

stfit-package ... 2
ARE ... 2
The stfit package provides functions to impute missing values for a sequence of observed images for the same location using functional data analysis technique.

Description

Absolute relative error

Usage

\[
\text{ARE}(y, \text{ypred})
\]

ARE

Absolute relative error
Arguments

- `y` vector
- `ypred` vector

Value
numeric number. A measure of difference between `y` and `ypred`.

epan Epanicicov kernel function

Description
Epanicicov kernel function

Usage
epan(x)

Arguments

- `x` numeric vector

Value
vector

getMask Get image mask

Description
Get image mask

Usage
getMask(object, tol = 0.95)

Arguments

- `object` A numeric matrix. Each row is an row stacked image.
- `tol` If the percentage of missing values for a pixel over time is greater than this value, this pixel is treated as a mask value.
getMissingLayers
Get missing layer index

Description

Get missing layer index

Usage

```r
getMissingLayers(rst.list)
```

Arguments

- `rst.list` - a RasterStack or RasterBrick object or a list of them

Value

index of the missing layers

landsat106
Landsat data example

Description

A dataset containing observation values of a 31x31 pixels landsat image observed between year 1982 and 2015.

Usage

```r
landsat106

```

Format

A data frame with 990 rows and 963 columns:

- year
- doy day of the year
- pixeli pixel value for the i-th pixel of the image

An object of class tbl_df (inherits from tbl, data.frame) with 990 rows and 963 columns.
landsatVis

Data visualization for landsat data

Description

Data visualization for landsat data

Usage

```r
landsatVis(
  mat,
  img.nrow = 31,
  byrow = FALSE,
  colthm = rasterTheme(panel.background = list(col = "black"),
                       region = brewer.pal(9,
                              "YlOrRd")),
  ...
)
```

Arguments

- `mat`: A matrix, each row corresponds to a vectorized image pixel values.
- `img.nrow`: number of rows of the image
- `byrow`: logical value indicating whether the pixel values are stored by row or by column. Default to FALSE
- `colthm`: Color theme for the plot, passing to the `par.settings` parameter of the `levelplot` function in the `rasterVis` package
- `...`: All other options passed to `levelplot` function in the `rasterVis` package

Examples

```r
landsatVis(landsat106[landsat106$year == 2015, -c(1:2)],
           names.attr = as.character(landsat106$doy[landsat106$year == 2015]))
```

lc_cov_1d

Local constant covariance estimation

Description

Local constant covariance estimation

Usage

```r
lc_cov_1d(ids, time, resid, W, t1, t2)
```
Arguments

ids a vector indicating subject/group ids

Arguments

time integer vector of observed time points, the minimum time unit is 1

Arguments

resid vector of residual values used for covariance calculation

W weight vector, it contains both kernel and bandwidth information in general local
 polynomial estimation setting up

Arguments

tt1 time point 1

tt2 time point 2

lc_cov_1d_est Local constant covariance estimation

Description

Local constant covariance estimation

Usage

lc_cov_1d_est(ids, time, resid, W, tt)

Arguments

ids a vector indicating subject/group ids

Arguments

time integer vector of observed time points, the minimum time unit is 1

Arguments

resid vector of residual values used for covariance calculation

Arguments

W weight vector, it contains both kernel and bandwidth information in general local
 polynomial estimation setting up

Arguments

tt time vector

llreg Local linear regression

Description

Local linear regression

Usage

llreg(x, y, x.eval = x, minimum.num.obs = 4, h = 60, Kern = epan)
Arguments

- **x**
 independent variable
- **y**
 response variable
- **x.eval**
 new data to predict on
- **minimum.num.obs**
 minimum number of observations needed to run the regression
- **h**
 bandwidth
- **Kern**
 Kernel

Value

predicted values at 'x.eval'

Description

Local Polynomial Regression

Usage

```r
lpreg(x, y, x.eval, minimum.num.obs = 4, span = 0.3, ...)
```

Arguments

- **x**
 independent variable
- **y**
 response variable
- **x.eval**
 vector to predict on
- **minimum.num.obs**
 minimum number of observations needed to run the regression
- **span**
 see 'loess' function
- **...**
 other parameters passed to 'loess' function

Value

predicted values at 'x.eval'
meanEst

STFIT Mean Estimation

Description

The function is used for pixel-wise mean estimation.

Usage

```r
meanEst(
  doy,
  mat,
  doyeval = seq(min(doy), max(doy)),
  msk = rep(FALSE, ncol(mat)),
  outlier.tol = 0.5,
  minimum.num.obs = 4,
  cluster = NULL,
  redo = TRUE,
  clipRange = c(-Inf, Inf),
  clipMethod = c("truncation", "nnr"),
  img.nrow = NULL,
  img.ncol = NULL
)
```

Arguments

doy vector of day of year (DOY) index
mat data matrix. Each row contains a row stacked image pixel values.
doyeval a vector of DOY on which to get the mean imputation
msk an optional logistic vector. TRUE represent the corresponding pixel is always missing.
outlier.tol the tolerance value in defining an image as outlier. The percent of outlier pixels in an image exceed this value is regarded as outlier image which will not be used in temporal mean estimation.
minimum.num.obs minimum number of observations needed for mean estimation. Too few observations may lead to big estimation error.
cluster an optional vector defining clusters of pixels. If NULL, mean estimation is conducted on each pixel, otherwise all pixels from the same cluster are combined for mean estimation.
redo whether to recalculate the mean estimation if there is an outlier (only redo once).
clipRange vector of length 2, specifying the minimum and maximum values of the prediction value
clipMethod "nnr" or "truncation". "nnr" uses average of nearest neighbor pixels to impute; "truncation use the clipRange value to truncate.
meanEst

- **img.nrow**: number of rows for an image, only used when ‘clipMethod’ is "nnr"
- **img.ncol**: number of columns for an image, only used when ‘clipMethod’ is "nnr"

Details

There are several predefined methods for mean estimation: smooth_spline, llreg, lpreg and spreg. User can use `opt$get()` to check the current registered method and use `opt$set()` function to set the method. For example, one can run `opt$set(smooth_spline)` first and then run the `meanEst` function to use smoothing spline regression for mean estimation. User can also customize the methods for mean estimation. For example, mean estimation through fourier basis expansion:

```
.X = fda::eval.basis(1:365, fda::create.fourier.basis(rangeval=c(0,365), nbasis=11))
customfun <- function(x, y, x.eval=1:365, minimum.num.obs = 10){
  nonna.idx = !is.na(y)
  if(sum(nonna.idx) < minimum.num.obs)
    return(rep(NA, 365))
  ## lmfit = lm.fit(.X[unlist(lapply(x, function(x) which(x == x.eval))),], y[nonna.idx])
  lmfit = lm.fit(.X[x[nonna.idx],], y[nonna.idx])
  return(.X[x.eval,]
}
stfit::opts_stfit$set(temporal_mean_est = customfun)
```

Value

A list containing the following entries:

- **doyeval**: same as input doyeval
- **meanmat**: estimated mean matrix, with number of rows equals length of doyeval and number of columns equal `ncol(mat)`
- **idx**: a list of image indexes
 - `idx.allmissing`: completely missing image indexes,
 - `idx.partialmissing`: partially observed image indexes,
 - `idx.fullyobserved`: fully observed image indexes,
 - `idx.outlier`: outlier image indexes.
- **outlier**: a list of image outliers information
 - `outidx`: index of the outlier image
 - `outpct`: percentage of outlier pixels corresponding to `outidx`
 - `outlst`: a list of the same length as `outidx`, with each list the missing pixel index.
NMSE

Normalized Mean Square Estimation

Description

Normalized Mean Square Estimation

Usage

NMSE(y, ypred)

Arguments

y vector
ypred vector

Value

numeric number. A measure of difference between y and ypred.

opts_stfit

Options for stfit

Description

Options for stfit

Usage

opts_stfit

Format

An object of class list of length 3.
outlier

Image Outlier Detection

Description
Image Outlier Detection

Usage
outlier(mat)

Arguments
mat data matrix. Each row is a row stacked image.

Value
a list containing the following entries:
- outidx: index of the outlier image
- outpct: percentage of outlier pixels corresponding to outidx.
- outlst: a list of the same length as outidx, with each list the missing pixel index.

Examples
dfB = landsat106[landsat106$year >= 2000,]
matB = as.matrix(dfB[-c(1:2)])
outlier(matB)

pctMissing

Missing value percentages

Description
Missing value percentages

Usage
pctMissing(x, mc.cores)

Arguments
x A RasterStack object
mc.cores Numer of cores to use

Value
A vector of percent of missing values for each layer
rmOutlier

Remove outlier

Description

An outlier is defined as points outside the whiskers of the boxplot over the time domain (DOY).

Usage

rmOutlier(rst)

Arguments

rst a *Raster object

Value

a *Raster object

RMSE

Root Mean Square Estimation

Description

Root Mean Square Estimation

Usage

RMSE(y, ypred)

Arguments

y vector
ypred vector

Value

numeric number. A measure of difference between y and ypred.
seffEst

STFIT Spatial Effect Estimation

Description

STFIT Spatial Effect Estimation

Usage

seffEst(
 rmat,
 img.nrow,
 img.ncol,
 h.cov = 2,
 h.sigma2 = 2,
 weight.cov = NULL,
 weight.sigma2 = NULL,
 nnr,
 method = c("lc", "emp"),
 partial.only = TRUE,
 pve = 0.99,
 msk = NULL,
 msk.tol = 0.95,
 var.est = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rmat</td>
<td>residual matrix</td>
</tr>
<tr>
<td>img.nrow</td>
<td>image row dimension</td>
</tr>
<tr>
<td>img.ncol</td>
<td>image column dimension</td>
</tr>
<tr>
<td>h.cov</td>
<td>bandwidth for spatial covariance estimation; ignored if weight.cov is supplied</td>
</tr>
<tr>
<td>h.sigma2</td>
<td>bandwidth for sigma2 estimation</td>
</tr>
<tr>
<td>weight.cov</td>
<td>weight matrix for spatial covariance estimation</td>
</tr>
<tr>
<td>weight.sigma2</td>
<td>weight vector for spatial variance estimation</td>
</tr>
<tr>
<td>nnr</td>
<td>maximum number of nearest neighbor pixels to use for spatial covariance estimation</td>
</tr>
<tr>
<td>method</td>
<td>"lc" for local constant covariance estimation and "emp" for empirical covariance estimation</td>
</tr>
<tr>
<td>partial.only</td>
<td>calculate the spatical effect for partially observed images only, default is TRUE</td>
</tr>
<tr>
<td>pve</td>
<td>percent of variance explained of the selected eigen values. Default is 0.99.</td>
</tr>
<tr>
<td>msk</td>
<td>an optional logistic vector. TRUE represent the corresponding pixel is always missing.</td>
</tr>
</tbody>
</table>
msk.tol if 'msk' is not given, the program will determine the mask using getMask function. If the percentage of missing values for a pixel over time is greater than this
var.est Whether to estimate the variance of the temporal effect. Default is FALSE.

Value
List of length 3 with entries:
 • seff.mat: estimated spatial effect matrix of the same shape as rmat.
 • seff_var_mat: estimated spatial effect variance matrix of the same shape as rmat.
 • idx: a list of two entries:
 – idx.allmissing: index of the completely missing images.
 – idx.imputed: index of the partially observed images, where spatial effects are estimated.

smooth_spline Smoothing spline regression

Description
Smoothing spline regression

Usage
smooth_spline(x, y, x.eval = x, minimum.num.obs = 4, ...)

Arguments
 x independent variable
 y response variable
 x.eval vector to predict on
 minimum.num.obs minimum number of observations needed to run the regression
 ... other parameters to be passed to smooth.spline function

Value
predicted values at 'x.eval'
Description

spline regression

Usage

```r
spreg(
  x, 
  y, 
  x.eval, 
  minimum.num.obs = 4, 
  basis = c("fourier", "bspline"), 
  rangeval = c(min(x.eval) - 1, max(x.eval)), 
  nbasis = 11, 
  ... 
)
```

Arguments

- `x` independent variable
- `y` response variable
- `x.eval` vector to predict on
- `minimum.num.obs` minimum number of observations needed to run the regression
- `basis` what basis to use, "fourier" and "bspline" are available
- `rangeval` see `fda::create.basis`
- `nbasis` see `fda::create.basis`
- `...` arguments passed to `fda::create.basis` functions

Value

predicted values at `x.eval`
Description

This function is used for Landsat data imputation, which includes five steps: mean estimation, outlier detection, temporal effect estimation, spatial effect estimation and imputation. In real application, one can use this as a template to create a five steps imputation procedure depending on the real data structure.

Usage

```r
stfit_landsat(
  year,  # vector of year
  doy,  # vector of DOY (day of the year)
  mat,  # a numeric matrix. Each row contains a row stacked image pixel values.
  img.nrow,  # number of rows of the image
  img.ncol,
  doyeval = 1:365,
  h.tcov = 100,
  h.tsigma2 = 300,
  h.scov = 2,
  h.ssigma2 = 2,
  nrr = 10,
  outlier.action = c("keep", "remove"),
  outlier.tol = 0.2,
  intermediate.save = TRUE,
  intermediate.dir = "./intermediate_output/",
  use.intermediate.result = TRUE,
  teff = TRUE,
  seff = TRUE,
  doy.break = NULL,
  cycle = FALSE,
  t.grid = NULL,
  t.grid.num = 50,
  clipRange = c(0, 1800),
  clipMethod = "nrr",
  var.est = FALSE
)
```

Arguments

- `year`: vector of year
- `doy`: vector of DOY (day of the year)
- `mat`: a numeric matrix. Each row contains a row stacked image pixel values.
- `img.nrow`: number of rows of the image
img.ncol number of columns of the image
doyeval a vector of DOY on which to get the mean and temporal imputation
h.tcov bandwidth for temporal covariance estimation
h.tsigma2 bandwidth for temporal variance estimation
h.scov bandwidth for spatial covariance estimation
h.ssigma2 bandwidth for spatial variance estimation
nrr maximum number of nearest neighbor pixels to use for spatial covariance estimation
outlier.action "keep" to keep outliers; "remove" to replace outliers with imputed values
outlier.tol The threshold to use to define outlier image. Default is 0.2, i.e. images with more than 20% outlier pixels are treated as outlier image.
intermediate.save TRUE or FALSE; whether to save the intermediate results including mean, temporal effect and spacial effect imputation results. The intermediate results can be useful to avoid duplicating the computation for some imputation steps.
intermediate.dir directory where to save the intermediate results
use.intermediate.result whether to use the intermediate results in the 'intermediate.dir' folder. Default is TRUE.
teff TRUE or FALSE, wheter to calculate the temporal effect. Default is TRUE.
seff TRUE or FALSE, wheter to calculate the spatial effect. Default is TRUE.
doy.break a vector of break points for doy where the spatial effect are estimated seperately on each interval. Default is NULL, i.e. the spatial effect is assumed to be the same over doy.
cycle TRUE or FALSE. When doy.break is specified, whether to combine the first doy.break interval and the last doy. break together for spatial effect estimation.
t.grid a vector of grid points on which to calculate the temporal covariance function
t.grid.num number of grid points to use for temporal covariance estimation. Ignored if t.grid is given.
clipRange passed to meanEst function
clipMethod passed to meanEst function
var.est Whether to estimate the variance of the temporal and spatial effects. Default is FALSE.

Value
List of length 4 with entries:
- imat: imputed matrix of mat
- smat: standard error matrix of the same size as mat
- idx: a list of image indexes
- idx.allmissing: completely missing image indexes,
- idx.partialmissing: partially observed image indexes,
- idx.fullyobserved: fully observed image indexes,
- idx.outlier: outlier image indexes.

- outlier: a list of image outliers information
 - outidx: image index with outlier pixels,
 - outpct: percentage of outlier pixels corresponding to outidx,
 - outlst: a list of the same length as outidx, with each list the missing pixel index.

Examples

```r
library(doParallel)
library(raster)
library(rasterVis)
library(RColorBrewer)

dF = landsat106[landsat106$year >= 2000,]
matF = as.matrix(dF[-c(1:2)])
year = dF$year
doy = dF$doy
if(require(doParallel))
  registerDoParallel(1)
res <- stfit_landsat(year, doy, matF, 31, 31, nnr=30,
                     use.intermediate.result = FALSE, intermediate.save = FALSE, var.est = TRUE)
# visualize the imputed results
idx = c(res$idx$idx.allmissing[150], res$idx$idx.partialmissing[c(30, 60, 90)])
rst_list = list()
for(i in 1:length(idx)){
  rst_list[(i-1)*3+1] = raster(matrix(matF[idx[i],], 31))
  rst_list[(i-1)*3+2] = raster(matrix(res$imat[idx[i],], 31))
  rst_list[(i-1)*3+3] = raster(matrix(res$sdmat[idx[i],], 31))
}
s = stack(rst_list)
levelplot(s, index.cond=list(c(seq(1, 12, 3), seq(2, 12, 3), seq(3, 12, 3))),
          par.setting = rasterTheme(panel.background=list(col="black"),
                                   region = brewer.pal(9, 'YlOrRd'),
                                   names.attr = c(rbind(paste0("Original ", idx),
                                   paste0("Imputed ", idx),
                                   paste0("Std. Error ", idx))),
          layout = c(4,3))
```

Description

STFIT Temporal Effect Estimation

STFIT Temporal Effect Estimation
Usage

teffEst(
 ids,
 doy,
 rmat,
 doyeval = seq(min(doy), max(doy)),
 h.cov = 100,
 h.sigma2 = 300,
 weight.cov = NULL,
 weight.sigma2 = NULL,
 pve = 0.99,
 t.grid = NULL,
 t.grid.num = 50,
 var.est = FALSE
)

Arguments

ids ids for 'group', for data with repeated measurement over years, year is ids; for pixels belong to certain clusters, cluster is ids.
doy vector of DOY (day of the year)
rmat residual matrix with rows corresponding to doy and columns corresponding to pixel index
doyeval a vector of DOY on which to get the temporal imputation
h.cov bandwidth for temporal covariance estimation; ignored if weight.cov is supplied
h.sigma2 bandwidth for temporal variance estimation
weight.cov weight vector for temporal covariance estimation
weight.sigma2 weight vector for temporal variance estimation
pve percentage of variance explained; used for number of eigen values selection. Default is 0.99.
t.grid a vector of grid points on which to calculate the temporal covariance function
t.grid.num number of grid points to use for temporal covariance estimation. Ignored if t.grid is given.
var.est Whether to estimate the variance of the temporal effect. Default is FALSE.

Value

List of length 2 with entries:

- teff_array: 3-d array with first dimension 'ids', second dimension 'doy' and third dimension pixel index.
- teff_var_array: same structure as teff_array if var.est is TRUE, otherwise NULL.
weightMatrix

Description
Weight matrix calculation

Usage
weightMatrix(h)

Arguments
- h: 'bandwidth'

Value
a weighting matrix

weightVector

Description
Weight vector calculation

Usage
weightVector(h)

Arguments
- h: bandwidth, should be positive numbers

Value
a vector
Index

* datasets
 landsat106, 4
 opts_stfit, 10
ARE, 2
epan, 3
getMask, 3
getMissingLayers, 4
landsat106, 4
landsat2 (landsat106), 4
landsatVis, 5
lc_cov_1d, 5
lc_cov_1d_est, 6
llreg, 6
lpreg, 7
meanEst, 8
NMSE, 10
opts_stfit, 10
outlier, 11
pctMissing, 11
rmOutlier, 12
RMSE, 12
seffEst, 13
smooth_spline, 14
spreg, 15
stfit-package, 2
stfit_landsat, 16
teffEst, 18
weightMatrix, 20
weightVector, 20